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 In the classification of traditional algorithms, problems of high features 

dimension and data sparseness often occur when classifying text. Classifying 

text with traditional machine learning algorithms has high efficiency and 

stability characteristics. However, it has certain limitations concerning large-

scale dataset training. In this case, a multi-label text classification technique 

is needed to be able to group four labels from the news article dataset. Deep 

Learning is a proposed method for solving problems in text classification 

techniques. This experiment was conducted using one of the methods of 

Deep Learning Recurrent Neural Network with the application of the 

architecture of Long Short-Term Memory (LSTM). In this study, the model 

is based on trial and error experiments using LSTM and 300-dimensional 

word embedding features with Global Vector (GloVe). By tuning the 

parameters and comparing the eight proposed LSTM models with a large-

scale dataset, to show that LSTM with features GloVe can achieve good 

performance in text classification. The results show that text classification 

using LSTM with GloVe obtain the highest accuracy is in the sixth model 

with 95.17, the average precision, recall, and F1-score are 95. Besides, 

LSTM with the GloVe feature gets graphic results that are close to good-fit 

on average. 
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1. INTRODUCTION  

Text classification is an important part of Natural Language Processing with many applications [1], such 

as sentiment analysis [2][3], information search [4], ranking [5], and document classification [6]. The text 

classification model is generally divided into two categories: machine learning and deep learning. Much 

research on text classification has involved traditional machine learning algorithms such as k-Nearest 

Neighbors [7][8], Naive Bayes [9][10], Support Vector Machine [11][12], Logistic Regression [13]. Also, 

compared to traditional machine learning classification algorithms have high efficiency and stability 

characteristics. However, it has certain limitations in the case of large-scale dataset training [14]. 

Recently, neural network-based models are becoming increasingly popular [15][16][17]. These models 

achieve excellent performance in practice, tend to be relatively slow both during training and testing, limiting 

their use to very large datasets [14]. Several recent studies have shown that the success of deep learning about 

text classification is highly dependent on the effectiveness of word embedding [17]. Specifically, Shen et al. 

2018 quantitatively show that the task of text classification based on word embedding can have the same level 

of difficulty regardless of the model used, using the concept of intrinsic dimension [1]. 

Some applications of deep learning methods used for text classifications include convolutional neural 

networks [16][17], autoencoder [19][20], deep belief network [21]. Recurrent Neural Network (RNN) is one 

of the most popular architectures used in natural language processing (NLP) because the recurrent structure is 
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suitable for variable length text processing. One of the deep learning methods proposed in this study is RNN 

with the application of the Long Short-Term Memory (LSTM) architecture. RNN can use a distributed word 

representation by first changing the token consisting of each text into a vector, which forms a matrix. Whereas, 

LSTM was developed to solve exploding and vanishing gradient problems that can be faced when training 

traditional RNN [22]. In addition to expanding memory, the classification of texts using LSTM in this study 

because the structure of LSTM is a sequence in which an integrated whole or cannot be cut as well as the 

structure of text documents that if cut will change the meaning of the sentence. The use of word embedding 

will be an input feature on LSTM before classifying text. 

 

2. RESEARCH METHOD  

2.1 Methodology 

In general, the steps in the research methodology used to assist in the preparation of this research proposal 

require a clear framework for the stages. The research framework used as in Figure 1, which consists of 

literature review by research in the past 1 year and 5 years, in preparing data the dataset used in this study is 

AGNews consist of 400,000 data samples, after preparing the dataset is pre-processing data by removing 

punctuation and tokenization, do the classification process with LSTM, and analyzing the results, and make 

conclusions. The classification process with LSTM consists of 3 sub-processes, namely the training process, 

validation, and testing. 

 
Fig. 1. Research Methodology 

 

2.2 Feature Extraction 

Feature extraction is an important part of machine learning, especially for text data. Text dataset is the 

most unstructured data which is necessary to produce meaning and structure used by machine learning 

algorithms. Recently, T. Mikolov introduced a better technique for extracting features from text using the 

concept of embedding or placing words into vector spaces based on context. This approach to word embedding, 

called Word2Vec, solves the problem of representing contextual word relationships in computable feature 

space [23]. J. Pennington in 2014 developed a vector representation of learning spaces from words called 

GloVe and placed them in Stanford's NLP lab [24]. In this study use 300 embedding dimensions of GloVe to 

be an input feature in LSTM. 

