
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI)

Vol. 5, No. 2, December 2019, pp. 85~100

ISSN: 2338-3070, DOI: 10.26555/jiteki.v5i2.15021 85

Journal homepage: http://journal.uad.ac.id/index.php/JITEKI Email: jiteki@ee.uad.ac.id

Text Classification Using Long Short-Term Memory with GloVe

Features

Winda Kurnia Sari1, Dian Palupi Rini2, Reza Firsandaya Malik3
1 Master of Computer Science, Universitas Sriwijaya, Palembang 30128, Indonesia

2 Informatics Departement, Universitas Sriwijaya, Palembang 30128, Indonesia
3 Communication Network and Information Security Research Lab, Palembang 30128, Indonesia

ARTICLE INFO ABSTRACT

Article history:

Received 19 December 2019,

Revised 30 January 2020,

Accepted 04 February 2020.

 In the classification of traditional algorithms, problems of high features

dimension and data sparseness often occur when classifying text. Classifying

text with traditional machine learning algorithms has high efficiency and

stability characteristics. However, it has certain limitations concerning large-

scale dataset training. In this case, a multi-label text classification technique

is needed to be able to group four labels from the news article dataset. Deep

Learning is a proposed method for solving problems in text classification

techniques. This experiment was conducted using one of the methods of

Deep Learning Recurrent Neural Network with the application of the

architecture of Long Short-Term Memory (LSTM). In this study, the model

is based on trial and error experiments using LSTM and 300-dimensional

word embedding features with Global Vector (GloVe). By tuning the

parameters and comparing the eight proposed LSTM models with a large-

scale dataset, to show that LSTM with features GloVe can achieve good

performance in text classification. The results show that text classification

using LSTM with GloVe obtain the highest accuracy is in the sixth model

with 95.17, the average precision, recall, and F1-score are 95. Besides,

LSTM with the GloVe feature gets graphic results that are close to good-fit

on average.

Keywords:

Recurrent Neural Network
Long Short-Term Memory
Multilabel Classification
Text Classification
GloVe

This work is licensed under a Creative Commons Attribution-Share Alike 4.0

Corresponding Author:

Dian Palupi Rini
Universitas Sriwijaya, Jl. Srijaya Negara Bukit Besar, 30139, Palembang, South Sumatera, Indonesia
Email: dprini@unsri.ac.id

1. INTRODUCTION

Text classification is an important part of Natural Language Processing with many applications [1], such

as sentiment analysis [2][3], information search [4], ranking [5], and document classification [6]. The text

classification model is generally divided into two categories: machine learning and deep learning. Much

research on text classification has involved traditional machine learning algorithms such as k-Nearest

Neighbors [7][8], Naive Bayes [9][10], Support Vector Machine [11][12], Logistic Regression [13]. Also,

compared to traditional machine learning classification algorithms have high efficiency and stability

characteristics. However, it has certain limitations in the case of large-scale dataset training [14].

Recently, neural network-based models are becoming increasingly popular [15][16][17]. These models

achieve excellent performance in practice, tend to be relatively slow both during training and testing, limiting

their use to very large datasets [14]. Several recent studies have shown that the success of deep learning about

text classification is highly dependent on the effectiveness of word embedding [17]. Specifically, Shen et al.

2018 quantitatively show that the task of text classification based on word embedding can have the same level

of difficulty regardless of the model used, using the concept of intrinsic dimension [1].

Some applications of deep learning methods used for text classifications include convolutional neural

networks [16][17], autoencoder [19][20], deep belief network [21]. Recurrent Neural Network (RNN) is one

of the most popular architectures used in natural language processing (NLP) because the recurrent structure is

https://doi.org/10.26555/jiteki.v5i2.15021
http://journal.uad.ac.id/index.php/JITEKI
mailto:jiteki@ee.uad.ac.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
mailto:dprini@unsri.ac.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id

86 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN 2338-3070
 Vol. 5, No. 2, December 2019, pp. 85-100

Journal homepage: http://journal.uad.ac.id/index.php/JITEKI Email: jiteki@ee.uad.ac.id

suitable for variable length text processing. One of the deep learning methods proposed in this study is RNN

with the application of the Long Short-Term Memory (LSTM) architecture. RNN can use a distributed word

representation by first changing the token consisting of each text into a vector, which forms a matrix. Whereas,

LSTM was developed to solve exploding and vanishing gradient problems that can be faced when training

traditional RNN [22]. In addition to expanding memory, the classification of texts using LSTM in this study

because the structure of LSTM is a sequence in which an integrated whole or cannot be cut as well as the

structure of text documents that if cut will change the meaning of the sentence. The use of word embedding

will be an input feature on LSTM before classifying text.

2. RESEARCH METHOD

2.1 Methodology

In general, the steps in the research methodology used to assist in the preparation of this research proposal

require a clear framework for the stages. The research framework used as in Figure 1, which consists of

literature review by research in the past 1 year and 5 years, in preparing data the dataset used in this study is

AGNews consist of 400,000 data samples, after preparing the dataset is pre-processing data by removing

punctuation and tokenization, do the classification process with LSTM, and analyzing the results, and make

conclusions. The classification process with LSTM consists of 3 sub-processes, namely the training process,

validation, and testing.

