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Abstract
When the Autorcgressive Moving Average (ARMA) model is fifted with rcal data, the actual value

of the model order and the model parameter are often unknown. The goal of this paper is to frnd an
estimator for the model order and the model parameter based on the dati. ln this paper, ihe model order
identification and model parameter estimation is given in a hierarchicat Bayeiiai fimiiorx. tn this
framework, the model order and model panmeter are assurned to have pior distibution, which
summarizes all the infomation available about the p/ocess. All the information about the characteristics ofthe model order and the model panmeter are expressed in the posteior distibution. prcbability
determination of the model order and the model panmeter requirei the integration of the posteior
djstnbution resulting. lt is an operation which is very ditricuft to be-solved analytiiatty. 6ere ine Simuated
Annealing Reversible Jump Markov Chain Monte Cailo (MCMC) aQofthm *as aeretopei to iompute the
required integration over the posterior distibution simulation. Methods developed are evaluated in
simulation sfudies in a number of set of synthetic data and real data.

Keywords: Simulated Annealing, ARMA model, oiler identification, parameter estimation

l.lntroduction
Suppose xpx2t" ',xo is a time series data. Time series xpx22...,xn is said to be an

ARMA(p,q) modet, if x,,X2,...,Xn satisff following stochastic equation [3] :

xt : zt * I;_, 0,2,_i *ff=,0,r,_,, t =I,2,...,n

where z, is the random error at the time t, 0t (i = 1,2,..., p) and 0: 0 = 1,2, ..., q) is the

coefficient-coefficient. Here z, is assumed to have the normal distribution with mean 0 and

variance o' . ARMA model (*,I* is called stationary if and onty if the equality of potynomial

l+I:=,Sf')bi:o

must lie outside the unit circle. NextARMA model (",),." is called invertibte if and onty if the
equality of polynomial

t + Fl olq)bj : o|HJ=L J

must lie outside the unit circle [4].
The order (p,q)'" assumed to be known, parameter estimation of the ARMA model

has been examined by several researchers, for example t3l, t4l and [12]. ln practice when we
match the ARMA modelto the data, in generatorOer (p,q) is not known.

(1)

Received september 19,2013; Revlsed December 18,2013;Accepted January 12, 2014
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While for the order (p,q) 
'. 

not known, the order identification and the parameters

estimation are done in two stages. The first stage is to estimate the coefficients and error

variance with the assumption of order (p,q) i. known. Based on the parameter estimation in

the first stage, the second stage is to identify the order (p,q) A criterium used to determine

orOer (p,q) has been proposed by many researchers, among others are the Akaike lnformation

Criteria Criterion (AlC), Bayesian lnformation Criterion (BlC), and the Final Prediction Error

Criterion (FPE).

Based on the data x, , t =\,2,,.., n , this research proposes a method to estimate the

value p,q,Q(n),6(o), and o,2 simultaneously. To do that, we will use a hierarchical Bayesian

approach [10], which will be described below.

2. Research Method
2.1 Hierarchical Bayesian

t-\
Let s = (xp*q*r, xp*q +2,. 

. . )*, ) o" a realization of the ARMA (p, q) model. lf the value

,o =(*,,*r,...,Xp+q) i, knorn, then the likelihood function of s can bewritten approximately

as follows :

z(rln,r,otn',0(n),o')= (#)7.*o-#I*,.,*,e'(t,p,e,oin),s{o) (2)

where g(t,p,q,0(0r,6{o))= *, *fi,0fo'*,-, -I]=,ejttt,-, for t =p+q+1,p+ q+2,"',n

with initial value x, =xz=...=Xo*n =0 [11]. Suppose Snand In are respectively stationary

region and invertible region. By using the transformation

F:otnr = (O{",0y),"',0[n'). Sn F] ro) =Qr,'r," ','n)'(-t,t)n) tel

6.gro) = (efor,e!o),...,efrr)e In F+ p(o) =(p,pr,...,pn). Ft,t)-)

the ARMA model (*,)* stationery if and only i1 .(n) =(rr,rr," ',.0).(-t,t)n) t2l ano tne

ARMA model (",),., invertible if and only if o(t) - b,pr,"',Po).(-t't)t) [1]. Then the

likelihood function can be rewritten as:
n-p

/(rlp, e, ,(') , o{a) , o2 )= (#)T "*p- *I,=n.'., g' (t, p, q, F-l(o(n) ;, 6-r lgta')) tol

