TELKOMNIKA

TELKOMNIKA (Telecommunication, Computing, Electronics and Control) is a peer reviewed international journal. The aim of the journal is to publish high-quality articles dedicated to the applications of telecommunication, signal processing, computing and informatics, control, and electrical and electronics engineering.

Editor-in-Chief
Tole Sutikno
Universitas Ahmad Dahlan
Yogyakarta, Indonesia
e-mail: thsutikno@ieee.org

Co-Editor-in-Chief
Sudarno
Department of Electrical Engineering
University of Rome “Tor Vergata”
Roma, Italy
e-mail: menscattini@ing.uniroma2.it

Editorial Team

Ahmed Saudi Semosir
Universitas Lampung
Lampung, Indonesia
ahmeds@ieee.org

Jaeck Stando
Technical University of Lodz
Lodz, Poland
jaeck.stando@p.lodz.pl

Liu Dyan
Universitas Udayana
Bali, Indonesia
lini@uniud.ac.id

Nidal Bouaynaya
Univ. of Arkansas at Little Rock
Little Rock, Arkansas, USA
nbouaynaya@uark.edu

Supavadee Aranwitt
Gratangkorn University
Bangkok, Thailand
supavadee.a@chula.ac.th

Yang Han
University of Electronic Science and Technology of China
Chengdu, P. R. China
hanyangfacts@hotmail.com

The TELKOMNIKA is published by Universitas Ahmad Dahlan and Institute of Advanced Engineering and Science.
The decree is valid until August 2018.
Responsibility of the contents rests upon the authors and not upon the publisher or editor.

Publisher address:
Department of Electrical Engineering, Universitas Ahmad Dahlan (UAD)
Jalan Prof. Soepomo Jantunan, Yogyakarta, Indonesia 55164
Tel: +62 274 379418, 563515, 511829, 511830, 371120 Fax: +62 274 564604
Website: http://www.telkomnika.ew.uad.ac.id
e-mail: telkomnika@ee.uad.ac.id, telkomnika@journal.uad.ac.id, thsutikno@ieee.org

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

ISSN 1693-6930

Published on December 2003. The aim of the journal is to publish outstanding developments in the field of electrical engineering. Its scope encompasses control and electrical and electronics engineering.

Abdul Fadil
Adhi Susanto

Jurnal Manager
Karika Firdausy
karika@ee.uad.ac.id

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com

Advisory Editors
Jazi Eko Istanto (Indonesia)
Muhammad H. Rashid (USA)

