PERANCANGAN ULANG MESIN AMPLAS KAYU PROFIL LENGKUNG UNTUK PERBAIKAN POSISI KERJA DAN PENINGKATAN PRODUKTIVITAS

Agung Kristanto¹dan Tri Sugiantoro²

Abstrak: Abu Production adalah salah satu industri kerajinan kayu di kota Yogyakarta. Dalam proses produksinya tidak lepas dari proses pengamplasan. Posisi kerja yang tidak nyaman menyebabkan proses pengerjaan memakan waktu cukup lama. Hal tersebut berdampak kurangnya produktivitas mesin amplas. Penelitian ini dilakukan untuk pendesainan dan pembuatan mesin amplas. Data anthropometri digunakan untuk acuan penentuan ukuran dimensi mesin amplas yang dirancang. Aspek ergonomi digunakan sebagai pertimbangan dalam perancangan fasilitas dan lingkungan kerja yang efektif dan lebih nyaman sehingga dapat meningkatkan produktivitas. Mesin amplas hasil rancangan dapat meningkatkan produktivitas dari output mesin awal sebesar 292 part / jam dan setelah menggunakan mesin hasil rancangan menjadi 589 part / jam atau meningkat sebesar 101,7%.

Kata Kunci: Perancangan Mesin, Anthropometri, Ergonomi, Produktivitas

PENDAHULUAN Latar Belakang

Belakangan ini permintaan produk-produk seni ataupun kerajinan khususnya kerajinan kayu semakin meningkat, baik permintaan dari dalam negeri maupun luar negeri. Sesuai data Dinas Perindustrian, Perdangangan, Koperasi dan UKM Provinsi Daerah Istimewa Yogyakarta pada tahun 2011 ini nilai ekspor kerajinan Yogyakarta didominasi oleh industri dan kerajinan yang berbahan baku kayu dan kulit yang mencapai 53,8%. Kedua komoditi ini perlu terus didorong supaya menghasilkan daya saing (kompetitif). Hal tersebut mengakibatkan ketatnya persaingan antar produsen kerajinan di Indonesia, khususnya Yogyakarta yang masih lekat dengan seni dan budayanya.

Industri kerajinan kayu Abu Production memproduksi berbagai jenis produk kerajinan, diantaranya adalah cup lampu, asbak, tempat buah, pot bunga, vas bunga, nampan, soufenir, dan jenis-jenis produk kerajinan kayu yang lain. Dari berbagai jenis produk tersebut permintaanya selalu bervariasi, sehingga perlu adanya suatu peralatan yang bisa digunakan untuk mengerjakan produk-produk yang bervariasi tersebut.

Pokok permasalahan dalam penelitian ini adalah bagaimana merancang mesin amplas kayu profil lengkung yang ergonomis dan membuat fasilitas kerja pada proses pengamplasan kayu profil lengkung yang lebih efektif digunakan dalam industri kerajinan kayu Abu Production untuk meningkatkan produktivitas.

Naskah diterima: 13 Sep 2012, direvisi:20 Nop 2012, disetujui: 10 Des 2012

¹ Jurusan Teknik Industri, Universitas Ahmad Dahlan Yogyakarta Jl. Prof. Dr. Soepomo, Janturan, Umbul Harjo, Yogyakarta 55164 *E-mail*: agung.kristanto@yahoo.co.id

² Jurusan Teknik Industri, Universitas Ahmad Dahlan Yogyakarta Jl. Prof. Dr. Soepomo, Janturan, Umbul Harjo, Yogyakarta 55164

Tujuan Penelitian

Penelitian ini bertujuan untuk membuat usulan rancangan mesin amplas kayu profil lengkung yang nyaman digunakan untuk operator dan meningkatkan produktivitas di industri kerajinan kayu Abu Production.

