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Abstract A piecewise constant model is often applied to
model data in many fields. Several noises can be added in the
piecewise constant model. This paper proposes the piecewise
constant model with a gamma multiplicative noise and a
mclhodmslimate a parameter of the model. The estimation
is done in a Bayesian framework. A prior distribution for the
model parameter is chosen. "a: prior distribution for the
parameter model is multiplied with a likelihood function for
the data to build a posterior distribution for the parameter.
Because a number of models are also parameter, a form of
the posterior distribution for the parameter is too complex. A
Bayes estimator cdffjot be calculated easily. A reversible
jump Monte Carlo Markov Chain (MCMC) is used to find
the Bayes estimator of the model parameter. A result of this
paper is the development of the piecewise constant model
and the method to estimate the model parameter. An
advantage of this method can simultaneously estimate the
constant piecewise model parameter.

@eywords Bayesian, Gamma Noise, Piecewise Constant,
Reversible Jump MCMC.

1. Introduction

A piecewise constant model is a model d to model
data in many fields, for example [1-3]. The piecewise
stant model is used for smoothing images of flowers [1].
The piecewise constant model is used for a population size
modeling [2], [3]. The piecewise constant model can
contain an additive noise or a multiplicative noise. The
additive noise is considered by various authors, for example
[4-6]. The additive noise is added to a spatial regression
model [4]. The additive noise 1s used in a partially linear
functional [5]. This linear functional model is partly applied
to tecator data. The additive noise is used in a log regression
model [6]. On the other hand, a multiplicative noise is also
used by several authors, for example [7-10]. The
multiplicative noise is usdffils a measurement error in line
transect sampling [7]. An asymptotic Cramer-Rao bound is
discussed frequency estimation in the multiplicative
noise [8]. Adsorption of ligands on DNA is considered for

an arbitrary filling in the presence of multiplicative noise
[9]. A multiplicative noise 1s used in a segmentation [10].
Noise in a mathematical model is assumed to be of a
certain distribution, for example [11-14]. Gaussian additive
noise is used in the piecewise constant model [11].
Exponential additive noise is used in an autoregressive
model [12-14]. However, in some applications, the data 1s
often modeled following the piecewise constant model with
a gamma multiplicative noise [ffle Gamma is a distribution
that is more general than an exponential distribution. The
exponential distribution is a particular case of the Gamma
distribution. If the piecewisgconstant model with the
Gamma multiplicative noise used to model the data. the
model parameters are unknown. The model parameters
include a number of constant models, a location of constant
model changes, a constant model height, and a noise
variance. This study proposes an estimation flofhod of the
piecewise constant model that has a Gamma multiplicative
noise where the number of constant models is unknown.

2. Method

A Bayesian framework is adopted to estimate the
parameters [15]. A prior distribution for the number of
constant models, the location of changes in the constant
model, the constant hcia of the model, and the noise
variance are selected. Then this prior distribution is
combined with a likelihood function of the data to get a
posterior distribution. Based on this posterior distribution, a
Bayes estimator for the number of constant models, the
location of changes in the constant model, the constant
hcm of the model, and the noise variance are estimated.

A reversible jump Monte Carlo Markov Chain (MCMC)
method [16] was proposed to determine the Bayes estimator.
The basic idea of the MCMC reversible jump method is a
creation of the Markovfffhain that is recurrent and
irreducible such that limit distribution of the Markov chain
Elll be equals to the posterior distribution. Furthermore, a
resulting Markov chain is used to calculate estimator for the
parameters.




3. Results and discussion

Suppose that n represents a number of data and
Y1 .o ¥n represents a data set. This data follows the
piecewise constant model if this data satisfies the following
mathematical equation:

Ye = Myzy, t= 1- RORL (l)
where
hy, T, <t<1,
hs, T, <t<T
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with 7;, =0 and T34 =n. The value of k denotes the
number of constant models. The values of T = (74, ..., 7))
state the location of the change in the constant model. The
value of h = (hy, .., hy4q1) expresses the height of the
constant model. Here, z, is assumed to have the Gamma
distribution with the parameters & > 0 and £ > 0.

3.1. Likelihood function

The random variable z, is distributed Gamma so that the
probability function for z, can be written as

B 3
gz la, p) = (@ ) Lexp — Bz,
Here @ =1. Suppose that y = (yy,..,),) . By using

variable transformation, a likelihood function for data y is
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3.2. Prior distribution

To obtain a posterior distrigZon, a prior distribution must
be determined. As in [10], the prior distribution for k is
chosen of a Binomial distribution with a parameter 0 < A <
1.Fork=0,1,..
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Where I, states the maximum value of k. A hyperprior
distribution for A is chosen as a uniform distribution. A
prior distribution for 74,..,7; according to an ordered

statistics.
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A prior distribution for hy, .., hy41 1s chosen inverse

Gamma distribution with parameter u > 0 and v > 0.