Fig. 1. Research Methodology

2.2 Feature Extraction

Feature extraction is an important part of machine learning, especially for text data. Text dataset is the

most unstructured data which is necessary to produce meaning and structure used by machine learning

algorithms. Recently, T. Mikolov introduced a better technique for extracting features from text using the

concept of embedding or placing words into vector spaces based on context. This approach to word embedding,

called Word2Vec, solves the problem of representing contextual word relationships in computable feature

space [23]. J. Pennington in 2014 developed a vector representation of learning spaces from words called

GloVe and placed them in Stanford's NLP lab [24]. In this study use 300 embedding dimensions of GloVe to

be an input feature in LSTM.

2.3 Recurrent Neural Network

RNN is a type of neural network with a memory status for processing sequence inputs. Traditional RNN

has a problem called gradient vanishing and exploding during training [25]. Recurrent node activation consists

of feedback for itself from one time-step to the next. RNN is included in the deep learning category because

data is processed automatically and without defining features [26]. RNN can use the internal states (memory)

to process the input sequence. This makes it applicable to tasks such as Natural Language Processing (NLP)

[15], speech recognition [25], music synthesis [27], and time-series financial data processing [28]. There are

two implementations of RNN i.e Backpropagation Through Time (BPTT) algorithm for calculating gradients

and Vanishing Gradient problems that have led to the development of LSTM and GRU, the two most popular

and powerful models currently used in NLP.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://journal.uad.ac.id/index.php/JITEKI
mailto:jiteki@ee.uad.ac.id

ISSN 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 87
 Vol. 5, No. 1, Juni 2019, pp. xx-xx

Text Classification using LSTM (Kurniasari W, dkk)

The basic equation of RNN,

 𝑠𝑡 = tanh⁡(𝑈𝑥𝑡 +𝑊𝑠𝑡−1) (1)

 𝑦̂𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝑠𝑡) (2)

2.2 Long Short-Term Memory

Long short-term memory (LSTM) has recently become a popular tool among NLP researchers for their

superior ability to model and learn from sequential data. These models have shown state-of-the-art results on

various public benchmarks ranging from the classification of sentences [29] and various tagging problems [30]

for language modeling [16][17], and sequence-to-sequence predictions [26]. LSTM aims to solve the RNN

problem called gradient vanishing and exploding. LSTM replaces hidden vectors from recurrent neural

networks with memory blocks equipped with gates. This can maintain long-term memory in principle by

practicing appropriate gating weights and has proven to be very useful in achieving state-of-the-art for various

problems, including speech recognition [31]. LSTM was proposed by Hochreiter and Schmidhuber, 1997 to

specifically address this problem of learning long-term dependency. LSTM stores separate memory cells in it

which can update and display their contents only if necessary [32]. The LSTM gates mechanism implements

three layers; (1) inputs gate, (2) forget gate, and (3) output gate [33].

Each LSTM unit, can be seen in Figure 2 has a memory cell, and the states at time t are represented as ct.

Reading and modifying are controlled by the sigmoid gate and affect the input gate it, forget gate ft and output

gate ot. LSTM is calculated as follows: At the moment of the moment, the model receives input from two

external sources (ht-1 and xt). The hidden states ht is calculated by the xt input vector the network received at

time t and the previous hidden states ht-1. When calculating the hidden layer node states, input gate, output gate,

forget gate and xt will simultaneously affect the state of the node.

Fig. 2. LSTM Architecture

A step-by-step explanation of the LSTM cell and its gates is provided below:

1) Input Gate:

 𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3)

 𝐶̌𝑡 = tanh⁡(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶 (4)

2) Forget Gate:

 𝑓𝑡 = ⁡𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡 + 𝑏𝑓) (5)

3) Memory State:

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (6)

4) Output Gate:

 𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (7)

 ℎ𝑡 = 𝑜𝑡 ∗ tanh⁡(𝐶𝑡) (8)

2.3 Evaluation

The multi-label evaluation steps of the confusion matrix in the following equations:

𝐴𝑐𝑐 =
∑

𝑇𝑃𝑖 + 𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖
𝑙
𝑖=1

𝑙
∗ 100%

(9)

𝑃𝑟𝑒𝑠𝑖𝑠𝑖 =

∑ 𝑇𝑃𝑖
𝑙
𝑖=1

∑ (𝐹𝑃𝑖 + 𝑇𝑃𝑖)
𝑙
𝑖=1

∗ 100% (10)

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

88 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN 2338-3070
 Vol. 5, No. 2, December 2019, pp. 85-100

Journal homepage: http://journal.uad.ac.id/index.php/JITEKI Email: jiteki@ee.uad.ac.id

𝑅𝑒𝑐𝑎𝑙𝑙 =

∑ 𝑇𝑃𝑖
𝑙
𝑖=1

∑ (𝑇𝑃𝑖 + 𝐹𝑁𝑖)
𝑙
𝑖=1

∗ 100% (11)

𝐹1⁡𝑠𝑐𝑜𝑟𝑒 =

2 ∗ 𝑃𝑟𝑒𝑠𝑖𝑠𝑖 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑠𝑖𝑠𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙

(12)

2.4 Optimization

There are some types of optimizers for deep learning models such as SGD, Adam, RMSProp, etc. This

paper applied Adam and RMSProp for training the data. Adam Optimizer can control sparse gradient issues

[34]. It is an expansion to stochastic gradient descent that has currently seen wider adoption for deep learning

applications such as Natural Language Processing.

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (13)

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 + 𝛽2)𝑔𝑡
2 (14)

where m and v refer averages the first two moments of the gradient, g indicates gradient on current mini-

batch. RMSProp can adapt the learning rate for each of the parameters. It aims to divide the learning rate for

weight by a running average of the magnitudes of recent gradients for that weight [35].