 

2.3 Recurrent Neural Network 

RNN is a type of neural network with a memory status for processing sequence inputs. Traditional RNN 

has a problem called gradient vanishing and exploding during training [25]. Recurrent node activation consists 

of feedback for itself from one time-step to the next. RNN is included in the deep learning category because 

data is processed automatically and without defining features [26]. RNN can use the internal states (memory) 

to process the input sequence. This makes it applicable to tasks such as Natural Language Processing (NLP) 

[15], speech recognition [25], music synthesis [27], and time-series financial data processing [28]. There are 

two implementations of RNN i.e Backpropagation Through Time (BPTT) algorithm for calculating gradients 

and Vanishing Gradient problems that have led to the development of LSTM and GRU, the two most popular 

and powerful models currently used in NLP. 
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The basic equation of RNN, 

 𝑠𝑡 = tanh⁡(𝑈𝑥𝑡 +𝑊𝑠𝑡−1) (1) 

 𝑦̂𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝑠𝑡) (2) 

2.2 Long Short-Term Memory 

Long short-term memory (LSTM) has recently become a popular tool among NLP researchers for their 

superior ability to model and learn from sequential data. These models have shown state-of-the-art results on 

various public benchmarks ranging from the classification of sentences [29] and various tagging problems [30] 

for language modeling [16][17], and sequence-to-sequence predictions [26]. LSTM aims to solve the RNN 

problem called gradient vanishing and exploding. LSTM replaces hidden vectors from recurrent neural 

networks with memory blocks equipped with gates. This can maintain long-term memory in principle by 

practicing appropriate gating weights and has proven to be very useful in achieving state-of-the-art for various 

problems, including speech recognition [31]. LSTM was proposed by Hochreiter and Schmidhuber, 1997 to 

specifically address this problem of learning long-term dependency. LSTM stores separate memory cells in it 

which can update and display their contents only if necessary [32]. The LSTM gates mechanism implements 

three layers; (1) inputs gate, (2) forget gate, and (3) output gate [33]. 

Each LSTM unit, can be seen in Figure 2 has a memory cell, and the states at time t are represented as ct. 

Reading and modifying are controlled by the sigmoid gate and affect the input gate it, forget gate ft and output 

gate ot. LSTM is calculated as follows: At the moment of the moment, the model receives input from two 

external sources (ht-1 and xt). The hidden states ht is calculated by the xt input vector the network received at 

time t and the previous hidden states ht-1. When calculating the hidden layer node states, input gate, output gate, 

forget gate and xt will simultaneously affect the state of the node. 

 
Fig. 2. LSTM Architecture 

A step-by-step explanation of the LSTM cell and its gates is provided below: 

1) Input Gate: 

 𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)  (3) 

 𝐶̌𝑡 = tanh⁡(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶 (4) 

2) Forget Gate: 

 𝑓𝑡 = ⁡𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡 + 𝑏𝑓) (5) 

3) Memory State: 

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (6) 

4) Output Gate: 

 𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)  (7) 

 ℎ𝑡 = 𝑜𝑡 ∗ tanh⁡(𝐶𝑡) (8) 

 

2.3 Evaluation 

The multi-label evaluation steps of the confusion matrix in the following equations: 

 

𝐴𝑐𝑐 =
∑

𝑇𝑃𝑖 + 𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖
𝑙
𝑖=1

𝑙
∗ 100% 

(9) 

 
𝑃𝑟𝑒𝑠𝑖𝑠𝑖 =

∑ 𝑇𝑃𝑖
𝑙
𝑖=1

∑ (𝐹𝑃𝑖 + 𝑇𝑃𝑖)
𝑙
𝑖=1

∗ 100% (10) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =

∑ 𝑇𝑃𝑖
𝑙
𝑖=1

∑ (𝑇𝑃𝑖 + 𝐹𝑁𝑖)
𝑙
𝑖=1

∗ 100% (11) 