LANDASAN TEORI

Ergonomi

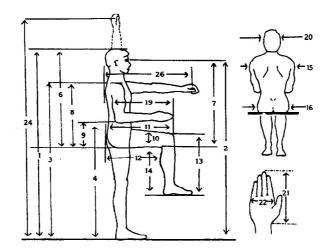
Disiplin ergonomi adalah suatu cabang keilmuan yang sistematis untuk memanfaatkan informasi-informasi mengenai sifat, kemampuan dan keterbatasan manusia untuk merancang suatu sistem kerja sehingga orang dapat hidup dan bekerja pada sistem tersebut dengan baik ; yaitu mencapai tujuan yang diinginkan melaui melalui pekerjaan itu dengan efektif, efisien, aman dan nyaman.

Pendekatan Ergonomi Dalam Perancangan Stasiun Kerja

Idealnya suatu stasiun kerja dirancang berdasarkan fungsi pokok dan peranan dari komponen-komponen sistem kerja yang terlibat. Komponen-komponen tersebut diantaranya adalah manusia, mesin atau peralatan dan lingkungan kerja.

Mesin atau peralatan kerja berfungsi untuk mengakomodasi keterbatasan kemampuan manusia (operator) untuk melakukan pekerjaannya. Maka dari itu mesin yang dirancang mestinya bertujuan untuk menambah kemampuan manusia, tidak menimbulkan beban kerja tambahan dan membantu pekerjaan-pekerjaan tertentu yang membutuhkan kemampun melebihi kapasitas kemampuan manusia (operator).

Anthropometri


Anthropometri merupakan bidang ilmu yang berhubungan dengan dimensi tubuh manusia. Dimensi-dimensi ini dibagi menjadi kelompok statistika dan ukuran persentil. Data dimensi manusia ini sangat berguna dalam perancangan produk dengan tujuan mencari keserasian produk dengan manusia yang memakainya. Pemakaian data antopometri mengusahakan semua alat disesuaikan dengan kemampuan manusia, bukan manusia disesuaikan dengan alat. Rancangan yang mempunyai kompatibilitas tinggi dengan manusia yang memakainya sangat penting untuk mengurangi timbulnya bahaya akibat terjadinya kesalahan kerja akibat adanya kesalahan desain.

Dimensi Anthropometri

Data anthropometri dapat digunakan untuk menetapkan dimensi ukuran produk yang akan dirancang sehinnga ukuran produk sesuai dengan dimensi tubuh manusia yang akan menggunakannya. Untuk memperjelas pengukuran data anthropometri yang akan digunakan dalam perancangan dapat dilihat pada gambar 1.

Aplikasi Distibusi Normal Dalam Penetapan Data Anthropometri

Untuk menetapkan data anthropometri ini, pemakaian distribusi normal dapat diformulasikan berdasarkan harga rata-rata (*mean*, \bar{X}) dan simpagan standarnya (*standard deviation*, σ x) dari data yang ada. Dari nilai yang ada tersebut, maka persentil dapat ditetapkan sesuai dengan tabel probabilitas distribusi normal.

Gambar 1. Data Anthropometri yang Diperlukan untuk Perancangan Produk/Fasilitas Kerja (Sumber : Wignjosoebroto, 2003)

Tabel 1. Perhitungan Persentil dalam Distribusi Normal

Percentil	Perhitungan
1-th	\bar{X} -2,325 σ_x
2,5-th	\bar{X} – 1,96 σ_x
5-th	\bar{X} – 1,645 σ_{x}
10-th	\bar{X} -1,28 σ_{χ}
50-th	$ar{X}$
90-th	\bar{X} +1,28 σ_x
95-th	\bar{X} +1,645 σ_{χ}
97,5-th	$\bar{X}+1,96\sigma_x$
99-th	\bar{X} +2,325 σ_x

(Sumber: Nurmianto, 2003)

Waktu Baku

Waktu baku adalah waktu yang dibutuh oleh seorang pekerja untuk menyelesaikan suatu pekerjaanya dimana pekerja tersebut mempunyai tingkat kemampuan rata-rata untuk menyelesaikan pekerjaannya tersebut.

