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Article history: The subset polynomial regression model is a wider model than the
Received polynomial regression model. In the subset polynomial regressi
Revised model, the error is generally assumed to be normally distributed aa
Aceepted the polynomial order is known. This study proposes an estimate of

the parameters of the subset polynomial regregsion model in which
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method is then implemented gh real data.
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I. Introduction

The subset polynomial regression model is a polynomial regression in which some regression
coeflicients have a zero value. The advantage of this subset polynomal regression model 1s the user
can select a regression model from all possible subsets of the polynomial regression model. The
subset polynomial regression model has been studied by several authorsEEBkabson and Lavendels
[1] compared the formation of polynomial regression Is using the subset selection approach
and the adaptive basis function construction approach. In the subset selection approach, the least
squares method is used. Overall the adaptive basis function construction approach was found to be
superior to the subset selection approach. O'Neill et al. [2] used the method of a subset polynomial
neural network to predict breast cancer. This method gives better results than the mammography
method. Xie et al. [3] used the polynomial regression in medical image segmentaton. Suparman [4]

sed a subset polynomial regression model using error which has an exponerfhl distribution.
The Markov Chain Monte Carlo (MCMC) reversible jump method is used to estimate the
parameters of the subset polynomial regression model. The subset polynomial regression model
often assumes that the error has a normal distribution or exponential distribution. However, in
everyday life it is often found that the distribum of the error 1s unknown.

The Bootstrap method developed in [5] 1s widely used in statistics and can be very useful in the
context of regression [6]. A principle of the Bootstrap method is to try to get a good estimate based
on minimal resources. In the case of statistical inference, minimal resources can be interpreted as
little data. data that deviate from certain assumptions, data that have no assumption about the
distribution. Warton [6] used the bootstrap algorithm 0 estimate the parameters of a regression
model. The Bootstrap methdBfls applied in ecology. Garcia-Soidan et al. [7] used the Bootstrap
method for spatial data. The estimator of the multivariate distribution functio%8 used as the basis
for the implementation of the Bootstrap method. Yazici et aER] used the Bootstrap method to
obtain the empirical distribution of the parameters in the nonparametric regression of Conic
Multivariate Adaptive Regression Splines (CMARS). The results showed that the bootstrap method
provides an accurate parameter estimate. Beda et al. [9] used the Bootstrap method to calculate the
confidence limits for spectral indices of heart-rate variability (HRV). Spectral indices are modeled
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using an autoregressive model. Hall and Maiti [10] used the Bootstrap method to construct a mean
error estimator and to calculate the predicted region. The Bootstrap technique can be applied to non-
normal models. Colugnati et al. [11] used the Bootstrap method to obtain interval estimates for

ercentilflon the diagnosis of obesity and overweight in children and adolescents. Kant et al. [12]
h:l a bootstrap-based neural network model for flood estimates. The results show that the
bootstrap-based neural network model is a stable model. Ren et al. [13] used the Bootstrap metfile)
to determine the confidence interval for multihop distances. The use of Bootstrap method can
eliminate the risk of srr%ample size and unknown distribution. Kleiner et al. [14] used Bootstrap
for massive data. Jacek et al. [15] used the Bootstrap approach to estimate the uncertainty of surface
response models. Chen et al. [16] used a bootstrap analysis to measure mdivindual and regional
differences in relative concentrations of gamma-aminobutyric acid in the human brain. Dongping
[17] used the Bootstrap method to determine predictive point and prediction intervals to reduce the
risk of misleading decisions in maintenance in prognostic devices. Liang et al. [18] used the
Bomap Metropolis-Hasting algorithm for model selection and optimization. Mei et al. [19] used
the Residual-Based Bootstrap Test to detect the constant coefficients in the Weighted Geographic
Regression model. Mikshowsky et al. [20] used bootstrap aggregation sampling to improve the
reliability of genomic predictions for Jersey sires. Olaniran et al. [21] used Bootstrap techniques to
improve the selection and classification of Bayesian features. Zhen [22] used Bootstrap resampling
to detect wideband signal numbefJBoubaka et al. [23] used the Bootstrap method to identify
parameters for the dependent data. In this paper, the Bootstrap method will be used to determine the
parameter estimator i the polynomual subset regression.

