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Abstract— Piecewise constant is a mathematical model that is often used to model dataw
or exponential additive noise can be added in a constant piecewise model. This study aims to es

various fields. Exponential multiplicative noise
a constant piecewise model that

has exponential additive noise. The estimation of the constant piecewise model is carried out in the Bayesian framework. The prior

distribution for the numb

f constant models, the location of the change in the constant model, the height of the constant model, and the

noise variance selected. This prior distribution is combined with the probability function of the data to get the posterior distribution. The
Bayes estimator for the number of constant models, the location of the change in the constant model, the height of the constant model, and
the noise variance are estimated based on the posterior distribution. The Bayes estimator cannot be formulated explicitly because the
number of constant models is a parameter. The reversible jump method of the Monte Carlo Markov Chain (MCMC) is proposed to
determine the Bayes estimator. This study resulted in estimating the parameters of a constant piecewise model with exponential additive
noise. This method can be used to estimate a constant piecewise model that has exponential noise even though the number of constant

models is unknown.

Index Terms— Bayesian, Piecewise Constant, Exponential Additive Noise, Reversible Jump MCMC.

1 INTRODUCTION

iecewise constant is a mathematical model used to model

data in various fields of life, for example [1], [2], and [3].

The constant piecewise model is used for smoothing
images of flowers [1]. The piecewise constant model is used
for population size modeling [2], [3]. The mathematical model
contains a noise. This noise is assumed to have a certain
distribution.

The piecewise constant model can contain additive noise or
multiplicative noise. Additive noise is used by various
authors, for example [4], [5], and [6]. Additive noise is added
to the spatial regression model [4]. Additive noise is used in
partially linear functional [5]. This linear functional model is
partly applied to the Tecator data. Additive noise is used in
the log regression model [6]. On the other hand, multiplicative
noise is also used by several authors, for example [7] and [8].
Multiplicative noise is used in a constant piecewise model [8].
Noise is assumed to be G (L, L) distribution where the L value
is assumed to be known.

In various applications of auloregressive models, noise
mathematical models are often assumed to be exponentially
distributed, for cxanac [9], [10], and [11]. Genetic algorithms
are used to estimate the exponential autoregressive model [9].
Exponential is used as noise in the 1st order autoregressive
model [10]. Bayesian robustness method is used to get the
optimal Bayes estimator for exponentially distributed
autoregressive models [11]. In the studies above, the
autoregressive model order is assumed to be known. The
autoregressive model has exponential noise but the order of
unknown models is examined in [12].

However, a constant piecewise model that has additive
exponential noise has not been studied. In some applications,
data is often modeled following a piecewise constant model
with exponential noise. If the piecewise model is constant with
exponential additive noise used to model the data, the model
parameters are unknown. The model paramelters include the
number of constant models, the location of constant model
changes, the constant model height, and noise variance. This

study proposes an estimation method of a constant piecewise
model that has additive noise where the number of constant
models is unknown.

2 METHOD

As in [13], the Bayesian framework is adopted to estimate
parameters. The prior distribution for the number of constant
models, the location of changes in the constant model, the
constant height of the model, and the noise variance are
selected. Then this prior distribution is combined with the
likelihood function of the data to get the posterior distribution.
Based on this posterior distribution, the Bayes estimator for
the number of constant models, the location of changes in the
constant model, the constant height of the model, and the
noise variance are estimated.

The reversible jump Monte Carlo Markov Chain (MCMC)
method [14] was proposed to determine the Bayes estimator.
The basic idea of the MCMC reversible jump method is the
creation of a Markov chain that is recurrent and irreducible
such that the limit distribution of the Markov chain will be the
same as the posterior distribution. Furthermore, the resulting
Markov chain is used to calculate estimators for parameters.

3 REsuLT AND Discussion

Suppose that n represents the number of data and y,,..., ¥,
represents the data set. This data follows the piecewise

constant model if this data satisfies the following
mathematical equations:
Ye =My + Zg, t=1,...,n (1)

where
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hy, T, <t<T (2)
m, = h,, T, <t<T,

hisr, Trsr <E< Ty

with 7; = 0 and 7,,, = n. The value of k denotes the number
of constant models. The values of 1 = (1q,..,7;) state the
location of the change in the constant model. The value of
h = (hy, ..., hyyq) expresses the height of the constant model.
Here, z is assumed to be mutually independent and
exponentially distributed with parameter ¢ > 0.

