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I. Introduction  

High-dimensional data contain a large number of features. A feature refers to a single measurable 
characteristic of the process being observed [1]. With many features, high dimensional data requires 
immense computational resources, including space and time.  Several studies indicate that not all high 
dimensional data features are relevant to classification result. Thus removing irrelevant features of the 
original data increases classification accuracy [2]. High dimensional data may also include several 
correlated or redundant features to each other [3],[4], in which one can substitute the others. The curse 
of dimensionality is also introduced in the computation of high dimensional data. The data becomes 
sparse along with the increase of dimensionality. Sparse data cause accurate classification is hard to 
achieve. Therefore, dimensionality reduction is inevitable and required for the following reasons; 
improving classifiers' performance, reducing computation time and cost, and providing a better 
understanding of the data's underlying process [5].  

There are two methods employed for dimensionality reduction purposes: feature selection and 
feature extraction [6]. Feature selection aims at finding a subset of features that are significant in 
predicting the classification output/class. Feature selection is selecting a minimum number of features 
that can be used to achieve high classification accuracy [6]. There are two different feature selection 
methods; exhaustive (deterministic) approach and heuristics (non-deterministic) approach. Each 
possible subset is used in wide feature selection to training the classifier, and the classification output 
is examined [7].  Backward feature selection and forward feature selection are examples of the 
exhaustive approach. In backward feature selection, the selection process is started by using the full 
features to train the classifier, and the classification result is recorded. The next steps in backward 
feature selection are removing one feature in each step, and the classification result of each step is 
evaluated. The removal of a feature in each step must increase classification accuracy [6]. The iteration 
continues until there is only one feature to be included in a subset. A feature is considered a relevant 
feature if the classification result is less accurate when it is not included in the feature subset. Forward 
feature selection works the other way around.  An exhaustive approach needs to generate all possible 
subsets of features. An exhaustive approach is considered computationally prohibitive. 
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Many studies applied the heuristics approach for feature selection due to the high complexity of 
exhaustive feature selection methods. In the heuristics approach, feature selection becomes an 
optimization problem.  The optimization algorithm is occupied with finding the best feature subset, 
which returns the highest classification accuracy. In [8], Particle Swarm Optimization (PSO) is used 
to generate the best feature combinations to construct the selected feature subset. Genetic Algorithm 
is also utilized in feature selection [9]. A recent study shows the implementation of another 
optimization algorithm, namely Forest Optimization Algorithm (FOA) for feature selection usage 
[10]. 

Another dimensionality reduction technique that has been proposed is feature extraction. Feature 
extraction aims to create a new feature set using linear and nonlinear combinations of the original 
features. Principal Component Analysis (PCA) is a famous example of a linear feature extraction 
method. In PCA, input data is mapped into a new space of smaller dimensions whereby the variance 
of input data in the new space is maximized [6]. Other feature extraction methods are factor analysis; 
they are multidimensional scaling [11], linear discriminant analysis [12], and locally linear embedding 
[13]. 

In this work, we try to use a different approach to perform feature selection. We use the clustering 
method to generate a subset of features to be fed into a classifier. Clustering is performed to group 
feature vectors such that similar feature vectors are located in the same cluster.  It is assumed that the 
cluster centers resulting from the clustering process can replace the original features. The Centre of a 
cluster represents the other feature vectors within that cluster. Partitioning Around Medoids (PAM) 
clustering algorithm is chosen for this feature selection purpose. Our proposed method is wrapper 
feature selection; hence the evaluation is based on the final classification accuracy. 

II. Literature Review 

A. Feature Selection 

The performance of a classifier is greatly affected by the size of the input data.  With its enormous 
number of features/dimensions, high dimensional data increase the computation complexity of 
classifiers. Thus, increasing the classifier's performance that working on high dimensional data 
becomes the objective of many research works. Dimensionality reduction is an attempt to increase the 
performance of classifiers by diminishing the size of data. Ideally, classifiers should have the ability 
to distinguish important features and irrelevant ones [6]. However, there are several reasons why 
dimensionality reduction is conducted as a separated process: 
a. Decreasing data dimensionality contributes to increasing the performance of classifiers during the 

training phase and contributes to increasing the performance of classifiers during the testing 

phase. 

b. When a feature is considered to be 'unnecessary' for class prediction, the cost of processing this 

feature during training is such a waste. 

c. High dimensional data give much chance to overfitting problem. Small data usually leads to a 

simpler model, and a simpler model tends to generalize better. 

d. Small data explains a better idea about the process that underlies the data. 
Two different ways of diminishing data dimensionality are feature selection and feature extraction. 