Advisory Boards
Adi Soeprijanto
Kris Ismail Ibrahim

Subscription Manager
Anton Yudhana
ayudhana@yahoo.com
Table of Contents

Regular Papers

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Architecture of Indonesian Publication Index: A Major Indonesian Academic Database</td>
<td>1</td>
</tr>
<tr>
<td>Imam Much Ibnu Subroto, Tole Sutikno, Deris Stiawan</td>
<td></td>
</tr>
<tr>
<td>A Review on Favourable Maximum Power Point Tracking Systems in Solar Energy Application</td>
<td>6</td>
</tr>
<tr>
<td>Awang Jusoh, Tole Sutikno, Tan Kar Guan, Saad Mekhlef</td>
<td></td>
</tr>
<tr>
<td>The Analysis and Application on a Fractional-Order Chaotic System</td>
<td>23</td>
</tr>
<tr>
<td>Ye Qian, liang Ling Liu</td>
<td></td>
</tr>
<tr>
<td>Cost and Benefit Analysis of Desulfurization System in Power Plant</td>
<td>33</td>
</tr>
<tr>
<td>Zhang Caiqing, Liu Meilong</td>
<td></td>
</tr>
<tr>
<td>Investigation of Wave Propagation to PV-Solar Panel Due to Lightning Induced Overvoltage</td>
<td>47</td>
</tr>
<tr>
<td>Nur Hidayu Abdul Rahim, Zikri Abadi Baharudin, Md Nazri Othman, Zahriladha Zakaria, Mohd Shahril Ahmad Khiar, Nur Zawani Saharuddin, Azlinda Ahmad</td>
<td></td>
</tr>
<tr>
<td>Line Differential Protection Modeling with Composite Current and Voltage Signal Comparison Method</td>
<td>53</td>
</tr>
<tr>
<td>Hamzah Eteruddin, Abdullah Asumhimi Mohd Zin, Belyamin Belyamin</td>
<td></td>
</tr>
<tr>
<td>Improved Ambiguity-Resolving for Virtual Baseline</td>
<td>63</td>
</tr>
<tr>
<td>Haillang Song, Yongqing Fu, Xue Liu</td>
<td></td>
</tr>
<tr>
<td>Integrated Vehicle Accident Detection and Location System</td>
<td>73</td>
</tr>
<tr>
<td>Md. Syedul Amin, Mamun Bin Ibne Reaz, Salwa Sheikh Nasir</td>
<td></td>
</tr>
<tr>
<td>Neural Network Adaptive Control for X-Y Position Platform with Uncertainty</td>
<td>79</td>
</tr>
<tr>
<td>Ye Xiaoping, Zhang Wenhui, Fang Yamin</td>
<td></td>
</tr>
<tr>
<td>Hierarchical Bayesian of ARMA Models Using Simulated Annealing Algorithm</td>
<td>87</td>
</tr>
<tr>
<td>Suparman, Michel Doisy</td>
<td></td>
</tr>
<tr>
<td>Water Pump Mechanical Faults Display at Various Frequency Resolutions</td>
<td>97</td>
</tr>
<tr>
<td>Linggo Sumarno, Tjendro, Wiwien Widyastuti, R.B. Dwiseno Whadi</td>
<td></td>
</tr>
<tr>
<td>Endocardial Border Detection Using Radial Search and Domain Knowledge</td>
<td>107</td>
</tr>
<tr>
<td>Yong Chen, DongC Liu</td>
<td></td>
</tr>
<tr>
<td>New Modelling of Modified Two Dimensional Fisherface Based Feature Extraction</td>
<td>115</td>
</tr>
<tr>
<td>Arif Muntasa</td>
<td></td>
</tr>
<tr>
<td>Emergency Prenatal Telemonitoring System in Wireless Mesh Network</td>
<td>123</td>
</tr>
<tr>
<td>Muhammad Haikal Satria, Jasmy bin Yunus, Eko Supriyanto</td>
<td></td>
</tr>
<tr>
<td>A New Control Curve Method for Image Deformation</td>
<td>135</td>
</tr>
<tr>
<td>Hong-an Li, Jie Zhang, Lei Zhang, Baosheng Kang</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Orthogonal Frequency-Division Multiplexing-Based Cooperative Spectrum Sensing for Cognitive Radio Networks</td>
<td>143</td>
</tr>
<tr>
<td>Arief Marwanto, Sharifah Kamilah Syed Yusof, M. Haikal Satria</td>
<td></td>
</tr>
<tr>
<td>LTE Coverage Network Planning and Comparison with Different Propagation Models</td>
<td>153</td>
</tr>
<tr>
<td>Rekawt Sabir Hassan, T. A. Rahman, A. Y. Abdulrahman</td>
<td></td>
</tr>
<tr>
<td>A Threshold Based Triggering Scheme for Cellular-to-WLAN Handovers</td>
<td>163</td>
</tr>
<tr>
<td>Liming Chen, Qing Guo, Zhenyu Na, Kaiyuan Jiang</td>
<td></td>
</tr>
<tr>
<td>Model and Optimal Solution of Single Link Pricing Scheme Multiservice Network</td>
<td>173</td>
</tr>
<tr>
<td>Irmellyana, Indrawati, Fitri Maya Puspita, Juniwati</td>
<td></td>
</tr>
<tr>
<td>An Analytical Expression for k-connectivity of Wireless Ad Hoc Networks</td>
<td>179</td>
</tr>
<tr>
<td>Nagesh kallollu Narayanaswamy, Satyanarayana D, M.N Giri Prasad</td>
<td></td>
</tr>
<tr>
<td>Two Text Classifiers in Online Discussion: Support Vector Machine vs Back-Propagation Neural Network</td>
<td>189</td>
</tr>
<tr>
<td>Erlin, Rahmiati, Unang Rio</td>
<td></td>
</tr>
<tr>
<td>Research on Traffic Identification Based on Multi Layer Perceptron</td>
<td>201</td>
</tr>
<tr>
<td>Dingding Zhou, Wei Liu, Wengang Zhou, Shi Dong</td>
<td></td>
</tr>
<tr>
<td>Plagiarism Detection through Internet using Hybrid Artificial Neural Network and Support Vectors Machine</td>
<td>209</td>
</tr>
<tr>
<td>Imam Much Ibnu Subroto, Ali Selamat</td>
<td></td>
</tr>
<tr>
<td>Reliability Analysis of Components Life Based on Copula Model</td>
<td>219</td>
</tr>
<tr>
<td>Han Wen Qin, Zhou Jin Yu</td>
<td></td>
</tr>
<tr>
<td>Cobb-Douglass Utility Function in Optimizing the Internet Pricing Scheme Model</td>
<td>227</td>
</tr>
<tr>
<td>Indrawati, Irmellyana, Fitri Maya Puspita, Meiza Putri Lestari</td>
<td></td>
</tr>
<tr>
<td>CAPBLAT: An Innovative Computer-Assisted Assessment for Problem-Based Learning Approach</td>
<td>241</td>
</tr>
<tr>
<td>Muhammad Qomaruddin, Azizah Abdul Rahman, Noorminshah A. Iahad</td>
<td></td>
</tr>
<tr>
<td>Publications Repository Based on OAI-PMH 2.0 Using Google App Engine</td>
<td>251</td>
</tr>
<tr>
<td>Hendra, Jimmy</td>
<td></td>
</tr>
<tr>
<td>Android Based Palmprint Recognition System</td>
<td>263</td>
</tr>
<tr>
<td>Gede Ngurah Pasek Pusia Putra, Ketut Gede Darma Putra, Putu Wira Buana</td>
<td></td>
</tr>
</tbody>
</table>
Hierarchical Bayesian of ARMA Models Using Simulated Annealing Algorithm

