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ABSTRACT: Moving average (MA) 1s one of the mathematical models that is often used to model data in various
fields. Noise in the MA model 1s often assumed to be normally distributed. In application, 1t 1s often found that
noise is exponentially distributed. The parameter of the MA model includes order, coefficient, and noise variance.
This paper proposes a procedure to estimate the MA model parameter which contains noise with a normal and
exponential distribution where the order is unknown. The estimation of parameters of the MA model parameter is
carried out in a hierarchical Bayesian framework. Prior distribution for the parameter is selected. The likelihood
function for data is combined with prior distribution for the parameter to get posterior distribution for the
parameter. The parameter dimension is a combination of several different dimensional spaces so that the posterior
distribution for a parameter has a complex form and the Bayes estimator cannot be determined explicitly. The
reversible jump Markov Chain Monte Carlo (MCMC) method is proposed to determine the Bayes estimator of the
MA model parameter. The performance of the method 1s tested using a simulation study. The simulation result
shows that the reversible jump MCMC method estimates the MA model parameter well. The reversible jump
MCMC method can calculate the MA model parameter simultaneously and produce an invertible MA model.
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1. INTRODUCTION

The autoregressive (AR) model is a time series
model used to model data in different areas of
The AR model with normally distributed noise has
been extensively studied by various researchers.
Also, the AR model with exponential noi§ldas been
investigated by various researchers. A genetic
algorithm is used to estimate the exponential AR
model [1]. An AR(1) model whose noise is
exponentially distributed is studied in [2]. A robust
Bayesian method is used to obtain the optimal Bayes
estimator for AR models whose noise is exponentially
distributed [3]. In the above studies, the order of the
AR model is assumed to be known. An AR model
whose error is exponential distributed but the model
order is unknown is studied in [4].

Moving average (MA) model is a time series
model that is similar to the AR model. The MA model
is also used to model data in different areas of life. An
MA model is used as a continuous quality control
analysis for routine chemical tests |5]. The MA
procedure is optimized using the MA bias detection
simulation procedure. An MA filter is used to
accelerate the acceleration signal and determine the
location of the damaged steel beam [6].

In various studies, the noise in the MA model is
often assumed to be normally distributed, for example
[7]-[11]. While the noise of the MA model with
exponential distribution has not been widely
investigated by r@&lrchers. In the studies above, the
order of the MA model is assumed to be known. But

in the application of the MA model, the MA model
order is unknown.

Reversible jump Markov Chain Monte Carlo
(MCMC) [12] has been applied in many areas
including in si processing and in time series data
analys ‘he reversible jump MCMC algorithm is
used for model selection. The reversible jump
MCMC algorithm is used to select a piecewise AR
el that has a normally distributed noise [13]. The
reversible MCMC is used for species selection
[14]. The re\re% jump MCMC is used for the
selection of the ber and locations of the pseudo

oints | 15]. The reversible jump MCMC 1s used to
hct the instrument calibration model [16]. The
reversible jump MCMC is used for {@ selection of
variables in regression [17].[18]. The reversible jump
MCMC is used to select@bn-linear models in the
Volterra system [19]. The reversible jump MCMC is
used to estimate AR model tmr [4].

This study proposes the reversible jump MCMC
method to estimate MA model parameters where the
order 1s unknown. This study discusses parameter
estimation of MA mnels that have normal or
exponential noise. The parameters of the MA model
include the order of the MA model, MA model
coefficient, and noise variance.

2. METHOD
The parameter estimation is done in a Bayesian

framework. Bayesian estimation requires a prior
distribution and likelihood function. The prior
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distribution and likelihood function are combined to
obtain a posterior distribution. Under the quadratic
loss function, the Bayes estimator is obtained by
calculating the mean of the posterior distribution.