 
𝐹1⁡𝑠𝑐𝑜𝑟𝑒 =

2 ∗ 𝑃𝑟𝑒𝑠𝑖𝑠𝑖 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑠𝑖𝑠𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(12) 

 

2.4 Optimization 

There are some types of optimizers for deep learning models such as SGD, Adam, RMSProp, etc. This 

paper applied Adam and RMSProp for training the data. Adam Optimizer can control sparse gradient issues 

[34]. It is an expansion to stochastic gradient descent that has currently seen wider adoption for deep learning 

applications such as Natural Language Processing.  

 

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (13) 

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 + 𝛽2)𝑔𝑡
2 (14) 

 

where m and v refer averages the first two moments of the gradient, g indicates gradient on current mini-

batch. RMSProp can adapt the learning rate for each of the parameters. It aims to divide the learning rate for 

weight by a running average of the magnitudes of recent gradients for that weight [35]. 

 𝑣(𝑤, 𝑡) ≔ ⁡𝛾𝑣(𝑤, 𝑡 − 1) + (1 − 𝛾)(∇𝑄𝑖(𝑤))
2 (15) 

Where γ is the forgetting factor. 

And the parameters are updates as, 

 𝑤⁡ ∶= 𝑤 −⁡
𝑛

√𝑣(𝑤, 𝑡)
∇𝑄𝑖(𝑤) 

(16) 

 

2.5 Pre-Processing  

2.5.1 One-hot encoding 

The first pre-processing in this research is One-hot encoding. One-hot encoding is changing text data 

(categorical) into numbers. Machine learning algorithms cannot work with categorical data directly. 

Categorical data must be converted to numbers. This applies because research works with the type of sequence 

classification and uses deep learning methods such as Long Short-Term Memory Recurrent Neural Networks. 

 

2.5.2 Tokenization and Remove Punctuation 

Tokenization is the process of breaking up the flow of text into words, phrases, symbols, or other 

meaningful elements called tokens. Tokenizing means splitting up text into units that have minimal meaning. 

This is a mandatory step before all types of processing. This process will divide the text into sentences and 

sentences into typographic tokens. That means separating punctuation. The feature generated from tokenizing 

is training data. In this process, padding is also carried out to identify the end of the sentence because the 

decoder is trained sentence by sentence.  

 

3 RESULTS AND DISCUSSION 

3.1 Dataset 

Previous research on Zhang 2015, Wang 2018 has shown work well with large-scale datasets [16][36]. 

From eight large-scale datasets, the AGNEWS dataset was taken for training. AGNews is a classification of 

topics in four categories of Internet news articles consisting of titles and descriptions classified into four classes: 

World, Entertainment, Sports, and Business. The dataset is shown in Table 1, with the following content 

specifications:  

 

Table 1. Dataset Specification 

Dataset Class Contains 

AGNews 4 496,835 
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3.2 Training Process 

AGNews dataset is divided into 80% each for training and 20% for testing. The training dataset used is 

not used for LSTM testing, and vice versa. From 80% of the training data, 10% is used for the data validation 

process. The amount of each dataset is randomly split, with an automatic data split. 

 

3.3 Training Models 

The hyper-parameters used are the Relu and Tanh activation functions, Adam and RMSProp optimizers 

will be validated with a learning rate of 0.001 and 0.0001 to minimize errors. The dimensions of word 

embedding are 300. The structure and hyper-parameters used in LSTM validation with the Glove features can 

be shown in Table 2. 

