
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Advance Reservation for Parametric Job on Grid

Computing

1,2Ardi Pujiyanta

Electrical Engineering and Information

Universitas Gadjah Mada

Yogyakarta, Indonesia

ardi.pujiyanta@mail.ugm.ac.id
2Information Engineering

Universitas Ahmad Dahlan
Yogyakarta, Indonesia

3Lukito Edi Nugroho

Electrical Engineering and Information

Universitas Gadjah Mada

Yogyakarta, Indonesia

lukito@ugm.ac.id

4Widyawan

Electrical Engineering and Information

Universitas Gadjah Mada

Yogyakarta, Indonesia

widyawan@ugm.ac.id

Abstract— Parametric jobs are similar jobs, differing only

in arguments or input/output files. With the parametric type of

job, most jobs can send as a single job. In science and

engineering, parametric computing becomes very important as

a means to explore the behavior of complex systems. Users can

request resources to run jobs that they send in the future. The

scheduler then looks for the availability of the requested

resource in a predetermined time interval. If the required

resources are not available, the request rejected. The flexible

FCFS-LRH algorithm is proposed to overcome the amount of

rejection, from the experimental results for scheduling

parametric jobs, and it found that the FCFS-LRH advance

reservation algorithm is better than without advance

reservation.

Keywords—advance reservation, FCFS-LRH, grid

computing, parametric job, scheduling.

I. INTRODUCTION

In recent years, increasing interest in technology
integration, analysis, operation, and control of power systems
has made it even more complicated. One solution to integrate
large systems using grid computing. Computational
resources from various geographical and administrative
locations to complete shared tasks can be combined using
grid computing[1]. Grid computing is derived from a new
computing infrastructure for research and scientific
cooperation that contains resources of a different nature and
becomes a technology built to share large-scale distributed
and integrated resources. Network development intended for
diverse uses with efficient management, geographically
distributed, and the availability of dynamic computing
resources[2], is quickly becoming a significant research
objective to offer users transparent access to resources.
Transparency is a reason to use the term "Grid" which refers
to the Electricity Network which only provides the demand
for electrical power to all users, without requiring more
insight into how and where the actual control has generated.

Similarly, grid computing provides computational power
on demand, for all users without knowledge of the location
of the allocated resource. In general, the grid usually denoted
as sharing resources that are distributed geographically and
are owned by different service providers and are in different
administrative domains. Parametric jobs are similar jobs,
differing only in arguments or input/ output files. The user
can submit most types of parametric jobs as a single job. In
experimental science and techniques, parametric computing
becomes very important as a means to explore the behavior
of complex systems. A grid system with traditional

scheduling, jobs are sent and will be placed in a queue,
waiting for resources to ordered, whether available or not.
The scheduling algorithm used in a grid system can vary, for
example, FCFS, SJF, EDF[3], by executing jobs based on
different parameters, such as the number of resources,
delivery time, and execution time. The traditional scheduling
algorithm does not guarantee when a job will be carried
out[4]. In rigid scheduling, when a user requests resources to
carry out his work, three parameters are required, namely
start time, execution time, and the number of resources[5].
The scheduler will look for the availability of resources
needed in a predetermined time interval. If the source is not
available, then the request will be rejected. If this happens
often, the scheduler works hard to handle the same user
request because the previous request rejected. In the end, it
will cause resources to become idle between jobs. Hence
resource utilization will decrease. This mechanism is known
as rigid reservation (GARA)[6][7]. An elastic reservation is
proposed [8] by taking user request parameters as a soft
constraint. The reservation system instead rejects the request
but provides choices to the user.

In his research [9] introducing slack-time, slack-time is
the period for the start time of work, this new mechanism
called FIRST (Flexible Reservation using Slack Time). An
independent group of jobs [10] will schedule on the local
scheduler scheduling, with restrictions on processing time
(execution time, earliest start time, number of nodes) given
by the user. All processing nodes are assumed to be identical,
and the workload consists of batch jobs that require space-
sharing execution. From the background of the problem, the
proposed reservation scheduling model, in the Local
Scheduler (LS) environment and work is an independent job,
to overcome and ensure the availability of resources at a
specific time in the future, thus providing guarantees that
user jobs will be carried out.

