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 Crude oil has an important role in the financial indicators of global markets 

and economies. The price of crude oil influences the income of a country, both 

directly and indirectly. This includes affecting the prices of basic needs, 

transportation, commodities, and many more. Therefore, understanding the 

future price of crude oil is essential in helping to budgeting and planning for a 

better economy. The contribution of this research is in finding the best 

hyperparameters and using early stopping methods in the LSTM model to 

predict oil prices. This research implemented Long Short-Term Memory 

(LSTM), an artificial neural network that can handle long-term dependencies 

and the problems of time series data. The LSTM method will be used to predict 

Brent oil prices on daily and weekly time frames. The experiment has been 

conducted by tuning some parameters to obtain the best result. From the daily 

time frame experiment, the model obtained RMSE and MAE of 1.27055 and 

0.92827, respectively, while the weekly time frame has RMSE and MAE of 

3.37817 and 2.60603, respectively. The results show that the LSTM model can 

improve to the trends that occur in the original data.  
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1. INTRODUCTION  

Crude oil is the most widely used energy source in both industry and the economy, providing about 33% 

of the world's total energy consumption in 2019, according to the IEA (International Energy Agency) [1][2]. 

Despite renewable energy being the focus in the industrial and technological areas at present, the costs involved 

are still quite high. This is due to limitations on the availability of technology that supports renewable energy. 

Moreover, machines and equipment that use renewable energy are still on a small scale, thus limiting the use 

of renewable energy, and the efficiency of renewable energy still lacks because it is still not capable of 

transportation, storage, and technology to achieve it. Until now, crude oil still has the biggest share of the 

world's main energy source consumption [3][4]. 

As the main energy source, crude oil is very important because almost all industrial fields in every country 

have a dependency on crude oil in carrying out their activities for production and transportation [5][6]. A 

sudden increase in crude oil price can have direct or indirect impacts on economic growth, when the price of 

energy sources increases, demand will fall, this will cause employment and GDP (Gross Domestic Product) 

growth to decrease, thus increasing the inflation rate [7][8][9]. Various factors are affecting the instability in 

crude oil prices. In the long-term trend, the price is influenced by supply and demand, and the short-term trend 

is influenced by economic factors [10]. Therefore, an accurate prediction of crude oil prices is a big and 

important challenge because it can help make better budgeting and economic planning, especially during the 

COVID-19 pandemic. The price of crude oil during the COVID-19 outbreak has experienced a significant 

decline which makes the oil market very volatile. This makes predictions on oil prices very important, which 

can help monitor market movements to avoid suffering heavy losses [11][12]. 

In recent years deep learning has become a popular field that helps in performing classification and 

forecasting [13]. Several papers have proposed the use of the deep learning methodology in predicting time-

series data. In the study [14], conducted forecasting of crude oil Brent using the LSTM method. The results 

show that LSTM produces good performance with an RMSE value of 1.91 and 2.82 for the training and testing 
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set, respectively. The study [15] proposed LSTM to predict the stock price with the amount of data for various 

time frames. The result is that LSTM provides a better RMSE value with more data. For three years, the average 

RMSE value is around 0.9. In the study [16], they are comparing the performance of the Autoregressive 

integrated moving average (ARIMA) method with LSTM to predicting time-series data. This research resulted 

in an error reduction of 85% using LSTM compared to ARIMA. The study [17] conducted a comparison 

between LSTM with several methods, namely LSTM, Autoregressive Moving Average (ARMA), Artificial 

Neural Network (ANN), RNN, Decline Analysis, ARIMA, in making predictions for time-series data. The 

obtained results of this study indicate that LSTM produces better performance with an RMSE value of 1.74. 

Thus, based on the deep learning performance in the previous study, this research will use the LSTM 

method to make a prediction based on the daily and weekly time frame. Both datasets will help to analyze the 

result of the experiment on the oil price that has fluctuations and instability in the oil market. We choose daily 

data because it is easier to analyze the pressure on the prices and weekly for a bigger picture of a longer time 

frame. LSTM was created to handle the problem of vanishing gradient on Recurrent Neural Networks (RNN) 

[18]. LSTM was chosen because it can capture and extract historical information and predict the future on the 

problem of long-term dependencies [17]. 

