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Abstract 

A ring A is called a ∗-ring if A is a prime ring and A has no nonzero 
proper prime homomorphic image. The ∗-ring was introduced by 
Korolczuk in 1981. Since ∗-rings have an important role in radical 
theory of rings, the properties of ∗-ring have been being investigated 
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intensively. Since every ring can be viewed as a module over itself, the 
generalization of ∗-ring into module theory is an interesting 
investigation. We would like to present the generalization of ∗-rings in 
module theory named p∗ -modules. An A-module M is called a p∗ -

module if M is a prime A-module and M has no nonzero proper prime 
submodule. According to the result of our investigation, we show that 
every ∗-ring is a p∗ -module over itself. Furthermore, let A be a ring, 

let M be an A-module, and let I be an ideal of A with ( ) ,:0 AMI ⊆  

where ( ) { }{ }.0:0 =|∈= aMAaM A  We show that M is a p∗ -

module over A if and only if M is a p∗ -module over .IA  On the 

other hand, the essential closure k∗  of the class of all ∗-rings is a 

special class of rings. As the last result of our investigation, we present 
the special class of modules determined by .k∗  

1. Introduction 

Let A be a ring. A ring A is called a prime ring if { }0  is a prime ideal of 

A (Gardner and Wiegandt [5]). Any homomorphic image of a ring A can be 
represented as ,IA  where I is an ideal of A. The homomorphic image IA  

of A is called a prime homomorphic image if IA  is a prime ring. The class 

of rings σ is hereditary if σ contains all ideals of a ring .σ∈A  The class of 
rings σ is essentially closed if σ is closed under essential extensions. Let π 
denote the class of all prime rings. A subclass μ of π is called a special class 
if μ is hereditary and μ is essentially closed. For hereditary class of rings ,�  

the upper radical ( )�U  is defined as the class of all ring A such that A has no 

nonzero homomorphic image in .�  The prime radical β is the upper radical 

determined by the class of all prime rings π. 

A prime ring A is called a ∗-ring if A has no nonzero proper ideal I of A 
such that IA  is a prime ring (Korolczuk [6]). Some properties of ∗-rings 

were presented in (France-Jackson [2]). ∗-rings have been being studied 
intensively in radical theory of rings because of Gardner’s question 
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mentioned in (Gardner [4]). Let ∗ denote the class of all ∗-rings and let k∗  

denote the essential closure of ∗. The essential closure k∗  of ∗ is a special 

class of rings. Gardner asked whether the prime radical β coincide with the 
upper radical ( )k∗U  determined by .k∗  (France-Jackson et al. [3]) have 

given an alternative solution of this question to have a positive answer. 

On the other hand, let M be an A-module. An A-module M is called a 
prime A-module if { }0≠AM  and for Mm ∈  and AJ �  such that { }0=Jm  

implies 0=m  or { }.0=JM  The set ( ) { }{ }0:0 =|∈= aMAaM A  is called 

an annihilator of an A-module M. An A-module is faithful if ( ) { }0:0 =AM  

(Gardner and Wiegandt [5]). 

Theorem 1.1 (Gardner and Wiegandt [5]). Let A be a ring and let 
.AI 	  

(1) If M is an IA -module, then with scalar multiplication 

( ) MmIaam ,+=  forms an A-module with ( ) .:0 AMI ⊆  

(2) If M is an A-module and ( ) ,:0 AMI ⊆  then M is an IA -module 

with the scalar multiplication ( ) .ammIa =+  

(3) If M is an A-module and ( ) ,:0 AMI ⊆  then N is a submodule of the 

IA -module if and only if N is a submodule of the A-module M. 

(4) ( ) ( ) .:0:0 IAA MIM =  

(Gardner and Wiegandt [5]) For every ring A, let A∑  denote the class             

of all A-modules M with { },0≠AM  and .A∑=∑ ∪  Let ( ) =∑Aker  

(( ) )AA MM ∑∈|:0∩  and we consider the class ∑  might satisfy the 

following conditions: 

1. (M1) If ,IAM ∑∈  then .AM ∑∈  

2. (M2) If AM ∑∈  and ( ) ,:0, AMIAI ⊆	  then .IAM ∑∈  
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3. (M3) If ( ) { },0ker =∑A  then { }∅≠∑B  for all nonzero ideals B of A. 