3.1 Likelihood Function
The random variable z, is distributed exponentially so that

g(z,|0) = gexp — oz, (3)

Suppose that y = (¥4, ..., ¥n).. The likelihood function for data
yis

fylk, T, h,0) (4)
k+1 Tig1

=| | | | gexp — a(y, —m,)
i=1 t=Ti+1

k+1

- T,

—| | atexp —as;
i=1

where s; = Z:;’,-H(yc —my)andn; =14 —1 fori=1,..,k+
1.

3.2 Prior Distribution

To obtain a posterior distribution, a prior distribution must be
determined. As in [8], the prior distribution for k is chosen of
the Binomial distribution with parameter 0 <A1<1. For
=0, 35k

'R’(_kl;{) = (kn’:nx) )‘lk(l _;{)kmﬂx—k (5)

where kg, states the maximum value of k. The hyperprior
distribution for A is chosen the uniform distribution. Prior
distribution for 7y, ..., T, according to the ordered statistics.

k+ 1) 1 e+t L
m(ty, ., Ti|k) = T?l—[xﬂm

Prior distribution for hy, ..., hy,, exponential distribution is
chosen with parameter v > 0.

wt(hy, ooy hysa Ik, V) (7)

k+1
= 1_[ v exp — vh;
i=1

k+1
=v¥*lexp — ‘UZ hy
i=1

and Jeffreys prior is chosen as a hyperprior distribution for v.
w(v) oc vt
Similarly, Jeffreys prior is also chosen as a hyperprior
distribution for a.
(o) < o7t
So the prior distribution for the parameters (k, 7, h, 4,v,0) can
be written as

n(k,t, h,A v, a) (8)
_(k K
= (fmax) 242
2k+1) 1 k+1
=, J])kmax—k (‘HT)Z_kl—[_ n; pk+1 exp
k+1 e

h; o7 p7?
i=1

=

3.3 Posterior Distribution
Let H, = (k,t, h,0) and H, = (4, v). Posterior distribution can
be written as

n(H,, RHZP) ©)
o« 1_[ a™ exp — as; (k’;*‘“’) A1

i=1
L @k+1)1
_l)kmnx RTZ_}(

[ k1
1_[ n vt ex'p—vz hjo vt
i=1 i=1
k+1
o 1—[ o™i~ exp
i=1

— O5; (kr;::ﬁx) ik (1

2k+1)0 1 k+1
- I])kmax—k (nT)_l_L_ n
=1

2k
k+1 k+1
| | vEexp —v h;
=1 i=1

3.4 Reversible Jump MCMC
Parameter estimation (Hy, H,) are carried out using the Gibbs
algorithm which consists of two stages, namely: distribution
nw(H|H,,y)
n(H,|H,, v). Distribution simulation w(H.|H,,¥) can be done
using the Gamma distribution.

simulation and distribution simulation

k+1

n(Hy|Hy ) o« ®FH16 (ny,s) @G (k +1, hy) (10)
i=1
® Bk + 1 kpax — k + 1)
Therefore fom o™ exp — g5, do = %
1.k — TyEmax—k _ T+ (kmax+1) L i
fn A¥(1-2) dA = i) and fo vk exp

vk hy dv = [‘:_:) then
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n(Hy|H,, y) (11)
k1 T(ny) gk, \TOF DT (kg + 1) 2K + 1)1
“ﬂm S ( k ) NCE)) nZk
1 k+1 T(a)
z_kﬂl-:l”" ba

where a=k+1 and b=3{'h;. Distribution simulation
n(Hy|Hy ¥) is done by using the MCMC reversible jump
algorithm. As in [14], this algorithm uses four transformations,
namely: changes in the height of the constant model, changes
in the location of the constant model, the birth of the constant
model, and the death of the constant model.

Changes in the high are as follows. Select a height randomly
between hy, ..., hyyq. If by is selected, then the height of h; is
deleted and replaced by the height h;. The height h; is
So hj

11

specified so that log (:)—u where u~U(-2,3.
i

2
h; expu.