The contribution of our research is the implementation of LSTM using the best hyperparameters and early 

stopping methods to further improve the performance of the LSTM model to predict crude oil prices. This 

research will focus on the application of the LSTM method using the best hyperparameters. The model will be 

built based on observations of previous research, but our model will use the early stopping method and then 

tune the hyperparameters. The early stopping method will help train the model without capturing excessive 

data noise, and fluctuations and the hyperparameters tuning will result in the model performing better than the 

previous research.  

 

2. RESEARCH METHOD  

2.1. Dataset 

One of the most important keys in conducting research is data preparation and collection. Deep learning 

methods require a larger volume of data. Therefore, the greater the volume of data, the better the results. The 

dataset to be used is historical data on the price of Brent oil from 1987 to 2021. Brent is the world’s most 

widely used oil benchmark. This is because Brent oil is easily processed into products such as gasoline, so that 

the demand for Brent oil remains consistent. The source of the dataset was obtained from the U.S. Energy 

Information Administration (EIA) and can be downloaded at www.eia.gov. 

The dataset consists of two attributes which are date and Brent oil price, as shown in Table 1. The value 

to be used for the Brent oil price is US Dollar. Each data will represent the price of Brent oil per barrel on its 

specific date. In this research, the dataset will be taken from daily and weekly time frames of Brent oil prices. 

A total of 8601 data will be used from the daily time frame dataset, and 1762 data will be used from the weekly 

time frame dataset. 

Table 1. Dataset of Brent Oil Price 

Day Price (Dollars/Barrel) 

05/20/1987 18.63 

05/21/1987 18.45 

05/22/1987 18.55 

05/25/1987 18.60 

05/26/1987 18.63 

 

2.2. Long Short-Term Memory (LSTM) 

LSTM is an improved model of recurrent neural network (RNN) designed to avoid vanishing gradient 

problems and able to learn long as well as short term dependencies [19][20]. LSTM was developed by Sepp 

Hochreiter and Jürgen Schmidhuber in 1997 [21]. LSTM improves the performance of RNN, which has 

difficulty dealing with vanishing gradients which will render the system inefficient when the long-term context 

is required and for tasks involving long-term dependencies.  

The RNN use Back Propagation Time algorithm which by the time goes by it will cause vanishing 

gradient and makes it unsuitable for dealing with long term dependencies problem [18][22]. LSTM is able to 

capture and learn short-term and long-term information on time series data, so it is suitable for predicting and 

processing time series problems. It replaces hidden nodes in the RNN model with memory units so it can avoid 

the vanishing gradient. The main key of LSTM is cell state and gate in handling vanishing gradients.  

Its architecture is shown in Fig. 1, composed of forget gate, input gate, output gate, wise point 

multiplication, sigmoid layer, tanh layers, and cell state operations. This will control the flow of information 
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that will enter and be remembered in memory of which will not be remembered and thrown away from memory 

[23][24]. 

 
Fig 1. Long Short-Term Memory Unit Structure [20] 

 

In the forget gate shown in (1), the current input and previous hidden state will pass through the sigmoid 

function, and it would decide to be kept or thrown away the fraction of the information from the previous cell 

state if it is useless. 

 𝑓𝑡 = 𝜎(𝑊𝑓|ℎ𝑡−1, + 𝑏𝑓) (1) 

Equation (2) and (3) is a formula for input and output gates. The input gate is used to update the cell state. 

The output gate determines the information that will be generated for the next hidden state from the current 

cell state. 

 𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +  𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) (2) 

 𝑜𝑡  = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) (3) 

In equation (4) is the formula for the hidden state "candidate", which calculates the previous and current 

value of the hidden state. 