- 1. Cara Pengukuran dan Pencatatan Waktu
 - Ada tiga metode yang umum digunakan untuk mengukur elemen-elemen kerja dengan menggunakan jam henti (*stopwatch*) yaitu pengukuran waktu secara terus menerus (*continuous timing*), pengukuran waktu secara berulang-ulang (*repetitive timing*) dan pengukuran waktu secara penjumlahan (*accumulative timing*) [4].
- 2. Penyesuaian Waktu dengan *Rating Performance* Kerja Westing house Company (1927) juga turut memperkenalkan sistem pemberian rating yang umumnya diaplikasikan pada aktivitas pengukuran kerja. Di sini selain kecakapan (skill) dan usaha (effort) sebagai faktor yang mempengaruhi performance manusia, Westing house menambahkan lagi dengan kondisi kerja (working codition) dan keajegan (consistency) dari operator pada saat melakukan pekerjaan.

3. Penetapan Waktu Longgar (*Allowance*)

Waktu longgar yang dibutuhkan dan akan menginterupsi proses produksi ini diklasifikasikan menjadi *personal allowance*, *fatigue allowance*, dan *delay allowance*.

4. Perhitungan Waktu Baku

Langkah-langkah perhitungan waktu baku dari data hasil pengukuran yang telah dilakukan adalah sebagai berikut:

a) Menghitung waktu siklus rata-rata (Ws)

$$Ws = \frac{\sum X_i}{N} \qquad \dots (1)$$

dimana:

Xi = jumlah waktu produktif pada pengamatan ke i

N = jumlah pengamatan

b) Menghitung waktu normal (Wn)

$$Wn = Ws \times p$$
 (2)

dimana p adalah faktor penyesuaian.

c) Menghitung waktu baku (Wb)

Wb = Wn x
$$(\frac{100\%}{100\% - allowance(\%)})$$
 (3)

dimana *allowance* adalah faktor kelonggaran waktu yang diberikan kepada pekerja untuk menyelesaikan pekerjaannya di luar waktu normal.

Pengujian Data

1. Uji keseragaman data

Tahapan perhitungan dalam uji keseragaman data:

a) Menghitung rata-rata data dengan rumus:

$$\bar{X} = \frac{\sum Xi}{n} \qquad \dots (4)$$

dimana:

Xi = Harga rata-rata dari sub grup ke-i

i = Jumlah pengamatan

b) Perhitungan standar deviasi:

$$\sigma = \sqrt{\frac{\sum (Xi - \bar{X})^2}{n - 1}} \qquad \dots (5)$$

dimana:

n = jumlah data amatan pendahuluan yang telah dilakukan

Xi = data amatan yang didapat dari hasil pengukuran ke-i

 \bar{X} = rata-rata dari setiap kelas

c) Perhitungan batas kontrol:

$$BKA = \bar{X} + k \sigma \qquad BKB = \bar{X} - k \sigma$$

2. Uji kecukupan data

Untuk menguji kecukupan data dapat dilakukan dengan perhitungan sebagai berikut :

$$N' = \left[\frac{(k/_S)\sqrt{N(\sum xi^2) - (\sum xi)^2}}{(\sum xi)} \right]^2 \qquad \dots (6)$$

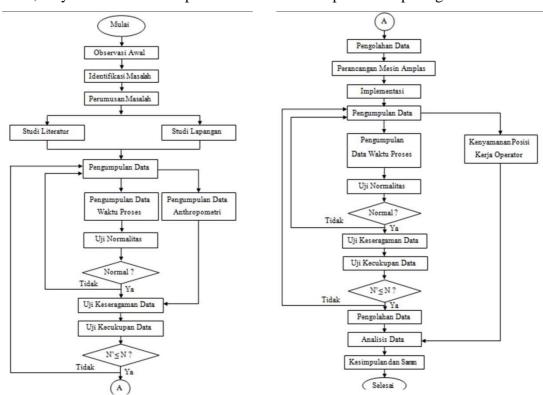
Dimana:

Xi : pengukuran ke- i N : banyaknya pengukuran s : tingkat kepercayaan k : harga indeks berdasarkan

convidence level

Jika N' < N, maka data cukup, Jika N' > N, maka data kurang, dan perlu tambahan data.