 𝑣(𝑤, 𝑡) ≔ ⁡𝛾𝑣(𝑤, 𝑡 − 1) + (1 − 𝛾)(∇𝑄𝑖(𝑤))
2 (15)

Where γ is the forgetting factor.

And the parameters are updates as,

 𝑤⁡ ∶= 𝑤 −⁡
𝑛

√𝑣(𝑤, 𝑡)
∇𝑄𝑖(𝑤)

(16)

2.5 Pre-Processing

2.5.1 One-hot encoding

The first pre-processing in this research is One-hot encoding. One-hot encoding is changing text data

(categorical) into numbers. Machine learning algorithms cannot work with categorical data directly.

Categorical data must be converted to numbers. This applies because research works with the type of sequence

classification and uses deep learning methods such as Long Short-Term Memory Recurrent Neural Networks.

2.5.2 Tokenization and Remove Punctuation

Tokenization is the process of breaking up the flow of text into words, phrases, symbols, or other

meaningful elements called tokens. Tokenizing means splitting up text into units that have minimal meaning.

This is a mandatory step before all types of processing. This process will divide the text into sentences and

sentences into typographic tokens. That means separating punctuation. The feature generated from tokenizing

is training data. In this process, padding is also carried out to identify the end of the sentence because the

decoder is trained sentence by sentence.

3 RESULTS AND DISCUSSION

3.1 Dataset

Previous research on Zhang 2015, Wang 2018 has shown work well with large-scale datasets [16][36].

From eight large-scale datasets, the AGNEWS dataset was taken for training. AGNews is a classification of

topics in four categories of Internet news articles consisting of titles and descriptions classified into four classes:

World, Entertainment, Sports, and Business. The dataset is shown in Table 1, with the following content

specifications:

Table 1. Dataset Specification

Dataset Class Contains

AGNews 4 496,835

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://journal.uad.ac.id/index.php/JITEKI
mailto:jiteki@ee.uad.ac.id

ISSN 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 89
 Vol. 5, No. 1, Juni 2019, pp. xx-xx

Text Classification using LSTM (Kurniasari W, dkk)

3.2 Training Process

AGNews dataset is divided into 80% each for training and 20% for testing. The training dataset used is

not used for LSTM testing, and vice versa. From 80% of the training data, 10% is used for the data validation

process. The amount of each dataset is randomly split, with an automatic data split.

3.3 Training Models

The hyper-parameters used are the Relu and Tanh activation functions, Adam and RMSProp optimizers

will be validated with a learning rate of 0.001 and 0.0001 to minimize errors. The dimensions of word

embedding are 300. The structure and hyper-parameters used in LSTM validation with the Glove features can

be shown in Table 2.

Table 2. Training Models LSTM with GloVe

Model Epoch Neuron
Learning

Rate
Optimizer

Loss

Function

Activation Function
Dimension

Hidden Output

1 50 128 0.001 Adam
Categorical

Cross Entropy
Relu Softmax 300

2 50 128 0.001 Adam
Categorical

Cross Entropy
Tanh Softmax 300

3 50 128 0.001 RMSProp
Categorical

Cross Entropy
Relu Softmax 300

4 50 128 0.001 RMSProp
Categorical

Cross Entropy
Tanh Softmax 300

5 50 128 0.0001 Adam
Categorical

Cross Entropy
Relu Softmax 300

6 50 128 0.0001 Adam
Categorical

Cross Entropy
Tanh Softmax 300

7 50 128 0.0001 RMSProp
Categorical

Cross Entropy
Relu Softmax 300

8 50 128 0.0001 RMSProp
Categorical

Cross Entropy
Tanh Softmax 300

3.4 LSTM Models

The LSTM sequence classification training process using the word embedding feature Global Vector

(GloVe) 300 dimension is trained with hyper-parameter embedding matrix obtained from pre-processing the

GloVe feature on input, activation of Relu and Tanh on hidden gate, softmax activation on output gate,

optimizer Adam and RMSprop, with dropout 0.5 and epoch 50, have been trained in each of 8 models with

tuning Learning rates of 0.001 and 0.0001. The hyperparameter learning rate controls the rate or speed at which

the learning model. Specifically, this controls the number of divided errors whose model weights are updated

with each time they are updated, such as at the end of each batch of training examples. The learning rate is

perhaps the most important hyperparameter.

3.4.1 Model 1

Table 3 shows the results of the evaluation performance of the LSTM training process that was trained

using Relu activation, Adam optimizer with a learning rate of 0.001. The accuracy of the training obtained in

model 1 is 95.33. Confusion matrix will be used to calculate the Precision, Recall, and F1-score, the results of

which can be seen in Table 3 as a result of the evaluation performance of the test. The results in Table 4 show

that the training and testing accuracy values are not much different, which is 95 with an average value of

Precision, Recall, and F1-score of 95. To see the comparison of training and testing per epoch in the accuracy

curve can be seen in Figure 3 and the curve loss in Figure 4.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

90 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN 2338-3070
 Vol. 5, No. 2, December 2019, pp. 85-100

Journal homepage: http://journal.uad.ac.id/index.php/JITEKI Email: jiteki@ee.uad.ac.id

