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 Indonesia is one of the countries affected by the coronavirus pandemic, which 

has taken too many lives. The coronavirus pandemic forces us to continue to 

wear masks daily, especially when working to break the chain of the spread of 

the coronavirus. Before the pandemic, face recognition for attendance used the 

entire face as input data, so the results were accurate. However, during this 

pandemic, all employees use masks, including attendance, which can reduce 

the level of accuracy when using masks. In this research, we use a deep 

learning technique to recognize masked faces. We propose using transfer 

learning pre-trained models to perform feature extraction and classification of 

masked face image data. The use of transfer learning techniques is due to the 

small amount of data used. We analyzed two transfer learning models, namely 

VGG16 and MobileNetV2. The parameters of batch size and number of epochs 

were used to evaluate each model. The best model is obtained with a batch size 

value of 32 and the number of epochs 50 in each model. The results showed 

that using the MobileNetV2 model was more accurate than VGG16, with an 

accuracy value of 95.42%. The results of this study can provide an overview 

of the use of transfer learning techniques for masked face recognition. 
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1. INTRODUCTION  

More than 1,390,000 people have recently been infected with the coronavirus, which comes from Wuhan, 

China. The month of March 2021 has caused more than 37,000 deaths in Indonesia [1]. The Indonesian 

government has taken numerous measures to limit the spread of the coronavirus, including mask-wearing, hand 

washing, and social distancing. The use of masks is essential in preventing the coronavirus's transmission, 

protecting ourselves and others [2]. In offices, schools, or universities, employees who are about to start work 

always check their body temperature and wear masks correctly. A suitable mask is worn to protect oneself from 

other people's coughing and sneezing, as well as from the surrounding air, which may contain viruses in the 

form of aerosols that mix in the air for an extended period [3]. 

Air contaminated with the coronavirus is dangerous for people who move around it, especially for 

workers. It is a particular concern when working in offices, one of the activities when starting work is doing 

attendance. Some agencies or offices have used attendance using facial biometric data [4][5]. Biometric data 

is biological data that humans have since birth. Humans can use biometric data to provide information about 

an individual's identity based on physical characteristics that distinguish individuals from one another [6][7]. 

The use of facial data for identity recognition is popular because, visually, it can be easily recognized through 

the sense of sight. Facial characteristics often used for identity recognition are face shape, skin color, facial 

components such as nose, mouth, and eyes [8]. However, the coronavirus pandemic requires employees to 

carry out activities using masks that occlusion some facial features when identity recognition is carried out. 

This mask makes the identity recognition system using facial biometric data become less accurate. Almost half 
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of the faces are occluded by masks. The occlusion mask on the face recognition requires application in Artificial 

Intelligence [9][10][11], especially the use of deep learning for training masked face data. 

Previous research related to masked face recognition using deep learning resulted in an accuracy value of 

94.5% [12]. This result is not quite optimal for accuracy. Therefore, we propose another deep learning method 

to increase the accuracy value. Computer vision is a science field that extracts image patterns to obtain 

information or image descriptions [13]. One of the techniques often used in computer vision is using deep 

learning that processes image data by convolution. This masked facial data is not too much for one person's 

identity. A deep learning technique for processing data that is not too much is using transfer learning, which 

means that the model has been previously trained with other data [14][15]. One of the transfer learning 

techniques from the Keras library is MobileNetV2 [16] and VGG16 [17]. 

Researchers Hu and Ge [18] used the MobileNetV2 transfer learning model to recognize facial 

expressions. This research results in an accuracy of 97.98%. The result is pretty accurate in the case of facial 

expression recognition. Other studies have also used pre-trained MobileNetV2 to classify interest rates 

accurately above 96% [19]. Then, the research of Ruvinga et al. [17] used VGG16 to recognize human 

concentration levels based on their faces. The system created is good enough that it results in an accuracy of 

93.47%. These studies provide an overview of transfer learning techniques that can be used to classify facial 

data with optimal accuracy and speed. Therefore, we will analyze the use of the two models, namely 

MobileNetV2 and VGG16, to recognize human faces wearing masks. We hope to find the best accuracy values 

for masked facial recognition systems. 

 

2. RESEARCH METHOD  

Fig. 1 shows the masked face recognition system architecture. The masked face recognition system begins 

with the training dataset stage. This study uses training and validation data as input in people's faces and the 

identities of people's names. The identity of the person's name will be as the label used for the testing phase on 

other image data with the same identity. Before the dataset is processed using transfer learning, the data is 

resized to adjust the size of the transfer learning model that has previously been trained using ImageNet data. 