The prior distribution determination for parameters are as follows:

a) Order p have Binomial distribution with parameters l":

,,blr)= 
[o'-)uu 

- ]")r*-n

b) Order q have Binomial distribution with parameters p:'

TELKOMNIKA Vol. 12, No. 1, March 2014:87 -96
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,,(qlr)= 
[o; )u',t 

- p)q*-q

Order p is known, the coefficient vectors r(o) have uniform distribution on the interval
(- lr)r
Order q is known, the coefficient vectors p(n) have uniform distribution on the interval

(- r,r)n .

e) Variance o' have inverse gamma distribution with parameter I anO
2

rq');
,,("'F, u): :* {"' I('+) .*p- #

'lz )

q
2'

Here, the parameters l" and p are assumed to have uniform distribution on the
interval (0,1), the value of cr is 2 and the parameters B is assumed have Jeffrey distribution,

So the prior distribution for the parameters H, =(p,q,r(o),Otc),rz) and H, =(f.,8) can be
expressed as:

n(H,, u, ) = *(plr)"(.t" lp) n(qlp)n(ot" lo) ,,("'1",p)n(i)"G) (5)

According to Bayes theorems, then the a posteriori distribution for the parameters H1
and Hz can be expressed as:

"(u,, 
H,lr)* z(';n,11n,, H, )

A posteriori distribution is a combination of the likelihood function and prior distribution.
The prior distribution is determined before the data is taken. The likelihood function is objective
while this priordistribution is subjective. ln this case, the a posteriori distribution n(U,,Hrlr)
has the form of a very complex, so it can not be solved analytically. To handle this problem,
reversible jump MCMC method is proposed.

2.2 Revercible Jump MCMC Method
Suppose 111=(Hr,Hr). tn general, the MCMC method is a method of sampting, as

how to create a homogeneous Markov chain that meet aperiodic nature and irreducible (tgl)
M1,M2,"',M. to be eonsidered such as a random variable following the distribution

n(U,,Hrlt). Thus M1,M2,"',M- it can be used to estimate the parameter M. To realize

this, the Gibbs Hybrid algorithm (tgl) is adopted, which consists of two phases:

1. Simulation of the distribution rr(H,lH,, s)

2. Simulation of the distribution rr(H,lHr,r)

Gibbs algorithm is used to simulate the distri6ution n(UrlH,,s) anO the hybrid

algorithm, which combine the reversible jump MCMC algorithm [5] and the Gibbs atgorithm,

(6)

Hierarchical Bayesian of ARMA Models Using Simulated Annealing Algorithm (Suparman)
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used to simulate the distribution a(Hr lUr,.) . Tn" reversible jump MCMC algorithm is generally

of the Metropolis-Hastings algorithm [6]' [8]'

2.2.1 Slmulatlon of the dlstrlbution n(H,lH, 
' 
s)

The conditional distribution of Hz given (Hr,s), writen ,r(HrlH,, r), ..n be expressed as

,,(urlu,,s).. il(1-1;n*-n po(l-p)q@-q [i)t 
**# i

This distribution is inversion gamma distribution with parameters A ana L' so the Gibbs

algorithm is used to simulate it'

2.2.2 Simulation of the distributlon n(HtlH,s)

lf the conditionat distribution of H1 given (He, s), writen n(H,lUr, r) , i. lnt"gtated with

respect to 02, then we get

nb,q,rrnr, pto)lHr,r) = L. n(H,lur,t)do'

Let v -g+-yand w =9-*|X=n._., g'(t,p,q,F-1(r(p))c-(pt')

and we use

*o-#uo'=#
ln. 

(o'ft'."

then we get

rq)'

n(p, q, rrnr, p(a) lHz, r) * [on-)^, 
u - ],)n*-n [-, ]' 

(1 - n)o*-r (;)-' 
tr ; P

On the other hand, we have also

n(o'ln,t,rto), p(o),Hr,r)" (o'f('*t) t*P' $

So that we can express the distribution n(H,pfr,t) .as 
a result of multiplication of the

distribution n(p,q,rtnl,p(u)lH,s) ano tne oistrioution, n(ouln,qor(o)op(o)'H"s) 
'

ffiMNtKA Vol. D, No' 1, March2ol4:87-96
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,r(u,lur, ,) = n(p, q, r(o), p,n,lHr, r) r 
"("'ln, 

q, r(p), p(n), Hr, ,)

Next to simulate the distribution r(U,lH,s), we use a hybrid algorithm that consists of two
phases: 

t
. phase 1: Simulate the distribution or n(o'?fp,g,r(o),p(n),Hr,.)