Suppose that x=(‘rl,.‘.,r,‘,h1, v hk+l.) and x" =

r Iy aeey

(Tl,...,rk.hl,...,h},.“, hkﬂl). Point x* will replace x with
probability
e — {1 fylx) m(x’|k) q(x',x)} (12)
' "flx) m(x|k) q(x,x*)

where

k+1 ') (13)
Foley =175
flylx) k+1 F'(n)

i=1 an;
w(x*|k) _TI(@) b* (14)
n(xlk)  (b")* T(a)
qx"x) _ by (15)
qlx,x*)  hy

The change in the location of the constant model is as
follows. Take a location randomly between 7y, ..., 7. If 7; is
selected, the location 1; is deleted and replaced by location ;.
Take u randomly according to U[Tf_l,rj+1). So that 77 = u.

Suppose that x = (Ty, ..., Tjy oo, T hyy e, Rpyy) and x° =
(rl, o Ty T Ry th.), Point x* will replace x with
probability

(16)

flx®) m(x*|k) q(xﬂx)]

p(x, x*) = min [1, Forlx) nCxlk) qCe,x)

where

nk+1 [‘(n;) (17)
fOI _ 5
flx) [T+ L'(n)

i=1 sirlg

w(x"|k) _ (T2 — 1) (18)
Gl (Gr — 1))
40 _ (G 1) (19
4G x) (5 - o)

Birth of the constant model is as follows. Take location t°
randomly between 2, ...,n — 1. If T° € (1, 7, ) then the height
of hy is deleted and replaced by the height hj and hj,, such
that

[r' - rj-] log(h}) + (r,-” — r') Iog(h}ﬂ) (20)
= (741 — 77)log(hy)

Suppose that x = (Tl, T Ry, e,y h,—, hkn_) and
X = (Th ey r;r r;: T}+1 ey tk,hlr Ny h}—lrhj; hj--'.p hﬁ-lt ey hk+1,)’
Point x* will replace x with probability

o) = mm{ f@lx')n(x'lk)q(x'}x)} (21)
' " fylx) m(xlk) q(x, x*)
where
[T+ C(n;) (22)
fOl) _ si™
f(J’|x) l-[x-rl ( i)
Tlf
m(x”|k) (23)
m(x|k)
n—1-k A Qk+3)Qk+2)1(z" - 1)(41 —7")
B K 1=4 (n—1)? z (G = 1)
q(x",x) n—=1(h +hj,,)? (24)

q(x, x*) Tk+1 h;
Death of the constant model is as follows. Take a location

randomly between T, ..., 74. If location 7;,, is selected, then
location 7;,; is deleted. The height of h; and hy,, is also

deleted and replaced by the height h; such that

(721 = 7) log(hy) + (Tj42 = Ty41) log(hy41) (25)
= (TJ'+2 - TJ')]Ug(hj.)
Suppose that
x = (rl,..,rj.rﬂl,qﬂ,. .,Tk,hl,..,hj, hjﬂ,..,hkﬂ) and
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xi= (Tl, e T Ty N S .,.,h‘;_l,h;,hj,z,.,., h,,_,,l). Point x*
will replace x with probability

=i {1 fylx) m(x’|k) q(x',x)} (26)
g "FoI) TGl qCox)
where
k1 [(1) (27)

f(y|x')_ =L

ol r'(n;)
dl -
ff(x- k) (28)
m(x|k)
_ k1= (m-1? (41— 1)
Tn-k 2 @k+DC0) [Tz - Ga1)@e—1))

(a’) b°

(b*)* I'(a)
qx"x) _ k hy (29)

g(x, x*) “n-1 (hy + hj_'_l)z

5
This simulation produces a Markov chain that has a limit
distribution to the posterior distribution. The resulting
Markov chain can be used to estimate the piecewise constant
model parameter.

4 CONCLUSION

The Bayes estimator cannot be formulated explicitly because
the number of c.mﬂ;tanl models is a parameter. The piecewise
constant model parameter includes the number of constant
models, the location of changes in the constant model, the
constant model height, and noise variance.

The reversible jump MCMC algorithm can estimate the
piecewise constant model parameter that has exponential
noise simultaneously. This algorithm can also estimate the
hyperparameters present in the prior distribution.
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