Because the posterior distribution has a complex form,

the Bayes estimator cannot be determined
analytically. An MCMC 1s used to determine the
Bayes estimator by creating a Markov chain whose
limit distribution is close to the posterior distribution.
This Markov chain i1s used to determine the Bayes
estimator. In this study, the order of the MA model is
also a parameter that is estimated based on the data.
This makes the dimensions of the Markov chain a
combination of several different dimensioned spaces.
So MCMC cannot be used directly. Therefore the
reversible jump MCMC is used to solve the problem.
The estimation procedure is shown in Figure 1

Likelihood Function

Prior Distribution

Posterior Distribution

Reversible Jump MCMC

Bayes Estimation

Fig. | Estimation Procedure

First, determining the likelihood function. Second,
the selection of the prior distribution. Third,
determining posterior distribution. The fourth
determination of the Bayes estimator by using the
reversible jump MCMC.

3. RESULTS AND DISCUSSION

The Bayesian method is used to estimate the
parameters. Bayesian estimation requires a likelihood
function and prior distribution.

3.1 Likelihood Function

Let xy, -+, x,, be n data following the MA model:

q
X =Z_ Oz, + 2,
j=1

Here, q is model order, t = 1,2,..,n and 8@ =
(81, ..., 8,) is the coefficient vector. Table 1 shows
the relationship between orders and the number of
coefficients of the MA model. A relationship between
order and coefficient of the MA model is illustrated
in Table 1.

(D

Table 1: Relationship between order and
coefficient of the MA model.

Order q Coefficient 8@
1 (CY)
2 (81) 82)
3 (91’92’ 93)
4 4,,6,,0,,8,)
q (6,,6,65,....6,)

3.1.1 First case: exponential noise

Random variable z, is the independent variable and
the exponential distribution with parameter A. For
example, for n=250,¢9g=2.6,=-134.8, =
0.36, and A = 2 then the value x, is presented in
Figure 2.
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Fig. 2 MA model data with exponential noise.
The probability function z, 1s

f(z|2) = Aexp — Az, 2
The variable transformation is used to transform from
variable z do vanable x. So z; = x; — E?:l Biz;j
2t =1
dxy i
Therefore, the probability function of x, is

q
Flx,] 1) = Aexp — 4 (xz - Zj_lejzc_ ,,)

Suppose that x = (xqﬂ, wr Xy )- By taking 2z, =
-+ = Zg = 0, the likelihood function of xy, -+, x,,
can be approximated by :

3

L(x]q, 6, 2)
n

= | fxe|d)
t=q+1

n
= A""Texp— A1 Z (xr
t=q+1
q
- Z ) GJZ£_J
j=1

Let I, is the invertibility region and p® =

“
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(p1,...,pq) the sample inverse partial

autocorrelation vector. By using the transformation
G:0@ g I, —m) € (—1,1)7

An MA model with order q is invertible if and only if

p@ € (=1,1)%. Finally. the approximate likelihood

function of x can be written by :

L(x|q,p@, 2)

n
= A""9exp —AZ (;xt
t=q+1

: q
- G—‘(pf)z:?
j=1

where G~! is the inverse transformation of the
transformation G.

(3

3.1.2 Second case: normal noise

The Iandomiablc Z; is a mutually independent
variable and is normally distributed with mean 0 and
variance 2. For example, if n = 250, ¢ = 2,6, =
—1.34, 6, = 0.36, and 6% = 2 then the value x, is
presented in Figure 3.
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Fig. 3 MA model data with normal noise.
The probability function of z is

(©)

1 1
2% _ 2
f(zlo?) = 2?102"33‘?7 252 Z¢

The variable transformation is used to transform from

variable z do variable x. So z, = x, — Z?ﬂ 8z,
? = 1. Therefore, The probability function of
Xg is
1 O]
(x,]0%) = ex
Felr’) = ez P

2
1 q
—(x, - 6
202 (xt Z‘s=1 jzt_'f)

Suppose that x = (X441, ..., X, ). By taking the values
7z =2=12,=0, The likelihood function of
Xy, ', X, can be approximated by:

L(x|q, 6@, 0?)
n=

= (2ma?)"Z exp

1
—th m( Z Oy J)

3.2 Bayesian

(®)

Before obtaining a posterior distribution, the
prior distribution is selected.