Table 3. Performance Evaluation Results of the LSTM Training Process

with Relu Activation Parameters, Adam Optimizer with a learning rate of 0.001

Accuracy 95,33

Confusion

Matrix

Label 0 1 2 3

0 29731 286 200 120

1 343 21462 1186 237

2 341 859 20463 105

3 176 253 113 8609

Table 4. Performance Results Evaluation of the LSTM Testing Process

with Relu Activation Parameters, Adam Optimizer with a learning rate of 0.001

Label Precision Recall F1-Score Data

0 97 98 98 30337

1 94 92 93 23228

2 93 94 94 21768

3 95 94 94 9151

Avg 95 95 95 84484

Fig. 3. Comparison Curve of Training and Testing Accuracy of 50 epochs

Fig. 4. Comparison of Training Loss and Testing Curves of 50 epochs

3.4.2 Model 2

Table 5 shows the results of the performance evaluation of the LSTM training process that was trained

using Tanh activation, Adam optimizer with a learning rate of 0.001. The accuracy of the training obtained in

model 2 is 95.34. Confusion matrix will be used to calculate the Precision, Recall, and F1-score, the results of

which can be seen in Table 6 as a result of the evaluation performance of the test. Based on the two models

above using the same optimizer and learning rate with both Relu and Tanh activation, the resulting value is

also not much different. The value of training and testing accuracy, average precision, recall, and f1-score of

95. Figure 5 shows the comparison curve of training and testing accuracy, and Figure 6 shows the Loss curve.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://journal.uad.ac.id/index.php/JITEKI
mailto:jiteki@ee.uad.ac.id

ISSN 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 91
 Vol. 5, No. 1, Juni 2019, pp. xx-xx

Text Classification using LSTM (Kurniasari W, dkk)

Table 5. Performance Evaluation Results of the LSTM Training Process

with Tanh Activation Parameters, Adam Optimizer with a learning rate of 0.001

Accuracy 95,34

Confusion

Matrix

Label 0 1 2 3

0 29798 267 214 126

1 356 21139 1413 247

2 359 755 20425 141

3 177 245 88 8734

Table 6. Performance Results Evaluation of LSTM Testing Process

with Tanh Activation Parameters, Adam Optimizer with a learning rate of 0.001

Label Precision Recall F1-Score Data

0 97 98 98 30405

1 94 91 93 23155

2 92 94 93 21680

3 94 94 94 9244

Avg 95 95 95 84484

Fig. 5. Comparison of Training Accuracy and Testing Curves of 50 epochs

Fig. 6. Comparison of Training Loss and Testing Curves of 50 epochs

3.4.3 Model 3

 In model 3 is trained with Relu activation hyperparameter, RMSprop optimizer and learning rate

0.001. The results of the training evaluation performance can be shown in Table 7, while the results of the

testing evaluation are shown in Table 8. The accuracy obtained in the training process is 94.25 with an average

value of precision, recall, and f1-score of 94. Not much different from the value of testing accuracy which is

equal to 94.37. The comparison training curve and testing of accuracy and loss can be seen in Figure 7 and

Figure 8.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

92 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN 2338-3070
 Vol. 5, No. 2, December 2019, pp. 85-100

Journal homepage: http://journal.uad.ac.id/index.php/JITEKI Email: jiteki@ee.uad.ac.id

Table 7. Performance Results of LSTM Training Process Evaluation

with Relu Activation Parameters, RMSprop Optimizer with a learning rate of 0.001
Accuracy 94,25

Confusion

Matrix

Label 0 1 2 3

0 29705 316 187 153

1 431 21329 1179 314

2 426 996 20026 176

3 221 259 98 8668

Table 8. Performance Evaluation Results of the LSTM Testing Process

with Relu Activation Parameters, RMSprop Optimizer with a learning rate of 0.001

Label Precision Recall F1-Score Data

0 96 98 97 30361

1 93 92 92 23253

2 93 93 93 21624

3 93 94 93 9246

Avg 94 94 94 84484

Fig. 7 Comparison of Training Accuracy and Testing Curves of 50 epochs

Fig. 8 Comparison of Training Loss and Testing Curves of 50 epochs

3.4.4 Model 4

In model 4 is trained with Tanh activation hyperparameter, RMSprop optimizer and learning rate

0.001. The results of the training evaluation performance can be shown in Table 9, and the results of the testing

evaluation are shown in Table 10. The accuracy obtained in the training process is 94.32 with an average value

of precision, recall, and f1-score of 94. The testing accuracy is 94.56. The test results in Table 10 show that the

macro average of precision is 95, while the recall and f1-score are 94. The accuracy value in this process is 95.

The comparison training curve and accuracy testing can be seen in Figure 9 and the loss in Figure 10. Both

Adam and RMSprop optimizers trained with a learning rate of 0.001 showed results that are not much different.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://journal.uad.ac.id/index.php/JITEKI
mailto:jiteki@ee.uad.ac.id

ISSN 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 93
 Vol. 5, No. 1, Juni 2019, pp. xx-xx

Text Classification using LSTM (Kurniasari W, dkk)

Table 9. LSTM Training Process Performance Evaluation Results

with Tanh Activation Parameters, RMSprop Optimizer with a learning rate of 0.001

Accuracy 93,21

Confusion

Matrix

Label 0 1 2 3

0 30083 226 179 104

1 573 21340 1107 227

2 481 926 20197 101

3 298 250 122 8270

Table 10. Performance Results Evaluation of LSTM Testing Process

with Tanh Activation Parameters, RMSprop Optimizer with a learning rate of 0.001

Label Precision Recall F1-Score Data

0 96 98 97 30592

1 94 92 93 23247

2 93 93 93 21705

3 95 93 94 8940

Avg 95 94 94 84484

Fig. 9. Comparison of Training Accuracy and Testing Curves of 50 epochs

Fig. 10. Comparison of Training Loss and Testing Curves of 50 epochs

3.4.5 Model 5

The LSTM model 5 was trained with the same hyperparameter with a tuning learning rate of 0.0001.

