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ABSTRACT: White noise using an autoregressive (AR) model is often assumed to be normally distributed.
In application however, the white noise usually does not follow a normal distribution. This paper aims to
estimate a parameter for an AR model that has an exponential white noise. A Bayesian method is adopted. A
prior distribution of the parameter of an AR model is selected and then this prior distribution is combined
with a likelihood function of data to get a posterior distribution. Based on this posterior distribution, a
Bayesian estimator for the parameter of the AR model 1s estimated. Because the order of the AR model 1s
considered a parameter, this Bayesian estimator cannot be explicitly calculated. To resolve this problem, a
method using a reversible jump Markov Chain Monte Carlo (MCMC) is adopted. The result is an estimation
of the parameter for the AR model that can be simultaneously caleulated.
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1. INTRODUCTION

An autoregressive (AR) model with normally
distributed white noise is a time series model that
is often used in many fields. For example, it is
used in the field of economics [1]. But there are so
many applications whe vhite noise is not
normally distributed. An LSE of AR models with
hea\nai]ed G-GARCH(1.1) noises were studied
[1]. A class of non parametric tests on the Pareto
tail index of the innovation distribution in the
linear aa)regressive model is proposed [2]. A
study of the autoregressive models with
exponential white noise can be found in the
literature (see [3-8]). A form of time series models
where marginal  distributions are in
exponential distributions is presented in [3]. A
Bayesian analysis of threshold AR models with
exponential se is developed in [4]. A robust
study of the Bayesian estimation of an AR model
with exponential innovation to obtain optimal
Bayesian estimator is analyzed [5]. A Bayesian
method to estimate the coefficient of the AR(1)
models is proposed [6]. Generally, the order of the
autoregressive is known and must be estimated by
the data.

If the AR model with white noise is fitted to
the data, the order and the coefficient of the model

will be generally unknown. Let X be a time series
with t=12.---.n and n be the number of
samples. An AR(p) with exponential white noise

can be expressed as:
P . ) 1
X = 2uia 0xX 2, 0
where p < n and the z (t=1.-.-.n) are
independent and identical exponential random
ablcs; with parameter 2., written Z, ~ ]jxp(}._)_
For example, Figure 1 shows the graph of the
autoregressive model with and 2. =5,
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Fig. 1 AR(3) with exponential white noise
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Suppose that ¢'*" = (¢, .- *,$,) is a cocfficient

vector. Let \J be the above autoregressive model.

Then this parameter \J can be written as
w=P.0".2)
Suppose that x, (t=1,2,---,n) are data. This data
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1s taken from a population having an
autoregressive model with exponential white
noise. Based on this data, the main problem
becomes how to estimate the parameter . This
paper aims to provide a procedure to estimate this
parameter \y .

2. METHOD

The parameter \ is estimated by using a
Bayesian method. Unfortunately, the Bayesian
estimator cannot be determined analytically
because the posterior distribution of parameter \y
has a complicated form. To overcome these
problems, a reversible jump MCMC Algorithm [9]
is used. An MCMC method is a method producing
an ergodic Markov chain with a stationary
distribution. This Markov chain can be considered
as a random variable whose distribution is the
posterior distribution. Furthermore, this Markov
chain is then used to estimate the parameter \y .

3. RESULTS AND DISCUSSION

The parameter \ is estimated by using a
Bayesian method and a likelihood function is
determined.

3.1 Likelihood Function

Because the random wvariable z,  has an

expoifffffial distribution with parameter A for
t=1,2,---,n, the density function of z, is

f(z,] ) =)exp-iz, @
Thcmiab]c transformation

P 3
i =Z|=T m'i 7 &

. . p dz
is used. Then 7z, =x, —Zm ¢, x,, and ﬁ:].
1
Let X =(X,,X,,"--,X,) be a realization vector of
AR(p) with an exponential error. Thus, the density

function of X, is

f(x,| w)=h exp-a(x, —Z:’_I b,X,.;) @
for t=0L2.---.n.

Suppose  that vy, =(x.X,,~--,x,) and

V=(X,..Xp.-.X,) . Then the likelihood

function of y can be approximat@Fay:

gtpy™) O

L(y| w)=2""exp-A)
where

g(t,p’d]w}) - .\.I _Z:‘:I ¢| -\'._. (6)

t=p+

for t=p+12,---.n,

Let Sp be a

with an mmtial value ¥o -

stationary  region  and

r‘”]=(rl,r2,---,r|,) be a sample partial

autocorrelation vector. By using a transformation
F:¢"eS, > ¢[-LIP ]
then the AR(p) model is stationary if and only if
7 e[-LI] Finally, the
likelihood function of the ¥ can be written by:
L(y| &)=%"" exp—iB ¥

>o o etpE'a™y)

i=p+1

approximated

where O=(p,r'™,4) and F' is a inverse

transformation of F.
3.2 Prior Distribution

Before obtaining a posterior distribution, a
prior distribution must be selected. The prior
distribution 1s taken as follows. A binomial
disteelition is chosen for a number of order

p(p=L2--.p,.,)

(ple) =Cp@P(1-)™ ©
where p - is a maximum of p and p is an
hyper-parameter. A uniform distribution is chosen

for a coefficient vector '™

Tt'(l" PJ| p) = U(O,])p (10)
Also, a uniform distribution is chosen for a
parameter },

n(r) =U(0.1) (1
Furthermore, a hyper-prior distribution for ¢ is a
uniform distribution.