II. SCHEDULING PROPOSED MODEL

A. Proposed scheduling model

In a flexible prior reservation, the user's work scheduled
within flexible limits. Start time can vary within certain time
intervals[11][12]. A flexible reservation is a reservation where
the earliest request (tesr) start time, and the last request request
request (tesl) is longer than the execution time (te) of a job, As
shown in the timing diagram in Fig. 1. How requests handled.

Job requests sent with parameters (JumCN, tesr, tlsr, te). After
the job request is received, the scheduler will look for
whether there is free space, if there is, the job will execute,

and resources will allocate. The time difference between tlsr
and tesr is called the notification interval[13].

Fig 1. Proposed Flexible Scheduling of Advance Reservations.

t0: Current Time

tesr: lower limit for starting time from a job(the earliest start

time)

tsr: Time to start job(tesr≤ tsr≤ tlsr)

tlsr: The upper limit for starting job execution (last start

time), is defined as tlsr=tesl–te=tn

tesl: The upper limit to end the time to run the job

te: Time of execution of job

tn: Notification time[13]

tr1,tr2 : tr1(left hole), tr1(right hole), tr(Relax time), defined by

tr = tr1 + tr2 = tresl- trsr - te

tedl: lower limit until the time to end the execution of a job,

defined as tedl=tesr+te

tcl: Time to complete job (tedl≤tcl≤tesl)

tf : Time of flexibility, defined as tf = tesl – tesr

f : Level of flexibility, defined as

 e

f

t

t
f  , where f≥1, (if f=∞,

jobs considered a non-job reservation mode, if tesr=t0 and f=1
job found with the highest priority leading to direct
scheduling mode)[14]

B. Proposed Advance Planning and Scheduling Strategies

In this research, an advance reservation scheduling

strategy called First Come First Serve Left Right Hole

Scheduling (FCFS-LRH) to increase resource utilization on

the grid system. Jobs sent by users will be mapped from the

virtual computing node (called logical view) to the actual

computing node (called physical view) at the time of

execution. For example, determined:

p(t): job permutation matrix in timeslot t.

p-1(t+1): permutation inverse matrix at timeslot t+1.

Then B=p(t) x p-1(t+1), where B is a partial identity matrix

(indicating that the job will be done on the same

computational node from timeslot t to t+1). If B is not a

partial identity matrix, work planning will come in time slot

t+1.

For example, G(t+1) is a row vector at timeslot t+1. Then it

can be determined[15]:

If G(t+1)(j)=G(t)(i) then

 B(i,j)=1

Else

 B(i,j)=0

B(i,j)=1 indicates that the work at time slot t has executed on

the compute node i, and the work at time slot t+1 has

executed at the compute node j.

If given LG(t) is a set of work plans with a time slot t at G(t),

then:

LG(t)-LG(t+1) is a set of jobs done in slot t.

LG(t+1)-LG(t) is a set of jobs done in slot t+1.

LG (t)∩LG(t+1) is a set of jobs done in slot t until slot t+1.

C. Algorithm

The algorithm explanation below is as follows, lines 2

through 15 show declaration and initialization. User submits

(tesr,tlsr,texe,JumCN), an empty timeslot will be searched

between tesr to finishR, using the first fit strategy shown in

lines 12 to 26. If an empty time slot is found then the job is

placed in a virtual view, notifying the user the job has

received. If in the search is not found an empty slot between

the tesr to finishR, the algorithm will move the old allocated

job by shifting it, to make space, so that new jobs can be

inserted, shown in lines 28 to 43. If new jobs cannot insert,

return it Old jobs that have shifted to their original place

shown in lines 44 to 46. Notify user job rejected.

1 Function Allocate(userId,tesr,tlsr,texe,jumCN)boolean

2 tesr: The lower time limit starts from the job.