4. (M4) If { }∅≠∑B  whenever { } ,0 AB 	≠  then ( ) { }.0ker =∑A  

Proposition 1.2 (Gardner and Wiegandt [5]). Let A be a ring and let 
.AI 	  Then there is a prime A-module M such that ( ) IM A =:0  if and 

only if I is a prime ideal of A. 

Definition 1.3 (Gardner and Wiegandt [5]). For every ring A, let A∑  be 

a class of prime A-modules and let .A∑=∑ ∪  The class ∑  is called a 

special class of modules if ∑  satisfies (M1), (M2), and the following 

conditions: 

1. (SM3) If ABM A 	,∑∈  and { },0≠BM  then .BM ∑∈  

2. (SM4) If AB 	  and ,BM ∑∈  then .ABM ∑∈  

If ∑  is a special class of modules, then { AA |=μ  has a faithful module 

in }A∑  is a special class of rings. Conversely, if μ is a special class of rings 

and we define { MMA |=∑  is a prime A-module and ( ) },:0 μ∈AMA  

then ( )A∑=∑ ∪  is a special class of modules (Nicholson and Watters [7]). 

Example 1.4. Let π denote the class of all prime rings and for every ring 
A let { MMA |=∑  is a prime A-module and ( ) }.:0 π∈AMA  Since π is a 

special class of rings, the class A∑=∑ ∪  is a special class of modules. 

These basic theories motivate us to investigate the special class of 
modules generated by .k∗  

2. Main Results 

Let M be an A-module. A homomorphic image NM  of A-module M is 

called a prime homomorphic image of M if NM  is a prime A-module. Since 

every ring can be viewed over itself, we will give a new type of module 



p∗ -modules and a Special Class of Modules … 15 

named p∗ -module. This kind of module is motivated by the existence of 

∗-ring. 

Definition 2.1. Let M be an A-module. A-module M is called a p∗ -

module if M is a prime A-module and M has no nonzero proper prime 
homomorphic image. 

The necessary and sufficient condition for A-module M to be a p∗ -

module is given below. 

Lemma 2.2. Let M be an A-module. The following conditions are 
equivalent: 

1. M is a p∗ -module over A. 

2. M is a prime A-module and every proper prime submodule N of M 
implies { }.0=N  

Proof. (1) ⇒ (2) Let M be a p∗ -module over A. By the definition, we 

have M is a prime A-module. Furthermore, M has no nonzero proper prime 
image. Let N be a proper prime submodule of M. Suppose { }.0≠N  Then 

NM  is a nonzero proper prime homomorphic image of M, a contradiction. 

(2) ⇒ (1) Let M be a prime A-module and every proper prime submodule 
N of M implies { }.0=N  Suppose NM  is a nonzero prime homomorphic 

image of M. This gives N is a proper prime submodule of M. This implies 
that { }.0=N  So, we may conclude that M has no nonzero proper prime 

homomorphic image.  

Some modules are naturally p∗ -module. In the next lemma, we show 

that every simple module M over a ring A is a p∗ -module. 

Lemma 2.3. Let A be a commutative ring and M be an A-module. If M is 
a simple A-module, then M is a p∗ -module over A. 
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Proof. Let Aa ∈  and Mm ∈  such that .0=am  Suppose aa ⇒≠ 0  

( ).:0 m∈  Thus, ,rMm ∈  where rM  is a torsion submodule of M. Since M 

is a simple A-module, we have { } 00 =⇒= mM r  or ∈⇒= aMM r  

( ).:0 M  Hence, M is a prime A-module. Since M is a simple A-module, 

A-module M has no nonzero proper prime homomorphic image. So, M is a 

p∗ -module.  

Example 2.4. 1. (Adkins and Weintraub [1]). An abelian group A is a 
simple Z -module if and only if A is a cyclic group of prime order. Hence, A 
is a p∗ -module over the ring Z  of integers if A is a cyclic group of prime 

order. 