Suparman*1, Michel Doisy2
1 Department of Mathematical Education, University of Ahmad Dahlan, Jl. Prof. Dr. Soepomo, SH., Yogyakarta, Indonesia
2 ENSEEIHT/TESA, 2 Rue Camichel, Toulouse, France
*Corresponding author, email: e-mail: suparmancict@yahoo.co.id

Abstract

When the Autoregressive Moving Average (ARMA) model is fitted with real data, the actual value of the model order and the model parameter are often unknown. The goal of this paper is to find an estimator for the model order and the model parameter based on the data. In this paper, the model order identification and model parameter estimation is given in a hierarchical Bayesian framework. In this framework, the model order and model parameter are assumed to have prior distribution, which summarizes all the information available about the process. All the information about the characteristics of the model order and the model parameter are expressed in the posterior distribution. Probability determination of the model order and the model parameter requires the integration of the posterior distribution resulting. It is an operation which is very difficult to be solved analytically. Here the Simulated Annealing Reversible Jump Markov Chain Monte Carlo (MCMC) algorithm was developed to compute the required integration over the posterior distribution simulation. Methods developed are evaluated in simulation studies in a number of set of synthetic data and real data.

Keywords: Simulated Annealing, ARMA model, order identification, parameter estimation

1. Introduction

Suppose x_1, x_2, \cdots, x_n is a time series data. Time series x_1, x_2, \cdots, x_n is said to be an ARMA (p,q) model, if x_1, x_2, \cdots, x_n satisfy following stochastic equation [3]:

$$x_t = z_t + \sum_{j=1}^{q} \theta_j z_{t-j} - \sum_{i=1}^{p} \phi_i x_{t-i}, \quad t = 1, 2, \cdots, n$$

(1)

where z_t is the random error at the time t, ϕ_i $(i = 1, 2, \cdots, p)$ and θ_j $(j = 1, 2, \cdots, q)$ is the coefficient-coefficient. Here z_t is assumed to have the normal distribution with mean 0 and variance σ^2. ARMA model $(x_t)_{t \in \mathbb{Z}}$ is called stationary if and only if the equality of polynomial

$$1 + \sum_{i=1}^{p} \phi_i^{(p)} b^i = 0$$

must lie outside the unit circle. Next ARMA model $(x_t)_{t \in \mathbb{Z}}$ is called invertible if and only if the equality of polynomial

$$1 + \sum_{j=1}^{q} \theta_j^{(q)} b^j = 0$$

must lie outside the unit circle [4].