 𝑔𝑡 = tanh(𝑊𝑥𝑔𝑥𝑡 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑏𝑔) (4) 

Equation (5) and (6) showed the formula for the cell state and hidden state, where * show the element of 

multiplication, while equation (7) and (8) is the formula for sigmoid and tanh function [25][26]. In equation 

(1) to equation (8), the symbol of 𝑥, 𝑡, 𝑤, 𝑏, ℎ, 𝑐 are stand for LSTM unit, time, weight, bias, hidden state, and 

cell state respectively. 

 𝑐𝑡  = 𝑔𝑡 ∗  𝑖𝑡 + 𝑐𝑡−1  +  𝑓𝑡 (5) 

 ℎ𝑡  = 𝑜𝑡  ∗  tanh(𝑐𝑡) (6) 

 𝜎(𝑥) =
1

1 +  𝑒−𝑥

 
(7) 

 tanh(𝑥) = 2𝜎(2𝑥) − 1 (8) 

 

2.3. Adaptive Moment Estimation (Adam) 

Adam is a method that computes individual adaptive learning rates for each parameter. It was first 

proposed in 2015 by Diederik P. Kingma and Jimmy Lei Ba. It is an optimizer algorithm that is used to 

minimize the loss function and determine the weight and bias values [27]. 
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Adam keeps the average of past quadratic gradients 𝑣𝑡  that decay is exponentially shown in (9), and an 

average that decreases exponentially from its past gradient 𝑚𝑡 Similar to momentum shown in (10) [28]. 

 𝑣𝑡 = β2𝑣𝑡−1 + (1 − β2)𝑔𝑡
2 (9) 

 𝑚𝑡 = β1𝑚𝑡−1 + (1 − β1)𝑔𝑡 (10) 

In equation (11), the default value of 0.9 for β1, 0.999 for β2, 10-8 for 𝜖, and 0.001 for η. Adam combines 

the advantages of two recently popular optimization methods AdaGrad and RMSProp. Overall, Adam proved 

resilient and a great fit for a variety of non-convex optimization problems in field machine learning [29]. 

 θ𝑡+1 = θ𝑡 −
η

√v̂𝑡 + 𝜖
m̂𝑡

 
(11) 

 

2.4. Data Normalization 

The data normalization method will produce a high quality of data that can feed into any learning 

algorithm. The time-series data can have a wide range of values, so it needs to be scaled to the same range of 

values to speed up the learning process [30]. 

This research will use Min-max scaling for the data normalization technique. This method converts each 

value in the dataset into a value in the range 0 to 1. The purpose of normalizing the data is to equalize the range 

of values in the attribute and avoid data becoming less influential due to the large difference in the range of 

values, as shown in (12) where x̂ is normalized data while 𝑥 is the data that you want to be normalized 𝑥𝑚𝑖𝑛 

and 𝑥𝑚𝑎𝑥 are minimum and maximum values of the data [31]. 

 x̂ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 
(12) 

 

2.5. Evaluation 

The evaluation performance of the LSTM model will be measured using performance metrics Root Mean 

Square Error (RMSE) and Mean Absolute Error (MAE). Both RMSE and MAE have been widely used as a 

standard statistical metric in measuring the performance of a model so that the model error can be found. They 

are widely used in climatological modeling, forecasting, and regression analysis in verifying the results 

obtained from the modeling. The closer to 0 the value, the better the modeling results obtained [31][32]. 

RMSE measures the average error of the model and relatively gives a large weight error since the error 

are squared before they are averaged. While MAE is weighted equally for each individual for the average 

because it is a linear scoring rule. Equations (13) and (14) are the formula of MAE and RMSE where 𝑛, Ã𝑖, 𝐴𝑖 

are the amount of data, the predicted data, and the actual data, respectively [31][32]. 

 

𝑀𝐴𝐸 =  
1

𝑛
∑ |Ã𝑖 − 𝐴𝑖|

𝑛

𝑖=1

 
(13) 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(Ã𝑖 − 𝐴𝑖)

2

n

𝑖=1

 

(14) 

 
2.6. Model Development 

This research experiment is based on the LSTM model to predict Brent oil price. First, the data will be 

sorted by converting the data for the date into an object. The full system design is shown in Fig 2. 