2. The integers modulo prime number pZ  is a simple Z -module. Hence, 

A is a p∗ -module over .pZ  

3. (Adkins and Weintraub [1]). Let ( ){ }RR ∈|== babaV ,,2  and 

consider the linier transformation VVT →:  defined by ( ) ( ).,, uvvuT −=  

Then the [ ]XR -module TV  is a simple [ ]XR -module. So, we may deduce 

that TV  is p∗ -module over [ ] .−XR  

The following theorem shows that every ∗-ring is a p∗ -module. 

Theorem 2.5. Let A be a ring. If A is a ∗-ring, then A is a p∗ -module 

over itself. 

Proof. We will show that A is a prime A-module. For this step, we can 
follow Corollary 3.14.17 in (Gardner and Wiegandt [5]) or we give the other 

way to proof. Since A is a prime ring, { }.02 ≠= AAA  Suppose A is not a 

prime A-module. Then there exists AJ �  with { }0≠JA  and a≠0  A∈  

such that { }.0=Ja  Since ,0 Aa ∈≠  we can construct the nonzero ideal 

a  of A generated by a such that { },0=aJ  contrary to A is a prime ring. 
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Suppose A is not a p∗ -module. Then there exists a nonzero proper prime 

submodule I of A. In the other words, IA  is a prime A-module. Now define 

( ) ( ) { }{ }.0:0 =|∈= IAaAaIA A  Clearly ( ) { },0:0 ≠AIA  because I≠0  

( ) .:0 AIA⊆  We will show that ( )AIA:0  is a prime ideal of A. Let 

AKJ �,  such that ( ) .:0 AIAJK ⊆  If ( ) ,:0 AIAK {  let =∈ aKk ,  

IAIa ∈+  be such that { }.0=ak  Then ( ) ( ) aIAaJKakJ A:0⊆⊆  

{ }.0=  So, ( ) { }.0=IAJ  This gives ( ) .:0 AIAJ ⊆  Hence, ( )AIA:0  is 

a prime ideal of A, contrary to A is a ∗-ring.  

The converse above is not true in general. 

Example 2.6. The ring { ( ) }Z∈=+|+= yxyxyxJ ,,112,2gcd122  

is a ∗-ring. By Theorem 2.5, we have J is a p∗ -module over J. However, the 

module J over itself is not a simple module. 

Lemma 2.7. Let A be a ring. If M is a p∗ -module over A, then every 

nonzero proper homomorphic image of a p∗ -module over A is not a 

p∗ -module over A. 

Proof. Let A be a ring and consider M is a p∗ -module over A. Suppose 

NM  is a nonzero proper homomorphic image of M. Clearly, NM  is not a 

prime A-module. Hence, NM  is not a p∗ -module over A.  

In the following theorem, we give a sufficient condition for an A-module 
M to be a p∗ -module over A. 

Theorem 2.8. Let I be an ideal of a ring A with ( )AMI :0⊆  and let M 

be an A-module such that { }.0≠AM  If M is a p∗ -module over the factor 

ring ,IA  then M is a p∗ -module over A. 
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Proof. Let M be a p∗ -module over the factor ring .IA  Then M is a 

prime IA -module. By Proposition 3.14.15 in (Gardner and Wiegandt [5]), 

we have M is a prime A-module. Suppose there exists a nonzero proper prime 
homomorphic image NM  of M over A. It follows from Proposition 3.14.15 

in Gardner and Wiegandt [5], we have NM  is a prime IA -module. In the 

other words, M has a nonzero proper prime homomorphic image over ,IA  

contrary to M is a p∗ -module. Hence, M has no nonzero proper prime 

homomorphic image over A. Thus, M is a p∗ -module over A.  

The following theorem shows the consequence of the existence of a 

p∗ -module M over a ring A. 