3 tlsr: The upper limit of time starting from the job

4 texe: Job Execution Time

5 finishR: time the job ends

6 minSlot: time shift between tlsr and tesr

7 flex: the difference between start and tesr

8 // Declaration and Initialization

9 minSlot0;

10 minSlottlsr-tesr;

11 fixfalse;

12 If (!fix) then

13 startRtesr;

14 finishRtesr+texe-1;

15 flexstartR-tesr;

16 while (flex<=minSlot and !fix)

17 minSlotsearchNode(startR, finishR);

18 If(minSlot>0) then

19 assign(userId,tesr,startR,tlsr,texe);

20 fixtrue;

21 else

22 startRtime+1;

23 flex=startR-tesr;

24 finishRstartR+texe-1;

25 endif

26 endwhile

27 endif

28 startRtesr;

29 finishRtesr+texe-1;

30 flexstartR-tesr;

31 while(flex<=minSlot and !fix)

32 minSlot=searchNode(startR,finishR);

33 If(minSlot>0) then

34 assign(userId,tesr,startR,tlsr,texe);

35 fixtrue;

36 else

37 If(!insRes(userId,jumCN-minSlot) then

38 startRtime+1;

39 finishRstartR+texe-1;

40 flexstartR-tesr;

41 endif

42 endif

43 endwhile

44 If(!fix) then

45 backJob();

46 endif

47 return fix;
48 endFunction

After a job has been successfully allocated to a logical view,
the job can always be executed at the actual node, using the
algorithm[15]

III. FCFS-LRH PARAMETRIC JOB

A. How it works Parametric Job

The following example will give how the parametric job
works. If the system grid has computed nodes (physical
view), as many as MaxC=5 (C0-C4), then we have a virtual
node (Logical View) of 5 (V0-V4) as well. The order of
arrivals can show in Table 1, Where JumCN≤MaxC and
JumJob are the numbers of jobs sent by UserId. For
example, given the parameter UserId3 in table 1. User3
orders 4 timeslot starting from timeslot 3 to timeslot 6,
requires 1 compute node, for 1 independent job.(tesr=tlsr=3, te,
jumCN=1, jumJob=1).

TABLE I. JOB REQUESTS FROM PARAMETRIC JOB

UserId tesr tlsr te JumCN JumJob

1 3 3 2 1 1

2 3 3 3 2 2

3 3 3 4 1 1

4 3 3 2 1 1

5 6 6 1 1 1

6 6 6 5 1 1

7 7 7 2 1 1

8 9 9 1 1 1

9 9 9 2 1 1

10 10 10 2 1 1

11 9 9 3 1 1

Fig 2. 11 Users have been allocated (Logical View) for parametric jobs.

Fig. 2 is the result of a proposed algorithm for a
parametric work plan, where the x-axis shows a time slot,
and the y-axis shows a virtual computing node (Logical
View). Along the y-axis are displayed 5 virtual computing
nodes, which shown as v0, v1, v2, v3, and v4. Eleven user
reservations have allocated during timeslot 3 to 11. Consider
userID = 3 from Table 1. The virtual computing node v2
used by userID=3 is timeslot 3 (tesr=3), timeslot 4,
computing node v times timeslot 5 and computing node v
times timeslot 6 because only 1 job (requires 4 timeslot time
execution) that has been sent by the user. For example,
userId = 12 wants to order 3 timeslots from 5 to timeslot 10,
requires 3 compute nodes. Each job can be postponed until
timeslot 10(tesr=5, tlsr=10, te=3, jumCN=3, jumJob=3) (see
Fig 3).

Fig 3. New users create job requests for parametric jobs

Fig.3 shows the results of a planned new incoming
reservation request from user 12, for parametric work. Using
conventional reservations or rigid reservations, only two jobs
independent of user12 will allocate, and the other one will
reject. Fig. 4 shows that the same job will assign to different
time slots and virtual computing nodes. Successful
reservation, a notification will be sent to the user only once
(in the FCFS-LRH approach because it works in a logical
view). If using another method, the information sent each
time a revision is made in the plan[12][16].

Fig 4. New users have been allocated using FCFS-LRH (Logical View) for
parametric jobs.