Table 11 shows the results of the training evaluation performance and Table 12 shows the performance results

of the classification testing evaluation with the activation of Relu, Adam optimizer, and 300-dimensional

GloVe word embedding. The accuracy value in the training and testing process for learning rates 0.001 and

0.0001 with the same optimizer, namely Adam gets results that are not much different, both precision, recall,

and f1-score of 95. However, the accuracy and loss curves obtained in learning a rate of 0,0001 is better than

an accuracy and loss curve with a learning rate of 0.001. It can be seen in Figure 11 and Figure 12.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

94 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN 2338-3070
 Vol. 5, No. 2, December 2019, pp. 85-100

Journal homepage: http://journal.uad.ac.id/index.php/JITEKI Email: jiteki@ee.uad.ac.id

Table 11. Performance Evaluation Results of the LSTM Training Process

with Relu Activation Parameters, Adam Optimizer with a learning rate of 0.0001

Accuracy 94,58

Confusion

Matrix

Label 0 1 2 3

0 29884 232 235 146

1 390 21192 1297 247

2 320 739 20491 94

3 153 228 120 8716

Table 12. Performance Evaluation Results of the LSTM Testing Process

with Relu Activation Parameters, Adam Optimizer with a learning rate of 0.001

Label Precision Recall F1-score Data

0 97 98 98 30497

1 95 92 93 23126

2 93 95 94 21644

3 95 95 95 9217

Avg 95 95 95 84484

Fig. 11. Comparison of Training Accuracy and Testing Curves of 50 epochs

Fig. 12. Training Loss Comparison Curve and Testing 50 epoch

3.4.6 Model 6

In Model 6, training was carried out with the same hyperparameter with Tanh activation, Adam

optimizer, and a learning rate of 0.0001. The results of training evacuation performance and confusion matrix

are shown in Table 13 with training accuracy of 95. While the results of testing evaluation performance are in

Table 14 with an average value of precision, recall, and f1-score of 95. Figure 13 shows a comparison curve

of training and testing accuracy for 50 epochs. Although the loss in the validation process continues to decrease,

at the 40th epoch the same and slightly greater than the training loss can be seen in Figure 14.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://journal.uad.ac.id/index.php/JITEKI
mailto:jiteki@ee.uad.ac.id

ISSN 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 95
 Vol. 5, No. 1, Juni 2019, pp. xx-xx

Text Classification using LSTM (Kurniasari W, dkk)

Table 13. Performance Evaluation Results of the LSTM Training Process

with Tanh Activation Parameters, Adam Optimizer with a learning rate of 0.0001

Accuracy 95

Confusion

Matrix

Label 0 1 2 3

0 29940 221 216 113

1 340 21314 1177 245

2 309 841 20510 113

3 172 229 103 8641

Table 14. Performance Results Evaluation of LSTM Testing Process

with Tanh Activation Parameters, Adam Optimizer with a learning rate of 0.0001

Label Precision Recall F1-score Data

0 97 98 98 30490

1 94 92 93 23076

2 93 94 94 21773

3 95 94 95 9145

Avg 95 95 95 84484

Fig. 13. Comparison Curve of Training and Testing Accuracy of 50 epochs

Fig. 14. Curve Comparison of Training and Testing Loss of 50 epochs

3.4.7 Model 7

In model 7, it was trained with Relu activation parameters, RMSprop optimizer, and tuning learning

rate 0,0001. Table 15 shows the results of the training evaluation performance and confusion matrix of 50

epochs obtained an accuracy of 93.24. The results of the evaluation performance of precision testing, recall,

and f1-score are in Table 16. The accuracy curve resulting from training and testing can be seen in Figure 15

and the loss curve in Figure 16, which shows that the results of the RMSprop optimizer parameter with a tuning

learning rate of 0,0001 are more fit than the RMSprop with a learning rate of 0.001 although there is a slight

up and down in accuracy and loss.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

96 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN 2338-3070
 Vol. 5, No. 2, December 2019, pp. 85-100

Journal homepage: http://journal.uad.ac.id/index.php/JITEKI Email: jiteki@ee.uad.ac.id

Table 15. Performance Evaluation Results of the LSTM Training Process

with Relu Activation Parameters, RMSprop Optimizer with a learning rate of 0.0001

Accuracy 93,24

Confusion

Matrix

Label 0 1 2 3

0 29625 305 272 147

1 458 21251 1293 315

2 440 954 20192 135

3 214 264 157 8462

Table 16. Performance Evaluation Results of the LSTM Testing Process

with Relu Activation Parameters, RMSprop Optimizer with a learning rate of 0,0001

Label Precision Recall F1-score Data

0 96 98 97 30349

1 93 91 92 23317

2 92 93 93 21721

3 93 93 93 9097

Avg 94 94 94 84484

Fig. 15. Comparison of Training Accuracy and Testing Curves of 50 epochs

Fig. 16. Curve Comparison of Training and Testing Loss of 50 epochs

3.4.8 Model 8

Model 8 was trained with Tanh activation parameters, RMSprop optimizer, and a learning rate of

