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Abstract. This paper aims to decompose time series data in segments where many segments
are unknown. The data in each segment is modeled as a stationary autoregressive where the
model order is unknown. The model parameters include the number of segments, the location
of segment changes, the order of each segment, and the autoregressive coefficients of each
segment. The Bayesian method is used to estimate parameters, but Bayesian estimator cannot
be calculated analytically. The Bayesian estimator is calculated using the reversible jump
Markov Chain Monte Carlo algorithm. The performance of the algorithm is tested using
synthesis data. The simulation results show that the algorithm estimates the model parameters
well.

1. Introduction

A constant model per segment is a model that is often used to model various types of data. Kaipio &
Karjalainen [1] uses a constant autoregressive model per segment to model the electroencephalogram
(EEG) data. Evans et al. [2] uses a constant model per segment to model DNA data. Fryzlewicz & Rao
[3] uses a constant autoregressive model per segment to model the Financial Times Stock Exchange
(FTSE) data. Shao et al. [4] uses a constant linear regression model per segment to model precipitation
data. Yau & Zhao [5] use stationary models per segment to model electroencephalogram data.

The method for constant model per segment segmentation is examined by several authors.
Punskaya et al. [6] uses the reversible jump MCMC method to segment sound signals. Nitanda et al.
[7] uses fuzzy c-means clustering to segment audio signals. Tai et al. [8] used Bayesian methods to
segment tumor data. Phojanamongkolkij [9] uses a spectogram to segment sismic data. Zimroz et al.
[10] uses time frequency decomposition to segment seismic data. Kavsaoglhu et al. [11] uses an
adaptive segmentation method to segment photopletthysmography data. Polak et al. [12] uses the
analysis of time frequency maps of group delay to segment and cluster seismic data. Hewaarachchi et
al. [13] uses the Bayesian minimum description length (BMDL) method to segment temperature data.
Kim et al. [14] used a domain assisted parameter semi-free wave mining (DAPs) model to segment
data epileptic activity data.

The AR model that has stationary properties is a useful model in forecasting. Punskaya et al. [6]
does not discuss stationary AR models. If the piecewise stationary constant AR model is matched to
real data, generally the model parameters are unknown. The parameters here include: number of
segments, location of the model changes. and AR model parameters for each segment. The AR model
parameters include: order, coefficient, and variance in stochastic disturbances. This paper aims to
estimate the stationary-constant-per-segment AR model using the reversible jump MCMC algorithm.

2. Research Method




Suppose x = (Xq,...,Xy) is n observation. This data is said to have a constant AR model per segment

k (k =0.1,...., kjmay) if for t =1, ..., n this data has the following stochastic equation:

Xe = Zp — 1¢(T;:‘ Xt—j» T”C<t<fg+1k. i=01,..k (D
where under the assumption ot k segment: T;x is the location of the, 1 Ll'j AR n‘to (,hart% 3 with
conversions To g = 0and 7y, = n where each ith segment. p; yand qb vk ')

the AR model coefficient corresponding to the ith segment. z, is a qtochastlc enor \aﬁle at t
oorrespondmg to the 1th segment. The z; 1s modeled as a normal distribution with mean 0 and
varianceo; "o Next the ith AR model (1= 0.1, ..., k) is called stationary if and only if the equation
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is O for the value of a outside the circle with the radlm equa] to one.

If the number of segments is assumed to be known, the location of the AR model change is
assumed to be known and the assumed order 1s known, then a problem of the piecewise constant
stationary AR model estimation becomes a problem of order identification and AR model parameter
estimation for each segment. If the AR model order 1s assumed to be known, the problem of
identifying the AR model order and AR parameter estimation becomes a problem of AR model
parameter estimation. In this study, the number of segments and the order of the AR model for each
segment is assumed to be unknown. The reversible jump algorithm MCMC is used to detect the
number of segments, detect the location of the AR model changes, identify the AR model order and
estimate the AR model parameters simultaneously. The Hierarchical Bayesian 1s adopted to estimate
the hyperparameter that appears. The performance of the reversible jump MCMC algorithm will be
tested by using synthesis data.