. phase 2: Simulate the distribution n(p, q, r(n), p(o) lH, s)

The Gibbs algorithm is used to simulate the distribu,'on ,r(o'ln,Q,r(o),p,o,,Hr,r).

conversely, the distribution n(p,q,r(o),p(n)lHr,r) n"r a complex form. The reversible jump

MCMC is used to simulate it.

\A/hen the order (p,q)'. determined, we can use the Metropolis Hastings atgorithm.
Therefore, in the case that this order is not known, Markov chain must jump from the order
(p,q) with parameters (rrrr,otol) to tn" order (p-,g-) with the parameter (rro'r,0,")). ro
solve this problem, we use the Reversible Jump MCMC algorithm.

2.2.3 Type of jump selection
Suppose (p,q) ,epresent actual values for the order, we will write: nfl tne probability

tojumpfromthepto p+1,6fl theprobabilitytojumpfromthepto p-1, Ei" theprobabitity

to jump from p to p, nf the probability to jump from q to q * 1, 6yo the probabitity to jump

from the q to q - 1 and (p tne probability to jump from q to q. For each component, we wiil

choose the uniform distribution on the possible jump. As an example for the AR, this distribution
depends on p and satisfy

ni**51"*(fl=t

We set 6fl = (f* = 0 and Sf: = 0 Under this restriction, the probability will be

nfl =.*r,'{t,g+} and sfl =.rnir,{r,-"(p).-}
t n(p) ) ' ['n(p+l)J

with constant c, as much as possible so that nfl * SfR < 0.9 for p = 0,1,...,p-*. The goal

is to have

nf"n(P)= 6ffin(P+1)

2.2.4Bifth / Death of Order
As for the AR example, suppose that p is the actual value for the order of the ARMA

model, ,trl = (q,rr....,ro) is the coefficient value. Consider that we want to jump from p to

p + l. We take the random variable u according to the triangular distribution with mean 0

-l<u<0
0<u<l

[u+1"
s(u)=1r_",

Hierarchical Bayesian of ARMA Models Using Simulated Annealing Algorithm (Suparman)
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We complete the vector rb) random variables with u. So the new coefficient vector is

proposed

,(r1) - (.,, rr...., rp, u)

Note that this transformation will change the total value of all. lt is clearly seen that the

Jacobian of the transformation of value is 1.

lnstead, to jump from p + 1 to p is done by removing the last coefficients in

r(p+l) - (tr,rr....,rn,ro*r). So the new coefficient vectors that is proposed become

r.(n) = (r,, 12... . 
, fp ). fn" probability of acceptance / rejection respectively is

crN =min[,rnu] and oo =mint,r"t]

where

rN

Finally, we get

We have

l' q(p * 1,1(n*t);P,r'o' = sffi)

to(p, tto', p + 1, r(o*t) = nf*e(ro.' ))

[si'tr, 
- frl,sin(r, 

+ frr]

- - w(F,p+l,q,r(o*t),p(d)-u(") p.o -p r f n[
'" -;6,p,q,r0Lptrrfvtc') P+1 1-)' 2 sf g(ro*r)

2.2.5 Changes in coefficients
Suflpose now that the AR part is selected to jump from p to p without a order change,

but only the coefficient is changed . lf r(p) = (r,,rr....,rn) is the coefficient vector, we modify

the coefficient vector. Consider that t1,t2,...,tp is courant point and supposing that

tJlert2t ..' up new point' we define the point ui in the following way:

ui=sin(ri+s)

s is taken with the uniform distribution on the interval [-+,+-l. Then u, is selected with
L lo',lo.l I

the distribution

f(*,1r,)=+\ rrrl n.r/t-uf

in the interval

q(p + 1, r(n+') ' o, r(n)

q(p, r(o); p + 1, r(n*t)