3. Uji kenormalan data Dalam penelitian ini peneliti menggunakan *software SPSS 15.0 for Windows* untuk mempermudah dalam melakukan pengujian kenormalan data.


Produktivitas

Formulasi yang digunakan untuk menghitung produktivitas mesin yang digunakan oleh operator adalah sebagai berikut.

$$\frac{Produktivitas}{Mesin} = \frac{Total\ keluaran\ yang\ dihasilkan}{Jumlah\ mesin\ yang\ digunakan} \qquad (7)$$

METODOLOGI Obyek Penelitian

Penelitian ini mengambil obyek mesin bor duduk yang digunakan untuk proses pengamplasan profil lengkung di industri kerajinan kayu Abu Production, Pleret, Yoyakarta. Flowchart pemecahan masalah dapat dilihat pada gambar 2.

Gambar 2. Kerangka Pemecahan Masalah

HASIL DAN PEMBAHASAN

Pengumpulan Data Sebelum Perancangan

- 1. Hasil kuisioner ketidaknyamanan operator sebelum perancangan. Dari hasil pemberian kuisioner kepada seorang operator mesin amplas dapat diketahui bahwa operator mengalami ketidaknyamanan pada bagian siku, lengan, leher, dan punggung.
- 2. Data waktu proses pengamplasan sebelum perancangan, terlihat pada tabel 3.

Pengukuran Ke :	Waktu Proses (detik)	Pengukuran Ke :	Waktu Proses (detik)	Pengukuran Ke :	Waktu Proses (detik)
1	9,77	11	9,67	21	8,33
2	10,46	12	10,02	22	9,09
3	12,31	13	10,81	23	9,77
4	11,65	14	11,89	24	9,75
5	9,79	15	11,29	25	9,89
6	9,69	16	8,39	26	10,79
7	8,21	17	11,24	27	9,89
8	10,08	18	8,34	28	10,77
9	9,9	19	12,03	29	10,37
10	9.79	20	10.99	30	10.47

Tabel 3. Waktu Proses Pengamplasan Sebelum Perancangan

Pengolahan Data Waktu Proses Sebelum Perancangan

1. Hasil uji normalitas. Dengan tingkat kepercayaan 95%, $\alpha = 0.05$. Hasil input data pada software SPSS menunjukan bahwa data normal, dimana:

$$Sig_{hitung} = 0.075 > Sig_{\alpha} = 0.05.$$

- 2. Uji keseragaman data

a. Rata-rata data waktu proses
$$\bar{X} = \frac{\sum X_i}{n} = \frac{(9,77+10,46+12,31+\cdots+10,47)}{30} = \frac{305,44}{30} = 10,18 \text{ detik.}$$
b. Standar deviasi

b. Standar deviasi

$$\sigma = \sqrt{\frac{\sum (Xi - \bar{X})^2}{n - 1}} = \sqrt{\frac{(9,77 - 10,18)^2 + (10,46 - 10,18)^2 + \dots + (10,47 - 10,18)^2}{30 - 1}} = 1,08$$

c. Batas kontrol

BKA =
$$10.18 + (2 \times 1.08) = 12.35$$

$$BKB = 10,18 - (2 \times 1,08) = 8,01$$

3. Uji Kecukupan data

$$N' = \left[\frac{(k/s)\sqrt{N(\sum xi^2) - (\sum xi)^2}}{(\sum xi)} \right]^2 = \left[\frac{(2/o,05)\sqrt{30(3143,8472) - (93293,5936)}}{305,44} \right]^2 = 17,52$$

N' < N = 17,52 < 30 maka data tersebut cukup untuk dilakukan pengolahan data selanjutnya.