In Fig. 2, the dataset is transformed using the min-max normalization method by processing the minimum 

and maximum values of each attribute. The range used in this method is 0 to 1. After the normalization process, 

the data will be split into train data and test data with a ratio of 75:25. The less of the training data ratio gives, 

the greater the parameter variance, and the less testing data, the greater the performance variance. Every case 

has a different ideal ratio. In our case, we have tried several ratios to get the best result 80:20, 75:25, and 70:30. 

The result is a ratio of 75:25 has the best performance among other ratios. 
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Fig 2. System Design of Crude Oil Price Forecasting 

 

In the training process, the LSTM algorithm will be executed by fitting the input value of train data with 

different hyper parameters shown in Table 2. Optimization is also implemented in this process using Adam 

optimization with initial default values of Adam’s parameters. We will use 30 percent of the training data as 

validation data to see if the model performance is a good fit. The LSTM model will use one hidden layer with 

different parameters for the experiment to get the best result. This model will be built with the early stopping 

method that automatically specifies the number of training epochs and will stop the training process if the 

performance of the model does not experience further improvement on data validation, so decides the number 

of epochs is not necessary. Early stopping will be set to monitor the validation loss and set to a minimum. But 

the first time there is no improvement in the performance of the model is not necessarily mean the best time to 

stop the training. It may be that the model gets worse before it gets better again, even better than before. A 

trigger will be added to the model to overcome this problem, which will pay attention to the validation loss and 

epoch by adding the argument "patience" to the parameter. The value will be varied between datasets; in this 

research, the daily time frame will be set to 85 while the weekly time frame set to 0. 

 

Table 2. Hyper parameter Candidates for LSTM Model 

Hyper parameter Value 

Number of LSTM Unit [10, 50] 

Look Back [2, 4] 

Batch Size [104, 128] 

 

After the training process, the model will be used to predict the price of Brent oil. The testing process will 

be conducted using test data from daily and weekly time frames. The result of this process is the prediction of 

crude oil prices. Before the evaluating process, the prediction result will be normalized back to the initial value. 

Then the result will be evaluated with Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).  

 

3. RESULTS AND DISCUSSION  

In this experiment, two measurements will be carried out, first using a daily time frame and the second 

using a weekly time frame.  This experiment was carried out to see the performance results of the LSTM model 

that had been built based on the observations from the results of experiments. In the development model, the 

value of Brent oil is initially normalized using a min-max scaler. In the prediction results, the value of Brent 

oil will be normalized back to the initial value so that it matches the original value of the dataset and makes 

analysis easier. RMSE and MAE will be used to check the error value of model performance for each 

experiment that has been carried out. The two calculation errors will calculate the error value in both the 

Start Data Data Normalization

Test Data

Train Data

Training

ModelTestingEvaluation
Prediction 

Result

Evaluation 
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training data and the test data. The lower the error value, the more accurate the accuracy of the model has to 

the original data. 

 

3.1. Daily Time Frame 

The model used different parameters to find the best result. The resulting value of RMSE and MAE varies 

in each parameter, as shown in Table 3. The best results in the daily time frame were found using 50 LSTM 

units, 2 looks back, 104 batch size, and 0.05 dropout.  

The model used early stopping with parameter patience to stop training when validation loss has not 

improved. The value is obtained from the validation loss graph where the model experiences an increase in 

validation loss then decreases, and based on several experiments carried out, we choose 85 as the best value 

for the patience, and the best result stops the training at 432 epochs.  