B. Planning Mapping to the Actual Computing Node

The FCFS-LRH algorithm is proposed to guarantee that
logical display plans can always be mapped to the actual
computing node, and once a job started at a specific logical
node, it executed at the same actual node for all time slots.
The work plan in virtual view as shown in Fig 5, will
guarantee that all allocated jobs will be executed at the actual
node, because the reservation system works on logical
computing, as shown in Fig 6 (Physical View).

Fig 5. Allocation / parametric jobs (Logical View) planning for reservation
requests using FCFS-LRH

Fig 6. The mapping results on the actual node (Physical View) for
parametric jobs

IV. EXPERIMENTS AND RESULTS

Parametric job experiments have been carried out using
proposed planning and scheduling strategies for FCFS-LRH
reservations. The ratio of the utilization of the experimental
results compared to the reservation strategy that does not

use planning. The workload or user request, for this
experiment, has the following characteristics [10][14][17],
are as follows:

 The level of incoming reservation demand is assumed to

follow the Poisson distribution.

 Execution time(te) for reservation requests distributed

uniformly.

 The earliest start time (tesr) for reservation requests

distributed uniformly.

 Percentage of the flexible reservation is randomly

selected.

 Time for flexibility (tf) for reservation requests uniformly

distributed.

 The amount of Timeslot is 5 minutes.
The total number of compute nodes used in the

experiment (jumCN=30), the level of reservation requests
used (µ=3 and µ=4), the FCFS-LRH utilization factor and
without a reservation will be measured. Fig. 7 shows the
comparison of the percentage of utilization factors between
FCFS-LRH scheduling with without reservation for
parametric work, with µ=3 and percent flexibility=100%.
Fig. 7 shows the results that the number of jobs received in
the same timeslot is higher because the user request job can
shift from the earliest start time to the upper end of the start
time limit. Fig. 8. shows the results of the comparison of the
percentage of FCFS-LRH scheduling benefits without
reservation with µ=4 and Percentage of flexibility=100%.
From Fig. 8 it appears that although the number of jobs
entered is higher because μ = 4, the results still indicate that
the amount jobs received at the same timeslot are higher
because the user's job request can shift from tesr to the upper
limit of tlsr. Both fig. 7 and 8 show that FCFS-LRH results in
better utilization than traditional strategies (without prior
planning). In fig. 9 and 10. The percentage of flexibility is
measured from 25% to 100% with an average arrival factor
(µ=3 and µ=4). The use of FCFS-LRH is better than without
reservation. Fig. 11 shows the average increase in the
usefulness of the FCFS-LRH algorithm by 2.95% compared
to without reservation.

Fig 7. Comparison of reservation scheduling (FCFS-LRH) with without

reservation, for Parametric job. The average arrival of µ=3 and Percentage
flexibility=100%.

Fig 8. Comparison of reservation scheduling (FCFS-LRH) with without

reservation, for Parametric work. The average arrival of µ=4 and

Percentage flexibility=100%.

Fig 9. Percentage of utilization based on Percentage Flexibility with
average arrival of (µ = 3).

Fig 10. Percentage of utilization based on Percentage Flexibility with
average arrival of (µ = 4).

Fig 11. Increase Percentage of utilization based on Percentage of Flexibility

and utilization factor

V. CONCLUSION

In this study focused on the job scheduling model on grid
computing, and the proposed scheduling algorithm on the local
scheduler. From the results of the research, the proposed
algorithm for parametric jobs can schedule jobs in the local Grid
scheduler. In terms of utilization, the proposed algorithm has a
better average percentage of utilization compared to conventional

algorithms for parametric jobs.

REFERENCES

[1] Amulya and P. S. Kulkarni, “Review of Grid Computing technology
in electrical power systems,” Int. Conf. Electr. Power Energy Syst.
ICEPES 2016, pp. 487–491, 2017.

[2] I. Foster and C. Kesselman. editors. “The Grid: Blueprint for a New
Computing Infrastructure,” San Fransisco, Morgan Kaufmann, 1999.