m(hy, ., bk, w,v)
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Here, u = 1 and Jeffreys prior distribution is chosen as a
1

hyperprior distribution for v, ie.,m(v) cv™". Similarly,
Jeffreys prior distribution is also selected as a hyperprior
distribution for f.i.e., m(f) « 7. So the prior distribution

for the parameters (k,7,h, 4, v, §) can be written as
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3.3. Posterior distribution

Let Hy =(k,7,h) and

distribution can be written as

Hy; = (A v, f). A posterior

m(H,, Hy|y)
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3.4. Reversible jump MCMC

Parameter estimation (H,;, H,) is carried out using the
Gibbs algorithm which consists of two stages, namely:
distribution simulation  w(H;|H,,y) and distribution
simulation w(H;|H,,y) . The distribution simulation
m(H;|Hy, y) can be done using the following distributions,
1.€.0

k+'.lsj
g~ G(an.z_ 1 ;).A ~ BOk+ 1, kg — k + 1),
i=1 1
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and v~ G (u(k + 1),2 —).
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The distribution simulation w(H,|H,,y) is done by using
the reversible jump MCMC algorithm. This algorithm uses 3
transformalions.mimcly: changes in a location of the

constant model, birth of the constant model. and death of the

constant model.
3.4.1. Change in the location

The change in the location of the constant model is as
follows. Take a location randomly between 1y, ..., 7y If T;
is selected, the location 7; is deleted and replaced by
location 7. Take u randomly according to U (tj_ptjﬂ), So
that t;-’ =u . Suppose that x = (tl, s T venn Ty Figscce g
hisr) and x° = (T4, ..., T}, o, T he, oo, Bias,). The point
x" will replace x with probability
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3.4.2. Birth of the constant model

The birth of the constant model is as follows. Take
location 7° randomly between 2,..,n—1. If 77 €
(tj-, t_,-ﬂ) then the height of h; is deleted and replaced by
the height hj and hj,, such that

(r‘ - r}') log(h;) + (1’_,-“ - r‘) ]‘Jg(hfn)
= (1741 — 7)log(hy) (16)
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3.4.3. Death of the constant model

The death of the constant model is as follows. Take a
location randomly between 7y, ..., 7. If location 7,4 is
selected, then location Tj,, is deleted. The height of h; and
hjyq 1s also removed and replaced by the height h; such
that

(741 — 1) log(hy) + (T2 — T41) 10g(hy41) @n
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3.5. Simulation

Performance of the algorithm is tested using a simulation
study. Synthetic data is made using the piecewise constant
model in equation (1). A value of a piecewise constant model
parameter 1s presented in Table 1 while noise 1s assumed to
have a Gamma distribution with parameter values a = 5
and f = 5. A value of the maximum k is 10.

Table 1: Value of model parameter

Value of k' Valueof T Value of h
5 1.5
- 11
120 1.6
170 0.8
200 0.4
0.7

This synthetic data is presented in Figure 1.
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Figure 1: Synthetic data

This synthetics data is used as input to the reversible jump

MCMC algorithm. The output is the number of constant




models, the location of the model changes. and the height of

the constant model.

The algorithm runs as many as 100,000 iterateZB with a
bumn-in period of 20,000. A histogram of the number of
models is presented in Figure 2.

Frequency

Figure 2: Histogram of the number of models

Figure 2 shows that the maximum value of k is reached at
k=5. So the maximum probability estimator for the
number of models k is k = 5. For k = 5, the estimator for
the location of the model change is presented in Table 2. The
image of the synthetic data and estimator for a model change

location are shown in Figure 3.
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Figure 3: Segmentation of synthetic data
Figure 3 shows that this synthetics data has 6 different
models. Finally, for k& = 5, the estimator for the height of

the constant model 1s presented in Table 2.

Table 2: Value of parameter estimation

Estimation
of h

Estimation Estimation

of k of T

1.61

5
75,02 093
120.16 0.89
168.76 0:42
200.33 e

In Table 1 is compared with Table 2, the estimated value of
the parameter approaches the parameter value. The distance
between T and T is |T—17|= 1.73 while the distance
between h and h is [h — h| = 0.36. Synthetic data and an

estimator for height are presented in Figure 4.

Figure 4: Synthetic data and reconstructed data

Figure 4 shows that the reversible jump MCMC algorithm
can be used to estimate the number of constant models,
estimate the location of a model change, and the hehht of a
constant model. The simulation studies show that the
reversible jump MCMC algorithm can determine the number
of models and parameters of a piecewise constant model
well.

4. Conclusion

This paper develops a piecewise constant model and its
parameter estimation procedure. The piecewise constant
model parameter in-cludes the number of constant models,
the location of changes in the constant model, the constant
model height, and noise variance. The Bayes estimator
cannot be formulated explicitly beejse the number of
constant models is a parameter. The reversible jump
MCMC method is oposcd to estimate these parameters.
According to the simulation study, the reversible jump
MCMC estimated the piece-wise constant model parameter
well.

The reversible jump MCMC algorithm has several
advantages. This algorithm can be used to estimate the
piecewise constant model parameter that has Gamma
multiplicative noise simultaneously. This algorithm can also
be used to determine the hyper-parameters that appear in
the prior distribution.
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