 

Table 3. RMSE and MAE Result for Each Hyper parameter in the Daily Time Frame 

LSTM 

Unit 
Look Back Batch Size Epoch 

RMSE MAE 

Train Test Train Test 

10 2 104 109 0.48917 1.38734 0.70133 1.82029 

10 2 128 108 0.68039 3.23744 0.45719 2.44695 

10 4 104 164 0.88401 2.16218 0.72185 1.62529 

10 4 128 130 0.78923 2.63019 0.53355 1.99742 

50 2 104 432 0.59377 1.27055 0.39722 0.92827 

50 2 128 457 0.57283 1.90658 0.36808 1.43082 

50 4 104 266 0.57067 1.98975 0.36403 1.50626 

50 4 128 531 0.57361 1.55847 0.37285 1.17830 

 

Based on Table 3, the value of RMSE and MAE for each experiment are fairly accurate. The best 

prediction result has an RMSE score of 0.59377 for the train and 1.27055 for the test, while MAE has a value 

of 0.39722 for the train and 0.92827 for the test. Using several different hyper parameters helps in finding and 

analyzing experiments for accurate results. It also provides insight into how different parameters react to the 

dataset.  

Increasing the number of LSTM units from 10 to 50 gives an improvement in the result with the same 

look back and batch size. This increases the width of the model so it can capture more information in a better 

way. Increasing the look back from 2 to 4 didn’t give any improvement while decreasing it gives a better result. 

The same happens with batch size. A smaller batch size gives better results than a larger batch size. 

Fig. 3 shows the graph plot between the actual value and the best prediction results. It can be seen the 

model can adjust to the trend and the result of the prediction is not far from the actual data. With the right 

parameters, the model is able to capture all changes in trends and patterns that occur in the training process 

without capturing unnecessary noise and random fluctuations, so that provides good predictive results.  

 

 
Fig 3. The Best Prediction Results in Daily Time Frame 
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3.2. Weekly Time Frame  

In the weekly time frame, the model will use the same parameters as the daily model, but the parameter 

“patience” will be set to 0 instead of 85 to stop training when validation loss has not improved. It was found 

the graphic of validation loss will not improve much with higher patience and will capture more noise and 

random fluctuation. The results from the experiments from the weekly time frame are shown in Table 4. The 

best results in the weekly time frame were found using 10 LSTM units, 2 looks back, 104 batch size, and 0.05 

dropout with the RMSE of 1.36514 for the train and 3.37817 for the test, while MAE has 0.97079 for train and 

2.60603 for the test.  

 

Table 4. RMSE and MAE Result for Each Hyperparameters in Weekly Time Frame 

LSTM 

Unit 

Look 

Back 

Batch 

Size 
Epoch 

RMSE MAE 

Train Test Train Test 

10 2 104 75 1.36514 3.37817 0.97079 2.60603 

10 2 128 95 1.71701 3.98254 1.35026 3.29170 

10 4 104 65 2.12813 5.51135 1.59803 4.54003 

10 4 128 56 1.72517 4.47037 1.25868 3.45470 

50 2 104 35 1.40576 3.60660 0.99396 2.83377 

50 2 128 68 1.44393 3.68894 1.05167 2.90989 

50 4 104 17 1.74023 4.74129 1.23125 3.68459 

50 4 128 22 1.84892 5.62321 1.33407 4.39558 

 

Based on Table 4, the RMSE and MAE values for each experiment in the training data are fairly accurate, 

while on the test data, the results are still quite far from accurate. Increasing the number of LSTM units from 

10 to 50 didn’t give any improvement in the result while decreasing it improve the performance. The same 

happens when increasing the look back and batch size. Decreasing the look back and batch size gives a better 

result to the LSTM model.  

It can be inferred that the model is memorizing the data it has seen but unable to generalize to unseen 

examples. The graph in Fig. 4 shows a plot of the actual value and the predicted result over the weekly time 

frame. This result can be caused by the amount of training that is not enough for the model or the noise and the 

fluctuations in training that occur randomly, which is then studied as a concept by the model, which hurts its 

ability to generalize the data. 

 

 
Fig 4. The Best Prediction Results in Weekly Time Frame 

 

Our state-of-the-art LSTM model using the early stopping method in this experiment proves to give better 

prediction results than the previous study that manually determined the number of epochs. Based on the results 

of the experiments that have been conducted, the model that has been built can study the data well and provide 

fairly accurate prediction results compared to the original data. The early stopping method will help the model 

to automatically determine how many epochs to use for training by monitoring the validation loss value. The 

model will stop the training process if there is an increase in the validation loss value, so the best model is 
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obtained. Determined the number of epochs manually takes a lot of time and if it randomly chose it can cause 

the model to over fit or under fit. 