 

Table 2. Training Models LSTM with GloVe 

Model Epoch Neuron 
Learning 

Rate 
Optimizer 

Loss 

Function 

Activation Function 
Dimension 

Hidden Output 

1 50 128 0.001 Adam 
Categorical 

Cross Entropy 
Relu Softmax 300 

2 50 128 0.001 Adam 
Categorical 

Cross Entropy 
Tanh Softmax 300 

3 50 128 0.001 RMSProp 
Categorical 

Cross Entropy 
Relu Softmax 300 

4 50 128 0.001 RMSProp 
Categorical 

Cross Entropy 
Tanh Softmax 300 

5 50 128 0.0001 Adam 
Categorical 

Cross Entropy 
Relu Softmax 300 

6 50 128 0.0001 Adam 
Categorical 

Cross Entropy 
Tanh Softmax 300 

7 50 128 0.0001 RMSProp 
Categorical 

Cross Entropy 
Relu Softmax 300 

8 50 128 0.0001 RMSProp 
Categorical 

Cross Entropy 
Tanh Softmax 300 

 

3.4 LSTM Models 

The LSTM sequence classification training process using the word embedding feature Global Vector 

(GloVe) 300 dimension is trained with hyper-parameter embedding matrix obtained from pre-processing the 

GloVe feature on input, activation of Relu and Tanh on hidden gate, softmax activation on output gate, 

optimizer Adam and RMSprop, with dropout 0.5 and epoch 50, have been trained in each of 8 models with 

tuning Learning rates of 0.001 and 0.0001. The hyperparameter learning rate controls the rate or speed at which 

the learning model. Specifically, this controls the number of divided errors whose model weights are updated 

with each time they are updated, such as at the end of each batch of training examples. The learning rate is 

perhaps the most important hyperparameter. 

 

3.4.1 Model 1 

Table 3 shows the results of the evaluation performance of the LSTM training process that was trained 

using Relu activation, Adam optimizer with a learning rate of 0.001. The accuracy of the training obtained in 

model 1 is 95.33. Confusion matrix will be used to calculate the Precision, Recall, and F1-score, the results of 

which can be seen in Table 3 as a result of the evaluation performance of the test. The results in Table 4 show 

that the training and testing accuracy values are not much different, which is 95 with an average value of 

Precision, Recall, and F1-score of 95. To see the comparison of training and testing per epoch in the accuracy 

curve can be seen in Figure 3 and the curve loss in Figure 4. 
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Table 3. Performance Evaluation Results of the LSTM Training Process  

with Relu Activation Parameters, Adam Optimizer with a learning rate of 0.001  

Accuracy 95,33 

Confusion 

Matrix 

Label 0 1 2 3 

0 29731 286 200 120 

1 343 21462 1186 237 

2 341 859 20463 105 

3 176 253 113 8609 

 

Table 4. Performance Results Evaluation of the LSTM Testing Process  

with Relu Activation Parameters, Adam Optimizer with a learning rate of 0.001 

Label Precision Recall F1-Score Data 

0 97 98 98 30337 

1 94 92 93 23228 

2 93 94 94 21768 

3 95 94 94 9151 

Avg 95 95 95 84484 

 

 
Fig. 3. Comparison Curve of Training and Testing Accuracy of 50 epochs 

 

 
Fig. 4. Comparison of Training Loss and Testing Curves of 50 epochs 

 

3.4.2 Model 2 

Table 5 shows the results of the performance evaluation of the LSTM training process that was trained 

using Tanh activation, Adam optimizer with a learning rate of 0.001. The accuracy of the training obtained in 

model 2 is 95.34. Confusion matrix will be used to calculate the Precision, Recall, and F1-score, the results of 

which can be seen in Table 6 as a result of the evaluation performance of the test. Based on the two models 

above using the same optimizer and learning rate with both Relu and Tanh activation, the resulting value is 

also not much different. The value of training and testing accuracy, average precision, recall, and f1-score of 

95. Figure 5 shows the comparison curve of training and testing accuracy, and Figure 6 shows the Loss curve. 
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Table 5. Performance Evaluation Results of the LSTM Training Process  

with Tanh Activation Parameters, Adam Optimizer with a learning rate of 0.001  

Accuracy 95,34 

Confusion 

Matrix 

Label 0 1 2 3 

0 29798 267 214 126 

1 356 21139 1413 247 

2 359 755 20425 141 

3 177 245 88 8734 

 