0.0001 resulting in training accuracy of 93.21. The results of the training evaluation performance can be seen

in Table 17 where there are four class confusion matrix multilabel. The results of the evaluation performance

of the test are in Table 18 with an average value of precision, recall, and f1-score of 94. The comparison training

curve and testing accuracy model can be seen in Figure 17 with the value of testing accuracy exceeding training

accuracy. While the loss model curve decreases with the passage of 50 epochs, where the test loss is smaller

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://journal.uad.ac.id/index.php/JITEKI
mailto:jiteki@ee.uad.ac.id

ISSN 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 97
 Vol. 5, No. 1, Juni 2019, pp. xx-xx

Text Classification using LSTM (Kurniasari W, dkk)

than the training loss can be seen in Figure 18. Table 19 shows a comparison of the testing accuracy of the

eight LSTM models using the word embedding GloVe.

Table 17. Performance Evaluation Results of the LSTM Training Process

with Tanh Activation Parameters, RMSprop Optimizer with a learning rate of 0.0001

Accuracy 93,21

Confusion

Matrix

Label 0 1 2 3

0 29738 264 272 154

1 470 20921 1509 309

2 406 882 20128 176

3 251 256 147 8601

Table 18. Performance Results Evaluation of LSTM Testing Process

with Tanh Activation Parameters, RMSprop Optimizer with learning rate 0.0001

Label Precision Recall F1-score Data

0 96 98 97 30349

1 94 90 92 23317

2 91 93 92 21721

3 93 93 93 9097

Avg 94 94 94 84484

Fig. 17. Comparison Curve of Training and Testing Accuracy of 50 epochs

Fig.18. Comparison of Training and Testing Loss Curves in 50 epochs

In the eight of tuning models LSTM using the word embedding Glove feature, the highest test

accuracy was 95.17 in model 6 with Tanh activation parameters, Adam optimizer, and a learning rate of 0.0001.

While the accuracy and loss model which close to good-fit on models with a learning rate of 0.0001 either with

Adam or RMSprop optimizer. Table 20 shows the comparison results of previous works.

Table 19. Accuracy of testing of the eight LSTM models Using

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

98 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN 2338-3070
 Vol. 5, No. 2, December 2019, pp. 85-100

Journal homepage: http://journal.uad.ac.id/index.php/JITEKI Email: jiteki@ee.uad.ac.id

the Word Embedding GloVe Feature

Model Epoch Neuron Lr Optimizer Hidden Accuracy

1 50 128 0.001 Adam Relu 95.01

2 50 128 0.001 Adam Tanh 94.81

3 50 128 0.001 RMSProp Relu 94.37

4 50 128 0.001 RMSProp Tanh 94.56

5 50 128 0.0001 Adam Relu 95.03

6 50 128 0.0001 Adam Tanh 95.17

7 50 128 0.0001 RMSProp Relu 94.17

8 50 128 0.0001 RMSProp Tanh 93.97

Table 20. The Comparison of Previous Works

Model AGNews

Bag-of-words (Zhang et al.,2015) 88.8

Small word CNN (Zhang et al.,2015) 89.13

Large word CNN (Zhang et al.,2015) 91.45

LSTM (Zhang et al.,2015) 86.06

Deep CNN (29 layer) (Conneau et al.,2017) 91.27

SWEM (Shen et al.,2018) 92.24

fastText (Joulin et al.,2016) 92.5

LEAM (Wang et al., 2018) 92.45

LEAM (linear) (Wang et al., 2018) 91.75

GloVe + LSTM 95.17

4 CONCLUSION

Text classification using LSTM is done by conducting trial and error experiments. Text classification

using LSTM with the Glove feature does hyper-parameter tuning to get the best model. Whereas, the LSTM

and hyperparameter structure used from the test results are using embedding of the GloVe features in the input,

softmax activation function in the output, Relu and Tanh activation functions, loss categorical cross-entropy

function, learning rate 0.001 and 0.0001, with the number epoch 50. The highest accuracy with the Glove

feature is on the sixth model of 95.17 with an average precision, recall, and F1-score of 95. It can be concluded

that the LSTM evaluation results using the GloVe feature can achieve good performance both in accuracy and

the curves.

REFERENCES
[1] L. Li, L. Xiao, W. Jin, H. Zhu, and G. Yang, “Text Classification Based on Word2vec and Convolutional Neural

Network,” Neural Information Processing, International Conference on Neural Information Processing (ICONIP),

Lecture Notes in Computer Science, vol. 11305, 2018. DOI: 10.1299/jsmemag.90.823_758

[2] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts, “Recursive Deep Models for

Semantic Compositionality Over a Sentiment Treebank,” Proceedings of the 2013 conference on Empirical

Methods in Natural Language Processing, pp.1631-1642, 2013, Online

[3] H. Yuan, Y. Wang, X. Feng and S. Sun, “Sentiment Analysis Based on Weighted Word2vec and Att-LSTM,”

Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence, pp. 420-

424, 2018. DOI: 10.1145/3297156.3297228

[4] J. Lilleberg, Y. Zhu, and Y. Zhang, “Support vector machines and Word2vec for text classification with semantic

features,” Proceedings of 2015 IEEE 14th International Conference on Cognitive Informatics and Cognitive

