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Abstract— In this paper, we scrutinised an improvement of
the Modified Cuckoo Search (MCS), called Modified Cuckoo
Search-Markov chain Monte Carlo (MCS-MCMC) algorithm,
for solving optimisation problems. The performance of MCS are
at least on a par with the standard Cuckoo Search (CS) in terms
of high rate of convergence when dealing with true global
minimum, although at high number of dimensions. In
conjunction with the benefits of MCS, we aim to enhance the
MCS algorithm by applying Markov chain Monte Carlo
(MCMC) random walk. We validated the proposed algorithm
alongside several test functions and later on, we compare its
performance with those of MCS-Lévy algorithm. The capability
of the MCS-MCMC algorithm in yielding good results is
considered as a solution to deal with the downside of those
existing algorithm.

Keywords— MCS-MCMC, modified cuckoo search, cuckoo
search, Markov chain Monte Carlo

L.

Metaheuristics have been established as one of the most
practical approach to optimisation [1-7]. These intelligent
mechanisms, which include Cuckoo Search (CS), offers great
advantages over conventional modeling, including the
capabilities to employs high level techniques in exploring and
exploiting the search space. CS is a new evolutionary
optimisation algorithm which was influenced by the obligate
brood parasitism of some cuckoo species in collaboration with
the Lévy flight behaviour of some birds and fruit flies [§]. They
laid their egg in neighbourhood nests, ever since they do not
have their own nests. In order to upsurge the hatching
possibility, they may remove the eggs in the nests of other host
birds and mimicry the eggs of those host birds [8]. Therefore,
in consideration of finding the best environment for breeding
and reproduction, the cuckoos’ group tends to immigrate. Due
to its substantial theoretical importance, that CS algorithm has
been explored in the context of simplicity due to fewer
parameter settings and quick convergence speed, which makes
the algorithm inclusively and indomitably used for many
optimisation problems [1, 3, 4, 9-11].

INTRODUCTION

Numerous improvements being made, in consideration of
magnifying the accuracy and the rate of convergence of this
algorithm. For instance, Valian et al. [12] introduced an
Improved Cuckoo Search (ICS) algorithm by adjusting the

978-1-5090-1721-8/16/$31.00 ©2016 IEEE

306

Iwan Tri Riyadi Yanto

Department of Information System,
Ahmad Dahlan University,
Yogyakarta, Indonesia.
yanto.itr@is.uad.ac.id

parameters, probability P, and step size «. Those parameters

are important to fine-tuning the solution vectors. To magnify
the accuracy and the rate of convergence, Walton et al. [13]
modified the standard CS algorithm by adding up the
information exchange between the top eggs. The Modified
Cuckoo Search’s (MCS) performances are at least on a par
with the standard CS in terms of high rate of convergence to
the true global minimum remarkably at high number of
dimensions. In conjunction with the benefits of MCS, we
inclined an initiative to enhance the MCS by replacing the
Lévy flight found in the algorithm with Markov chain Monte
Carlo (MCMC) random walk. A major advantage of the
MCMC theory is that, it learns better parameter automatically
whilst ruling good parameter values by little user intercession.
Those can be achieved by Markov chain mixing and integrated
autocorrelation of a functional of interest.

The paper is mainly organised according to five (5)
sections. In the first section, a brief capsulation of the study is
disposed. In the second part, the key concept behind the MCS
with pseudo code is discussed. The third section comprises the
proposed MCS-MCMC algorithm. In the fourth section, the
experimental setup is clarified and the experimental results are
presented. In the fifth section which is the last section, some
conclusions and future work are untaken.

1I. MODIFIED CUCKOO SEARCH

According to Yang and Deb [8], the CS will always find the
optimum if it been given enough computation. Basically, the
search technique in CS being done by considering the whole
area on random walks. However, it is not guaranteed whether
the exploration can converged faster or not. Typically, the step
size o in CS are kept constant which resulting the efficiency
of the algorithm to tail off. To contend with this concern,
Walton et al. [13] created two (2) modifications: 1) change the
step size of Lévy flight, ¢ In ordinary CS, the value of «
was constantly kept by employing az=1 [8]. 2) hasten up the
rate of convergence by taking into account the information
exchange amongst the eggs. Since the exploration in the
ordinary CS is performed by their own selves, therefore, the
information exchange amongst the eggs is not exist. As for the
MCS, the eggs were evaluated twice. The first evaluation
involves putting a sub of the eggs upon the best fitness into a
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group of top eggs. Apiece of the top eggs, a second egg in this
group is evaluated by picking up randomly before a new egg
being generated on the line that connects these two top eggs.
With regard to get the best fitness, the new location of the new
egg (distance along the line) is determined by employing the
inverse of the golden ratio ¢ = (1 +5 )/ 2. If the same fitness

value found in both eggs, the new egg is generated at the center
point.