Table 6. Performance Results Evaluation of LSTM Testing Process  

with Tanh Activation Parameters, Adam Optimizer with a learning rate of 0.001 

Label Precision Recall F1-Score Data 

0 97 98 98 30405 

1 94 91 93 23155 

2 92 94 93 21680 

3 94 94 94 9244 

Avg 95 95 95 84484 

 

 
Fig. 5. Comparison of Training Accuracy and Testing Curves of 50 epochs 

 

 
Fig. 6. Comparison of Training Loss and Testing Curves of 50 epochs 

 

3.4.3 Model 3 

 In model 3 is trained with Relu activation hyperparameter, RMSprop optimizer and learning rate 

0.001. The results of the training evaluation performance can be shown in Table 7, while the results of the 

testing evaluation are shown in Table 8. The accuracy obtained in the training process is 94.25 with an average 

value of precision, recall, and f1-score of 94. Not much different from the value of testing accuracy which is 

equal to 94.37. The comparison training curve and testing of accuracy and loss can be seen in Figure 7 and 

Figure 8. 
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Table 7. Performance Results of LSTM Training Process Evaluation  

with Relu Activation Parameters, RMSprop Optimizer with a learning rate of 0.001  
Accuracy 94,25 

Confusion 

Matrix 

Label 0 1 2 3 

0 29705 316 187 153 

1 431 21329 1179 314 

2 426 996 20026 176 

3 221 259 98 8668 

 
Table 8. Performance Evaluation Results of the LSTM Testing Process  

with Relu Activation Parameters, RMSprop Optimizer with a learning rate of 0.001 

Label Precision Recall F1-Score Data 

0 96 98 97 30361 

1 93 92 92 23253 

2 93 93 93 21624 

3 93 94 93 9246 

Avg 94 94 94 84484 

 

 
Fig. 7 Comparison of Training Accuracy and Testing Curves of 50 epochs 

 

 
Fig. 8 Comparison of Training Loss and Testing Curves of 50 epochs 

 
3.4.4 Model 4 

In model 4 is trained with Tanh activation hyperparameter, RMSprop optimizer and learning rate 

0.001. The results of the training evaluation performance can be shown in Table 9, and the results of the testing 

evaluation are shown in Table 10. The accuracy obtained in the training process is 94.32 with an average value 

of precision, recall, and f1-score of 94. The testing accuracy is 94.56. The test results in Table 10 show that the 

macro average of precision is 95, while the recall and f1-score are 94. The accuracy value in this process is 95. 

The comparison training curve and accuracy testing can be seen in Figure 9 and the loss in Figure 10. Both 

Adam and RMSprop optimizers trained with a learning rate of 0.001 showed results that are not much different. 
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Table 9. LSTM Training Process Performance Evaluation Results  

with Tanh Activation Parameters, RMSprop Optimizer with a learning rate of 0.001  

Accuracy 93,21 

Confusion 

Matrix 

Label 0 1 2 3 

0 30083 226 179 104 

1 573 21340 1107 227 

2 481 926 20197 101 

3 298 250 122 8270 

 

Table 10. Performance Results Evaluation of LSTM Testing Process  

with Tanh Activation Parameters, RMSprop Optimizer with a learning rate of 0.001  

Label Precision Recall F1-Score Data 

0 96 98 97 30592 

1 94 92 93 23247 

2 93 93 93 21705 

3 95 93 94 8940 

Avg 95 94 94 84484 

 

 
Fig. 9. Comparison of Training Accuracy and Testing Curves of 50 epochs 

 
Fig. 10. Comparison of Training Loss and Testing Curves of 50 epochs  

 

3.4.5 Model 5 

The LSTM model 5 was trained with the same hyperparameter with a tuning learning rate of 0.0001. 