A small amount of data input requires data augmentation to increase the amount of data. The results of 

augmentation data are trained using transfer learning VGG16 or MobileNetV2. The use of two transfer learning 

models because it has been proven in other cases previous studies have resulted in accuracy above 93% for 

VGG16 [17] and above 96% for MobileNetV2 [18][19]. The training result is an h5 model, which will be 

evaluated to find the best model based on loss and accuracy values.  
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Fig. 1. The proposed system of masked face recognition 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&


232 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN 2338-3070 

 Vol. 7, No. 2, August 2021 pp. 230-237 

 

 

Comparative Study of VGG16 and MobileNetV2 for Masked Face Recognition (Faisal Dharma Adhinata) 

The testing phase in this study uses other face image data with the same person to evaluate system 

accuracy. The face images are resized so that they are the same size as the trained dataset. The next stage is a 

matching feature that generates facial identity. The results of facial identity recognition will be evaluated to 

test the performance of the system being built.  

 

2.1. Data Acquisition 

We used primary data in the form of the facial image representing 35 distinct identities in our experiment. 

Each identity has ten facial images, so that the total amount of data used in this study is 350. From each identity 

data, 80% of which are used for training and 20% for validation. Each image in this study is composed of three 

colors channels: red, green, and blue (RGB). Fig. 2 shows an example of the data and labels used in this study. 

Before performing transfer learning on the original face dataset, it is scaled to 224×224 pixels.  The purpose 

of this resized is to adjust the size of the resolution of the VGG16 and MobileNetV2 pre-trained models. 

 

     

Abdur Adam Arif Izmi Aldhan 
Fig. 2. Samples of data and label 

 

2.2. Data Augmentation 

This study uses augmentation data to increase the number of datasets. This stage was carried out because 

the number of original training datasets only amounted to 8 images. Data augmentation in this study uses a 

library from Keras, namely ImageDataGenerator, often used as geometric augmentation [20]. In the training 

data using augmentation with rescaling parameters of 1./255. Then, the rotation_range parameter is used to 

rotate the image by 45 degrees. The width_shift_range and height_shift_range parameters allow controlling the 

amount of horizontal and vertical shift by 0.3, respectively. The horizontal_flip parameter is used for flipping 

inputs horizontally. Next, the fill_mode parameter uses nearest. The fill_mode parameter is used to resample 

the image if the target size is different from that of the loaded image. Data validation only uses augmentation 

data with rescale parameters of 1./255. 

 

2.3. Deep Learning 

The recognition of objects in computer vision aims to make decisions related to actual physical objects 

based on images obtained from sensors, such as cameras. Object recognition often uses machine learning 

technology. Machine learning is a technique to imitate how humans learn and generalize through the training 

process of data. The result is drawing conclusions based on training data [21]. As technology develops, machine 

learning has evolved into deep learning. Deep learning is an artificial neural network method that processes 

input data and processes it using many hidden layers. Then the result is a non-linear transformation of the input 

data to calculate the output value [22]. Deep learning that is often used to process image data is often known 

as a Convolutional Neural Network. Deep learning is usually used on large amounts of data, but the data is not 

too much like masked facial recognition in this research. One technique for processing less data is transfer 

learning [23], which means that the model has been previously trained with other data [14]. Examples of 

transfer learning models are VGG16 and MobileNetV2. 

 

2.4. VGG16 

K. Simonyan and A. Zisserman of the University of Oxford proposed the VGG16 convolutional neural 

network model [24]. The VGG16 architecture is a Convolutional Neural Network (CNN) utilized to win the 

2014 ILSVR (ImageNet) competition. It is widely regarded as one of the most exemplary vision model 

architectures to date. The most distinguishing feature of VGG16 is that, rather than having a vast number of 

hyper-parameters, they concentrated on 3×3 convolution layers with stride one and always employed the same 

padding and max-pooling layers 2×2 filter with stride 2. It maintains this order of convolution and max-pooling 

layers throughout the architecture. Finally, it includes two FC (Fully Connected layers) and a softmax for 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&


ISSN 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI)               233 

  Vol. 7, No. 2, August 2021, pp. 230-237 

 

 

Comparative Study of VGG16 and MobileNetV2 for Masked Face Recognition (Faisal Dharma Adhinata) 

output. The 16 in VGG16 alludes to the fact that it has sixteen weighted layers. It is a vast network with 

approximately 138 million (estimated) parameters [25]. The VGG16 architecture is shown in Fig. 3. 