There are 2 parameters that need to be adjusted in the MCS,
which refer to the fraction of nests to be abandoned and the
fraction of nests to generate the top nests. The initial value of
the step size of Lévy flight 4A=1 is chosen. At each
generation, a new step of Lévy flight is calculated by using

o« A/ \/E , where G specifies the number of generation.
This exploration searching is only can be used for the fraction
of nests to be abandoned. There is a probability that, in this
measurement, the same egg is chosen twice. Therefore, by
performing a local Lévy flight search on the randomly picked
nest with step size o « 4/G* can handle these problems. The

step-by-step  processes
Algorithm 1.

in the MCS are presented in

A « MaxLevyStepSize
@ « GoldenRatio

Initialise a population of n nests _\3{;' =12..., n)

FOR Vx, . do
Calculate fitness F =f(x,)

ENDFOR

Generation number G «1

WHILE

NumberObjectiveEvaiuations < MaxNumberEvaluations . do
G=G+1

Sort nests by order of fitness
FOR all nests to be abandoned. do
Arrange nests by fitness from recent position x,

Compute the step size of Lévy flight , . 4 /\}'G_
Perform Lévy flight from x to generate new egg x,
).'I - Xi
F + ﬂ'x_ )

ENDFOR

FOR all of the top nests do
Recent position x

Randomly select new nest from the top nests

IFx, = X, then .
Calculate the step size of Lévy flight ¢ 4 /G*
Execute Lévy flight from x,,to produce new egg
X.F=jf(x)

From all nests, randomly select nest /
IF (£ > F) do
X, X,
F, «F,
EN'Jj].F
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ELSE
ksl
Move the worst nest distance & to the
best nest in order to find x . F, = f(x,)
Randomly select nest [ from all nests
IF (7, > F ) then
I_. . xk
Fed,
ENDIF
ENDIF

ENDFOR
ENDWHILE

ALGORITHM 1: Modified Cuckoo Search (MCS)

M1 RANDOM WALK

In 1905, Karl Pearson proposed the term “random walk”.
The random walk is a path that considers the mathematical
formalisation that comprises a sequence of random steps [14].
It is noted that the random walk is presumed to be uniform,
symmetric, intricate, and possess zero mean and delimited
variance of jumps [14]. The areas of random walk includes the
field of ecology [15], economics [16], computer science [17]
and the like. Commonly, the random walks work on graph,
while some are on the line. Additionally, it can be found on the
plane, or in high dimensions, or on groups. Typically, animal
hunting for food in a random direction. The chosen direction is
depending indirectly on a probability of both the current
location/state and the transition probability to the next location.

A. Lévy Flight

A Lévy flight is a type of random walk that the distribution
of the step-lengths lies within a heavy-tailed probability
distribution. The typical properties of this kind of distribution
is the positive exponential moments are infinite (do not have
finite mean and variance). The term “Lévy flight” was invented
by Benoit Mandelbrot [18] who used this for one specific
definition of the distribution of step sizes. If the distribution of
step size is a Cauchy distribution, he used the term, “Cauchy
flight”. If the distribution is a normal distribution, he used the
term, “Rayleigh flight”. For a particular case, when the
directions of the step sizes are in isotropic random directions,
he used the term, “Lévy flight” [18] which is defined by the
survivor function of the distribution of step-sizes, U , as in (1):

Pr(U > u)={

where D is a parameter in the fractal dimension that lies in
Pareto distribution.

1

-D
u

u<l,
u=l.

