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Abstract. The autoregressive model is a mathematical model that is often used to model data
in different areas of life. If the autoregressive model is matched against the data then the order
and coefficients of the autoregressive model are unknown. This paper aims to estimate the
order and coefficients of an autoregressive model based on data. The Bayesian hierarchy
approach 1s used to estimate the order and coefficients of the autoregressive model. In the
Bayesian approach, the order and coetficients of the autoregressive model are assumed to have
a prior distribution. The prior distribution is combined with the likelihood function to obtain a
posterior distribution. Posterior distribution has a complex shape so that the Bayesian estimator
is not analytically determined. The reversible jump Markov Chain Monte Carlo (MCMC)
algorithm is proposed to obtain Bayesian estimates. The performance of the algorithm is tested
by using simulated data. The test results show that the algorithm can estimate the order and
coefficients of the autoregressive model very well. Research can be further developed by
comparing with other existing methods.
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1. l@ducﬁon

The autoregressive model is a time series model that is often used to model data in different areas of
life. The autoregressive model (AR) is a flexible model by setting the order and model pardfieters.
Okada [1] used the AR model to diafflose Parkinson's disease. Ramdane-Cherif [2] applies the AR
model to the eye tremor movement. The eye tremor movement is extracted from the recorded eye
position signal. Kisi [3] uses AR model to predict stream flow. Zhao [4] used the AR model to classify
the output from gas chromatography. Lee [ 5] used the AR model to model the extraction of respiratory
rate. Figueiredo [6] uses the AR model to detect damage. Kim [7] uses the AR model to predict EEG
data. Jayawardhana [8] uses the AR model to identify structural damage. Zhang [9] used the AR
model to simulate dynamic light scattering (DLS) signals. Zhao [10] uses the AR model to predict
channels in wireless networks. Dai [11] applied the AR model to the pre-earthquake ionospheric
anomaly anajPils. Yuewen [12] used the AR model to predict the engine's exhaust gas main engine
temperature. The AR model can predict the changing trend of smoke temperature. Song [13] uses the
AR model to identify the frequency of random signals. Kaewwit [ 14] uses an AR model to determine
the high accuracy of biometric electroencephalography (EEG). Padmavathi [15] used the AR model to
detect atrial fibration.

Let X = (X4, ...,X,) be n time series data where n denotes many observations. This time series is
said to have a p-order AR model, written AR (p), when this time series satisfies the stochastic equation
as follows: 13
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fori=1,...,n. The random variable z, 1s a random error at time t and z, is assumed to have a normal
distribution with mean 0 and variance 62. The vector ¢(p) = ((bgm. - (bg})) denotes the coefficient
vector of model AR (p). The AR model (p) is called stationary if and only if the tribe equation
¢bb)=1- ::;1 c])i(mbi 1s zero for value b outside the cir@vith radius equal to one.

If the AR model is matched against the data, generally the order and the AR model coefficients are

unknown. Methods to estimate the AR model order have been proposed by several authors, for
example: [1] and [16]. Okada [1] uses the Akaike criterion to estimate the AR modeling order.




Khorshidi [16] compares various criteria (FPE, AIC) to estimate the AR modeling order. Likewise,
methods for estimating AR model parameters have been proposed by several authors, for example:
[16] and [17]. Khorshidi uses the Least-Squares-Forward (LSF) method to estimate the AR model
parameters. Chen [17] uses Hubor's M-estimation theory to estimate the AR model. But in the various
parameter estimation methods proposed by the researchers, the order model is often assumed to be
known.

This paper proposes the order estimation and AR model parameters simultaneously that meet the
condition of the stationarity. The AR model of the station is very useful for forecasting. This paper
aims to estimate parameter values (p. ¢(p),02) of the AR model simultaneously based on
observational data x = (Xy, ..., Xy,)-

2. Research Method

This research used Bayesian hierarchy approach. Order of AR model. AR model coefficients, and
error variance are considered as random variables having a Eftain distribution. This distribution is
known as the prior distribution. Determination of the prior distribution for the parameters
(p.¢(p),62) 1s done in the following way: The prior distribution of the p-order i1s chosen by the
binomial distribution with the parameter A. The conditional distribution of the coefficient q>“‘) if
known X is a uniform distribution at the interval of (—1,1)P. The prior distribution of the error
variance o? is the distgjpution of gamma inversions with parameters 1 and g Hierarchically, the prior
distribution of A is the unifdg¥ distribution at the interval (0,1). The prior distribution of p is Jeffrey's
distribution. Than the prior distribution of parameters (p,d:cp),crz) 1s combined with the probability
function of x to obtain the posterior distribution of parameters (p,da(p).cz). Let Tl:(p, ¢(p).0'2)
express the prior distribution for parameters (p,d)(p),cz) and f(xlp,cb(p),cﬁ represents the

likelihood function for data x, then the posterior distribution for the parameters (p,tb(p),cz) can be

expressed as follows:

