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 Stroke is a disease caused by brain tissue damage because of blockage in the 

cerebrovascular system that disrupts body sensory and motoric systems 

Stroke disease is one of the highest death cause in the world. Data collection 

from Electronic Health Records (EHR) is increasing and has been included 

in the health service big data. It can be processed and analyzed using machine 

learning to determine the risk group of stroke disease. Machine learning can 

be used as a predictor of stroke causes, while the predictor clarifies the 

influence of each cause factor of the disease. Our contribution in this research 

is to evaluate Feyn Qlattice machine learning models to detect the influence 

of stroke disease's main cause features. We attempt to obtain a correlation 

between features of the stroke disease, especially on the gender as a feature, 

whether any other features can influence the gender feature. This research 

utilizes 4908 data of the disease predictor using the Feyn Qlattice model. The 

result implies that gender highly impacts age and hypertension on stroke 

disease causes. Autorun in Feyn Qlattice model was run with ten epochs, 

resulting in 17596 test models at 57s. Query string parameter that was focused 

on age and hypertension features resulted in 1245 models at 4s. An increase 

of accuracy was found in training metrics from 0.723 to 0.732 and in testing 

metrics from 0.695 to 0.708. Evaluation results showed that the model is 

reasonably good as a predictor of stroke disease, indicated with blue lines of 

AUC in training and testing metrics close to ROC's left side peak curve.  

Keywords: 

Stroke; 

Machine Learning; 

Qlattice; 
Predictor; 

Ehr 

 

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 

 

Corresponding Author: 

Purwono, Universitas Harapan Bangsa, Jl. Raden Patah No. 100 Kedunglongsir Ledug Kembaran, Banyumas 53182, 

Indonesia 

Email: purwono@uhb.ac.id 

 

1. INTRODUCTION  

Stroke is a disease caused by brain tissue damage because of blockage in the cerebrovascular system [1] 

that disrupts body sensory and motoric systems [2]. This condition causes all body functions controlled by 

brain tissue to be disrupted. Stroke is a very dangerous disease and must be treated immediately because brain 

cells can die in minutes. Proper treatment must be done to prevent complications. Stroke has become one of 

the highest death cause diseases in the world [3]. Many low-income countries are unable to cope with the 

burden posed by this disease. Moreover, Indonesia placed first in the highest death cases caused by stroke 

disease with 193,3/100.000 cases per year [4]. Some cause factors of stroke disease are hypertension, obesity, 

smoke, cholesterol increase, physical activity, low-density lipoprotein increase, excessive alcohol 

consumption, and diabetes [5].   

The utilization of Electronic Health Records (EHR) by many countries worldwide is rapidly increasing 

[6]. Many medical data resulting from EHR has been collected and included in big data of health and medical 

service [7][8].  The analysis of medical data is required to determine risk group factors of many diseases [9].  
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The collected data can be reprocessed using machine learning models to find various new patterns that can 

benefit as actionable knowledge and information [10]. One of the benefits of using machine learning is that it 

can be used to predict several factors that may cause stroke [11][12]. This predictor clarifies the influence of 

each factor causing this disease. This predictor clarifies the influence of each factor causing this disease. For 

example, we can investigate whether there is an effect of age and hypertension on someone’s susceptibility to 

stroke. 

Nowadays, many classifiers from machine learning models have been used in some researches, especially 

on stroke disease. Research conducted by Liu [1] used a machine learning model called random forest in 

classifying cause factors of stroke disease, resulting in 85.03% accuracy. Another research was conducted by 

Zhu [13] identified stroke ischemic onset time based on DWI and FLAIR imaging with Convolutional Neural 

Network (CNN) model, yielding an accuracy of 80.50%. Meanwhile, Jamthikar [14] used machine learning, a 

random forest model, to prevent stroke by integrating carotid ultrasound image-based phenotypes and their 

harmonics with conventional risk factors, yielding an accuracy of 93.15%. 