- 4. Waktu baku sebelum perancangan
 - a. Waktu siklus (Ws)

Ws =
$$\frac{\sum X_i}{N} = \frac{305,44}{30} = 10,18 \text{ detik}$$

b. Waktu normal (Wn)

Performance rating (p) yang telah ditentukan = 1 + 0.09 = 1.09

$$Wn = Ws \ x \ p = 10,18 \ x \ 1,09 = 11,1$$

c. Waktu baku (Wb)

Allowance yang diberikan sebesar 10%

Wb = Wn x
$$\left(\frac{100\%}{100\% - allowance (\%)}\right)$$
 = 11,1 x $\left(\frac{100\%}{100\% - 10\%}\right)$ = 12,32 detik

5. Produktivitas sebelum perancangan

$$\frac{Produktivitas}{Mesin} = \frac{Total\ keluaran\ yang\ dihasilkan}{Jumlah\ mesin\ yang\ digunakan}$$
$$= \frac{1\ part\ setiap\ 12,65\ detik}{1} = 12,32\ detik\ /part \sim 292\ part\ /\ jam$$

Perancangan Mesin

1. Data anthropometri

Tabel 4. Data Dimensi Tubuh untuk Perancangan Mesin Amplas

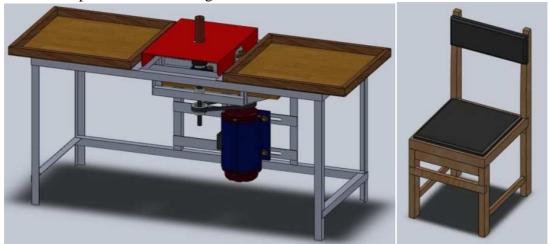
No.	Tsd	Jkt	Tpd	Plp	Lpd	Tbd	Lbd
110.	(cm)						
1.	23	64,5	46	43	33	53	40
2.	26	67,5	44	40	35	54	39
3.	25	66,5	48	45	31	52	41
4.	23	56	37	39	31	58	43
5.	26	60	37	40	29	61	44
6.	25	58	36	37	35	57	39
7.	24,5	61	44,5	40	26	53	40
8.	22	69,5	50	42	30,3	62	44
9.	24	61,5	43	44	29	61	40
10.	29	57	44	44	26	53	41
11.	22	59,5	44	41,5	31	53	41
12.	21,5	57	41	37	28	52	33
13.	22	63	45	41	33	53	34
14.	25	71	46,6	44,2	32,5	61,2	41
15.	25,9	59,2	43	43,5	31,5	58	46,6
16.	23	64,3	43	45	35	61	43,5
17.	22,5	61	43	45	35	58	46
18.	20	49,5	38	40	37	56	44
19.	20	53,5	42	41	28	55	45
20.	24	51,5	42	40	31	55	47
21.	22,1	53,5	37	44	32,3	51	39
22.	21,5	59,5	42,5	43,5	34	52,6	35
23.	21,3	58,5	38,9	44	31,7	57,9	40
24.	24	51,3	43	42	29	56	45
25.	25	66	47	49	29	58	38
26.	26	59	48	42	30	56	45
27.	26	55	45	41	32	58	43
28.	22	56,5	43	40	24	55	44
29.	24	68,5	45	44	25	56	33
30.	24	59,5	46	41	26	57	42

Tsd = tinggi siku duduk Tbd = tinggi bahu duduk Lpd = lebar pinggul duduk Tpd = tinggi poplitel duduk Jkt = jangkauan tangan Lbd = lebar bahu duduk

Plp = pantat poplitel

2. Hasil pengujian data anthropometri

Tabel 5. Hasil pengujian data anthropometri


Doto	I	Uji keseragaman data					Uji kecukupan data		
Data	\overline{X}	σ	BKA	BKB	N	N'	keterangan		
Tsd	23,64	2,05	27,74	19,55	30	1,61	cukup		
Jkt	59,94	5,55	71,04	48,85	30	3,25	cukup		
Tpd	43,08	3,56	50,21	35,96	30	0,58	cukup		
Plp	42,09	2,58	47,25	36,93	30	5,82	cukup		
Lpd	30,68	3,30	37,27	24,08	30	7,85	cukup		
Tbd	56,12	3,13	62,38	49,87	30	4,80	cukup		
Lbd	41,20	3,84	48,89	33,52	30	3,46	cukup		