Computing, ICCI*CC 2015, pp. 136-140, 2015. DOI: 10.1109/ICCI-CC.2015.7259377

[5] K. Chen, Z. Zhang, J. Long, and H. Zhang, “Turning from TF-IDF to TF-IGM for term weighting in text

classification,” Expert Systems with Applications, vol. 66, pp. 245-260, 2016. DOI: 10.1016/j.eswa.2016.09.009

[6] R. G. Rossi, A. D. A. Lopes, and S. O. Rezende, “Optimization and label propagation in bipartite heterogeneous

networks to improve transductive classification of texts,” Information Processing and Management, vol. 52, no. 2,

pp. 217-257, 2016. DOI: 10.1016/j.ipm.2015.07.004

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://journal.uad.ac.id/index.php/JITEKI
mailto:jiteki@ee.uad.ac.id
https://doi.org/10.1007/978-3-030-04221-9_40
https://www.aclweb.org/anthology/D13-1170
https://doi.org/10.1145/3297156.3297228
https://doi.org/10.1109/ICCI-CC.2015.7259377
https://doi.org/10.1016/j.eswa.2016.09.009
https://doi.org/10.1016/j.ipm.2015.07.004

ISSN 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 99
 Vol. 5, No. 1, Juni 2019, pp. xx-xx

Text Classification using LSTM (Kurniasari W, dkk)

[7] B. Y. Pratama, and R. Sarno. Personality classification based on Twitter text using Naive Bayes, KNN and SVM.

Proceedings of 2015 International Conference on Data and Software Engineering, ICODSE, 2016, DOI:

10.1109/ICODSE.2015.7436992

[8] M. Azam, T. Ahmed, F. Sabah, F. and M.I. Hussain, “Feature Extraction based Text Classification using K-Nearest

Neighbor Algorithm”. IJCSNS Int. J. Comput. Sci. Netw. Secur, 18, pp. 95-101, 2018. Online

[9] S. Xu, “Bayesian Naïve Bayes classifiers to text classification,” Journal of Information Science, vol. 44, no. 1,

pp.48-59. 2018. DOI: 10.1177/0165551516677946

[10] L. Jiang, C. Li, S. Wang, and L. Zhang, “Deep feature weighting for naive Bayes and its application to text

classification,” Engineering Applications of Artificial Intelligence, vol. 52, pp. 26-39, 2016. DOI:

10.1016/j.engappai.2016.02.002

[11] M. Fanjin, H. Ling, T. Jing, and W. Xinzheng, “The Research of Semantic Kernel in SVM for Chinese Text

Classification,” In Proceedings of the 2nd International Conference on Intelligent Information Processing, pp. 8,

2017. DOI: 10.1145/3144789.3144801

[12] M. Goudjil, M. Koudil, M. Bedda, and N. Ghoggali, “A novel active learning method using SVM for text

classification,” International Journal of Automation and Computing, vol. 15, no.3, pp. 290-298, 2018. DOI:

10.1007/s11633-015-0912-z

[13] A. Onan, S. Korukoğlu, and H. Bulut, “Ensemble of keyword extraction methods and classifiers in text

classification,” Expert Systems with Applications, vol. 57, pp. 232-247, 2016. DOI: 10.1016/j.eswa.2016.03.045

[14] M. Gao, T. Li, and P. Huang, “Text Classification Research Based on Improved Word2vec and CNN,” In

International Conference on Service-Oriented Computing, pp. 126-135. Springer, Cham, 2018. DOI: 10.1007/978-

3-030-17642-6_11

[15] K. Kowsari, D.E. Brown, M. Heidarysafa, K.J. Meimandi, M.S. Gerber, and L. E. Barnes, “Hdltex: Hierarchical

deep learning for text classification,” In 2017 16th IEEE International Conference on Machine Learning and

Applications (ICMLA), pp. 364-371, 2017. DOI: 10.1109/ICMLA.2017.0-134

[16] Y. Kim, “Convolutional neural networks for sentence classification,” arXiv preprint, arXiv:1408.5882, 2014. DOI:

10.3115/v1/D14-1181

[17] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text classification,” In Advances in

neural information processing systems, pp. 649-657, 2015. DOI: arXiv:1509.01626v3

[18] D. Shen, G. Wang, W. Wang, M.R. Min, Q. Su, Y. Zhang, C. Li, R. Henao, and L. Carin, “Baseline needs more

love: On simple word-embedding-based models and associated pooling mechanisms,” arXiv preprint, 2018. DOI:

arXiv:1805.09843

[19] Xu, W., Sun, H., Deng, C., and Tan, Y. Variational autoencoder for semi-supervised text classification. In Thirty-

First AAAI Conference on Artificial Intelligence. 2017. Online

[20] R. G. F. Soares, “Effort Estimation via Text Classification and Autoencoders,” Proceedings of the International

Joint Conference on Neural Networks, pp. 1-8, 2018. DOI: 10.1109/IJCNN.2018.8489030

[21] P. Ruangkanokmas, T. Achalakul, and K. Akkarajitsakul, “Deep Belief Networks with Feature Selection for

Sentiment Classification,” Proceedings - International Conference on Intelligent Systems, Modelling and

Simulation, ISMS, 9-14, 2017. DOI: 10.1109/ISMS.2016.9.

