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Abstract

In this paper, we observe some topological properties of 2-modular
spaces. Further, we introduce and characterize a 2-p-bounded 2-linear
operator from a 2-modular space into a normed space as well.

1. Introduction and Preliminaries

A modular space has important roles and applications in many areas,
such as engineering, physics, economics, social sciences, etc. Therefore, it
gains a lot of attention of many researchers from many fields. A concept of
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modular spaces was firstly initiated by Nakano in 1950 (see [6, 8, 12]). Later
on, Mazur and Orlicz [7] and Musielak and Orlicz [9] modified the definition
of the modular space proposed by Nakano, by avoiding the lattice structure
in the space X on which the modular is defined as well as the monotonicity
axiom for the modular.

As usual, the symbols N, R and R* denote the natural number system,
the real number system and the extended real number system, respectively.
As given in [9], we can rewrite the definition of the modular as the
following. Let X be a real linear space over R. A nonnegative function
p: X — R" is called a modular if for every x, y e X, the following
conditions hold:

(i) p(x) =0 ifand only if x =0,

(i)) p(=x) = p(x), and
(iii) p(ox + By) < p(x) + p(y) forevery a, p >0 with o +p = 1.
If the condition (iii) is replaced by
(iii") p(ox + By) < ap(x) + Bp(y) forevery a, B >0 with o+ =1,

then the modular p is called a convex modular. A real linear space X
equipped with a modular p, written (X, p) or X in short, is called a modular

space.

Based on the definition of a modular as given above, we can easily check
that every norm is a modular. Therefore, we can consider a modular as a
generalization of a norm. As consequences, many concepts in normed spaces
can be generalized into modular spaces.

In an earlier paper ([2] and [3]), Gahler introduced a concept of 2-norm
spaces and n-norm spaces. One knows that every n-norm can define an
n —21-norm. See [4] and [5]. Inductively, from an n-norm, we can derive a
norm. Further, based on the theory of Gahler, Chu et al. [1] characterized
2-isometries on 2-norm spaces. Srivastava et al. [11] characterized linear
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n-functionals in n-norm spaces. Moreover, they formulated the extension of
Hanh-Banach theorem for linear n-functionals in n-norm spaces.

Modular spaces are closed related to normed spaces [12]. Meanwhile, as
mentioned before, any n-norm can define a norm ([4, 5]). Based on these
facts and analogously to the definition of an n-norm, Nourouzi and
Shabanian [10] defined a notion of n-modular spaces. In the present paper,
we observe some topological properties of 2-modular spaces. We also
introduce a definition of a 2-p-bounded 2-linear operator from a 2-modular
space into a normed space. Furthermore, some properties of a 2-p-bounded
2-linear operator from a 2-modular space into a normed space are observed
as well.

2. 2-modular Spaces

As usual, symbols N, R and R* denote a natural numbers system, a
real number system and an extended real numbers system, respectively. For
any linear space X, dim(X) means the dimension of X. In this paper, we

always assume that for any linear space X, the dim(X) > 2, unless otherwise

mentioned.

Further, we give a definition of a 2-modular, analogously with those of a
2-norm.

Definition 2.1. Let X be a real linear space with dim(X) > 2. A real

valued function p(, -) : X x X — R™ is called a 2-modular on X if
(i) p(x, y) = 0 if and only if x and y are linearly dependent,
(ii) p(x, y) = p(y, x) forevery x, y € X,
(iii) p(—=x, y) = p(y, x) forevery x, y € X, and

(iv) p(ax + By, z) < p(x, z) + p(y, z) for every x,y,ze X and for
every a, B >0 with a+p =1.
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If the condition (iv) is replaced by

(iv") p(ax +By, z) < ap(x, z)+Bp(y, z) for every x, y, z e X and for
every a, B >0 with a +p =1,

then p(-, -) is called a convex 2-modular.

It is easy to prove that p(x, y)>0 for every x, y € X. Moreover,
following the condition (i) in Definition 2.1, we have

(i) p(x, 0) = 0 forevery x € X, and
(ii) if p(x, y) =0 forevery y e X, then x = 0.
Following are examples of 2-modulars.

Example 2.2. Let X = R?. If the function p: X xX — R" is defined

’ |

Example 2.3. Let X be a real linear space and || -, - || @ 2-norm on X. Then

X X3

p(x, y) = abs(
Y1 Y2

then p is a 2-modular on X.

ot y) = [ et

is a 2-modular on X.