M
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Theoretical research has shown that the distribution of step
sizes can be any distribution for which the Lévy exponent of
approximately 2 (also called power law) can provide a higher
efficiency than other exponents:

PR(U>u)=0(u_ﬂ) )
that fulfill 1< <3 [18].

B. Markov chain Monte Carlo

MCMC methods are constructed based on a Markov chain
which has the desired distribution on account of its equilibrium
distribution. Due to the aptitude of MCMC that provides
internal into broad, transcendent Bayesian issues, it has been
used as one of the utmost significant reinforcement in modern
statistics [19]. For sampling the desired distribution, the
MCMC used the chain state after an adequate number of steps.
The quality sample is used for improving the function of the
number of steps. Nevertheless, the issues on how to define and
minimising the steps required for it to fully converge into
equilibrium distribution remains problems by researchers. The
distribution is said to be in equilibrium state when the process
develop gradually in a random way until it achieves a certain
point, that remains as a subsequently distribution [19]. As there
is always some issue regarding the starting position, the
MCMC sampling can only approximate the target distribution.

The MCMC sampling regularly used in calculating multi-
dimensional integrals numerically, whereas a group of
“walkers” moves around at random. The integrand value at
each point where the walker steps, is calculated close to the
integral. Further, a pile of tentative steps encompassing the area
is taken, wherever a place with apparently have huge
contribution to the integral being chose so that later on, they
may move into the next step [19].

IV. THE PROPOSED MCS-MCMC ALGORITHM
The motivation of using MCMC in the MCS algorithm is
due to the fact that the MCMC performs full-dimensional
jumps at each iteration. It also has a large-scale polynomial rate
of convergence due to the presence of central limit theorem
(CLT) for higher moment. The MCS-MCMC algorithm
generally can be depicted in a flowchart as given in Fig. 1.

The MCMC is involved 2 parts which was circled in red
(Refer to Fig. 1). In this step, we apply the MCMC random
walk due to the benefits: higher polynomial convergence rate
due to the presence of CLT for higher moment. This is
because, MCMC use local moves based on certain kinds of
target density prior to better algorithms qualitatively.

The MCS-MCMC is operated by the following steps:
e At first, we generate the initial value, & that

satisfies £(9)> 0, by considering the target probability
density function (PDF):

p(9) = C.Q_"/z.exp(;—;) 3)

where n =5 and a=4.
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e There are 2 parameters, number of samples (iterations)
and samples drawn from the target PDF, p(@). For the

number of samples, we set the value as the same as the
dimension of each test function. Then, we marked-out
U from a uniform distribution at random, and accept &
subjectto U < P where P<1,6.

e For the procedure, we calculate the density ratio at the
candidate point, & and current points, &,_,,
O "
P\G (-1
0-) 7(6)
e We can summarise that the sampling as first computing,
and then accept the probability, P

/(6)
m’ (%)

P = min

A. Test Functions

In the literature [20, 21], numerous benchmark test
functions has been designed to assess the performance of
optimisation algorithms. With regard to verify the proficiency
of the proposed MCS-MCMC algorithm, we used three (3)
benchmark test functions [20, 21]:

Ackley’s Function is multimodal. It is broadly used for
testing the optimisation algorithms [22].

#(x)=—20 exp{— 0'2\/@} i

(©)
exp|:l %COS(ZIIX ; ):| + (20 + e)

d i=2
with a global minima f* =0 at x*=(0,0,...,0) in the range of
—-32.768 < x, £32.768 where i =1,2,...,d .

Rosenbrock’s Function is unimodal. The global minima
f(x*)=0 at x*=(1,1,....1) between [~100,100] is enclosed by a
long, narrow, parabolic shaped flat valley [23].

d-1 2
/=% 1 100, - ™
Bohachevsky Function is a multimodal and separable
function with ample local minimum.

f(x)= xl2 +2x§ —0.3cos(37zx1)— 8
0.4 cos(47x,)+0.7 ®

The Bohachevsky is a bowl shaped function where a global
minima f(x*)=0 is bounded to [-100,100] [24].
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Fig. 1. MCS-MCMC flowchart

B. Results

In order to compare both MCS-Lévy and MCS-MCMC
algorithms, we have accomplished substantial simulations. We
run each algorithm 30 times in order to carry out meaningful
analysis. During the experiments, 15 host nests with an egg
survival probability of 0.25 were used. The maximum
iterations for all the algorithms are set to 100 with a total of 30
simulation runs on each function. We monitor the
performances by comparing the best results, average best
results, standard deviation, worst results and average worst
results of both algorithms. Standard deviation is used to find
any variations in the average trial values. The less indicates the
better. The system used for the simulations are practically
instantaneous with an Intel Core™ i5 processor with 4 GB
RAM. The proposed MCS-MCMC is implemented using
MATLAB?7.10 on Windows 7 Ultimate.