TELKOMNIKA Vol. 12, No' 1, March 2014:87 -96
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fc=

because

;; ,.(r) = (ri,r;.'..,i,,ri,ri*r,...,r0) and 7.(n) - (+i,t;....,r,1,,ui,ri*l,...,r0), th"n

the probability acceptance / rejection can be written by

crc = min[,rc]

Where

n(p, q, r-(o), p(n), H,ls)

n(;r, q, ?.(o), Otrl, H, ls) e

w(F, p, q, r*(o), prol )-"(")

*(F, p, q, r(o), otu) fv(')

I
( t+r, 1-4')t
l.t.r\ t-r,l

So

fc=

2.3 Simulated Annealing Algorithm
Simulated Annealing algorithm [7] is obtained by adding a line in the temperature

T1,T2,.'., T. at the top of the MCMC method. Next simulated annealing algorithm will produce

a Markov chain M(T,),M(Tr),...,M(T-) which is no longer homogeneous. Wth a

hypothetical on a certain TpT2,...,T. [14] will be convergent to maximize the value of a

posteriori distribution n(H,, ff ,lr).

3. Results and Analysis
ln As an illustration, we will apply this method to identify the order and estimate the

parameter synthesis ARMA data and real ARMA data. Simulation studies are done to confirm
that the performance of simulated annealing algorithm is able to work well. V/hile case studies
are given to exemplify the application of research in solving problems in everyday life.

For both synthesis ARMA data and real ARMA data, we will use the simulated
annealing algorithm to identify order and estimate the parameters of the ARMA model. For this
purpose, the simulated annealing algorithm is implemented for 70000 iterations with a value of
initial temperature To = 10 and the temperature is derived with the temperature factor 0.995 up
to the end temperature Tlase = 0.01 . Value of order p and q is limited to a maximum of 10. So

that p.o= e-*= 10.

3.1 Synthetic ARMA data
Figure 1 shows a synthetic ARMA data. The data are made according to the equation

(1) above, with the nurnber of data n = 250, order p = 2, order q = 1, O(t) =(-t.lO,O.Z),
g(r) - (O.Z), anO oz =I

, r*(l).pr 7*(r)

, ?*(P). p, 1'(P)

Hierarchical Bayesian of ARMA Models Using Simulated Annealing Algorithm (Suparman)



94r ISSN: 1693-6930

Figure 1. ARMA Synthetic Data

Based on the synthetic data in Figure 1, next order p, q order, ARMA model parameter

and variance o' are estimated by using the SA algorithm. The order p, q order, ARMA model
parameter and variance 62 produced by the simulated annealing algorithm are p =2, Q=I,
$tzr - (0.+t,o.zs), 6ttr - (o.lz) and 62 = 1.06. \Mren we compare between the actuatvatue
and the estimator value, it shows that simulated annealing algorithm can work well.

3.2 ReaIARMA Data
The real data in Figure 4 below is a passenger service charge (PSC) at the Adisutjipto

lnternational Airport in Yogyakarta lndonesia for the period 55 from January 2001 to July 2005.

@

Figure 2. First distinction of PSC data at the Adisutjipto lnternational Airport Yogyakarta.

Clearly visible in Figure 4, the data are not stationary very day. To get stationary data
the first distinction is made and the results shown in Figure 3.

x 1or
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Figure 3. Second distinction of PSC data at the Adisutjipto lnternationat Airport.

Based on the data in Figure 3, next order p, q order, ARTMA model parameter and
variance are estimated by using the simulated anneaiing algorithm. The results are p - 1,

4 = 0, 6,', = (O.lS) oan 6' = 5.75x 107 .

4. Conclusion
The description above is a study of the theory of simulated annealing algorithms and its

application in the identification of order p and q, coefficient vectors estimation 0,', "nd 
e,n),

and variance estimation o' from the ARMA model. The results of the simulation show that the
simulated annealing algorithm can estimate the parameters well. Simulated annealing algorithm
can also be implemented with good results on Synthetic Aperture Radar image segmentation
[13].

As the implementation, the simulated annealing algorithm is applied to the pSC data at
the Adisutjipto lnternational Airport. lts result is that the PSC data can be modeled with the
ARIMA model (1,0). The model can be used to predict the number of PSC at the Adisutjipto
lnternational Airport in the future.
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