Suppose that (v . x,) e pairing of the dependent variable and the independent variable, as
well as z, is error and t = 1, 2, ....n where n is the number of observation. Let K, be a maximum
order. The subset polynomial regression model which has an order k (k =0, 1, ..., k) can be
written as:

(M

}rt :B[J +Bn‘x?l +anxlnz -'_""'_Bnk“i:.|k +zl

Here {n,, ny, ..., n} is the subset of {1, 2, ...k} and B = (ﬁ(]?ﬁn, ,A.A,Bnk )" is the coefficient vector.
The z, (t=1,2,3, ., n) is an error with mean 0 and variance o’ that is identical but its

distribution 1s unknown. Based on the data (y,, x) for t=1, 2, ..., n, a parameters 3, o? and the

polynomial regression subset models are estimated. This paper aims to estimate the parameters of
the subset polynomial regression model using the Bootstrap method.

II. Method

The method used to estimate the parameters of the subset polynomial regression model is as
follows:

A. The Least Squares Estimate
Equation (1) is a short form for a set of the following n simultaneous equations:

Y, :B0+|3nlx'|" +]3n2x;" +...+Bmx’|1l +z,

¥, =B, +Bnlx;' +[3“2><i}’,_2 +...+Bnkx;* +2,

@
B }!n =BO+BH|X:1I -"-anx:2 +...+B"LXEk +zn
In matrix form, equation (2) can be written as:
Y=XB+Z 3

where
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Y, 1 Xy Xy o Xp Bo Z,
Y, 1 X3 X .. X3 n Z,
Y=| °| X= 2 2 2 ,B:B',andz= o
Y, 1 XM X" . X™ Ba, Z,
To obtain the least squares estimate of [3, first write the sample subset polynomial regression:
Vo =By +By X! +B, X .4+ B, X 47, “®
fort=1,2, 3, ..., n, which can be written briefly in matrix notation as:
Y=Xp+e (5
where
Y, 1 X XL X B, ¢
Y, 1 Xy Xy . X Bn, e,

»

Y=| "} X= ,6= , and € =

Yn 1 Xngl X:] X::l Bnk cn
Here, B is a column vector of the least squares estimator of the subset polynomial regression

coefficient and e is a column vector of the residual n. According to the least squares method, the

least squares estimator 1s obtained by mimnimizing

n 2 n . 0 A n 5 ny 32 6
DG =2 (v =By =B X~ =B, X0 )
This 15 achieved by partially differentiating (6) to B(,,Bnl ,...,Bnk and the result obtained 1s equal to
zero. This process produces k + 1 simultaneous equations in k + 1 unknown variables.

nBy + B, Do X0 +By, 2 X0+t B D X =Dy,
oy X0 +B, Y XM4+B, > XUXE 4B, D XPXE =D Ky,

BOE;X?: * Bn. ZLX:‘EX?I +B“: Z; Xf“z Fisath ﬁnk Z,l‘=l XeXy = 2;1);1‘:};1 &

A n n, n 0, v, O n Ny, 0 n 2n, __ ng .,
a BOZ‘:]){[1 +B|1,Z:|X11X[ +B|122=]Xl Xl' +...+B“l Z[:|Xl b= t:]xl Y.
In matrix form, equation (7) can be presented as:
XX)p=XY (8)

Ethe inverse of (X'X) exists, say (X'X)" . then by multiplying in both sides of (8) by this inverse,
the result i follows.