Feature selection focuses on finding a subset of the original features relevant to classification results. 
The greedy approach is implemented for feature selection, namely sequential forward feature 
selection, and sequential backward feature selection. The heuristics approach also has been 
implemented for feature selection, such as the Genetic Algorithm, Particle Swarm Optimization, and 
Forest Optimization Algorithm. Feature extraction maps the original dataset into some other spaces 
which have less dimension. The most well-known feature extraction method is Principal Component 
Analysis (PCA). Other than PCA, several feature extraction methods are linear discriminant analysis, 
multidimensional scaling, isomap, etc. 

B. Partitioning Around Medoids (PAM) 

Partitioning Around Medoids (PAM) is a clustering algorithm in which the k-medoids paradigm 
is applied.  It was proposed in 1987 by Kaufman and Rousseeuw. Partitioning around Medoids is 
considered partitional clustering, similar to k-means clustering. Unlike k-means clustering, which uses 
the mean of the data points within a cluster to become cluster center, PAM clustering uses data point, 
which has a less total distance of the resultant clustering. 
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It starts from an initial set of medoids and iteratively replaces one of the medoids with one of the 
non-medoids if it improves the resultant clustering's total distance. It selects k representative medoid 
data items arbitrarily. The total swapping cost S is calculated for each pair of non-medoid data item x 
and selected medoid m. If S< 0, m is replaced by x. After that, each remaining data item is assigned 
to a cluster based on the most similar representative medoid. This process is repeated until there is no 
change in medoids. 

Partitioning Around Medoids Algorithm 
1. Identify the number of clusters k 
2. Select k random data points  as medoids 
3. For each pair of non-medoid data point xi and selected medoid mk, calculate the total swapping 

cost S(xi, mk).  For each pair of xi and mk, if S < 0, mk is replaced by xi 
4. Assign each data point to the cluster with the nearest medoid 
5. Repeat steps 2-3 until there is no change in the medoids. 

For each non-medoid data point, swapping cost is calculated by subtracting its distance to the new 
centroid candidate from its distance to the current centroid of the cluster it belongs to. Its cumulative 
swapping cost evaluates each new centroid candidate. If a new centroid candidate's swapping cost is 
less than 0, this new centroid candidate is selected to replace the current centroid. 

PAM algorithm complexity to calculate cost function S in each iteration (step 3) is O(k(n-k)2). 
Moreover, the PAM algorithm complexity to recalculate the entire cost function is O(n2k2). 

III. Method 

A classification process is usually done by feeding data into a classifier, and classes of the data 
have resulted. This way is illustrated by Fig. 1. 

 

Fig. 1.  Classification steps without dimensionality reduction 

In this research work, an additional step is added prior to feeding the data into the classifier, that 
is, to perform feature selection of high dimensional data. This additional step intends to reduce the 
dimensionality of the data by selecting a feature subset that can represent the whole feature set. The 
steps performed in this work are illustrated in Fig. 2. 

 

Fig. 2.  Steps of PAM based feature selection method 

A. High Dimensional Dataset Collection 

In this work, two public datasets taken from [14] are used; Human Activity Recognition (HAR) 
Dataset [15][16][17] and Multiple Features Dataset [18][19]. 
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1. Human Activity Recognition (HAR) Dataset 
This dataset consists of 30 volunteers performing six daily activities such as walking, walking 
upstairs, walking downstairs, standing, sitting, and laying. A smartphone is attached in their 
waists.  This dataset consists of 561 features, including triaxial acceleration from the 
accelerometer (total acceleration), the estimated body acceleration, and triaxial angular velocity 
from the gyroscope. These properties are measured with time and frequency domain variables. 

