Repository UAD

METODE REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO: Estimasi Bayesian dalam Model Regresi Linear per Potongan

Suparman, Dr. (2014) METODE REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO: Estimasi Bayesian dalam Model Regresi Linear per Potongan. [Image]

[img] Text
Senari2014.pdf

Download (12MB)

Abstract

The method used to estimate the parameters of piecewise linear regression is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems are proposed the Reversible Jump MCMC Algorithm. Reversible Jump MCMC Algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of piecewise linear regression models.Bayes estimator for the parameters of piecewise linear regression models obtained by the Markov chain.

Item Type: Image
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: Faculty of Teacher Training and Education (Fakultas Keguruan dan Ilmu Pendidikan) > S1-Mathematics Education (S1-Pendidikan Matematika)
Depositing User: Dr. Suparman M, Si., DEA
Date Deposited: 16 Jun 2016 15:16
Last Modified: 16 Jun 2016 15:16
URI: http://eprints.uad.ac.id/id/eprint/3057

Actions (login required)

View Item View Item

Repository UAD is powered by EPrints 3 which is developed by the School of Electronics and Computer Science at the University of Southampton. More information and software credits.