Let m(0,¢) be a prior distribution for (0,¢).
Because the distribution of O given ¢ is

(6, )

(0] @)= ——"
()

(0,¢p) can be written as follows:

(0, p) = (0] P)m(¢p) (12)

. the prior distribution for

3.3 Posterior Distribution

Let :rc(El,(d y) be a posteriori distribution for

the parameter and the hyper-parameter (0,¢) .
According to the Bayesian Theorem. the posterior
distribution for (0,¢) is given as follows
(0.9 y) < £(y| ©)n(0.¢)

o f(y] O)m(6,¢) T(6] P)n(p) 13

Unfortunately, the Bayesian estimator cannot
be determined analytically because the posterior
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distribution of parameter 0 and hyper-paramater @

has a complicated form. To overcome these
problems, reversible jump MCMC Algorithm [9]
is used.

3.4 Reversible Jump MCMC
Suppose that M =(6,¢). An MCMC method
for the simulation of a distribution n(@,q}{ v)

ergodic Markov chain
whose stationary distribution is

produces an
M.M,.---. M,
11:('87(p| v) . This Markov chain M ,M,.---.M
can be considered as a random variable whose
distribution is x(g,(pl y) - Furthermore, the

m

Markov chain M|, M,.---. M, is used to estimate
the parameter M. To realize this. the Gibbs
sampling algorithm is adopted. [t consists of three
steps:

e Simulate p~B(p+1.p,.. —p-'m

e Simulate A ~G(o,P) with a=n-p+1 and

p= Z:I=p+l (x, _ZL F_I(]-' )X)

e Simulate (p,r™) ~n(p,r”| y. 1. )
Unfortunately, the distribution Tt(p,rml V. % )
is not an explicit form. The exact simulation
cannot possibly be done. Since the value p is not
known, the MCMC algorithm cannot be used to
simulate rc(p,r"’}| v, ). Hence the reversible
jump MCMC algorithm [9] is adopted.

(p)

Let o=(p.r'"") be an actual point of the

Markov  chain.  There are 3 types of
transformations used, namely: a birth of the order;
a death of the order; and a change of the order.
Furthermore, let N be the probability of the

transformation from p to p + 1, let D be the

probability of transformation from p + 1 to p, and
let C, be the probability of transformation from p

to p.

3.4.1 Birth/Death of the Order
A transformation of the birth of the order will
change a number of coefficients, from p to the p +

1. Suppose that = (p,r'™) is a current point and
o =(p+ l,r["-’]) is an updated point. The E‘lh of
the order from o = (p,0™) to ©" =(p+11"")is

defined in the following way. Set p  =p-+1 and

choose a random point v ~ U(=1,1). Next, create a

new point o = (p+1,r'" ") with

» » i .
PRI lp‘—l = lp N I'I" =V

Otherwise, the transformation of the death of the
order will change the number of coefficients, from

p+l to p. Suppose that ®=(p+1r"") is a
current point and ®" =(p+l,l‘[p.}) is an updated
point.  The death of e order from
o=p+Lo"") to o =(p.r'”’) is defined in
the following way. Set p‘ =p and create a new

point o = (p.r'" ") with

L =L ... T.=T

Suppose that a_ and a, are respectively a

probability of acceptance for the birth of the order
and death of the order. The probability of
acceptance for birth is as follows:

| ¢.y) q(o.,0)
@) 9.¥) q(0.0)
While the probability of death is as follows:

a, (0.0)= min{l,

: ) 1
ay(o,0 )=1nm{l,m}

where
mo] ¢y) Dy, G 1 p+l
mo| ¢.y) N """ n-p p,. -p

and

qe",») A
qo.0)

3.4.2 Change of the Coefficients

The transformation of the change of order will
not change the number of coefficients. This
transformation ~ will change the wvalue of

(p)

coefficients. Suppose that @ = (p,r'™’) is a current

()

point and @ =(p.r'"’) is an updated point. The

change (éthe coefficients from o = (p,¢™"") to
o =(p,r(p.))is defined in the following way. Set
p. =p, choose a random point ie{l,Z,---,p}.
and choose a random point u~U(-11). Then a

new point m‘ap,r[ "y is created with rI. =1 .

5 . " .
Ta=hae § =W 0y =ha. 0. =1,

Let a, be a probability of acceptance of a

change of coefficient. Then the probability of
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acceptance for change is as follows:
0 | ¢.9) q(.,0)
"o 9.y) a@.0)

ap(m,m') =min{l

where
20 0.y [g ]
no| o.y) | B
and
9©.0) _ )
q(o,m )

The transformation in statement (7) is used in
order to get the stationary conditions for an AR
model. Thus the first result of this paper is an AR
model that is obtained that is always stationary.

e hierarchical Bayesian was adopted to estimate

order of the AR model, the coefficient of the
AR model, the variance of the white noise, and its
hypcr-paratcr. The second result of this paper is
that both the ordl of the AR model and the
coefficient of the AR model. the variance of the
white noise, and the hyper-parameter can be
estimated simultancously.

4. CONCLUSION

The purpose of this paper was to estimate the
parameters of an AR model with exponential white
noise when the order was ulaovm. The
parameters cannot be estimated by a Markov chain
Monte Carlo algorithm, because the order of the
Aawdcl is unknown.

The reversible jump Markov chain Monte Carlo
algorithm is one of the new methods that can be
used to estimate the parameters of AR models
when the order of the AR is unknown. The
advantage of this method is that both the order of
the AR and the coefficient of the AR can be
estimated simultaneously.
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