X'X)'XX)Pp=XX)"'X'Y

or

f=X'X)"'X'Y
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The least squares estimator for B =(B,.B, ..., )' is
B=X'X)"X'Y
And the least squares estimator for o’ is:
52 Y'Y -p'X'Y
n-k-1
B. Statistical Criteria
The C; statistical crifila [5] 15 used to select the best polynomial subset regression model. The

best subset polynomial regression model selected is a subset polynomial regression model that has
the smallest Cy value. The Cy value is calculated using the following equation:

C = ZL (}'[ _Bu - n‘xih _A-‘_Bmxrk )2 2k6?
= _

n n

C. Bootstrap Method

The Bootstrap method developed 1n [5] 1s a simulation method based on data that can be applied
to statistical inference problems. A basic principle of bootstrapping is resampling i.e. resampling /
artificial observation of z,, z,, ... . 7, that a]lady exists.

Let F be an empirical distribution lakea\ﬂ'th probability 1/n at each observed value z,. z,, ..., z,.
Let B be a number of the resampling. The Bootstrap sample is defined as a random sample of size n
composed of F, e.g. the b" Booa“dp sample (b = 1, 2, ..., B) 1s denoted by z;’,z'z’,“,z:. The

Bootstrap sample z:’,zg,.. 7" is a random sample of size n taken with the return of population z,,

2y
Za, ..., Zp. Members of the bootstrap sample z:’, zg,...,z: comprising the original samples zy, 7y, ...,
Z,. @ppear once, appear twice. appear more than twice. or do not appear in the original sampling
process. The computational steps to determine the 100(1-0)% confidence interval for ¥, are as
follows:

« Calculate B and 6 from the original data.

» Calculate Z, using the equation
21 :gyl _B[] —B“IXTI _“‘_Bnkx?l &
sForb=1,2, ..., B:
« Resampling 7.

+ Compute ¥ with the equation

Aby _ n n 2(b)
Yt _Bu +Bn,xll +“‘+I3anll +z.
. Qi) ~2(b ~ib
« Compute B, 6™ and y").

Q LY ~(b)
¢ Compu"e Bbuol? Gbuol and ) (t+1% boot) *

+ Calculate the 100(1-0)% confidence interval for ¥ ,,,

I11. Results and Discussion

As an illustration, we apply the Bootstrap algorithm to dElrmine the prediction interval in
simulated data (simulation study) and real data (case study). A simulation study was undertaken to
confirm the performance of the bootstrap algorithm whether it works properly. Case studies are
given to provide examples of the application of research in solving problems in everyday life. Here
resampling is done as much as B = 2000 and « = 0.05.
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A. Simulated Data

Figure 1 shows a graph of 1000 synthesis data of the subset polynomial regression model with
order 2. The value of x is determined but the value of y is made using equation (1). The values of

regression coefficients and the variance of error are 3, =1 and 3, =0.5 and o’ =9.

Figure 1: Simulated data

The simulated data in Figure 1 are matched agaimnst the subset polynomial regression model. Here
Kuax = 2. The Bootstrap algorithm 1s used to estimate the best subset polynomial regression model,
the subset polynomial regression coefficient and the wvariance o’ . Estimation of the subset
polynomial regression model 1s done by looking at Cy statistical value for the three regression
models of the subset polynomial. The C, statistical value for the three regression models of the
subset polynomial can be seen 1n Table 1.

Table 1: The C; statistical value

Subset Polynomial Cy
Regression Model  Statistical
with Order 2 Value
y =P, +Bx 62.5997
2 919
y =B, +B,x 1568
2 g
o y =P, +Bx+px 92170

From Table 1 it can be seen that the smallest C, statistical value is achieved by the second subset
polynomial regression model. Thus, the second regression 1s the best subset pol§glomial regression
model. Based on the regression of the best subset polynomial. then the parameters of the
corresponding subset polynomial regression model are estimated using the least squares method.
The results are f3,=0.9323 and [3,=0.5070 and & =9.1756. If the parameter values and
estimator values of both regression and variance coefficients are compared then it appears that the
Bootstrap algorithm can work well in estimating parameters based on synthesis data. Prediction for
the value of yg if x = 16.4176 1s 9.2569 and the corresponding 95% confidence interval is

(9.0984, 9.4117).