The order (p,q) is assumed to be known, parameter estimation of the ARMA model has been examined by several researchers, for example [3], [4] and [12]. In practice when we match the ARMA model to the data, in general order (p,q) is not known.

Received September 19, 2013; Revised December 18, 2013; Accepted January 12, 2014
While for the order \((p,q)\) is not known, the order identification and the parameters estimation are done in two stages. The first stage is to estimate the coefficients and error variance with the assumption of order \((p,q)\). Not known, the order identification and the parameters estimation are done in two stages. The first stage is to estimate the coefficients and error variance with the assumption of order \((p,q)\). Based on the parameter estimation in the first stage, the second stage is to identify the order \((p,q)\). A criterion used to determine order \((p,q)\) has been proposed by many researchers, among others are the Akaike Information Criteria Criterion (AIC), Bayesian Information Criterion (BIC), and the Final Prediction Error Criterion (FPE).

Based on the data \(x_t, t = 1, 2, \ldots, n\), this research proposes a method to estimate the value \(p, q, \phi(p), \theta(q), \sigma^2\) simultaneously. To do that, we will use a hierarchical Bayesian approach [10], which will be described below.

2. Research Method

2.1 Hierarchical Bayesian

Let \(s = (x_{p+q+1}, x_{p+q+2}, \ldots, x_n)\) be a realization of the ARMA \((p, q)\) model. If the value \(s_0 = (x_1, x_2, \ldots, x_{p+q})\) is known, then the likelihood function of \(s\) can be written approximately as follows:

\[
L(s|p, q, \phi(p), \theta(q), \sigma^2) = \left(\frac{1}{2\pi \sigma^2} \right)^{n-2} \exp \left(-\frac{1}{2\sigma^2} \sum_{t=p+q+1}^{n} g^2(t, p, q, \phi(p), \theta(q)) \right)
\]

where \(g(t, p, q, \phi(p), \theta(q)) = x_t + \sum_{i=1}^{p} \phi_i x_{t-i} - \sum_{j=1}^{q} \theta_j z_{t-j} \) for \(t = p + q + 1, p + q + 2, \ldots, n \)

with initial value \(x_1 = x_2 = \ldots = x_{p+q} = 0\) [11]. Suppose \(S_p\) and \(I_q\) are respectively stationary and invertible region. By using the transformation

\[
F: \phi(p) = (\phi_1(p), \phi_2(p), \ldots, \phi_p(p)) \in S_p \mapsto r(p) = (r_1, r_2, \ldots, r_p) \in (-1, 1)^p
\]

\[
G: \theta(q) = (\theta_1(q), \theta_2(q), \ldots, \theta_q(q)) \in I_q \mapsto \rho(q) = (\rho_1, \rho_2, \ldots, \rho_p) \in (-1, 1)^q
\]

the ARMA model \((x_t)_{t \geq 0}\) stationery if and only if \(r(p) = (r_1, r_2, \ldots, r_p) \in (-1, 1)^p\) [2] and the ARMA model \((x_t)_{t \geq 0}\) invertible if and only if \(\rho(q) = (\rho_1, \rho_2, \ldots, \rho_p) \in (-1, 1)^q\) [1]. Then the likelihood function can be rewritten as:

\[
L(s|p, q, r(p), \rho(q), \sigma^2) = \left(\frac{1}{2\pi \sigma^2} \right)^{n-2} \exp \left(-\frac{1}{2\sigma^2} \sum_{t=p+q+1}^{n} g^2(t, p, q, F^{-1}(\phi(p)), G^{-1}(\theta(q))) \right)
\]

The prior distribution determination for parameters are as follows:

a) Order \(p\) have Binomial distribution with parameters \(\lambda\):

\[
\pi(p|\lambda) = \binom{p_{\text{max}}}{p}{\lambda}^p (1 - \lambda)^{p_{\text{max}} - p}
\]

b) Order \(q\) have Binomial distribution with parameters \(\mu\):
\[\pi(q|\lambda) = \left(q_{\text{max}} \right)^{q} \mu^{q} (1-\mu)^{q-\lambda} \]

c) Order \(p \) is known, the coefficient vectors \(r^{(p)} \) have uniform distribution on the interval \((-1,1)^p\).