T (p, ¢'(P]’ 0'2|X) o« f(xlp»dﬂ(p);ﬁz) T (p' ¢(]J)’ 0.2)

The posterior distribution 1s proportional to the multiplication of probability and priority distribution
functions. Since the order p is not known to result in a posterior distribution having a very complicated
form causing the determination of the Bayes estimator cannot be done analytically. Therefore the
Bayes estimator is determined using the reversible jump MCMC algorithm [18]. Reversible jump
MCMC algorithm allows the transformation from one AR model to another AR model.
Transformation is not just from one AR model to another AR model that has the same order, but the
transformation from one AR model to another AR model that has a different order. In other words. the
transformation 1s done in a space that has different dimensions. The performance of reversible jump
MCMC algorithm was tested using simulated data.

3. Results and Discussion
Lets = (xpﬂ, .xn) be the realization of the AR(p) model. If the value sy = (xl. ,xp) is known,
the probable function of s can be written more or less as follows:
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for t=p+1,..,n with initial value x; = -+ =x, = 0. Let S, be the stationarity region. By using
transformation
F: p® = (¢§P), ....,¢§')) €Sp>1® =(ry, ., ) € (L,1)P

then the m:Iel AR (Xt)tez 1s stationary if and only if ( ry e Tp ) € (—1,1)P [19]. Further likelihood
function for x can be rewritten as fogys :

L(slp,¢(p).02) _ ( 1 )(n_pm - _LZ" g2 (t’ b F-l (¢(p))) 3)
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3.1. Hierarchy of Bayesian Estimator
The determination of the prior distribution of the parameters mentioned above is as follows:
a) Order p 1s binomual distributed with parameter A

n(plA) = Cgmaxlp(l (_)l)pmax_p
P

b) For order p is determined, the coefficient vector r
(=1,1)P

¢) Variance o2 distributes gamma inversion with parameters a/2 and (3/2

(o?|a, B) = G (62) "+ Dexp — £
' T(a/2) 202

Here A is assumed to be uniformly distributed at interval of (—1,1). the value of a is taken equals 2,

and the parameter B is assumed to be Jeffrey's distributed. Let H; = (p, r(p),crz) and H; = (A, B).

Thus the prior distribution for parameters H; and H, can be presented as follows:

mH Ho) - = npym (rP|p) n(@?lo pm@)n(B)
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According to Bayes's Theorem, posterior distributions for parameters H; and H; can be expressed as

m(Hy, Hals) o¢ L(sIHy)m(Hy, Hp)

Posterior distribution is a combination of likelihood function and prior distribution that is assumed
before the sample is taken. In this case th@psterior distribution 1t(Hy, Hy|s) has a very complicated
form so that the Bayes estimator cannot be determined by analysis. Therefore the reversible jump
MCMC algorithm is proposed to determine Bayes estimators.

15 uniformly distributed at the interval
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3.2. Reversible Jump MCMC Algorithm
Let M=(Hy, H,). In general, the MCMC method is a sampling method by creating a homogeneous
Markov chain My, ....., M), that satisfies aperiodic and irreducible properties such that My, ....., M, can
be considered as a random variable following the distribution t(Hy, Hz[s). Thus My, ....., M,, can be
used as a means to estimate the parameters of M. To realize it Gibbs Hybrid algorithm is adopted. It
consists of two stages: (1) the distribution simulation of m(H;|Hz,s) and (2) the simulation
E&stribution of m(H;|H,, s). The Gibbs algorithm [20] is used to simulate the distribution t(H,|Hy, s).
The reversible jump MCMC algorithm is used to simulate the distribution t(Hy [Hz,s).
The distribution simulation T(H, |H4, s) is done in the following way: The conditional distribution
H, is known to H; and s can be expressed as
1
R(H My, o€ AP (1L = PP (B/2)2exp — 50
Since this distribution is a gamma distribution with parameters o/2 and ﬁ, the Gibbs algorithm can

be used to simulate the distribution of m(H,|H,, 5).
The distribution simulation T(H; |H,,s) is done in the following way: The conditional distribution
of Hy if it is known H; and s is integral to o2, obtained
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On the other hand, the distribution (H;|H;,s) can be expressed as the product of the distribution of
b1 (p. P |H1. s) and the distribution of 1t (ﬁ), r(p). Hz,s), Le. .