Table 11 shows the results of the training evaluation performance and Table 12 shows the performance results 

of the classification testing evaluation with the activation of Relu, Adam optimizer, and 300-dimensional 

GloVe word embedding. The accuracy value in the training and testing process for learning rates 0.001 and 

0.0001 with the same optimizer, namely Adam gets results that are not much different, both precision, recall, 

and f1-score of 95. However, the accuracy and loss curves obtained in learning a rate of 0,0001 is better than 

an accuracy and loss curve with a learning rate of 0.001. It can be seen in Figure 11 and Figure 12. 
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Table 11. Performance Evaluation Results of the LSTM Training Process  

with Relu Activation Parameters, Adam Optimizer with a learning rate of 0.0001 

Accuracy 94,58 

Confusion 

Matrix 

Label 0 1 2 3 

0 29884 232 235 146 

1 390 21192 1297 247 

2 320 739 20491 94 

3 153 228 120 8716 

 
Table 12. Performance Evaluation Results of the LSTM Testing Process  

with Relu Activation Parameters, Adam Optimizer with a learning rate of 0.001 

Label Precision Recall F1-score Data 

0 97 98 98 30497 

1 95 92 93 23126 

2 93 95 94 21644 

3 95 95 95 9217 

Avg 95 95 95 84484 

  

 
Fig. 11. Comparison of Training Accuracy and Testing Curves of 50 epochs 

 

 
Fig. 12. Training Loss Comparison Curve and Testing 50 epoch  

 
3.4.6 Model 6 

In Model 6, training was carried out with the same hyperparameter with Tanh activation, Adam 

optimizer, and a learning rate of 0.0001. The results of training evacuation performance and confusion matrix 

are shown in Table 13 with training accuracy of 95. While the results of testing evaluation performance are in 

Table 14 with an average value of precision, recall, and f1-score of 95. Figure 13 shows a comparison curve 

of training and testing accuracy for 50 epochs. Although the loss in the validation process continues to decrease, 

at the 40th epoch the same and slightly greater than the training loss can be seen in Figure 14. 
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Table 13. Performance Evaluation Results of the LSTM Training Process  

with Tanh Activation Parameters, Adam Optimizer with a learning rate of 0.0001  

Accuracy 95 

Confusion 

Matrix 

Label 0 1 2 3 

0 29940 221 216 113 

1 340 21314 1177 245 

2 309 841 20510 113 

3 172 229 103 8641 

 
Table 14. Performance Results Evaluation of LSTM Testing Process  

with Tanh Activation Parameters, Adam Optimizer with a learning rate of 0.0001 

Label Precision Recall F1-score Data 

0 97 98 98 30490 

1 94 92 93 23076 

2 93 94 94 21773 

3 95 94 95 9145 

Avg 95 95 95 84484 

 

 
Fig. 13. Comparison Curve of Training and Testing Accuracy of 50 epochs  

 
Fig. 14. Curve Comparison of Training and Testing Loss of 50 epochs  

 

3.4.7 Model 7 

In model 7, it was trained with Relu activation parameters, RMSprop optimizer, and tuning learning 

rate 0,0001. Table 15 shows the results of the training evaluation performance and confusion matrix of 50 

epochs obtained an accuracy of 93.24. The results of the evaluation performance of precision testing, recall, 

and f1-score are in Table 16. The accuracy curve resulting from training and testing can be seen in Figure 15 

and the loss curve in Figure 16, which shows that the results of the RMSprop optimizer parameter with a tuning 

learning rate of 0,0001 are more fit than the RMSprop with a learning rate of 0.001 although there is a slight 

up and down in accuracy and loss. 
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Table 15. Performance Evaluation Results of the LSTM Training Process  

with Relu Activation Parameters, RMSprop Optimizer with a learning rate of 0.0001  

Accuracy 93,24 

Confusion 

Matrix 

Label 0 1 2 3 

0 29625 305 272 147 

1 458 21251 1293 315 

2 440 954 20192 135 

3 214 264 157 8462 

 
Table 16. Performance Evaluation Results of the LSTM Testing Process  

with Relu Activation Parameters, RMSprop Optimizer with a learning rate of 0,0001 

Label Precision Recall F1-score Data 

0 96 98 97 30349 

1 93 91 92 23317 

2 92 93 93 21721 

3 93 93 93 9097 

Avg 94 94 94 84484 

 

 
Fig. 15. Comparison of Training Accuracy and Testing Curves of 50 epochs 

 
Fig. 16. Curve Comparison of Training and Testing Loss of 50 epochs 

 
3.4.8 Model 8 

Model 8 was trained with Tanh activation parameters, RMSprop optimizer, and a learning rate of 