d) Order \(q \) is known, the coefficient vectors \(p^{(q)} \) have uniform distribution on the interval \((-1,1)^q\).

e) Variance \(\sigma^2 \) have inverse gamma distribution with parameter \(\frac{\alpha}{2} \) and \(\frac{\beta}{2} \):

\[
\pi(\sigma^2|\alpha,\beta) = \left(\frac{\beta}{2} \right)^{\frac{\alpha}{2}} \left(\sigma^2 \right)^{\left(\frac{\alpha}{2} - 1\right)} \exp \left(-\frac{\beta \sigma^2}{2}\right)
\]

Here, the parameters \(\lambda \) and \(\mu \) are assumed to have uniform distribution on the interval \((0,1)\), the value of \(\alpha \) is 2 and the parameters \(\beta \) is assumed have Jeffrey distribution. So the prior distribution for the parameters \(H_1 = (p, q, r^{(p)}, p^{(q)}, \sigma^2) \) and \(H_2 = (\lambda, \beta) \) can be expressed as:

\[
\pi(H_1, H_2) = \pi(p|\lambda)\pi(r^{(p)}|p)\pi(q|\mu)\pi(p^{(q)}|q)\pi(\sigma^2|\alpha,\beta)\pi(\lambda)\pi(\beta)
\]

According to Bayes theorems, then the posterior distribution for the parameters \(H_1 \) and \(H_2 \) can be expressed as:

\[
\pi(H_1, H_2 | s) \propto \ell(s|H_1)\pi(H_1, H_2)
\]

A posteriori distribution is a combination of the likelihood function and prior distribution. The prior distribution is determined before the data is taken. The likelihood function is objective while this prior distribution is subjective. In this case, the a posteriori distribution \(\pi(H_1, H_2 | s) \) has the form of a very complex, so it can not be solved analytically. To handle this problem, reversible jump MCMC method is proposed.

2.2 Reversible Jump MCMC Method

Suppose \(M = (H_1, H_2) \). In general, the MCMC method is a method of sampling, as how to create a homogeneous Markov chain that meet aperiodic nature and irreducible ([9]) \(M_1, M_2, \ldots, M_m \) to be considered such as a random variable following the distribution \(\pi(H_1, H_2 | s) \). Thus \(M_1, M_2, \ldots, M_m \) it can be used to estimate the parameter \(M \). To realize this, the Gibbs Hybrid algorithm ([9]) is adopted, which consists of two phases:

1. Simulation of the distribution \(\pi(H_2 | H_1, s) \)
2. Simulation of the distribution \(\pi(H_1 | H_2, s) \)

Gibbs algorithm is used to simulate the distribution \(\pi(H_2 | H_1, s) \) and the hybrid algorithm, which combine the reversible jump MCMC algorithm [5] and the Gibbs algorithm,
used to simulate the distribution $\pi(H_1|H_2,s)$. The reversible jump MCMC algorithm is generally of the Metropolis-Hastings algorithm [6], [8].

2.2.1 Simulation of the distribution $\pi(H_2|H_1,s)$

The conditional distribution of H_2 given (H_1,s), written $\pi(H_2|H_1,s)$, can be expressed as

$$\pi(H_2|H_1,s) \propto \lambda^p (1-\lambda)^{p_{\text{max}}-p} \mu^q (1-\mu)^{q_{\text{max}}-q} \left(\frac{\beta}{2} \right)^{\frac{n}{2}} \exp \left(-\frac{\beta}{2} \frac{1}{\beta} \right).$$

This distribution is inversion gamma distribution with parameters $\frac{\alpha}{2}$ and $\frac{1}{2\sigma^2}$. So the Gibbs algorithm is used to simulate it.