 

 
Fig. 3. VGG16 architecture [26] 

 

2.5. MobileNetV2 

In April 2017, MobileNet debuted its second version. MobilenetV2, like MobilenetV1, employs 

depthwise and pointwise convolution. MobileNetV2 adds two new CNN layers: an inverted residual layer and 

a linear bottleneck layer. MobileNetV2 introduces two new capabilities: 1) bottlenecks that are linear and 2) 

shortcut links between bottlenecks [27]. There is input and output between models in the bottleneck region, 

whereas the inner layer or layer encapsulates the model's ability to convert lower-level notions (i.e., pixels) to 

higher-level descriptors (i.e., image categories). 

Finally, like with residual connections in classical CNNs, bypassing bottlenecks enables faster training 

and increased accuracy. As illustrated in Table 1, the MobileNetV2 network is mainly constructed using the 

inverted residual layer presented in the research [28]. Additionally, the model may modify object detection and 

semantic segmentation by utilizing the network as a feature extractor. 

 

Table 1. MobileNetV2 architecture [28] 

Input Operator t c n s 

2242 × 3 conv2d - 32 1 2 

1122 × 32 bottleneck 1 16 1 1 

1122 × 16 bottleneck 6 24 2 2 

562 × 24 bottleneck 6 32 3 2 

282 × 32 bottleneck 6 64 4 2 

142 × 64 bottleneck 6 96 3 1 

142 × 96 bottleneck 6 160 3 2 

72 × 160 bottleneck 6 320 1 1 

72 × 320 conv2 1×1 - 1280 1 1 

72 × 1280 avgpool 7×7 - - 1 - 

1 × 1 × 1280 conv2 1×1 - k -  

 

2.6. System Evaluation 

Research on masked face recognition is discussed in terms of the importance of training and validation 

accuracy. All training and validation results will be saved for each epoch and batch size combination. After the 

model is trained, we will evaluate the system's accuracy. Classification accuracy is a simple-to-understand 

concept that quantifies the proportion of instances in which a classifier correctly identifies the class of testing 

examples. Calculate the accuracy of a classifier using the formula shown in (1). 

 𝐶𝑅 =
𝐶

𝐴

 
(1) 

where, 𝐶𝑅 is the correct rate, 𝐶 is the number of image data testing recognized correctly and 𝐴 is the number 

of all image data testing. 
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3. RESULTS AND DISCUSSION  

This study uses a 3-channel color dataset, namely Red, Green, and Blue, with the size of each data being 

224×224. This size adjusts the size of the pre-trained model from ImageNet used in the VGG16 and 

MobileNetV2 models. The pre-trained model will classify the identities of 35 people who wear masks. Before 

testing using other image data, we tuned the batch size and epoch parameters to see the accuracy values for 

training and validation. We experimented with batch size values 2, 4, 8, 16, and 32. Then the best results from 

the batch size values were used to experiment with variations in the number of epochs, namely 10, 20, 30, 40, 

and 50. In this study, we used Adam as optimizer and binary_crossentropy as a loss. Table 2 shows the 

experimental results on the variation in the value of the batch size. Then, Table 3 shows the experimental results 

on the variation in the value of the number of epochs in the training data process. 

   

3.1. Training Result Analysis 

In this study, several metrics related to batch size variations and the number of epochs were recorded, as 

shown in Table 2 and Table 3. The measurement metrics seen in the training process were the value of training 

accuracy and validation. We used multiple variations in the batch size variation experiment, namely 2, 4, 8, 16, 

and 32. A batch size of 8 indicates that the dataset will be divided into batches for Neural Network training, 

with each batch containing eight data. 

Based on Table 2, the greater the number of batches, the better the accuracy value for training and 

validation. Even on MobileNetV2 in batch four, the training accuracy and validation values are 100%. Using 

the VGG16 model, resulting a maximum accuracy of 98% is obtained using batch size 32. In all variations of 

the experiment, the best batch size is 32 in both transfer learning models. Therefore, in the number of epoch 

experiments, we used batch size 32.  

 

Table 2. Experiments in the training data stage using batch size variations 

Pre-trained 

Model 

2 batch 4 batch 8 batch 16 batch 32 batch 

Train 

Acc. 

Val 

Acc. 

Train 

Acc. 

Val 

Acc. 

Train 

Acc. 

Val 

Acc. 

Train 

Acc. 

Val 

Acc. 

Train 

Acc. 