2. Multiple Features Dataset 
This dataset consists of features of handwritten numerals (`0'--`9'). There are 200 patterns for 
each numeral (a total of 2,000 patterns) that have been digitized in binary images. These digits 
are represented the following six feature sets: 
a. mfeat-fou: 76 Fourier coefficients of the character shapes; 
b. mfeat-fac: 216 profile correlations; 
c. mfeat-kar: 64 Karhunen-Love coefficients;  
d. mfeat-pix: 240 pixel averages in 2 x 3 windows;  
e. mfeat-zer: 47 Zernike moments;  
f. mfeat-mor: 6 morphological features.  

B. Partitioning Around Medoids (PAM) Clustering 

In this work, two public datasets taken from [14] are used; Human Activity Recognition (HAR) 
Dataset [15][16][17] and Multiple Features Dataset [18][19]. 

Partitioning Around Medoids (PAM) clustering is performed onto the original HAR dataset and 
the original multiple features dataset.  Assuming that original dataset X consisting of N data and D 
features (attributes) is used. The dataset can be formulated as follows. 

𝑋 = {(𝑋11, 𝑋12, 𝑋13, … , 𝑋1𝐷), 
             (𝑋21, 𝑋22, 𝑋23, … , 𝑋2𝐷), 

⋮ 
                (𝑋𝑁1, 𝑋𝑁2, 𝑋𝑁3, … , 𝑋𝑁𝐷)} 

The feature vector of dataset X, Fi, is defined as the vector consisting of the ith attribute values. 
Hence, D numbers of different feature vectors inferred from dataset X, namely F1, F2, F3, …, FD. Fi 
contains Xji where j is started from 1 and is ended at N, while i denotes the attribute order. 

𝐹1 = (𝑋11, 𝑋21, 𝑋31, … , 𝑋𝑁1), 
𝐹2 = (𝑋12, 𝑋22, 𝑋32, … , 𝑋𝑁2), 

⋮ 
𝐹𝐷 = (𝑋1𝐷, 𝑋2𝐷 , 𝑋3𝐷, … , 𝑋𝑁𝐷)} 

PAM clustering algorithm is applied in this work, aiming at reducing the dimension of dataset X, 
namely D. It is done by selecting k different feature vectors, whereby k < D, which can represent the 
whole feature vectors. The selection of k feature vectors out of D feature vectors is performed through 
the following steps. 

1. Feature vectors of dataset X, namely F1, F2, F3, ... FD are used as input of the PAM clustering 
algorithm. 

2. PAM clustering algorithm is performed to divide the input (feature vectors) into groups based 
on similarity. 

3. PAM clustering algorithm produces k clusters of feature vectors, and each cluster has a cluster 
center (centroid). 

4. The cluster center (centroid) is the medoid of the cluster and is a feature vector. The cluster 
center is then used to represent members of the cluster. 

5. Finally, k feature vectors (which are centroids of produced clusters) represent D feature vectors 
of the original dataset X. 

These k feature vectors are used to replace the original dataset when training the classifier and test 
the classifier's performance. Moreover, the number of clusters k becomes the new dimension of the 
reduced dataset. An example of this dimensionality reduction technique is illustrated in Fig. 3. 
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Fig. 3.  The original dataset consisting of 19 features (F1 to F19) is reduced into four features (F11, F10, F19, F15) 

C. Classification using Naïve Bayes Classifier 

The reduced dataset produced from the previous step is then fed into the Naïve Bayes classifier. 
The dataset is split into training data and testing data. Then, the accuracy of classification is recorded. 
This reduced dataset is used to train the Naïve Bayes classifier and test the classifier through 10 folds 
cross-validation method. The accuracy gained by this reduced dataset is analyzed and compared with 
the original dataset classification accuracy. Naive Bayes Classifier is used as it is highly scalable with 
the number of features and is not sensitive to irrelevant features. 