3. Penentuan ukuran mesin

Tabel 6. Data Dimensi ukuran Mesin yang Akan Dirancang

No.	Dimensi	Data yang digunakan	Persentil	Ukuran
1.	Tinggi mesin amplas	Tpd + Tsd	50-th	66,72 cm
2.	Lebar mesin amplas	Jkt	5-th	50,82 cm
3.	Panjang mesin amplas	(2xJkt + Lbd)	5-th	136,52 cm
4.	Tinggi alas kursi operator	Tpd	50-th	43,08 cm
5.	Lebar alas kursi operator	Lpd	95-th	36,10 cm
6.	Panjang alas kursi operator	Plp	50-th	42,09 cm
7.	Tinggi sandaran kursi operator	Tbd	50-th	56,12 cm
8.	Lebar sandaran kursi operator	Lbd	50-th	41,20 cm

4. Desain produk hasil rancangan

Gambar 2. Desain mesin amplas dan kursi operator

5. Perbandingan posisi kerja sebelum dan sesudah perancangan

Gambar 3. Perbandingan Posisi Kerja Operator Sebelum (a) dan Sesudah (b) Perancangan

Hasil Pengumpulan Data dan Pengolahan Setelah Perancangan

1. Data waktu proses pengamplasan setelah perancangan (implementasi)

Tabel 6. Data Waktu Proses Implementasi	Tabel 6.	Data	Waktu	Proses	Imp	lementasi
---	----------	------	-------	---------------	-----	-----------

Pengukuran Ke :	Waktu Proses (detik)	Pengukuran Ke :	Waktu Proses (detik)	Pengukuran Ke :	Waktu Proses (detik)
1	4,93	11	4,17	21	5,48
2	5,42	12	4,02	22	5,1
3	4,63	13	4,61	23	5,11
4	4,87	14	4,29	24	4,82
5	4,08	15	4,5	25	4,09
6	4,81	16	6,1	26	5,94
7	4,46	17	4,13	27	6,1
8	5,88	18	4,8	28	5,8
9	4,82	19	4,12	29	6,27
10	4,28	20	4,85	30	5

- 2. Hasil pengujian dan perhitungan dapat diketahui waktu baku proses pengamplasan setelah perancangan sebesar 6,11 detik
- 3. Hasil perhitungan produktivitas mesin setelah perancangan meningkat menjadi 589 *part* / jam.
- 4. Hasil kuisioner setelah perancangan menunjukan bahwa ketidaknyamanan operator hanya pada bagian leher saja.

Analisa dan Perbandingan Mesin Sebelum dan Sesudah Perancangan

Tabel 7. Perbandingan Mesin Amplas Sebelum dan Sesudah Perancangan

No.	Sebelum Perancangan	Sesudah Perancangan	
1.	Posisi kerja operator jongkok / duduk dengan	Posisi kerja operator duduk dengan kursi	
	kursi kecil yang mengharuskan operator	normal (ergonomis) sehingga operator lebih	
	bekerja dalam kondisi tidak nyaman	nyaman dalam bekerja	
2.	Mesin amplas tidak dilengkapi dengan meja	Mesin amplas dilengkapi dengan meja amplas	
	amplas sehingga mengharuskan operator	sehingga operator cukup menempelkan benda	
	memegang atau menahan benda kerja dengan	kerja pada meja amplas dan menahan	
	kuat	secukupnya	
3.	Hasil pengamplasan terkadang tidak rata	Hasil pengamplasan rata karena mata amplas	
	tergantung dengan kestabilan tangan operator	dibuat siku dengan meja amplasnya	
	menahan benda kerja		
4.	Masin amplas tidak dilengkapi dengan tempat	Mesin amplas dilengkapi dengan tempat	
	benda kerja sehingga benda kerja kadang		
	berserakan dan sulit dijangkau	menjangkau dan meletakkan benda kerja	
5.	Mesin amplas tidak fleksibel digunakan untuk		
	proses pengamplasan benda kerja dengan	proses pengamplasan benda kerja dengan	
	bentuk profil lengkung yang miring atau	bentuk profil lengkung yang miring atau	
	menyudut	menyudut	
6.	Tidak mempertimbangkan keseimbangan	Mempertimbangkan beban kerja tangan kiri	
	beban kerja tangan kiri dan kanan	dan kanan	
7.	Bahaya debu serbuk pengamplasan lebih	Bahaya debu serbuk pengamplasan dapat	
	berbahaya karena posisi pengamplasan sejajar	dikurangai karena posisi pengamplasan	
	dengan dada sehingga lebih dekat dengan	sejajar dengan perut sehingga lebih jauh dari	
	muka ataupun mata	muka ataupun mata	
8.	Rata-rata waktu proses pengamplasan benda	Rata-rata waktu proses pengamplasan benda	
	kerja ukuran panjang 10 cm, lebar 5 cm, tebal	kerja ukuran panjang 10 cm, lebar 5 cm, tebal	
	3 cm dan radius lenkung 4 cm sebesar 10,18	3 cm dan radius lenkung 4 cm sebesar 4,92	
	detik	detik	