[3] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability,
workloads, and user runtime estimates in scheduling the IBM SP2
with backfilling,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 6,
pp. 529–543, 2001.

[4] A. Sulistio and R. Buyya, “A grid simulation infrastructure
supporting advance reservation,” Proc. IASTED Int. Conf. Parallel
Distrib. Comput. Syst., vol. 16, pp. 1–7, 2004.

[5] W. Smith, I. Foster, and V. Taylor, “Scheduling with advanced
reservations,” in 14th IEEE International Symposium on Parallel and
Distributed Processing, pp. 127–132, 2002.

[6] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and A. Roy,
“A distributed resource management architecture that supports
advance reservations and co-allocation,” IEEE Int. Work. Qual. Serv.
IWQoS, no. 1, pp. 27–36, 1999.

[7] K. Czajkowski et al., “A resource management architecture for
metacomputing systems,” in 4th Workshop on Job Scheduling
Strategies for Parallel Processing. LNCS vol. 1459, pp. 62–82, 2006.

[8] A. Sulistio, K. H. Kim, and R. Buyya, “On incorporating an on-line
strip packing algorithm into elastic grid reservation-based systems,”
Proc. Int. Conf. Parallel Distrib. Syst. - ICPADS, vol. 1, 2007.

[9] C. Hu, J. Huai, and T. Wo, “Flexible resource reservation using slack
time for service grid,” Proc. Int. Conf. Parallel Distrib. Systems-
ICPADS, vol. 1, pp. 327–334, 2006.

[10] L. Grandinetti, F. Guerriero, L. Di Puglia Pugliese, and M.
Sheikhalishahi, “Heuristics for the local grid scheduling problem with
processing time constraints,” J. Heuristics, vol. 21, no. 4, pp. 523–
547, 2015.

[11] C. Castillo, G. N. Rouskas, and K. Harfoush, “On the design of online
scheduling algorithms for advance reservations and QoS in grids,”
Proc. - 21st Int. Parallel Distrib. Process. Symp. IPDPS 2007; Abstr.
CD-ROM, 2007.

[12] M. A. S. Netto, K. Bubendorfer, and R. Buyya, “SLA-Based Advance
Reservations with Flexible and Adaptive Time QoS Parameters,,” in
5th International Conference on Service-Oriented Computing, LNCS
vol. 4749, pp. 119–131, 2007.

[13] C. Xu and J. W. Wong, “Scheduling algorithms for advance resource
reservation,” IFIP International Federation for Information
Processing, pp. 659–671, 1998.

[14] R. Umar, A. Agarwal, and C. R. Rao, “Advance Planning and
Reservation in a Grid System,” Commun. Comput. Inf. Sci., vol. 293
PART 1, pp. 161–173, 2012.

[15] A. Pujiyanta, L. E. Nugroho, and Widyawan, “Planning and
Scheduling Jobs on Grid Computing,” Proceeding - 2018 Int. Symp.
Adv. Intell. Informatics Revolutionize Intell.
 Informatics Spectr. Humanit. SAIN 2018, pp. 162–166, 2019.

[16] B. Barzegar, A. M. Rahmani, K. Zamanifar, and A. Divsalar,
“Gravitational emulation local search algorithm for advanced
reservation and scheduling in grid computing systems,” ICCIT 2009 -
4th Int. Conf. Comput. Sci. Converg. Inf. Technol., pp. 1240–1245,
2009.

[17] A. Sulistio, K. H. Kim, and R. Buyya, “Using revenue management to
determine pricing of reservations,” Proc. - e-Science 2007, 3rd IEEE
Int. Conf. e-Science Grid Comput., pp. 396–404, 2007.

	I. Introduction
	II. SCHEDULING PROPOSED MODEL
	A. Proposed scheduling model
	B. Proposed Advance Planning and Scheduling Strategies
	C. Algorithm

	III. FCFS-LRH Parametric Job
	A. How it works Parametric Job
	B. Planning Mapping to the Actual Computing Node

	IV. EXPERIMENTS AND RESULTS
	V. CONCLUSION
	References