2.2.2 Simulation of the distribution $\pi(H_1|H_2,s)$

If the conditional distribution of H_1 given (H_2,s), written $\pi(H_1|H_2,s)$, is integrated with respect to σ^2, then we get

$$\pi(p,q,r^{(p)},r^{(q)}|H_2,s) = \int_{\sigma^2} \pi(H_1|H_2,s) \, d\sigma^2$$

Let $v = \frac{\alpha}{2} + \frac{n-p_{\text{max}}}{2}$ and $w = \frac{\beta}{2} + \frac{1}{2} \sum_{i=p_{\text{max}}+1}^{n} \left(t_i, q_i, F^{-1}(r^{(p)}(q_i))G^{-1}(r^{(q)}(t_i)) \right)$

and we use

$$\int_{\sigma^2} \left(\sigma^2 \right)^{(1-v)} \exp \left(-\frac{w}{\sigma^2} \right) \, d\sigma^2 = \frac{\Gamma(v)}{w^v}$$

then we get

$$\pi(p,q,r^{(p)},r^{(q)}|H_2,s) \propto \left(\frac{p_{\text{max}}}{p} \right)^{\alpha} \left(1-\lambda \right)^{p_{\text{max}}-p} \left(\frac{q_{\text{max}}}{q} \right)^{\frac{1}{2}} \left(1-\mu \right)^{q_{\text{max}}-q} \left(\frac{\beta}{2} \right)^{\frac{n}{2}} \exp \left(-\frac{\beta}{2} \frac{1}{\beta} \right).$$

On the other hand, we have also

$$\pi(\sigma^2|p,q,r^{(p)},r^{(q)},H_2,s) \propto \left(\sigma^2 \right)^{(v+1)} \exp \left(-\frac{w}{\sigma^2} \right)$$

So that we can express the distribution $\pi(H_1|H_2,s)$ as a result of multiplication of the distribution $\pi(p,q,r^{(p)},r^{(q)}|H_2,s)$ and the distribution, $\pi(\sigma^2|p,q,r^{(p)},r^{(q)},H_2,s)$.
Next to simulate the distribution $\pi(H_1|H_2,s)$, we use a hybrid algorithm that consists of two phases:

- **Phase 1:** Simulate the distribution of $\pi(\sigma^2|p,q,r^{(p)},\rho^{(q)}|H_2,s)$
- **Phase 2:** Simulate the distribution $\pi(p,q,r^{(p)},\rho^{(q)}|H_2,s)$

The Gibbs algorithm is used to simulate the distribution $\pi(\sigma^2|p,q,r^{(p)},\rho^{(q)}|H_2,s)$. Conversely, the distribution $\pi(p,q,r^{(p)},\rho^{(q)}|H_2,s)$ has a complex form. The reversible jump MCMC is used to simulate it.

When the order (p,q) is determined, we can use the Metropolis Hastings algorithm. Therefore, in the case that this order is not known, Markov chain must jump from the order (p,q) with parameters $(r^{(p)},\rho^{(q)})$ to the order (p^*,q^*) with the parameter $(r^{(p^*)},\rho^{(q^*)})$. To solve this problem, we use the Reversible Jump MCMC algorithm.

2.2.3 Type of jump selection

Suppose (p,q) represent actual values for the order, we will write: η_p^{AR} the probability to jump from the p to $p+1$, δ_p^{AR} the probability to jump from the p to $p-1$, ξ_p^{AR} the probability to jump from p to p, η_q^{MA} the probability to jump from q to $q+1$, δ_q^{MA} the probability to jump from the q to $q-1$ and ζ_q^{MA} the probability to jump from q to q. For each component, we will choose the uniform distribution on the possible jump. As an example for the AR, this distribution depends on p and satisfy

$$\eta_p^{AR} + \delta_p^{AR} + \xi_p^{AR} = 1$$

We set $\delta_0^{AR} = \xi_0^{AR} = 0$ and $\delta_0^{AR} = 0$. Under this restriction, the probability will be

$$\eta_p^{AR} = c \min\left\{1, \frac{\pi(p+1)}{\pi(p)}\right\} \text{ and } \delta_p^{AR} = c \min\left\{1, \frac{\pi(p)}{\pi(p+1)}\right\}$$

with constant c, as much as possible so that $\eta_p^{AR} + \delta_p^{AR} \leq 0.9$ for $p = 0,1,\ldots,p_{\text{max}}$. The goal is to have