It can be seen that every 2-norm on a linear space X is a 2-modular, but
the converse is not true.

Example 2.4. Let X = R?. If the function p : X x X — R* is defined

by
p(x, y) = \/abS( j

then p is a 2-modular on X. However, p is not a 2-norm on X.

XX
Y1 Y2
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Theorem 2.5. Any 2-modular on a real linear space X generates a
modular on X.

Proof. Let p(-,-) be a 2-modular on a real linear space X. Take
any linearly independent set of vectors {a;, a5} on X. Define a function
c: X - R" by

o(x) = max{p(x, a1), p(X, a)},
then o(—x) = o(x) for every x € X and
o(x) = 0 < max{p(x, &), p(x, az);
< p(x, ag) = p(x, a) = 0
< {X, a;} and {Xx, a,} are linearly dependent
< x=0,

since {a, a,} is linearly independent. Now, let x, y € X and a, >0 be
such that oo + 3 =1. Then

o(ax + By) = maxip(ax + By, ay), pox + By, az)}

IA

max{p(x, ag), p(x, ap)} + max{p(y, ay), p(y, a)}

o(x) + o(y).

Thus, the function o is a modular. O

The following theorem describes some basic properties of a 2-modular.
Theorem 2.6. If p is a 2-modular on a real linear space X, then

(i) p(rx, y) < p(x, y) forevery x, y e X and |A|<1.

(i) p(ZEzl Mk Xk yj < zzzlp(xk, y) for every x, ye X and

e 20, k=22 .,n with 3\ 4 =1.
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(iii) p(ox, y)<p(Bx,y) for every x,ye X and a,peR with

O<ac<p.
Proof. (i) Itis trivial for L = 0 or |A | =1. Now, let 0 < » < 1. Then
p(x, y) = p(Ax + (1= 2)0, y) < p(X, ¥).
Moreover, following the condition (iii) in Definition 2.1, then we have
p(Rx, y) < p(x, y),
forevery -1 < A < 0. So, (i) is proved.

(ii) We are going to prove (ii) by mathematical induction. It is true for
X1, X2, ¥ and Aq, Ap > 0 with A; + A, =1, because of the condition (iv) in

Definition 2.1. Assume that it is true for X, Xp, ..., X, ¥ and Aq, Ao, ..., A

>0 with > A =1. Then

P{Zxkxk, Y} <> 0% Y).
k=1 k=1

Now, take any X, Xp, ..., Xy41, Y € X and Aq, A9, ..., Aqsq = 0 such that
n+1kk =1, then there is a positive integer j,1< j<n+1 such that

kj # 0. So, we have

n+1 n+1 "X
P[Zlkxk, yJ: L=2j ) Z X kJ +AjXj, Y
k=1

k= lk;tj
n+1 X
<plt-%j)) > "".y+p(X,,y)
k lk;tj
n+l n+1

< D 04, V) +p(xj, ¥) = D p(xe Y).
k=1

k=1,k# |
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(iii) Following condition (iv) in Definition 2.1, then the assertion
follows. O

Let X be a real linear space. A 2-modular p on X is said to satisfy the
A, -condition if there exists a constant K > 0 such that p(2x, y) < Kp(x, y)

for every X, y € X. The 2-modular p as given in Example 2.4 satisfies the
A, -condition. However, the 2-modular p as given in Example 2.3 does not

satisfy the A, -condition.

Throughout this paper, we always assume that the 2-modular p satisfies
the A, -condition.

Let p be a 2-modular on a real linear space X. We define
Xy =1{x e X :p(rx, y) < o, for some A > 0 and for any y e X}. (2.1)
is a

It can easily be proved that X, is a real linear space. Moreover, X,

2-modular space with respect to p. We can also prove that p(x, y) < « for

every x € X, and forevery y e X.

Throughout this paper, X, is always meant as given in (2.1).

3. Topological Properties of 2-modular Spaces

In this section, we introduce some topological concept with respect to
a 2-modular. We begin our discussion by giving a notion of 2-modular
convergent sequences in the space X,,.