3. Results and Discussion
Suppose 5 = (xpmﬂ“l, ...,xn) is a realization of a piecewise stationary constant AR model. If the

values of sy = (x4, ... Xy ) are known and
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3.1. Hierarchical Bayesian Approach

The hierarchical Bayesian approach is used by several authors, for example He et al. [15], Millar [16].

Cross et al. [17], Shelton et al. [18], Grzegororezyk & Husmeier [19], Glassen & Nitsch [20]. The

selection of prior distributions for the above parameter as follows:

1. Suppose that w(k|2) 1s a prior distribution for the number of segments k. A binomial distribution
with parameter A is selected as the prior distribution m(k|A), namely: n(k|A) = Cf’““*/'lk 1-
Rmﬂx_k for k =1, ..., kpax and is 0 for others.

2. Suppose that (T, |k) is the prior distribution for the position 7. The even distribution of indexes
from 2k + 1 sequential statistics is taken uniformly without returns in {1, ..., n-1} is selected as the
prior distribution w(t,|k).

3. Suppose that H(Pi,k |k) is prior distribution for order p; . A uniform distribution in {1, ...., Pax}
is selected as the prior distribution n'(pl-‘k |k)

4. Suppose that (pgif'k) Ik, Pi,k) is a conditional prior distribution for the coefticient vector pgif'k) if
it is known p;,. A uniform distribution in the mnterval (—1,1)%k 1s selected as the prior
distribution ™ (pf_z"*) |k. p;, k)_

5. Suppose that Tf(ofk Ik, a, ,ﬁ’) 1s the prior distribution for ofk. An inversion gamma distribution with
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the parameters — and > s selected as the prior distribution ”(Ui_klkv a, ,8) namely:

n(ofc|k, a.B) = (f{;;:;z (afk)_(lm'{z)exp - B/(20}) foraf, >0 and 0 for the others.

The parameter that appears in the prior distribution is called hyperparameter. Suppose that (1) is the
prior distribution for thefghyperparameter A. The distribution (1) is assumed to be uniformly
distributed at intervals (0.1). Suppose that () 1s the prior distribution for hyperparameter . The
distribution 7(f) is assumed to be Jeffrey's distribution. Here, the value of « is equal to 2. Let

H, = (k,rk,ptk,p{.(ii'k),afk), and H, = (4, ), and m(Hy, H;) be the prior distribution for parameter
(Hy, H3). The prior distribution for parameter (Hq, Hy) can be expressed as

7(Hy, Hy) = TRy 7(ouelk) 7 (p%0 epue) w(oElka s @ ©
According to Bayes's theorem. the posterior distribution for the parameters H; and H, can be
expressed as

m(Hy, Hy|s) o« L(s|p, so)m(Hy, Hy).

The posterior distribution is a combination of likelihood function and prior distributions. In this case,
the posterior distribution w(Hy, H,|s) has a complicated form so that the Bayes estimator cannot be
determined analytically. The MCMC reversible jump algorithm was adopted to determine Bayes
estimator.
3.2. Reversible Jump MCMC Algorithm
The reversible jump algorithm MCMC [22] was proposed to determine the Bayes estimator. Suppose
that M = (H;,H,). The general idea of the MCMC reversible jump algorithm is to make a
homogeneous Markov chain My, ..., My, that satisfies aperiodic and irreductible properties so that the
Markov chain My, ..., M,, can be considered as random wariables that follow the distribution
m(Hy, H,|s). The Markov chain My, ..., My, can be used to calcalute the estimation of parameter M.
The Markov chain is made in two stages: stage 1 simulates the distribution t(H;|H;, s) and stage 2
simulates the distribution n(H;|Ha,s). Distribution m(H,|Hy,s) has an explicit form. So the Gibbs
algorithm can be used to simulate the distribution n(H;|H3,s). The conditional distribution of Hy if
known (H,, s) can be written as

HylHy,s) = B+ Lknar —k + 1) @G (S + 1),y — 7
m(HzlHy, ) = Bl + 1 kmax —k +1) ® (5( " )'Zmﬁ) ”




Conversely, the distribution (H;|H,, s) does not have an explicit form. So that the exact simulation
is not possible. The simulation of distribution ©(H;|Hz,s) is done in three stages, namely: the stage

(I’Lk)]}f

one simulates distribution Tt(k,r(k)in.k'{Pik Hz,s), the stage two sumulates distribution
. =0
k
(pix)
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stage two. The Gibbs algorithm is used in stage three.

k,T k ). H,, S), and the stage three simulates distribution

k
Piks [p{.(‘i""]}ho,k. T“‘).Hg.s), The reversible jump MCMC algorithm 1s used in stage one and

3.3. Simulation Study
The Figure 1 shows a synthesis data. This synthetis data 1s made according to equation (1).
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Fig. 1: Synthesis data

Making the synthesis data is done by taking the parameter value k = 4 and the location of the AR
model change is T = (75,150,250, 400). The Table 1 gives the order, coefficients and variances of
the AR model for each segment.