[22] Y. Yan, Y. Wang, WC. Gao, BW. Zhang, C. Yang, and XC. Yin, "LSTM2: Multi-Label Ranking for Document

Classification," Neural Processing Letters, vol. 47, no. 1, pp. 117-138, 2018. DOI: 10.1007/s11063-017-9636-0

[23] T. Mikolov, K. Chen, K., G. Corrado, and J. Dean. “Distributed Representations of Words and Phrases and their

Compositionality,” Advances in Neural information processing systems, pp. 3111-3119, 2013. Online

[24] J. Pennington, R. Socher and C. Manning, “Glove: Global vectors for word representation,” In Proceedings of the

2014 conference on empirical methods in natural language processing (EMNLP), pp. 1532-1543, 2014. Online

[25] H. Zen, and H. Sak, “Unidirectional long short-term memory recurrent neural network with recurrent output layer

for low-latency speech synthesis”. In 2015 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 4470-4474, 2015. DOI: 10.1109/ICASSP.2015.7178816

[26] I. Sutskever, O. Vinyals, and Q.V. Le, “Sequence to sequence learning with neural networks,” In Advances in

neural information processing systems, pp. 3104-3112, 2014. Online

[27] Li, K., Daniels, J., Liu, C., Herrero-Vinas, P. and Georgiou, P., “Convolutional recurrent neural networks for

glucose prediction,” IEEE Journal of Biomedical and Health Informatics. Vol. 24, no. 2, Febuary 2020 DOI:

10.1109/JBHI.2019.2908488

[28] K. Tseng, C. Ou, A. Huang, R.F. Lin, and X. Guo, “Genetic and Evolutionary Computing,” Proceedings of the

Twelfth International Conference on Genetic and Evolutionary Computing, vol. 834, 2019. DOI: 10.1007/978-981-

13-5841-8.

[29] C. Zhou, C. Sun, Z. Liu, and F. Lau, “A C-LSTM neural network for text classification,” arXiv preprint, 2015.

DOI: arXiv:1511.08630

[30] M. Pota, F. Marulli, M. Esposito, G. De Pietro, and H. Fujita, “Multilingual POS tagging by a composite deep

architecture based on character-level features and on-the-fly enriched Word Embeddings,” Knowledge-Based

Systems, vol. 164, pp. 309-323, 2019. DOI: 10.1016/j.knosys.2018.11.003

[31] C.C. Chiu, T.N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, Z. Chen, A. Kannan, R.J. Weiss, K. Rao, E. Gonina,

and N. Jaitly, “State-of-the-art speech recognition with sequence-to-sequence models,” In 2018 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4774-4778, 2018. DOI:

10.1109/ICASSP.2018.8462105

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://doi.org/10.1109/ICODSE.2015.7436992
http://paper.ijcsns.org/07_book/201812/20181213.pdf
https://doi.org/10.1177%2F0165551516677946
https://doi.org/10.1016/j.engappai.2016.02.002
https://doi.org/10.1145/3144789.3144801
https://doi.org/10.1007/s11633-015-0912-z
https://doi.org/10.1016/j.eswa.2016.03.045
https://doi.org/10.1007/978-3-030-17642-6_11
https://doi.org/10.1007/978-3-030-17642-6_11
https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1109%2FICMLA.2017.0-134&v=ec8605ab
http://dx.doi.org/10.3115/v1/D14-1181
https://arxiv.org/abs/1509.01626
https://arxiv.org/abs/1805.09843v1
https://arxiv.org/abs/1603.02514
https://doi.org/10.1109/IJCNN.2018.8489030
https://doi.org/10.1109/ISMS.2016.9.
https://doi.org/10.1007/s11063-017-9636-0
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=Distributed+Representations+of+Words+and+Phrases+and+their+Compositionality&btnG=
https://nlp.stanford.edu/pubs/glove.pdf
https://doi.org/10.1109/ICASSP.2015.7178816
https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://doi.org/10.1109/JBHI.2019.2908488
https://doi.org/10.1007/978-981-13-5841-8
https://doi.org/10.1007/978-981-13-5841-8
https://arxiv.org/abs/1511.08630v2
https://doi.org/10.1016/j.knosys.2018.11.003
https://doi.org/10.1109/ICASSP.2018.8462105

100 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN 2338-3070
 Vol. 5, No. 2, December 2019, pp. 85-100

Journal homepage: http://journal.uad.ac.id/index.php/JITEKI Email: jiteki@ee.uad.ac.id

[32] A. Graves, “Generating sequences with recurrent neural networks,” arXiv preprint, 2013. DOI: arXiv:1308.0850

[33] A. Kumar, and R. Rastogi, “Attentional Recurrent Neural Networks for Sentence Classification,” In Innovations in

Infrastructure, pp. 549-559. Springer, Singapore, 2019. DOI: 10.1007/978-981-13-1966-2_49

[34] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint. 2014. DOI: arXiv:1412.6980

[35] T. Tieleman, T. and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent

magnitude,” COURSERA: Neural networks for machine learning, vol. 4, no. 2, pp. 26-31, 2012. Online

[36] G. Wang, C. Li, W. Wang, Y. Zhang, D. Shen, X. Zhang, R. Henao, and L. Carin, “Joint embedding of words and

labels for text classification,” arXiv preprint, 2018. DOI: arXiv:1805.04174

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://journal.uad.ac.id/index.php/JITEKI
mailto:jiteki@ee.uad.ac.id
https://arxiv.org/abs/1308.0850v5
https://doi.org/10.1007/978-981-13-1966-2_49
https://arxiv.org/abs/1412.6980v9
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://arxiv.org/abs/1805.04174v1