Val 

Acc. 

VGG16 0.9276 0.9571 0.9529 0.9706 0.9841 0.9844 0.9751 0.9844 0.9857 0.9844 

MobileNetV2 0.9558 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

Table 3. Experiments in the training data stage using the number of epochs variations 

Pre-trained 

Model 

10 Epoch 20 Epoch 30 Epoch 40 Epoch 50 Epoch 

Train 

Acc. 

Val 

Acc. 

Train 

Acc. 

Val 

Acc. 

Train 

Acc. 

Val 

Acc. 

Train 

Acc. 

Val 

Acc. 

Train 

Acc. 

Val 

Acc. 

VGG16 0.1293 0.2188 0.5707 0.4688 0.8628 0.8906 0.9569 0.9219 0.9857 0.9844 

MobileNetV2 0.9723 0.9688 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

An epoch is a point at which the complete dataset is trained on a Neural Network until it is reset to the 

beginning for one round. Based on Table 3, the value of training and validation accuracy using the 

MobileNetV2 model is 100% at epoch 20, in contrast to epoch on the VGG16 model, which has not reached 

100% on epoch 50. These results show that the best model is obtained using the pre-trained MobileNetV2 

model. 

Fig. 4 shows that the use of the VGG16 model is slightly underfitting because, in certain epochs, the 

training accuracy is greater than the validation accuracy. For example, suppose that around the epoch of 20 to 

30, it appears that the validation accuracy value is smaller than the training accuracy value. In the loss chart on 

training and validation, it is not so visible that overfitting or underfitting is because the difference in the value 

of training loss and validation is not too significant. Meanwhile, using the MobileNetV2 model, the training 

accuracy and validation graph do not show overfitting or underfitting, like loss training and validation results. 

Based on these results, to perform testing using other image data on the same identity, we use a batch size of 

32 and a maximum number of epochs of 50. In this study, we used the early stop function to prevent continuous 

overfitting or underfitting. If the seven epochs do not decrease the loss validation value, the data training 

process will be stopped. 
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(a)      (b) 

           
   (c)      (d) 

Fig. 4. The result of training data, (a), (b) VGG16, (c), (d) MobileNetV2 

 

3.2. Testing Result Analysis 

In this research, the proposed system needs to be tested to see the accuracy value generated using different 

data with the same identity. Table 4 shows the accuracy results for the proposed system. We used 175 testing 

data with 35 identities in the same training data. The VGG16 model contained 13 false identities, while using 

the MobileNetV2 model only had eight false identities. Then in Fig. 5 shows an example of the results of 

matching data with the model that has been made.   

 

Table 4. The accuracy results matching data testing with VGG16 and MobileNetV2 

Pre-trained Model Accuracy 

VGG16 92.57% 

MobileNetV2 95.42% 

 

    

Fig. 5. The result of matching data testing with model 

 

Fig. 5 shows the results of matching the image with the model that has been previously trained. The 

matching results show the face image and its identity. However, as a result of this matching, not all face images 

match with the correct identity. This incorrect face identification because the CNN model cannot classify it 

correctly. Based on Table 4, the accuracy value in using MobileNetV2 is higher than using the VGG16 model. 

The difference in accuracy is because, at the time of training model building, the value of training accuracy 
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and validation was also enormous for MobileNetV2, which reached 100%. These results prove that transfer 

learning techniques can be used to recognize masked faces. Future research can continue to calculate processing 

time when using video data as testing data. The results of this study were better than previous studies [12], with 

an accuracy of 94.5%. In other words, the accuracy increased by 0.92% to 95.42%. Previous research also used 

a combination of two deep learning techniques, namely RetinaFace and VGGFace2. Meanwhile, the proposed 

research only uses one deep learning based on MobileNetV2 transfer learning. 

 

4. CONCLUSION 

This research focuses on the face recognition of a person wearing a mask. The coronavirus pandemic 

forces us to continue to carry out health protocols, namely wearing masks when on the move, especially 

working. We propose the use of transfer learning techniques for facial feature extraction and classification 

according to identity. The results showed that the MobileNetV2 transfer learning model was better than 

VGG16, with an accuracy of 95.42%. These results indicate that using the MobileNetV2 model is better in 

classifying 35 different people's identities. This study also uses only one deep learning model, which is 

undoubtedly more efficient than previous studies using two deep learning models. The accuracy value also 

increased by 0.92% compared to previous studies. Future research can be developed on real-time video data so 

that the data processing speed can be known. 
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