(H;[Hp,s) =T (p, r® |H1, s) T (02|p, r®,H,, s)
Furthermore, to simulate the distribution of (H;|H;, s), a hybrid algorithm is used. It consists of two

n(p.r(p)IHl.s) o CP

stages: (a) The distribution simulation Tr(cszlp, r(p),Hz,s), (b) The distribution simulation
7 (p,r®[Hy, ). Gibbs algorithm is used to simulate tgydistribution (02[p,r™, Hy5).
The distribution simulation T[(p, r(leHi,S) is done by using the reversible jump MCMC

algorithm. The reversible jump MCMC algorithm uses three types of transformations, namely: birth of
the order. death of the order, and change in the coefficient.

3.2.1. Birth/ Death ofge Order
The birth of the order from the AR(p) model to the AR(p+1) model is done by adding coefficients. Let
p be the actual value for the order and r® = (rl e Ty ) is the actual value for the AR(p) model
coefficient. As in Suparman [21]., the random variable u is chosen according to the triangular
distribution with mean 0
g(u):{u+1’ -1<u<0
1-u, 0<u<l1

Pis com pleted with random variable u, so the proposed new coefficient vector is

Vector coefficient r

p(PHY (rl sonerTp ,u)_ The acceptance/rejection probability corresponds to the birth order is
ay = min{1,ry} where (9]
s (p +1, r(p“)le, s) q (p +1,r®P+; P, r(p))

D, r(p)|H2.s) q(p,r(p);p + 1lr(P+1))
In contrast, the death of the order from the AR(p+1) model to the AR(p) model 1s done by removing
the last coefficient. Let p+1 be the actual value of the order and r®*? = (P4 sonsslp iFpsa) e the

'y =

actual value for the AR(p+1) model coefficient. Coefficient 1,4 is removed. So the proposed new
coefficient vector is r® = (1‘1 yoeerTp ) The probability of acceptance/rejection corresponding to
order death is ap = min{1,rg'}.

3.2.2. Change of the Coefficient

The change of coefficient from AR(p) to AR(p) is done by changing each coefficient. Let r® =
(r1 ety ) 1s the actual value for the coefficients. For 1=1,...,p, take the random variable u; =
sin(r; + s) with s taken according to the uniform distribution at the interval [—m/10,7/10]. So the
resulting new coefficient vector is r® = (‘rl Jen T S U e, Ty ) The acceptance/rejection

probability corresponding to the coefficient change is a¢ = min{1,r} where
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3.3. @pulation Study
The reversible jump MCMC algorithm is used to identify thJAR order and parameter data
simulations. A simulation study is conducted to find out whether the performance of the reversible
jump MCMCEJgorithm worked well or not.

To know the performance of reversible jump MCMC algorithm simulation study is conducted.
Figure 1 1s an AR simulation data made according to the equation

P
Xe = Zy + z . »Px,_;
j=
withn =250, order p = 3, % = (¢ = —036, ${” = -0.24, ¢’ = 0.81) and 0% = 4.
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Figure 1. Simulated Data

The reversible jump MCMC algorithm is implemented in this simulation data to estimate the AR
model order, AR model coefficients, and error variance. Figure 2 shows the histogram of the AR
model order.
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Figure 2. Histogram of the AR Order

Figure 2 shows that the mode of AR order is reached in order 3. This means that the estimator for AR
order is p = 3. After it is determined that the most suitable AR model is AR (3) then the estimator for
the AR coefficient and corresponding error variance is determined, i.e.




& = (’“&3) =-036, ) = -0.26, $5 = 0.82) and 82 = 3.79.
Table 1 summarizes the comparison between AR order estimators, AR coefficient estimators, and
error variance estimators with AR-order values, AR coefficients, and error variance.

Table 1. Comparison between the value of parameters and the value of estimators

Value of Parameters Value of Estimators
p=3 p=3
$® = (-036,-0.24,081) &P = (-0.36,—0.26,0.82)
c? =4 8% =3.79

7
Table 1 shows that the reversible jump MCMC algorithm can estimate the AR model order, AR model
coefficients, variance error very well.

4. Conclusion 2

The above description is a review of the theory of the reversible jump MCMC algorithm to estimate
the order of AR model. AR coefficient, and error variance. Simulation studies show that the algorithm
can estimate AR model parameters very well. The proposed algorithm has the advantage that the
resulting estimation is an AR model that meets the condition of the stationarity. Another advantage is

that the algorithm can estimate parameters (p. ¢(p). 0'2) simultaneously.

Research can be further developed mn comparison with existing estimation methods to determine
effectiveness. Research may also be developed on the replacement of assumptions for errors, such as
AR models with not normally distributed errors.
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