Let X, be a 2-modular space. A sequence {X,} in X, is said to be
2-modular convergent (or p-convergent) to some x € X,, denoted by
p—limx, =X,
if for every y e X limp(x, — %, y) =0, i.e., forevery ¢ >0, there exists

an N e N such that for any integer n > N, we have p(x, — X, y) <& In
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this case, the vector x is called a 2-modular limit (p-limit) of the sequence

{Xn }-
Example 3.1. Let X and p be as given in Example 2.4. It is clear that

Xp=X. Let xp = (% Oj for every ne N and x =(0,0). For any

y =(y1, ¥2) € X, we have

1
P(Xn =X, y) = \/abS[ n 0 J = %
i Y2

Given ¢ > 0, we can choose a positive integer N such that ||<|—2| <&

Hence, the sequence {x,} p-converges to x.

We observe some basic properties of the p-convergence of a sequence in
any 2-modular space. Let us see the following theorems:

Theorem 3.2. Let X, be a 2-modular space and {x,} be a sequence in
X, If {x,} is p-convergent, then its p-limit is unique.
Proof. Since the 2-modular p satisfies the A, -condition, there exists a
constant K > 0 such that
p(2x, y) < Kp(x, y),
for every x, y € X,,. Givenany &> 0. Suppose {x,} p-converges to x and

zin X,. Forany y e X, there existsan N e N such that

p(Xn — X, y)<% and p(xy -z, Y)<%-
These imply
p(x =2, y) < p2(xn =X, ¥)) +p(2AxN — 2, ¥)) <& (3.1)
Since the expression (3.1) holds for any ¢ > 0, we obtain p(x —z, y)=0

forevery y e X,,. This implies x = z. O
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Theorem 3.3. Let X, be a 2-modular space and {x,} be a sequence in

X, If for every z e X, limp(x, — X, z) = limp(x, -y, z) = 0 for some

X,y € Xp, then
(i) p(ox, —ox, z) = 0 for every real number o, and
(i) p((xq + Yn) = (x +y, 2)) = 0.

Proof. Since the 2-modular p satisfies the A, -condition, there exists a

constant K > 0 such that p(2x, y) < Kp(x, y) forevery x, y € X,,.

(i) It is trivial for o = 0. Let a > 0 be an arbitrary, there is a positive

integer p such that o < 2P. Given & > 0. Since p(x, — X, z) = 0, there
exists an N e N such that for every n > N, we have p(x, — X, z) < %
This implies

plax, —ax, z) < p(2P(x, — x), 2) < KPp(x, — X, 2) < &.

In other words, limp(ax, — ax, z) = 0. Moreover, following the condition

(iii) in Definition 2.1, we obtain lim p(ax, — ax, z) = 0 for every o € R.
(i) Since
P((Xn + Yn) = (x + y), 2) < p(2(xy = X), 2) + p(2(yn = Y), 2)
< K(p(xn =X, 2) +p(yn = ¥, 2)),
the assertion follows. O

A sequence {X,} in X, is called a p-Cauchy sequence if for every
e > 0, there is a positive integer N such that
P(Xn = Xm, ¥) <&,

for every m, n > N. The correlation between p-convergent and p-Cauchy
sequences is formulated in the following theorem:
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Theorem 3.4. Every p-convergent sequence in X, is a p-Cauchy

sequence.

Proof. We can choose a constant K > 0 such that p(2x, y) < Kp(x, y)

for all x, y € X, since the 2-modular p satisfies the A, -condition. Now,

pi
let {x,} be any sequence in X, that p-converges, say to some X € X,.

Givenany € >0 and y € Xy, then there is a positive integer N such that

p(Xp = X, y) < % for every n > N. Further, forany m, n > N, we have

P(Xn = Xm, ¥) < p(2(Xq = X), ¥) + p(2(X = Xm), ¥)
< K(p(Xq =X, ¥) +p(Xm — X, ¥)) < &
So, the proof is complete. O

We also characterize p-Cauchy sequences, as given in the following
theorem:

Theorem 3.5. A sequence {x,} in X is p-Cauchy if and only if {ax,}

is a p-Cauchy sequence for all o € R.
Proof. («<:) By taking o =1, the assertion follows.

(=) Itis trivial for oo = 0. Let o > 0 be an arbitrary. Then there is a

positive integer p such that o < 2P. Since the 2-modular p satisfies the A, -
condition, there is a constant K > 0 such that p(2x, y) < Kp(x, y) for all
X, Yy € Xp.