Table 1: Parameter value for synthesis data

ith segment Oi4 Pia Ql[ﬁx,d
0 0.12 3 (10.25, 0.79.0.34)
1 0,5 2 (-1.54,-041)
2 0.4 1 (0.19)
3 0.5 4 (0.59.0.99,0.64, 0.87)
4 0,12 3 (0.86, -0.83, -0.96)

Based on the data in Figure 1, then the model parfheters are estimated using reversible jump MCMC.
The reversible jump algorithm MCMC is fd to estimate the number of segments, the location of the
model changes, the AR model order for each segment, the AR model coefficient for each AR
el, and the stoch@}ic error variance. For this purpose, the MCMC reversible jump algorithm is
implemented with 70.000 iterations with a 10.000 iteration burn-in period. The AR model order value
is limited to a maximum of 10 so that py,4,. The histogram for k is presented in Figure 2.
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Fig. 2: Histogram for k

The histogram in Figure 2 shows that the maximum value for the number of segments occurs at & = 4.
So that the estimator for k is k = 4. The histogram for t corresponding to k = 4 is given in Figure 3.
The result is T = (75,150,250, 400).
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Fig. 3: Histogram for 7 1f known k=4
The segmentation results are presented in Figure 4.
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Fig. 4: Segmentation of data

Estimation results of coefficient and deviation of stochastic error standard for each segment are written
in Table 2.




Table 2: Estimation results of coefficients and deviations of
stochasticerror standards for synthetic data

ith segment Gia Pia @fj"
0 0.13 3 (-0.23,-0.76,0.23)
1 0.47 2 (-0.50, -0.27)
2 0.41 1 (0.34)
3 0.52 4 (0.57,0.93,0.62, 0.83)
4 0.13 3 (0.86, -0.79, -0.94)

Based on the output of the reversible jump MCMC algorithm, the data in Figure 1 1s divided into 5
segments. In the first segment data is modeled by AR (3), in the second segment data is modeled by
AR (2). in the third segment data is modeled by AR (1), in the fourth segment data is modeled by AR
(4), and in the fifth segment data is modeled by AR (3).

3.4. Application
The Figure 5 shows a real data. This data 1s the Dow-Jones utilities index [23].
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Fig. 5: Dow-Jones Utilities Index

Based on the data in Figure 5, the model parameters are estimated using the reversible jump MCEIC

algorithm. For this purpose, the MCMC reversible jump algorithm is implemented with 70.000

iterations with a 10.000 iteration burn-in period. The histogram for k is presented in Figure 6.

af

ok e —
L] 1 2 3 4 [ 3 7 L] ] w0

Fig. 6: Histogram for k




The histogram in Figure 6 shovflithat the maximum value for the number of segments occurs at £ = 0. So
that the estimator for k is k = 0. Estimation results for coefficients and standard deviation of stochastic
errors are presented in Table 3.

Table 3: Estimation results from
coefficients and deviations of stochastic
error  standards for the Dow-Jones
utilities index

ith segment &g Pio gPLo
L0
0 0.39 1 -0.46

4. Conclusion

The above description is a theoretical study of the reversible jump MCMC algorithm and its
application to estimate the piecewise stationary constant AR model. By comparing the parameter
values and their estimated values from the synthesis data, it shows that the reversible jump algorithm
can estimate the piecewise stationary constant AR model parameters well. The advantage of
reversible jump MCMC algorithm 1s that this algorithm can estimate stationary AR model parameters
simultaneously. Another advantage is that this algorithmfroduces a stationary AR model for each
segment. The reversible jump MCMC algorithm applied to the Dow-Jones utilities index data. This
Dow-Jones utilities index data is modeled by AR(1).
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