Theorem 2.9. Let I be an ideal of a ring A such that ( )AMI :0⊆  and 

let M be an A-module such that { }.0≠AM  If M is a p∗ -module over the 

ring A, then M is a p∗ -module over .IA  

Proof. Let M be a p∗ -module over the ring A and let I be an ideal of a 

ring A such that ( ) .:0 AMI ⊆  Clearly, M is a prime IA -module. Suppose 

there exists a nonzero proper prime homomorphic image NM  of M over 

.IA  Then NM  is a prime IA -module. By Proposition 3.14.15 in 

(Gardner and Wiegandt [5]), we have NM  is a prime A-module, contrary to 

M is a p∗ -module. So, we may conclude that M is a p∗ -module over .IA   

Theorem 2.10. Let k∗  be the essential closure of the class of all ∗-rings 

and for every ring A let { MMA |=∑  is a prime A-module with 

( ) }.:0 kAMA ∗∈  Then the class A∑=∑ ∪  is a special class of modules. 

Proof. We can follow the construction of a special class of modules 
generated by a special class of rings presented in (Nicholson and Watters [7]) 
or we will explain the detail of proof by showing that the class A∑=∑ ∪  

satisfies (M1), (M2), (SM3), and (SM4). Let M be an A-module such that 
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.IAM ∑∈  Then M is a prime IA -module with ( ) ( ) .:0 kIAMIA ∗∈  

By Proposition 3.14.15 in (Gardner and Wiegandt [5]), M is a prime 
A-module. Let ( ) { },0:0 =⇒∈ MaMa IA  where Iaa +=  for some 

.Aa ∈  Since { } ( ) ( )AMaaMMIa :0,0 ∈=+=  and by the assumption 

( )AMI :0⊆  implies ( ) .:0 IMIaa A∈+=  Hence, ( ) ⊆IAM:0  

( ) .:0 IM A  On the other hand, let ( ) =⇒∈ aMMa A:0  { }.0  Since 

{ } ( ) ( ) .:00 IAMIaMIaaM ∈+⇒+==  Hence, ( ) ( ) .:0:0 IAA MIM ⊆  

So, we may conclude that ( ) ( ) .:0:0 IAA MIM =  This gives us the 

following isomorphism ( ) ( ) ( ) ( ) ( ) IAAA MIAIMIAMA :0:0~:0 ==  

.k∗∈  We can infer that .AM ∑∈  

Let .AM ∑∈  Then M is a prime A-module with ( ) .:0 kAMA ∗∈  By 

following Proposition 3.14.15 in (Gardner and Wiegandt [5]), we have M is   
a prime IA -module, where ( ) .:0 AMI ⊆  Since ( ) kAMA ∗∈:0  and 

( ) ( ) ( ) ,:0~:0 AIA MAMIA =  we have .IAM ∑∈  

Let AM ∑∈  and let AB �  such that { }.0≠BM  

By Proposition 3.14.13 in (Gardner and Wiegandt [5]), we have M is a 
prime B-module. Since ( ) ( ( ) ) ( ( ) )AAB MBMBBMB :0~:0:0 +== ∩  

( ) ( ) kAA MAM ∗∈:0:0 �  and k∗  is a special class of rings, we have 

( ) .:0 kBMB ∗∈  

Let AB �  and let .MM ∑∈  Then M is a prime B-module with 

( ) .:0 kBMB ∗∈  By Proposition 3.14.14 in (Gardner and Wiegandt [5]), 

we have BM is a prime A-module with respect to a ( )∑ ∑= ,iiii mabmb  

.,, MmBbAa ii ∈∈∈  We will show that ( ) .:0 kABMA ∗∈  Furthermore, 

( ) ( ( ) ) ( ( ) ) ( ) .:0:0~:0:0 kAAAB BMBMBBMBBMB ∗∈+== ∩  On 

the other hand, ( ( ) ) ( ) ( ) .:0:0:0 AAA BMABMBMB �+  Since k∗  is a 

special class of rings, k∗  satisfies the following condition: 
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If { } kIAI ∗∈≠ ,0 �  and A is a prime ring, then .kA ∗∈  

We have the following facts: 

( ( ) ) ( ) ( )AAA BMABMBMB :0:0:0 �+  and 

( ( ) ) ( )AA BMBMB :0:0+  is a prime ring. 

So, we may conclude that ( ) .:0 kABMA ∗∈  This implies .ABM ∑∈  

Hence, the class ,A∑=∑ ∪  where { MMA |=∑  is a prime A-module such 

that ( ) ,:0 kAMA ∗∈  is the special class of modules determined by .k∗   
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