Let {x,} be a p-Cauchy sequence. Given ¢ >0 and y € X,, there exists
an N € N such that for every m, n > N, we have p(Xp — X, y)<i.
This implies

plaxy = X, ¥) < p2P 0 = xm) y) < KPp(xq = X, y) <&
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In other words, {ax,} is a p-Cauchy sequence. Moreover, following the
condition (iii) in Definition 2.1, we obtain {ox,} is a p-Cauchy sequence for

every a € R. g
4. 2-linear Operators

Let X be a real linear space. A notation X2 is meant X x X. The
following definition refers to [1, 11].

Definition 4.1. Let X and Y be real linear spaces. An operator T : X 2
—Y is said to be 2-linear if for every x, y,u,ve X and a, B € R, the

following conditions hold:

OTX+Yy,u+v)=T(X,u)+T(x,v)+T(y,u)+T(y, V).

(i) T(ox, By) = aBT(x, y).

Analogous to the definition of a 2-bounded 2-linear operator on 2-norm
spaces, we define a 2-p-bounded 2-linear operator on 2-modular spaces. Let
X, be a 2-modular space and Y be a normed space. A 2-linear operator

T: Xg — Y is said to be 2-p-bounded if there exists a real constant M > 0

such that
1T Y) [ < Mp(x, y),

for every x, y € X,,. Letus consider the following example.

Example 4.2. Let X and p be as given in Example 2.2. Note that
X, = X. Ifanoperator T : X§ — R is defined by

XX

T(x,y)=
Y1 Y2

v X Yy e Xy,
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then we can show that T is a 2-linear operator. Moreover, since

T(x,y)] = abs[ ne
y 2

J = p(X, y)

forevery x, y € X,,, T is 2-p-bounded.

Let X, be a 2-modular space and Y be a normed space. If T : Xg ->Y

is a 2-p-bounded linear operator, then it is easy to prove that T(x, y) = 0 for

every X, y € X, which are linearly dependent. The collection of all 2-p-
bounded linear operators T : X§ — Y will be denoted by B(XS, Y). Itis
easy to check that B(XS, Y ) is areal linear space. Moreover, one can define

a function o : B(Xg, Y)—> R" by

o(T) = sup{%: X,y € Xp, p(X, y) # 0}. 4.1)

The theorem below shows that the function o as given in (4.1) is a
modular.

Theorem 4.3. The function o : B(XS, Y) — R" as given in (4.1) is a

modular on B(Xg, Y).

Proof. (i) If T =0, then the definition of & is obviously followed by
o(T)=0. Conversely, if o(T)=0, then T(x, y)=0 for all x, y e X,
which are not linearly dependent. Since T(x, y) =0 for every X, y e Xo
which are linearly dependent, we get T(x, y)=0 for every x, ye Xo-

Hence, T = 0.
(ii) Itis clear that o(-T) = o(T) forevery T € B(XS, Y).

(ili) Take any S, T e B(XZ,Y) and o, >0 such that o +p =1.
Then
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o(aS +pT) = sup{|| aS(% gz; 5;()(’ il ip(X, y)#0,%x,ye Xp}
£|oc|sup{"§8((—:£":p(x, y)=0, X, ye Xp}
+|B|sup{% p(X, y)#0,%x,ye Xp}

< o(S)+ o(T).
From (i), (ii) and (iii), the assertion follows. O

The following theorem states necessary and sufficient conditions so
that a 2-linear operator from a 2-modular space into a normed space is
2-p-bounded.

Theorem 4.4. Let X, be a 2-modular space and Y be a normed space.

A 2-linear operator T : Xg — Y is 2-p-bounded if and only if there is a

constant M > O such that

[T y) =T, V)| < M{p(x —u, y) +p(u, y - V)}
and

[T y) =T V)| < Mip(x —u, v) + p(x, y = )}
forall X, y,u, v e Xp.