9.	Waktu baku pengamplasan benda kerja	Waktu baku pengamplasan benda kerja	
	ukuran panjang 10 cm, lebar 5 cm, tebal 3 cm	ukuran panjang 10 cm, lebar 5 cm, tebal 3 cm	
	dan radius lenkung 4 cm sebesar 12,32 detik	dan radius lenkung 4 cm sebesar 6,11 detik	
10.	Produktivitas mesin 292 part / jam	Produktivitas mesin 589 part / jam	
11.	Dari hasil kuisioner operator merasa belum	Dari hasil kuisioner operator merasa nyaman	
	nyaman pada saat mengoperasikan mesin	pada saat mengoperasikan mesin	

Analisa Kebutuhan Biaya

Tabel 8. Biaya Kebutuhan Bahan

No.	Nama Bahan	Jumlah	Harga
1.	Mesin dinamo 1/2 PK	1 buah	Rp. 500.000,-
2.	Besi siku 3/3 cm A1	14,5 meter	Rp. 120.000,-
3.	Besi plat tebal 2 mm	50 x 40 cm	Rp. 53.000,-
4.	Kepala bor Wipro	1 buah	Rp. 27.500,-
5.	Bearing UCF 203 ASB	1 buah	Rp. 22.500,-
6.	Puli A1 x 4"	1 buah	Rp. 15.000,-
7.	Puli A1 x 2,5"	1 buah	Rp. 10.000,-
8.	AS motor	1 buah	Rp. 16.000,-
9.	Kayu lapis (triplek)	1,5 m	Rp. 10.000,-
10.	Besi plat tebal 3 mm	1,2 m	Rp. 24.000,-
11.	Belt A23	1 buah	Rp. 10.000,-
12.	Bearing motor	1 buah	Rp. 10.000,-
13.	Kabel listrik	2 meter	Rp. 5.000,-
14.	Steker	1 buah	Rp. 9.500,-
15.	Lem kayu	1 buah	Rp. 5.000,-
16.	Paku mebel	¹⁄4 kg	Rp. 2.000,-
17.	Cat besi	¹⁄4 kg	Rp. 11.000,-
18.	Minyak cat	200 ml	Rp. 7.500,-
19.	Kuas	1 buah	Rp. 2.500,-
20.	Kertas amplas	2 lembar	Rp. 5.000,-
21.	Mur dan baut	-	Rp. 17.250,-
22.	Busa jok kursi	1 m ²	Rp. 7.000,-
23.	Kayu mahoni 20 cm x 3 cm	2 lembar	Rp. 50.000,-
24.	Finil	3/4 m ²	Rp. 10.000,-
25.	Lem jok kursi	1 kaleng	Rp. 5.000,-
	Total biaya pembelian baha	Rp. 954.750,-	

Tabel 9. Biaya Kebutuhan Jasa

No.	Jenis Jasa	Biaya Jasa
1.	Biaya pemotongan besi	Rp. 15.000,-
2.	Biaya pembubutan ulir	Rp. 30.000,-
3.	Biaya bubut puli	Rp. 10.000,-
4.	Biaya pengelasan dan perakitan	Rp. 190.000,-
5.	Biaya pembuatan tempat kayu	Rp. 30.000,-
6.	Biaya pembuatan kursi	Rp. 70.000,-
7.	Biaya transportasi	Rp. 80.000,-
	Total biaya jasa	Rp. 425.000,-