Many machine learning models are used to predict stroke diseases, such as SVM, XGBoost, Logistic 

Regression, KNN, Random Forest, Decision Tree, and others. However, currently, there are not many studies 

that apply machine models to investigate correlation or linkage between primary cause features of stroke 

diseases. Therefore, we propose an alternative machine learning model, called the Feyn Qlattice model, to 

assess the influence of each cause feature of stroke disease. This model was developed by a startup named 

Abzu, which was inspired by Richard Feynman’s path integral formula [15].  Compared with neural networks 

and decision trees, Feyn Qlattice has some superiorities. Feyn Qlattice eliminates the black box concept that 

can be found in neural networks, though it provides explanations similar to the decision tree model. Feyn 

Qlattice works by searching thousands of potential models and seeking the best feature to become the ideal 

machine learning model to solve a computation problem [16].  

Our contribution in this study is to analyze and evaluate the Feyn Qlattice machine learning model to 

detect the influence of the main causative features of stroke. The analysis was carried out to obtain the 

correlation between the features of stroke, especially on gender as a feature, whether there are other features 

that can affect gender features. By applying Feyn Qlattice, thousands of training models can be obtained so 

that the best machine learning model can be selected and used to predict the main causes of stroke. The results 

of the analysis can be in the form of data which is the result of the model evaluation of each predictor feature 

used.  

 

2. METHOD  

This section describes the proposed framework for using the Feyn Qlattice model to predict the 

association of features that influences the causation of stroke disease. Several important steps are described in 

each subset. Overall, the methodology used in the research can be seen in Fig. 1. 

 

 
Fig. 1. Methodology 

 

Based on Fig 1, the first is data collection, i.e., datasets related to the causal factors of stroke disease. 

Then, data transformation is carried out to balance data so that the machine learning model can work 

effectively. In the next step, the data is separated into training data and testing data. This technique is called 

splitting. Then, the Feyn Qlattice model was applied to produce thousands of best machine learning models 

that could predict the main features that cause a stroke. The Features that caused stroke were then selected to 

be tested with the Feyn Qlattice model as well. The model with the best performance results will be selected 

and evaluated. A more detailed explanation will be explained in the following subsections.  
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2.1. Dataset  

Dataset used in this research was taken from public datasets made by Fedesoriano, which was uploaded 

in Kaggle [17]. This dataset was formatted in Coma Separated Value (CSV) with 5110 rows of data. It still has 

many noise or false-formatted data. For example, there was empty-valued or non-uniform data. The dataset has 

12 main features that can be used to predict the cause of stroke disease. Available features of the dataset are id, 

gender, age, hypertension, heart_disease, ever_married, work_type, residence_type, avg_glucose_level, bmi, 

smoking_status, and stroke. The stroke feature becomes the classifier used from the dataset. Table 1 shows the 

dataset sample and its format used in this research. 

 

Table 1. Healthcare Stroke Data 

id 

Feature Data 

gender age hypertension 

heart 

disease 

ever 

married 

work 

type 

residence 

type 

Avg 

glucose 

level 

BMI smoking 

status 

stroke 

9046 Male 67 No Yes Yes Private Urban 228.69 36.6 formerly 1 

51676 Female 61 No No Yes Self Rural 202.21 N/A never 1 

31112 Male 80 No Yes Yes Self Rural 105.92 32.5 never 1 

60182 Female 49 No No Yes Self Urban 171.23 34.4 smokes 1 

1665 Female 79 Yes No Yes Self Rural 174.12 24 never 1 

….. ….. ….. …. ….. ….. ….. ….. ….. ….. ….. ….. 

44679 Female 44 0 0 Yes Govt Urban 85.28 26.2 Unknown 0 

 

2.2. Preprocessing Dataset 

The dataset that has been collected cannot be immediately used because it is imbalanced, so preprocessing 

is needed. This step balances the dataset by adding the sample from a smaller dataset or subtracting samples 

from a bigger dataset [18]. Preprocessing is essential to improve data quality so that machine learning can 

function properly [19]. An unprocessed dataset is usually ambiguous and incomplete because some of its 

attributes are missing, either in its inputs or outputs, which may negatively affect the machine learning 

modeling [20]. Moreover, Qlattice models immediately detect data types; incorrect detection of data types 

leads to poor machine learning models. Qlattice supports many variants of data transformations, such as linear, 

multiply, sine, tan, and gaussian transformation [16]. 

Data features that are ambiguous, such as columns with similar features, will be collided or selected so 

that only one column will remain [21]. Empty-valued features will also be deleted in preprocessing. Data 

consistency is carefully maintained. This can be seen in bmi feature; N/A values were found decimals where 

decimals are a majority in this feature. Therefore, the feature will be uniformly adjusted. 