Our best model test results in a daily time frame are 1.27055 for RMSE and 0.92827 for MAE. We also 

made another model based on previous studies with a manually determined epoch to compare our model with 

a similar dataset to predict Brent oil price. The other model obtains results of 1.84123 for RMSE and 1.41038 

for MAE. Our model has an error reduction of 45% and 52% in RMSE and MAE, respectively, compared to 

other models. Our study allowed the model to determine how many epoch numbers to used using an early 

stopping method, and in our best result, the early stopping method stops the model at 432 epochs while the 

previous study manually assigned the epoch number to 50. Our model consists of only one model layer 

compared to the 2 model layers used by other studies, we also compare our weekly time frame result, and our 

model has 36% and 38% error reduction in RMSE and MAE. Respectively the complete comparison is shown 

in Table 5. 

Table 5. Comparison for the 2 Models 

  Layer Unit Dropout 
Batch 

Size 
RMSE MAE 

Daily 

LSTM Using Early Stopping 1 50 0.05 104 1.27055 0.92827 

LSTM with Manually Determined 

Epoch (50 Epochs) 
2 20 0.1 128 1.84123 1.41038 

Weekly 

LSTM Using Early Stopping 1 10 0.05 104 3.37817 2.60603 

LSTM with Manually Determined 

Epoch (35 Epochs) 
2 50 0.1 128 4.61470 3.61116 

 

Based on Table 5, it can be concluded that more layers do not necessarily give better results, adding more 

units in the model can help the model to capture and extract more information of high-frequency data and the 

use of early stopping method to help determine the number of epochs in the model has a positive impact on 

our prediction results compare to manually selected number of epochs.  

 

4. CONCLUSION 

Determining the future of the crude oil price is important since it has an important role in the financial 

indicator of the world economy today. Having accurate predictions can give a country an advantage in 

economic planning. In this research, we use the LSTM model and early stopping method to predict Brent oil 

prices using various parameters to get the best result. We will use the daily and weekly time frame of Brent oil 

prices for the dataset. Based on the experiments, our model with the early stopping method gives better results 

than the model without the early stopping method. It helps the model get the best training results without 

capturing unnecessary noise and fluctuation.  

The best result obtained from the daily time frame experiment has RMSE and MAE of 1.27055 and 

0.92827, respectively, using a single LSTM layer, 50 LSTM units, 2 looks back, 104 batch size, and 0.05 

dropout as hyperparameters. The weekly time frame experiment has RMSE and MAE of 3.37817 and 2.60603, 

respectively, using a single LSTM layer, 10 LSTM units, 2 looks back, 104 batch size, and 0.05 dropout as 

hyperparameters. With the early stopping method, the model stops the training at 432 epochs and 75 epochs 

for daily and weekly time frames. In the daily time frame increasing the LSTM unit gives a better result, while 

increasing look back and batch size didn’t give much improvement. In the weekly time frame, smaller LSTM 

unit, look back, and batch size gives a better result.  

The result shows that LSTM can predict the trend of future data quite accurately for the daily time frame 

compared to the weekly time frame. In the daily time frame, the prediction result is not far from the actual data, 

and the LSTM model can adjust to the trend of the actual value. In the weekly time frame, the model has less 

accurate results. It may be caused by the amount of data being less in comparison to the daily data, although it 

is not an absolute answer. It is hoped that the results of this research can be one of the tools to help monitor 

price movements of crude oil which often fluctuates, especially during the COVID-19 pandemic that can create 

an unprecedented level of risk, where making predictions is very important to avoid suffering large losses in a 

short time because of the oil price shock. In the future, adding more factors that influence the crude oil price 

could help to better predict the value and improve the accuracy of the model.  
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