B. Real Data

Table 2 shows the business tendency index (v) and the consumer tendency index (x) in the
second quarter of ZOOOt.o the fourth quarter of 2009.
1
Table 2 : The business tendency index (BTI) and the consumer tendency index (CTT).
Source: http://www.bps.go.1d
L)

Year | Quarter | BTI CTI

2000 I1 122.50 | 113.29
I 117.44 | 108.04
IV 116.06 | 114.23
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2001 I 107.73 | 110.52

I1 111.75 | 104.10
11 10536 | 119.21
I 101.03 | 125.19
2002 I 100.03 | 113.75
I1 113.38 | 116.65
111 108.77 | 119.96
IV 102.37 | 120.28
2003 I 95.78 | 105.87
11 105.16 | 117.28
111 111.41 | 114.17
IV 114,13 | 121.73
2004 I 104.35 | 115.20
I1 113.74 | 112.30
11T 114.12 | 120.22
IV 115.03 | 109.96
2005 I 9893 | 96.72
I1 106.31 | 98.68
111 105.7 | 93.20
v 98.45 | 94.43
2006 1 95.12 | 96.01
11 108.5 | 109.77
11T 108.72 | 109.16
v 107.43 | 106.96
2007 I 100.19 | 106.93
I1 110.96 | 105.78
111 112.58 | 109.48
IV 112.25 | 106.10
2008 I 104.41 | 95.01
I1 111.72 | 93.84
110 111.12 | 102.78
v 102.19 | 100.93
2009 I 96.91 | 102.15
I1 11043 | 106.42
11T 112.86 | 107.79
vV 108.45 | 108.76

The data in Table 2 are matched against the subset polynomial regression model. Here k., = 3. The
bootstrap algorithm was used to obtain the subset polynomial regression model, the regression
model parameters and the variance 6* . Estimation of subset polynomial regression model is done by

looking at the statistical value of Cy, for 7 models.

From Table 3 it can be seen that the smallest Cy statistical value is achieved by the 4th
polynomial subset regression model. Thus, the fourth subset polynomial regression model is the best

subset polynomial regression model.

Table 3: The C; statistical value

Subset Polynomial Cu
Regression Model with Statistical
Order 3 Value
v=PB, +Bx 37.8193
y =B, +B,x* 38.3861
y =B, +B3x3 38.4738
35.9786

y =B, +Bx+ Bzxz

Suparman and Rusiman (Model Selection in Subset Polynomial Regression by Using Bootstrap Algorithm)




ISSN: 2442-6571 Intemational Journal of Advances in Intelligent Informatics 7
Vol. 4, No. 1, March 2018, pp. xx-xx

y=By+Bx+pp’ 369467
y=By+B 4’ 368494

y=P;+Bx+ B2X2 + B3X3 37.68
Based on this subset best polynomial regression model. then the parameters of the corresponding
subset polynomial model are estimated. The results are BU =-189.1774, [31 =5.2858,

-

B, =-0.0234 and & =32.6954. The prediction for y,, if x = 108.76 is 108.7878 and the 95%
confidence interval for y,, if x = 108.76 is (106.8255, 110.7612).

1V. Conclusion

The paper showed how the Bootstrap algorithm can be used to generate parameter estimates in
polynomial subset regression model and determine the prediction interval for the dependent
variable in the polynomial subset regression model if the error has any distribution. The simulation
results showed that the Bootstrap algorithm could estimate well the parameters and determine the
prediction interyal.

The data of business tendency index (v) and consumer tendency index (x) in the second quarter
of 2000 up to the fourth quarter of 2009 were maltched against a subset polynomial regression
model. The Bootstrap algorithm obtained the subset polynomial regression model as follows:

y =B, +Bx +B,x°
where ﬁu =-189.1774, BI =5.2858, and [Aiz =—-0.0234 . This subset polynomial regression model
1s very useful for decision making, for example to predict the value or calculate the prediction

interval of variable y in the future. This Bootstrap algorithm can be applied also to other models of
econometrics.
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