$$\eta_p^{AR} \pi(p) = \delta_p^{AR} \pi(p+1)$$

2.2.4 Birth / Death of Order

As for the AR example, suppose that p is the actual value for the order of the ARMA model, $r^{(p)} = (r_1,r_2,\ldots,r_p)$ is the coefficient value. Consider that we want to jump from p to $p+1$. We take the random variable u according to the triangular distribution with mean 0

$$g(u) = \begin{cases} u+1, & -1 < u < 0 \\ 1-u, & 0 < u < 1 \end{cases}$$
We complete the vector \(r^{(p)} \) random variables with \(u \). So the new coefficient vector is proposed
\[
r^{(p+1)} = (r_1, r_2, \ldots, r_p, u)
\]

Note that this transformation will change the total value of all. It is clearly seen that the Jacobian of the transformation of value is 1.

Instead, to jump from \(p + 1 \) to \(p \) is done by removing the last coefficients in \(r^{(p+1)} = (r_1, r_2, \ldots, r_p, r_{p+1}) \). So the new coefficient vectors that is proposed become \(r^{(p)} = (r_1, r_2, \ldots, r_p) \). The probability of acceptance / rejection respectively is
\[
\alpha_N = \min\{1, r_N\} \quad \text{and} \quad \alpha_D = \min\{1, r_{N+1}\}
\]

where
\[
r_N = \frac{\pi(p+1, q, r^{(p+1)}, H_2, s)}{\pi(p, q, r^{(p)}, H_2, s)} \cdot \frac{q(p, r^{(p)}; p+1, r^{(p+1)})}{q(p, r^{(p)}; p, r^{(p+1)})}
\]

We have
\[
\left\{
\begin{array}{l}
q(p+1, r^{(p+1)}; p, r^{(p)} = \delta_{p+1}^{AR} \\
n(p, r^{(p)}; p+1, r^{(p+1)} = \eta_{p+1}^{AR} g(r_{p+1})
\end{array}
\right.
\]

Finally, we get
\[
r_N = \frac{w(\beta, p+1, q, r^{(p+1)}, H^{(q)}, s)}{w(\beta, p, q, r^{(p)}, H^{(q)}, s)} \cdot \frac{p_{\max} - p}{p+1} \cdot \frac{1}{1 - \lambda} \cdot \frac{1}{2} \cdot \frac{1}{\delta_p^{AR}} \cdot \frac{1}{g(r_{p+1})}
\]

2.2.5 Changes in coefficients

Suppose now that the AR part is selected to jump from \(p \) to \(p \) without a order change, but only the coefficient is changed. If \(r^{(p)} = (r_1, r_2, \ldots, r_p) \) is the coefficient vector, we modify the coefficient vector. Consider that \(r_1, r_2, \ldots, r_p \) is courant point and supposing that \(u_1, u_2, \ldots, u_p \) new point, we define the point \(u_i \) in the following way:
\[
u_i = \sin(r_i + s)
\]

\(s \) is taken with the uniform distribution on the interval \(\left[-\frac{\pi}{10}, +\frac{\pi}{10} \right] \). Then \(u_i \) is selected with the distribution
\[
f(u_i | r_i) = \frac{5}{\sqrt{1 - u_i^2}}
\]
in the interval \(\left[\sin(r_i - \pi/10), \sin(r_i + \pi/10) \right] \).
If \(r^{*(p)} = (r_1, r_2, \ldots, r_{-1}, r_1, r_{i+1}, \ldots, r_p) \) and \(\bar{r}^{*(p)} = (r_1, r_2, \ldots, r_{-1}, u_1, r_{i+1}, \ldots, r_p) \), then the probability acceptance / rejection can be written by

\[
\alpha_c = \min \{1, r_c\}
\]

Where

\[
r_c = \frac{\pi(p, q, r^{*(p)}; \rho^{(q)}, H_2 | s)}{\pi(p, q, \bar{r}^{*(p)}; \rho^{(q)}, H_2 | s)} \cdot \frac{q(p, r^{*(p)}; p, \bar{r}^{*(p)})}{q(p, \bar{r}^{*(p)}; p, r^{*(p)})}
\]

because

\[
\frac{q(p, r^{*(p)}; p, \bar{r}^{*(p)})}{q(p, \bar{r}^{*(p)}; p, r^{*(p)})} = \left(\frac{1 + r_i 1 - r_i}{1 + u_i 1 - u_i} \right)^{1/2}
\]