3.2.1 First case: exponential noise
The prior distribution is taken as follows. The
binomial distribution is chosen as the distribution for
the orderq (g = 1, ..., Gmax)
m(qlu) = g pI (1 — '™ ©)
where @qx 15 the maximum forqand p (0 < p < 1)
is a hyperparameter. The uniform distribution is

chosen as the distribution for the vector coefficient
(@)
p

m(p@]q) = U(-1,1) (10)

Also, the Jeffrey distribution 1s selected as the
distribution for parameter A
1
m(A) « 2
Then, the hyperprior distribution for ¢ is a uniform
distron at an interval (0,1).
Let n(q,p(q'),i, ;1) be the prior distribution for
(4., A, ). Because ffif conditional distribution

of the parameter (q, p(‘n,il) is given the
hyperparameter y is
(D A,) (1D
(@ (ap @A)
(g, p@, A|u) = FHEE

45

The prior distribution for (q,p’q), A, 1t) can be written
as:

n(q,p @, 4, 1) = n(q,p@, A.I#)ir(u)

15

Let (g, p(‘”,al,plx) be the posterior distribution
(‘?:P(q),l.y)‘ According to Bayes theorem, ta
posterior distribution for (g, p@, 4, i) is given as
follows
(@ p@, 2, 1)@
 L(x|q, p, )(q, p, 4, 1)
o L(x|q, p @, A)m(q, pP, 2| ) (u)

However, the Bayes estimator cannot be
determined analytically because of the posterior
distribution of the parameter (g, pP, 4, u) has a

(12)
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complex form. To solve this problem, the reversible
Jump MCMC algorithm 1s used.

3.2.2 Second case: normal noise

The distribution off&brs for order q given i is a
binomial distribution. The prior distribution for the
coefficient vector p@ is a uniform distributidzg
Whereas the prior distribution for parameter 2 is an
inverse gamma distribution with parameters a/2 and

b/2:

s "
2) (19 b2
r@ e

2
Here, a = 2 and the prior daibution for b is Jeffrey's
distribution. Furthermore, the prior distribution for p

isa lll‘lif(al distribution at the mrva] (0,1).
Let n(q, p@, 62, u, b) be a prior distribution for

n(o?|a,b) =

(@.p@,0%ub). A pff distribution for
(q.p @, A,.u) can be written as follows:
n(q,p, 02, 1, b) (14)
= n(qlwmn(p‘?|q)n (o |b)m(u)m(b)
Let rr(q,p(‘”, 0'2,#,b|x) bl a  posterior

distribution for (q,p(‘”,az,.u, b). According to the
Bayes the
(q,pm),az,,u, b) is given as follows:

7(q, p@, 0% 1, b|x)

« L(x|q, p@, 0?)n(q, pD, 02, 1, b)

« L(ED 0@, 02)

w(qlwyn(p@|q)m(o? b)Y (W)m(h)

Also, the Bayesian estimator cannot be
determined lytically because of the posterior
distribution of the parameters (q, p@, o2, i, b) has a

plex form. Like in exponential noise case, a
reversible jump MCMC algorithm is used to solve
this problem.

theorem. terior distribution for

3.3 Reversible Jump MCMC

3.3.1 First case: e:memr’a.-' noise

Suppose that M = (q, p@, 4, p). TEEJMCMC
method  for  simulating  the  distribution
n(q. p(‘”,ﬂ.ﬂ|x) is a method that produces ergodic
ko\-' chain My, ..., M,, which has a stationary
distribution H(q,p(mulx). The Markov chain
My, .., M,, which has a stationary distribution
w(q,p, A, pu|x). Furthermore, Markov chain
My, ..., M,, is used to estimate the parameter M. To
realize this, the Gibbs algorithm is adopted. The
simulation of distribution (g, p“?, 4, u|x) consists

of three steps: First, simulate u~B(q + 1, @nax —
q + 1). Second, simulate A~G(a, f) where a =n —

qg+1 B =(mq+1(x£_

0 G (p))ze—;))” Third, simulate 7(g, p@|x).

j=1

and

The distribution 7(q, p‘P|x) has a complex for so
that simulation of the distribution of (g, p(?|x)
cannot be done exactly. The value of q is unknown,
the MCMC algorithm cannot be used to simulate the
distribution (g, p@@|x). Here, the reversible jump
MCMC [12] 1s adopted.

Let £ =(q,p@) be the actual point of the
Markov chain. There are 3 types of transformation
used: order birth, order death and, coefficient change.
Next, let Ny be the probability of transformation from
qtoq+1,let Dy be the probability of transformation
from q + | to g, and let C; be the probability of
transformation from q to q.

