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Abstract

When the Autoregressive Moving Average (ARMA ) model is fitted with real data, the actual value
of the model order and the model parameter are often unknown. The goal of this paper is to find an
estimator for the model order and the model parameter based on the data. In this paper, the model order
identification and model parameter estimation is given in a hierarchical Bayesian framework. In this
framework, the model order and model parameter are assumed to have prior distribution, which
summarizes all the information available about the process. All the information about the characteristics of
the model order and the model parameter are expressed in the posterior distribution. Probability
determination of the model! order and the model parameter requires the integration of the posterior
distribution resulting. It is an operation which is very difficult to be solved analytically. Here the Simuated
Annealing Reversible Jump Markov Chain Monte Cario (MCMC) algorithm was developed to compute the
required integration over the posterior distribution simulation. Methods developed are evaluated in
simulation studies in a number of set of synthetic data and real data.

Keywords: Simulated Annealing, ARMA model, order identification, parameter estimation

1. Introduction
Suppose X,,X,,-+,X, is a time series data. Time series Xy, X,, "+, X, is said to be an

ARMA(p,q) model, if X;,X,, --,X, satisfy following stochastic equation [3]:
X =27 Z?—I 0z ;-2 X t=12-n (1)

where z, is the random error at the time t, ¢, (i=1, 2, ..., p) and Gj G=1,2, .. q)is the
coefficient-coefficient. Here z, is assumed to have the normal distribution with mean 0 and

variance 6>. ARMA model (xt)tGZ is called stationary if and only if the equality of polynomial
1+ 6Pb' =0

must lie outside the unit circle. Next ARMA model (Xt)tez is called invertible if and only if the
equality of polynomial

1+ 67’ =0

must lie outside the unit circle [4].

The order (p, q) is assumed to be known, parameter estimation of the ARMA model
has been examined by several researchers, for example [3], [4] and [12]. In practice when we
match the ARMA model to the data, in general order ‘(p,q)' is not known.

Received September 19, 2013; Revised December 18, 2013; Accepted January 12, 2014
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While for the order (p,q) is not known, the order identification and the parameters
estimation are done in two stages. The first stage is to estimate the coefficients and error
variance with the assumption of order (p,q) is known. Based on the parameter estimation in

the first stage, the second stage is to identify the order (p,q). A criterium used to determine

order (p,q) has been proposed by many researchers, among others are the Akaike Information

Criteria Criterion (AIC), Bayesian Information Criterion (BIC), and the Final Prediction Error
Criterion (FPE).

Based on the data x,, t= 1,2,---,n, this research proposes a method to estimate the

value p, q,¢(p),9(q), and o’ simultaneously. To do that, we will use a hierarchical Bayesian
approach [10], which will be described below.

2. Research Method
2.1 Hierarchical Bayesian

Let s= (x -,xn) be a realization of the ARMA(p,q) model. If the value

p+q+1=Xp+q+2’”
Sy = (xl,xz,---,xp+q) is known, then the likelihood function of s can be written approximately
as follows :
n-p
1 2 1 n
® 0@ 52 )= IR 2 (®» g
f(sp,q,d) A5 )— (27102] L Zt=p+q+1g (t,p,q,¢ ».,0 ) )

) — P d —

where g(t, p,q,6®,0@ )— X, + Zi:l oPx, , — Zj=1 Ggq)zt_j for t=p+q+Lp+q+2,--:,n
with initial value x, =x, =---=x_, =0 [11]. Suppose S and I  are respectively stationary
region and invertible region. By using the transformation

F:o® =(6®,00,,6%)eS, b 1 = (5,1,-,1, ) (- L?) (3)
G:O(q) :(9§q)’9(2q),,,_’9§1q))61q [N p(q) = (plapz,...,pp)e (_Ll)fl)

the ARMA model (xt)tEZ stationery if and only if r® =(r1,r2,'--,rp)e (~ 1,1)1’) [2] and the

ARMA model (x,),_, invertible i and only if p® = (p,,p,,--,p, )€ (~L1)?) [1]. Then the
likelihood function can be rewritten as:

EE
2 1 n . .
E(S P, q,r(p),p(q),62)= ( J exp___z?zt:p+q+1 g2 (tb p; an 1(¢(P) )9G 1(6(q))) (4)
The prior distribution determination for parameters are as follows:

a) Order p have Binomial distribution with parameters A

n<p|x>=[pwjm_mm-p

p

2o’

b) Order q have Binomial distribution with parameters u:)

TELKOMNIKA Vol. 12, No. 1, March 2014: 87 — 96
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n(qr)= (q‘:’" ju‘* (11— p) Tt

c) Order p is known, the coefficient vectors ' have uniform distribution on the interval
(-1,1)p.

d) Order q is known, the coefficient vectors p(‘“ have uniform distribution on the interval
(-11).

e) Variance o’ have inverse gamma distribution with parameter — and E:

n(cz

Here, the parameters A and | are assumed to have uniform distribution on the
interval (0,1), the value of o is 2 and the parameters B is assumed have Jeffrey distribution.

So the prior distribution for the parameters H, = (p,q, r(p),p(q),cz) and H2 =(X,B) can be
expressed as:

n(H, H, )= n(pp e ®p) nlaju)r(p@lq) n(o?

According to Bayes theorems, then the a posteriori distribution for the parameters H
and H, can be expressed as:

n(Hl,Hzls)oc E(slHl)n(Hl,Hz) (6)

(%)

A posteriori distribution is a combination of the likelihood function and prior distribution.
The prior distribution is determined before the data is taken. The likelihood function is objective

while this prior distribution is subjective. In this case, the a posteriori distribution n(Hl,Hzls)

has the form of a very complex, so it can not be solved analytically. To handle this problem,
reversible jump MCMC method is proposed.

2.2 Reversible Jump MCMC Method

Suppose M=(H1,H2). In general, the MCMC method is a method of sampling, as
how to create a homogeneous Markov chain that meet aperiodic nature and irreducible ([9])
M;,M,,---,M,, to be considered such as a random variable following the distribution
n(Hl,H2|s). Thus M,;,M,,---,M_, it can be used to estimate the parameter M. To realize
this, the Gibbs Hybrid algorithm ([9]) is adopted, which consists of two phases:
1. Simulation of the distribution n(H2|H1,s

2. Simulation of the distribution n(H1|H2,s)

Gibbs algorithm is used to simulate the' distribution n(F,|H,,s) and the hybrid
algorithm, which combine the reversible jump MCMC algorithm [5] and the Gibbs algorithm,

Hierarchical Bayesian of ARMA Models Using Simulated Annealing Algorithm (Suparman)
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used to simulate the distribution n(H1|H2,s). The reversible jump MCMC algorithm is generally
of the Metropolis-Hastings algorithm [61], [8].

2.2.1 Simulation of the distribution n(H,[H,,5)

The conditional distribution of H2 given (H4,s), writen n(H2|H1, s), can be expressed as

o

olH, 1) o 12 (1= 2= (1= )= (f’z-j - 1.

ol : o 1
This distribution is inversion gamma distribution with parameters —5 and 5—7 . So the Gibbs
c

algorithm is used to simulate it.

2.2.2 Simulation of the distribution n(Hlle,s)
I the conditional distribution of Hy given (Hz, s), writen n(Hlle,s), is integrated with

respect to o , then we get

n(p, q,77,p9H,, s) = jw n(Hlle, s) do?

. B I - -
Let V= —2—+ e and W= : + 22t=pm+lg2(t,p, q.F1¢®)G (p(“) ))

and we use
[ -2 do? =ED
c W
then we get
Bi
p+a | 5
w{p,q, 1, p@[H,,8)oc | U A=A Amex 70 (1 — ry e (l) 20 LAY
P q 2 r(g_)ﬁ w"
2

On the other hand, we have also
5 YH(v+) W
TC(O'Z\pa q, r(p),P(q)asts)“ (G ) eXp— ?