IV. Results and Discussion 

A. Method 

This work used the PAM algorithm to select a subset of features. This subset of features consists 
of medoids data. Medoids data generated by PAM are used as representations of the full features of 
the dataset. The number of clusters (k) generated in the PAM algorithm has to be defined. We 
experimentally employed various number of clusters; 50 ,60, 70, 80, 90, 100, 150, 200, 250, 300. 
Compared to using PCA, which automatically finds the number of feature subset to be generated, PCA 
computational complexity is dependent on the number of data and number of features of the dataset 
(O(D2N+ D3) where  D is a dimension, N is the number of data). If the dataset has a high dimension, 
it causes a heavy computation workload. On the other side,  PAM computational complexity is 
O(N2k2).  Since k is set to be less than D of the dataset, using PAM to perform feature selection can 
reduce the computation cost if it has a large dimension. This experiment showed that the number of 
features returning best classification accuracy in both datasets is 100 features (HAR Dataset) and 200 
features (Multiple Features Dataset). It means less than 50% of the total number of features in both 
datasets. 
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B. Class Prediction Correctness of HAR Dataset 

The experiment result showed that feature selection using PAM (Partitioning Around Medoids) on 
the HAR dataset effectively increased the classification accuracy. Table 1 showed that all subset of 
features used to train and test the classifier returned higher than 80% of classification accuracy. The 
best classification accuracy is achieved when 100 features are used. In contrast, the original dataset 
returned only 76.77 % of classification accuracy (shown in Table 3). This result explains that reducing 
the dimensionality of data leads to enhance classifier performance. This result also explains that the 
original HAR dataset contains many irrelevant features that do not contribute to classification 
accuracy. Fig. 4 shows that all attempted feature subsets' classification accuracy is higher than the 
original dataset's classification result. 

Table 1.  Performance of Naive Bayes Classifier on Reduced HAR Dataset 

 

Fig. 4. Classification Result of Reduced HAR Dataset 

C. Class Prediction Correctness of Multiple Features Dataset 

The experiment result showed that feature selection using PAM (Partitioning Around Medoids) on 
Multiple Features dataset returned higher than 90% classification accuracy (Table 2). The best 
classification accuracy is achieved when 200 features are used.  If compared to the original dataset, 
classification using a reduced dataset resulted in lower classification accuracy. As shown in Table 3, 
the original Multiple Feature dataset produced 95.35% classification accuracy. This result explains 
that each feature of the Multiple Feature dataset contributes significantly to class prediction, such that 
reducing the dimensionality of the data does not improve classifier accuracy. However, the high 
classification accuracy of the reduced dataset (> 90%) is still achieved. Fig. 5 shows a comparison of 
classification accuracy between the reduced dataset and the original dataset. 

 

 

HAR 

Dataset 

Number of Features 
Correct Class 

Prediction (%) 

Error Class Prediction 

(%) 

50 86.80 13.20 

60 87.01 12.99 

70 87.13 12.87 

80 87.41 12.59 

90 86.58 13.42 

100 87.78 12.22 

150 87.51 12.49 

200 87.71 12.29 

250 87.11 12.89 

300 85.36 14.64 
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Table 2.  Accuracy Values in Testing Data After Tunning Hyper Parameter 

Table 3.  Classification Accuracy on Original Dataset 

Dataset Correct Class Prediction (%) 
Error Class Prediction  

(%) 

HAR  76.77 23.23 

Multiple Features 95.35 4.65 

 

Fig. 5.  Classification result of reduced multiple feature dataset 

V. Conclusion 

Feature selection using a clustering approach, especially Partitioning Around Medoids (PAM), had 
been performed in this work.  The experiment results explain several conclusions. A set of medoids 
produced by Partitioning Around Medoids (PAM) clustering applied on the original dataset can 
represent the original dataset. Thus, occupying this set of medoids onto classifiers produced high 
classification results. Our experiments showed higher than 80% classification accuracy when using a 
reduced dataset consisting of medoids. This result explained that reducing the dimensionality of the 
dataset using the clustering approach, namely to use cluster centers to represent feature vectors, 
effectively diminished irrelevant features that do not contribute significantly to classification results. 
Further research work can be performed to enhance clustering-based feature selection methods, such 
as applying clustering-based feature selection on 3-dimensional data and applying different clustering 
methods such as hierarchical clustering, CLARANS, and DBSCAN feature selection purpose. 
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