The transformation of the birth of order will
change the MA model coefficient. from qtoq+ |. Let
£ =(q,pP) be the actual point and & = (g +
no(qﬂj) is the new point. The birth of order from
E=(q.p ) 10 & =(q+1,p9") is defined in
the Select random [:ell

following way.
v ~U(=1,1). Then, create a new point £’ = (q +
Lp' @™y with  p@V ={pi=p,,..,p5 =
PgPgs1 =V}

Conversely, the transformation of the death of
order will change the MA model coefficient, from
gq+ltoq. Letf = (g + 1, pl*D) be the actual point
and {7 = ((m(“)) is the new point. The death of
order from & = (q + 1, p9*) 10 & = (q,p" @) is
ned in the following way. Create a new point
£ =(q.p) with p@ = {p] = py, ..., p5 = pq}.

Suppose that P, (&, &7) and Py(£,£7) are
respective the acceptance probability for the birth of
order and the acceptance probability for the death of
order. The acceptance probability for the birth of
order 1s as follows:

B.(,€7)

= min{l

(15)

a
(g1 1 q+1]

"B N = q Giax — 4

The acceptance probability for the death of order
is as follows:

Py(£,€7) (16)
(ﬁ-)n-q-l-l Gmax — 4
=minjl, Fa (n—q) q+1 }

Transformation of the change of the coefficient
will not change the order. This transformation only
will change the MA coefficient. Let ¢ = (g, p@) be
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the actual point and " = (q,pﬂ) 1s the new point.
The change of coefficient from & = (g, p @) to &* =
(q,p" @) is defined in the following way. Select an
index randomly j ..,q}. and select a point
randomly ©~ U(—1,1). Then a new point £* =
@.(4)) is with  p@ ={p; =
Prron Pjy = Pj=1,Pf = U Pjag = Pi+a i Pq =
pq}. Let P.(£,£") be the acceptance probability for
the change of coetficient. The acceptance probability
for the change of coefficient is as follows:

P.(£,&7) = min {1,(%)‘1}

3.3.2 Second case: normal noise

LetN = (q. p(q).rrz,,u.b) be the actual point of
the Markov chain. The MCMC method for simulating
the distribution ft(q, p(“”, a?,u,b |x] is a method that
produces ergodic Markov chain Ny, ..., N,,, which has
a stationary distribution m pD,a? b|x) The
Markov chain Ny, ...
random variable

created

7

,N,, can be considered as a

having a  distribution
Tr(q,pm,az,y,blx). Furthermore, Markov chain
Ni. ..., Ny 1s used to estimate the parameter N. To
realize this, the Gibbs algorithm is adopted. The
simulation of distribution :rr(q, pla), (rz,,u,b|x)
First,

consists of 4 steps: simulate pu~B(q +

1, Gmaxr —q + 1) . Second, simulate b'-G(%,ﬁ) :
Third,

n=Pmax

o2~G(y,8) where y= >

and § =§+%Z? H(x,, —Z?zlG_l(pth_f)z.
Fourth, simulate m(q,p@|]x) . The distribution
H(q, p@ |x) has a complex form so that simulation of
the distribution of w(g, p@|x) cannot be done
exactly. Since the value of q is unknown, the MCMC
algorithm cannot be wused to simulate the
distribution (g, p@|x). Here. the reversible jump
MCMC algorithm (Green, 1995) is adopted.

Let £ =(q,p) be the actual point of the
Markov chain. There are 3 types of transformation
used: order birth, order death and order change. Next,
let N, be the probability of transformation from q to
q+ 1, let Dy be the probability of transformation from
q * 1 toq, and let C; be the probability of the
transformation from q to q.