So that we can express the distribution n(Hlle,s) as a result of multiplication of the

distribution n(p,q,r“’),p(q)lH2,s) and the distribution, n(cQ\p, q,r("),p(q),Hz,s) :

TELKOMNIKA Vol. 12, No. 1, March 2014: 87 — 96
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n(Hlle,s)= n(p, q,r("),p(q)le,s) xn(c:z p,q,r(p),p(q),HZ,s)

Next to simulate the distribution n(HIIHZ,s), we use a hybrid algorithm that consists of two
phases:

* Phase 1: Simulate the distribution of n(02 p,q,r("),p(“),Hz,s)

« Phase 2; Simulate the distribution n(p, q,r("),p(q)|H2,s)

The Gibbs algorithm is used to simulate the distribution n(cz’p, q,r("),p(“),Hz,s).

Conversely, the distribution n(p, q,r("),p(q)|H2,s) has a complex form. The reversible jump

MCMC is used to simulate it.
When the order (p,q) is determined, we can use the Metropolis Hastings algorithm.
Therefore, in the case that this order is not known, Markov chain must jump from the order

(p,q) with parameters (r("),p(q)) to the order (p*,q*) with the parameter (r("') ,p(q')). To
solve this problem, we use the Reversible Jump MCMC algorithm.

2.2.3 Type of jump selection
Suppose ( ,q) represent actual values for the order, we will write: n;‘R the probability

to jump from the pto p+1, 82 the probability to jump from the pto p—1, £." the probability
to jump from p to p, n;™* the probability to jump from q to q+1, 84" the probability to jump

from the g to g —1 and MA the probability to jump from q to g. For each component, we will
q

choose the uniform distribution on the possible jump. As an example for the AR, this distribution
depends on p and satisfy

n§R+8:R+C;‘R=1

We set 87° = £3% =0 and 8)% =0 Under this restriction, the probability will be

o cmin{l, M} and 8% = cmin{l,n—(p)——}
7(p) m(p+1)
with constant ¢, as much as possible so that npAR + SQR <0.9 for p=0,1,---,p,.. - The goal
is to have

AR

Ny m(p) = 8 m(p+1)

2.2.4 Birth / Death of Order
As for the AR example, suppose that p is the actual value for the order of the ARMA

model, r® = (rl,rz.---,rp is the coefficient value. Consider that we want to jump from p to

p + 1. We take the random variable u according to the triangular distribution with mean 0

u+l, -l1<u<0

g(u) = {

l1-u, O<uxl

Hierarchical Bayesian of ARMA Models Using Simulated Annealing Algorithm (Suparman)



92 = ISSN: 1693-6930

We complete the vector +® random variables with u. So the new coefficient vector is
proposed

@D = (rl,r2.-~,rp,u)
Note that this transformation will change the total value of all. It is clearly seen that the

Jacobian of the transformation of value is 1.
Instead, to jump from p+1 to p is done by removing the last coefficients in

r(p“)=<r1,r2.---,rp,rp+l). So the new coefficient vectors that is proposed become

r® = (rl,r2.-~,rp). The probability of acceptance / rejection respectively is

o =min{l,ry} and a, = min{l, r}}l}
where

_ n(p +1,q,r%,pH,, S) Q(p +1,r%Y;p, r(i)
Iy = n(p, q’r(p)’pm)le,s) JP’ r®;p +1’r(p+1))

We have

qlp+1r";p,r® =527
q(p,r®;p + 1,1 =n2*g(r,.,)

Finally, we get

_ W(B,p+1, q,r%, p@ )~V(d) Pox =P A 1 Moy 1
W(B,p,q,r(p), p<q))“v<“) p+1 1-4 2 8% g(r,.)

2.2.5 Changes in coefficients
Suppose now that the AR part is selected to jump from p to p without a order change,

but only the coefficient is changed . If r® = (rl,r2.---,rp is the coefficient vector, we modify
the coefficient vector. Consider that 1,r,,-:-,r, is courant point and supposing that
new point, we define the point u; in the following way:

u1>u25“"up

u, = sin(r; +s)
; oy , T T
s is taken with the uniform distribution on the interval {—E,E} Then u; is selected with

the distribution

5
k)

1

s T, . T
in the interval | sin(r; — —),sin(x; +—) |-
in the i { Ay =i 10)}

TELKOMNIKA Vol. 12, No. 1, March 2014: 87 — 96
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If £*® = (rl,r2 i L BT -,p) and ?"(p)=(r1*,r2".-~- LU, T, rp),then