So

\[
r_c = \frac{w(\beta, p, q, r^{*(p)}; \rho^{(q)})^{v(a)}}{w(\beta, p, q, \bar{r}^{*(p)}; \rho^{(q)})^{v(a)}} \left(\frac{1 + r_i 1 - r_i}{1 + u_i 1 - u_i} \right)^{1/2}
\]

2.3 Simulated Annealing Algorithm

Simulated Annealing algorithm [7] is obtained by adding a line in the temperature \(T_1, T_2, \ldots, T_m \) at the top of the MCMC method. Next simulated annealing algorithm will produce a Markov chain \(M(T_1), M(T_2), \ldots, M(T_m) \) which is no longer homogeneous. With a hypothetical on a certain \(T_1, T_2, \ldots, T_m \) [14] will be convergent to maximize the value of a posteriori distribution \(\pi(H_1, H_2 | s) \).

3. Results and Analysis

In As an illustration, we will apply this method to identify the order and estimate the parameter synthesis ARMA data and real ARMA data. Simulation studies are done to confirm that the performance of simulated annealing algorithm is able to work well. While case studies are given to exemplify the application of research in solving problems in everyday life.

For both synthesis ARMA data and real ARMA data, we will use the simulated annealing algorithm to identify order and estimate the parameters of the ARMA model. For this purpose, the simulated annealing algorithm is implemented for 70000 iterations with a value of initial temperature \(T_0 = 10 \) and the temperature is derived with the temperature factor \(0.995 \) up to the end temperature \(T_{1400} = 0.01 \). Value of order \(p \) and \(q \) is limited to a maximum of 10. So that \(p_{\text{max}} = q_{\text{max}} = 10 \).

3.1 Synthetic ARMA data

Figure 1 shows a synthetic ARMA data. The data are made according to the equation (1) above, with the number of data \(n = 250 \), order \(p = 2 \), order \(q = 1 \), \(\phi(2) = (-1.36, 0.7) \), \(\theta(1) = (0.7) \), and \(\sigma^2 = 1 \).
Based on the synthetic data in Figure 1, next order p, q order, ARMA model parameter and variance \(\sigma^2 \) are estimated by using the SA algorithm. The order p, q order, ARMA model parameter and variance \(\sigma^2 \) produced by the simulated annealing algorithm are \(\hat{p} = 2, \hat{q} = 1 \), \(\hat{\phi}^{(2)} = (0.41, 0.75) \), \(\hat{\theta}^{(1)} = (0.72) \) and \(\hat{\sigma}^2 = 1.06 \). When we compare between the actual value and the estimator value, it shows that simulated annealing algorithm can work well.

3.2 Real ARMA Data

The real data in Figure 4 below is a passenger service charge (PSC) at the Adisutjipto International Airport in Yogyakarta Indonesia for the period 55 from January 2001 to July 2005.

Clearly visible in Figure 4, the data are not stationary very day. To get stationary data the first distinction is made and the results shown in Figure 3.
Based on the data in Figure 3, next order p, q order, ARMA model parameter and variance are estimated by using the simulated annealing algorithm. The results are \(\hat{p} = 1, \hat{q} = 0 \), \(\hat{\phi} = (0.38) \) dan \(\hat{\sigma}^2 = 6.75 \times 10^7 \).

4. Conclusion

The description above is a study of the theory of simulated annealing algorithms and its application in the identification of order p and q, coefficient vectors estimation \(\hat{\phi} \) and \(\hat{\theta} \), and variance estimation \(\hat{\sigma}^2 \) from the ARMA model. The results of the simulation show that the simulated annealing algorithm can estimate the parameters well. Simulated annealing algorithm can also be implemented with good results on Synthetic Aperture Radar image segmentation [13].

As the implementation, the simulated annealing algorithm is applied to the PSC data at the Adisutjipto International Airport. Its result is that the PSC data can be modeled with the ARIMA model \((1,0)\). The model can be used to predict the number of PSC at the Adisutjipto International Airport in the future.

References