Proof. (=) Since T is 2-p-bounded, there exists a real constant M > 0

such that
1T y) [ < Mp(x, y),
forevery x, y € Xp. Takeany X, y, U, v € Xp, we have
ITOC Y =T =T =u y) =T y-v)]

<M{p(x—u, y)+p(u, y = v)}
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and
[T Y) =T V) =Tx=-u,v)=T(X, y-v)|
< M{p(x = u, v) + p(X, y = V)}.
(«<=2) It is obvious. O
Theorem 4.5. Let X, be a 2-modular space and Y be a normed space. If
for any 2-linear operator T : Xg — Y, o(T) is as defined in (4.1), then
o(T) =inf{M > 0| T(x, y)[| < Mp(x, ), X, y € X,}.
Proof. Since | T(x, y)| < o(T)p(x, y) forevery x, y e X,
inf{M > 0:[T(x, y)| < Mp(x, ¥), X, y € Xy} < o(T).

Conversely, if K=inf{M >0:|T(x, y)|<Mp(x, y), x, y € X, }, then

ITCG y) |
b y) <

forevery x, y € X, with p(x, y) = 0. Hence, o(T) < K. O

Let X, be a 2-modular space and Y be a normed space. An operator
T: Xg — Y is said to be (n, p)-continuous at (xg, Yg) € Xg if for every
real number ¢ > 0, there existsa & > 0 such that for every x, y e XS with

(i) p(%o — X, Yo) < 8 and p(x, y — yo) < 8, or

(i) p(xo — %, y) <& and p(Xg, ¥ — o) <3,
we have || T(x, y)—T(Xg, Yo)| < & The operator T is said to be (n, p)-

continuous on E Xg if it is (n, p)-continuous at every (x, y) € E. And

T is said to be (n, p)-continuous if it is (n, p)-continuous on Xg.
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Example 4.6. Let X, p, X,, and T : Xg — R be as given in Example

pr
4.2. Take any (X, Yg) € Xg. Forany (X, y) € X2, we have
| T(X, y) =T (X0, Yo) | < p(Xx = Xo, Yo) +p(X, ¥ = Yo)
and
| T(% y) = T(X0, Yo)| < p(x = %o, ¥) + p(Xo, ¥ = Yo)-
Thus, Tis (n, p)-continuous at (Xg, Yg)-
Theorem 4.7. Let X, be a 2-modular space and Y be a normed space.

If a 2-linear operator T : Xg — Y is 2-p-bounded, then it is (n, p)-

continuous.

Proof. By Theorem 4.4, the assertion follows. O

By adding the convex property to the 2-modular p, we can prove the
equivalence between 2-p-boundedness and (n, p)-continuity of a 2-linear

operator T : Xg — Y. For proving this, we need the following lemma:

Lemma 4.8. Let X, be a 2-modular space and Y be a normed space. A

2-linear operator T : Xg — Y is (n, p)-continuous at (0, 0) e Xg if and

only if for any sequence {(x,, Y,)} that satisfies limp(x,, y,) = 0, we have

lim|| T (X, yn) | = 0.
Proof. The proof is standard, so it is omitted. O

Theorem 4.9. Let X, be a 2-modular space with p be convex, Y be

a normed space, and T : Xg — Y be a 2-linear operator. The following

statements are equivalent:
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(i) The operator T is (n, p) -continuous.
(ii) The operator T is (n, p)-continuous at (0, 0).
(iii) The set {| T(x, y) | : p(x, y) <1} is bounded.
(iv) The operator T is 2-p-bounded.
Proof. (i) = (ii) is obvious. (iv) = (i) follows from Theorem 4.7. What

remains to show are (ii) = (iii) and (iii) = (iv).
(ii) = (iii) Suppose the set {| T(x, y)|: p(x, y) <1} is unbounded. Then
for every n e N, there exists (X, y,) € XS such that p(x,, Yn) <1, but
2
IT(n, yn) [ 2 0%

Set u, = X?” and v, = % then

1 1
p(Un, V) < = p(Xn, Yn) < =
n n

This follows from the convexity of p. So, limp(up, v,,) = 0. By Lemma 4.8,

it must be lim| T(x,, yn)| = 0. However, it is impossible because
1
"T(Unv Vn)" = n_2||T(Xna Yn)" > 1

So, {|T(x, y)|: p(x, y) <1} is bounded.

(iiif) = (iv) By the hypothesis, there exists M > 0 such that | T(x, y) |

< M, whenever p(x, y) < 1.
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Take any (X, y) € Xg. It is trivial if p(x, y) <1. If p(x, y) > 1, then

by the convexity of p,
<1
”(p(x, )
Hence,
[T )< Mp(x, y)
and the proof is finished. O
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