RS R TR i+10" "o

the probability acceptance / rejection can be written by
o =min{l, 1.}

Where

_ nfp,q,r'®,p @, Hys) qlp,r'®;p, 7))

c = n(p, q,?*(p),p(q)’Hzls) q(p,?*(p);p,r*(p))

because
1
q(p’r*(p);p,?*(p))_ l+r 1-1 )2
q(p, ?*(p);p,r*(p)) 1+u, 1-y,
So
i
. _wB.pgr®p®)" (145 1-5 )
“ whpar “”,p(“))_v(“) Ly 1-y,

2.3 Simulated Annealing Algorithm
Simulated Annealing algorithm [7] is obtained by adding a line in the temperature

T, T,, -, T, atthe top of the MCMC method. Next simulated annealing algorithm will produce
a Markov chain M(T,),M(T,), -, M(T ) which is no longer homogeneous. With a

hypothetical on a certain Tl,TZ, . [14] will be convergent to maximize the value of a

“ m

posteriori distribution 7(H,, H,|s).

3. Results and Analysis

In As an illustration, we will apply this method to identify the order and estimate the
parameter synthesis ARMA data and real ARMA data. Simulation studies are done to confirm
that the performance of simulated annealing algorithm is able to work well. While case studies
are given to exemplify the application of research in solving problems in everyday life.

For both synthesis ARMA data and real ARMA data, we will use the simulated
annealing algorithm to identify order and estimate the parameters of the ARMA model. For this
purpose, the simulated annealing algorithm is implemented for 70000 iterations with a value of
initial temperature Ty = 10 and the temperature is derived with the temperature factor 0.995 up
to the end temperature T4 = 0.01. Value of order p and q is limited to a maximum of 10. So

that P o= Qmax= 10

3.1 Synthetic ARMA data
Figure 1 shows a synthetic ARMA data The data are made according to the equation

(1) above, with the number of data n = 250, order p = 2, order q = 1, ¢(2) —( 1.36,0.7),
8® =(0.7), and 6* =1.

Hierarchical Bayesian of ARMA Models Using Simulated Annealing Algorithm (Suparman)
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L L L L
50 100 150 200 250

Figure 1. ARMA Synthetic Data

Based on the synthetic data in Figure 1, next order p, q order, ARMA model parameter
and variance G are estimated by using the SA algorithm. The order p, q order, ARMA model
parameter and variance g2 produced by the simulated annealing algorithm are f) =2 61 =],

0? =(0.41,0.75), 8 =(0.72) and 6> =1.06. When we compare between the actual value
and the estimator value, it shows that simulated annealing algorithm can work well.

3.2 Real ARMA Data
The real data in Figure 4 below is a passenger service charge (PSC) at the Adisutjipto
International Airport in Yogyakarta Indonesia for the period 55 from January 2001 to July 2005.

2

L i L L L
0 10 20 30 40 50 80

Figure 2. First distinction of PSC data at the Adisutjipto International Airport Yogyakarta.

Clearly visible in Figure 4, the data are not stationary very day. To get stationary data
the first distinction is made and the results shown.in Figure 3.

TELKOMNIKA Vol. 12, No. 1, March 2014: 87 — 96
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o
T

-2 1 L L L L
0 10 20 30 40 50 60

Figure 3. Second distinction of PSC data at the Adisutjipto International Airport.

Based on the data in Figure 3, next order p, q order, ARMA model parameter and
variance are estimated by using the simulated annealing algorithm. The results are f) =1,

4=0, 6® =(0.38) dan 6% =6.75x10’.

4, Conclusion
The description above is a study of the theory of simulated annealing algorithms and its

application in the identification of order p and q, coefficient vectors estimation d)(’) and 69

and variance estimation o> from the ARMA model. The results of the simulation show that the
simulated annealing algorithm can estimate the parameters well. Simulated annealing algorithm
can also be implemented with good results on Synthetic Aperture Radar image segmentation
[13].

As the implementation, the simulated annealing algorithm is applied to the PSC data at
the Adisutjipto International Airport. Its result is that the PSC data can be modeled with the
ARIMA model (1,0). The model can be used to predict the number of PSC at the Adisutjipto
International Airport in the future.
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