Total biaya perancangan = 954.750 + 425.000 = Rp. 1.379.750,

KESIMPULAN DAN SARAN Kesimpulan

- Hasil dari penerapan data antropometri dalam perancangan mesin amplas beserta kursi operatornya dapat berpengaruh dalam memperbaiki posisi kerja operator yang pada awalnya hanya menggunakan mesin bor duduk dengan posisi kerja duduk menggunakan kursi kecil (dingklik) sehingga memaksa operator bekerja dengan kondisi yang tidak nayaman menjadi lebih nyaman dalam melakukan pekerjaannya.
- 2. Mesin amplas hasil rancangan mampu mengurangi waktu baku proses pengamplasan, dimana mesin hasil rancangan dapat menurunkan kebutuhan waktu baku sebesar 50,4%.
- 3. Mesin amplas hasil rancangan dapat meningkatkan produktivitas, sehingga perusahaan mengalami peningkatan produktivitas sebesar 107,4%.

Saran

- 1. Dengan memperhatikan kenyamanan kerja operator, perusahaan disarankan untuk menggunakan mesin amplas hasil rancangan karena operator merasa lebih nyaman menggunakan mesin hasil rancangan.
- 2. Dengan melihat perbandingan produktivitas mesin sebelum dan sesudah perbandingan, perusahaan disarankan untuk menggunakan mesin amplas hasil rancangan karena dapat meningkatkan produktivitas hingga 100%.
- 3. Penelitian lebih lanjut tentang perbakian rancangan untuk mengurangi ketidaknyamanan operator pada bagian leher.
- 4. Penelitian lebih lanjut mengenai pembuatan mata amplas yang lebih efektif dalam proses penggantian kertas amplas.
- 5. Penelitian lebih lanjut mengenai penambahan pengatur sudut kemiringan meja amplas.

Daftar Pustaka

- Gumanto. 2009. *Perancangan Meja Gergaji Untuk Meminimalkan Kelelahan Operator*. Fakultas Teknologi Industri, Universitas Ahmad Dahlan, Yogyakarta.
- Adhi, Dianasa Saputra. 2009. Perancangan Meja dan Kursi Kerja yang Ergonomis Pada Stasiun Kerja Pemotongan Kerupuk Sebagai Upaya Peningkatan Produktivitas. Fakultas Teknologi Industri, Universitas Ahmad Dahlan, Yogyakarta.
- Nurmianto, Eko. 2003. *Ergonomi Konsep Dasar dan Aplikasinya*. Institut Teknologi Sepuluh November, edisi pertama, Prima Printing, Surabaya.
- Wignjosoebroto, Sritomo. 2000. Ergonomi Studi Gerak dan Waktu (Teknik Analisa untuk Peningkatan Produktivitas Kerja). Guna Widya, edisi kedua, Jakarta.
- Abthoki, Ahmad, Y. Liliana P, dan Windagno, Suharyo. 2007. *Pertimbangan Antropometri Pada Pendesainan*. Direktorat Inspeksi Instalasi dan Bahan nuklir, Badan Pengawas Tenaga Nuklir BAPETEN, Jakarta Pusat.
- Takeshi, G. Sato dan Sugiarto N. Hartanto. 2000. *Menggambar Mesin Menurut Standar ISO*. PT Pradnya Paramita, Jakarta.
- Ziqra, Azmi Uthami. 2010. SolidWorks Alat Bantu Merancang Komponen dengan Mudah. Modula, Bandung.
- Santoso, Singgih. 2001. *Mengolah Data Statistik Secara Profesional*. PT Elek Media Komputindo Kelompok Gramedia, Jakarta.
- Meta, Winda Sari. 2009. Usulan Perbaikan Fasilitas Kerja Dengan Menggunakan Prinsip Antropometri Pada Bagian Pengepakan Di PT. Sinar Oleochemical International. Fakultas Teknik, Universitas Sumatra Utara, Medan.