The transformation of the birth of order will
change the MA model coefficient, from qto q + 1. Let
é= (q,p(‘”) be the actual point and ¢ =(g+
aa('“n) is the new point. The birth of order from
E=(q,pP) to & = (q+1,p"9") is defined in
the following way. Select random point v ~ g(v)
where

simulate

g(v)Z[ -1<v<0

D<v<1

1
1—v

(18)

Then, create a new point £ = (g + 1, p"@*Y) with
pED = (p; = py.,....p; = Pqg.Pjs1 = V).
Conversely, the transformation of the death of
order will change the MA coefficient, from gq+1 to q.
Let § = (q + 1, pW*D) be the actual point and * =
mU'(‘T)) is the new point. The death of order from
E=(g+1,p9Y) to & = (q, fEY is defined in
the following way. Create a new &* = (g, p?) with
p@ = {p; =p,, s Pg = Pq} Suppose  that
P.(&, &%) and Py(€, £7) are respective the acceptance
probability for the birth of order and the acceptance
probability for the death of order. The acceptance
probability for the birth of order is as follows:

PGSy
:mm{l}(b_) q_Ll}

(19)
5) q+11-pu2

The acceptance probability for the death of order is as
follows:

Pa(§,87) (20)

)

Transformation of the change of the coefficient
will not change the order. This transformation only
will change the MA coefficient. Let § = (q, p'?’) be
the actual point and £ = (q,;ﬂj) is a new point.
The change of coefficient from £ = (g, p @) to £* =
(q,p" @) is defined in the following way. Select an
index randomly j € {1,...,q}. and select a point
u; ~f(u;) where

=¥

+1 1-

-?__#2}
max — 49 H

__ 5 @D
f(uflpf) = ”Jl‘_t‘i

for u; € (sin (p; —ﬁ).sin (pf +1ﬂ_n))‘ The new
EEht & = (q,p" ) is created with p*(@ = {p] =
P1r i Pjmy = Pt P} = W Pjsy = Pria i Pq =

pq}. Let B.(£,£7) be the acceptance probability for

the change of coefficient. The acceptance probability
for the change of coefficient is as follows:

) (22)

- 1(5')"’(1—pf1+p.-)”2
=mmaE 1+u;1—w
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3.4 Simulationfz)

Simulation studies wermrried out to determine
the performance of the reversible jump MCMC
algorithm 1n estimating thcﬂaramctcrs of the MA
model. Table 2 presents the parameter values of the
aA model. The MA model order 1s 3. The error 1s
assumed to have a normal distribution with mean 0
and variance 2.

Table 2: Parameter values of the MA model
q S(Q) 0‘2
3 (0.5348, -0.0391, -0.7460) 2

Two hundred and fifty synthesis data is made using
Eq. (1). The synthesis data is presented in Figure 4.

: I |'| ] '| | I |f [l
I il I ![-r |
| [ ‘ ([ I,l.| I g |"’i‘ | LI
2 1 (s f | |I,I[|||\ ‘i]
' ™ 5“' .
i l

2
|

Fig. 4 Data synthesis

Then, synthesis data is ual as input for the reversible
Jump MCMC algorithm to estimate the parameters of
the MA model. The algorithm i1s run in 50000
iterations with 10000 iterations of a bum-in period.
The output algorithm is as follows. The order
histogram is presented in Figure 5.

i <107

35

3

Frequency
- r
hom o

=
&

e

0 1 2 3 4 5 6 7T B % 10

Order g

Fig. 5 Histogram of order q

From Figure 5, it can be seen that the third order
reaches the highest frequency. This shows that the
estimated MA model order is 3. Based on the MA
model (3), then the MA model coefficients and error
variance are estimated. The results of the MA model
parameter estimation are presented in Table 3.

Table 3: Value of parameter estimation of MA
model

7 7 72

3 (0.53006, -0.0177. -0.7251) 22014

The estimator of the parameters in Table 3
approaches the true value of the parameter in Table 2.
This shows that rhmt:vcrsib]c jump MCMC
algorithm can prm'ly estimate the parameters of the
MA model. This algorithm can be used to estimate the
MA model even though the order is unknown. The
algorithm produces an invertible MA model.

4. CONCLUSION .
5

This study discusses a new method for
estimating the parameters of the MA model that is
normal and exponential if the order is unknown. The
reversible j MCMC algorithm is an alternative
method that can be used to estimate the parameters of
the MA model even though the order is unknown. The
advantage of this method is that both the order and
coeflicients of the MA model can be estimated
simultaneously. Also. the MA model produced is the
MA model that verifies invertibility region.
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