0.0001 resulting in training accuracy of 93.21. The results of the training evaluation performance can be seen 

in Table 17 where there are four class confusion matrix multilabel. The results of the evaluation performance 

of the test are in Table 18 with an average value of precision, recall, and f1-score of 94. The comparison training 

curve and testing accuracy model can be seen in Figure 17 with the value of testing accuracy exceeding training 

accuracy. While the loss model curve decreases with the passage of 50 epochs, where the test loss is smaller 
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than the training loss can be seen in Figure 18. Table 19 shows a comparison of the testing accuracy of the 

eight LSTM models using the word embedding GloVe. 

  

Table 17. Performance Evaluation Results of the LSTM Training Process  

with Tanh Activation Parameters, RMSprop Optimizer with a learning rate of 0.0001 

Accuracy 93,21 

Confusion 

Matrix 

Label 0 1 2 3 

0 29738 264 272 154 

1 470 20921 1509 309 

2 406 882 20128 176 

3 251 256 147 8601 

 

Table 18. Performance Results Evaluation of LSTM Testing Process  

with Tanh Activation Parameters, RMSprop Optimizer with learning rate 0.0001  

Label Precision Recall F1-score Data 

0 96 98 97 30349 

1 94 90 92 23317 

2 91 93 92 21721 

3 93 93 93 9097 

Avg 94 94 94 84484 

 

 
Fig. 17. Comparison Curve of Training and Testing Accuracy of 50 epochs 

 
Fig.18. Comparison of Training and Testing Loss Curves in 50 epochs 

 

In the eight of tuning models LSTM using the word embedding Glove feature, the highest test 

accuracy was 95.17 in model 6 with Tanh activation parameters, Adam optimizer, and a learning rate of 0.0001. 

While the accuracy and loss model which close to good-fit on models with a learning rate of 0.0001 either with 

Adam or RMSprop optimizer. Table 20 shows the comparison results of previous works. 

 

Table 19. Accuracy of testing of the eight LSTM models Using  
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the Word Embedding GloVe Feature 

Model Epoch Neuron Lr Optimizer Hidden Accuracy 

1 50 128 0.001 Adam Relu 95.01 

2 50 128 0.001 Adam Tanh 94.81 

3 50 128 0.001 RMSProp Relu 94.37 

4 50 128 0.001 RMSProp Tanh 94.56 

5 50 128 0.0001 Adam Relu 95.03 

6 50 128 0.0001 Adam Tanh 95.17 

7 50 128 0.0001 RMSProp Relu 94.17 

8 50 128 0.0001 RMSProp Tanh 93.97 

 
Table 20. The Comparison of Previous Works 

Model AGNews 

Bag-of-words (Zhang et al.,2015) 88.8 

Small word CNN (Zhang et al.,2015) 89.13 

Large word CNN (Zhang et al.,2015) 91.45 

LSTM (Zhang et al.,2015) 86.06 

Deep CNN (29 layer) (Conneau et al.,2017)  91.27 

SWEM (Shen et al.,2018) 92.24 

fastText (Joulin et al.,2016) 92.5 

LEAM (Wang et al., 2018) 92.45 

LEAM (linear) (Wang et al., 2018) 91.75 

GloVe + LSTM 95.17 

 
4 CONCLUSION 

Text classification using LSTM is done by conducting trial and error experiments. Text classification 

using LSTM with the Glove feature does hyper-parameter tuning to get the best model. Whereas, the LSTM 

and hyperparameter structure used from the test results are using embedding of the GloVe features in the input, 

softmax activation function in the output, Relu and Tanh activation functions, loss categorical cross-entropy 

function, learning rate 0.001 and 0.0001, with the number epoch 50. The highest accuracy with the Glove 

feature is on the sixth model of 95.17 with an average precision, recall, and F1-score of 95. It can be concluded 

that the LSTM evaluation results using the GloVe feature can achieve good performance both in accuracy and 

the curves.  
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