TABLE L. EXPERIMENTAL RESULTS OF BENCHMARK FUNCTIONS
Function Dimension Performance MCS- MCS-
unctio ensio Metrics Lévy MCMC
Best 0.2104 0.072753
Average Best 0.36533 0.10945
Standard
50 Deviation 0.091886 0.018187
Worst 11.7854 1.22556
Average 49434 | 0.83814
Ackley Worst
Best 0.44524 0.13416
Average Best 0.62211 0.18207
Standard
120 Deviation 0.10891 0.019736
Worst 8.8806 1.2569
Average
Worst 5.5384 0.82343
Best 6.821 5.7907
Average Best 68.553 36.0144
Standard
Rosenbrock’s 10 Deviation 937092 Eeae
Worst 95728937 1214132
Average 6346387 | 53851.24
Worst
Best 0.00E+00 | 0.00E+00
Average Best 5.06E-07 6.24E-07
Standard
Bohachevsky 2 Deviation 2.58E-06 | 2.64E-08
Worst 392.7252 2.597538
Average
Worst 31.8671 1.30814
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As aforesaid test functions which can be seen in Table I, the
proposed MCS-MCMC algorithm improve the efficiency of the
original MCS-Lévy which significantly performs better.
Multimodal functions can be considered as functions that have
numerous numbers of local minima. These functions, in a
certain degree, more difficult to optimise. For Ackley (d = 50) ,
MCS-MCMC outperformed MCS-Lévy by 25.7% while for
Ackley (d=120), MCS-MCMC outperformed MCS-Lévy by

23.2%. For Rosenbrock’s, MCS-MCMC outperformed
MCS-Lévy by 45.9%. Rosenbrock’s, which is a unimodal test
function, MCS-MCMC algorithm fitness value is considerably
closer to global optima, which contrast with the original
MCS-Lévy algorithm. For Bohachevsky, MCS-MCMC and
MCS-Lévy are on a par, however the MCS-Lévy provides
worst result by 99.3% which significantly makes the MCS-
MCMC more robust compared to the MCS-Lévy.

C. Convergence

The plots of convergence were compared for both
algorithms in this section. We estimated the algorithm which
has better potential and converge faster approaching optimality.
In Fig. 2 to 5, we outlined the absolute value of the fitness
value, f(x). For Ackley (d=50,d =120) and Rosenbrock’s

function (refer to Fig. 2 to 4), we can portray that the proposed
MCS-MCMC converged quickly to its optimal solution.
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Fig. 3. The Fitness Value of Number of Generation (Ackley, d=120)

It can also be seen from Fig. 4, for Rosenbrock’s, both
algorithms converges quickly. As for MCS-MCMC, it
converged when Number of Generation = 12 while MCS-Lévy
when Number of Generation = 7.
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Fig. 4. The Fitness Value of Number of Generation (Rosenbrock’s)

As can be seen in Fig. 5, at the first 10 number of
generation, the MCS-Lévy converge quickly. However, it rises
after some point. Compared to the MCS-MCMC, it reduces
uniformly and converged.
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Fig. 5. The Fitness Value of Number of Generation (Bohachevsky)

V. CONCLUSION

This paper introduced the enhancement of original MCS,
by replacing the Lévy flight found in the original MCS with
MCMC random walk. The capability of the proposed
MCS-MCMC  algorithm was investigated through the
performance of several experiments on well-known test
functions. The results attained by the proposed MCS-MCMC
algorithm are satisfying with regards to the rate of
convergence. A further extension of the MCS-MCMC
algorithm will be to solve multiobjective optimisation
problems more naturally and more efficiently instead of
focusing on the optimisation with a single objective or a few
criteria with linear and nonlinear constraints.
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