Properties with important characteristics and categorical behavior will be changed to number categories; 

this technique is called categorical variable encoding [22]. Values from each categorical feature will be changed 

into a number. For example, gender feature has “male” dan “female” as its category. The value of “male” will 

be identified as “1,” and “female” will be identified as “0”. A detailed change of categorical encoding can be 

seen in Table 2. 

 

Table 2. Categorical Variable Encoding 

Feature 
Feature Data 

Data Category 

Gender Male 1 

 Female 0 

Ever married Yes 1 

 No 0 

Work Type Private 0 

 Self 1 

 Govt Job 2 

Residence Type Urban 1 

 Rural 0 

Smoking Status Formerly 0 

 Smokes 1 

 Never 2 
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2.3. Data Splitting and Data Balancing 

Data that has been through the preprocessing step will have better quality and become ready to be used 

in machine learning. Data will be divided into 75% composition of training data and 25% of testing data. The 

splitting of the data must be done effectively to improve the model's accuracy [23][24]. An illustration of the 

splitting can be seen in Fig. 2. 

 

 

Fig 2. Data Splitting 

 

2.4. Feyn Qlattice Model 

Feyn Qlattice model was used in this research. Data that has been split into 75% training data and 25% 

testing data will be processed with this model. Some steps used in the Feyn Qlattice model can be seen in Fig. 

3. 

 

 
Fig 3. Feyn Qlattice Model 

 

Based on Fig. 3, a dataset that has been split will be reprocessed with a technique called sample weight 

computation to balance the data. Imbalanced data usually create problems in machine learning [25]. Only 

balanced data will be connected with the Feyn Qlattice. The Qlattice model uses training data that has been 

separated in data splitting to fill its train parameter. Another parameter of the model is the output name; since 

the purpose of the model is to predict stroke disease, the parameter is given “stroke” as its value. The kind 

parameter of the model is filled with “classification” since the dataset type is classification data. Meanwhile, 

the stypes parameter is filled with “gender” since the influence of the gender feature on other features that 

cause stroke disease will be assessed using this model. 

Autorun process in Qlattice takes all parameters that have been set. This process will result in thousands 

of models that will be tested in 10 epochs in a certain time duration. Epoch is a hyperparameter that determines 

how many times the machine learning model will process the training data [26]. This research used a 10/10 
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scale epoch; 10 experiments were done to obtain the best model and feature prediction. After processing stages 

were done to the dataset, machine learning will result in the best models and feature predictions. 

Methodological steps to get the best model and predictor feature can be seen in Fig. 4. 

 

 
Fig 4. Qlattice AutoRun to Get Best Model and Best Feature Prediction 

 

2.5. Evaluation Model 

The best model obtained is evaluated by an evaluate machine model evaluation learning model called 

confusion matrix. This method can be used to measure the model’s performance to various classification 

problems in machine learning [27]. The confusion matrix creates a representation of results such as true positive 

(TP), true negative (TN), false positive (FP) dan false negative (FN)  [27]. TP means the positive results that 

are predicted by machine learning are correct. TN means the negative results predicted by machine learning 

are correct. Meanwhile, FP means the positive results predicted by machine learning are wrong, and FN means 

the negative results predicted by machine learning are wrong. Fig. 5 illustrates the confusion matrix table. 

 

 
Fig 5. Confusion Matrix 

 

Performance evaluation with confusion matrix results in accuracy, precision, and recall [28][29]. 

Accuracy is the number of data points that machine learning predicted correctly among all data points. It can 

be calculated as follows: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (1) 

Precision is a percentage of relevant elements that can tell how many times the model can predict correctly. It 

can be calculated as 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 
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Meanwhile, recall is a percentage of relevant elements correctly classified by the machine learning model over 

the whole relevant elements. The calculation of recall can be carried out using  

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

Along with the confusion matrix, we used Receiver Operating Characteristic (ROC), which is a visual 

technique to assess and choose a suitable classifier based on its performances [30]. ROC can also be considered 

as a performance measurement of a classification-type machine learning model [31]. It is common to compute 

Area Under the ROC Curve (AUC), a recognized metric to evaluate and compare classification models [30]. 

AUC can be equivalent to the probability that a randomly selected positive sample will have a higher value 

than a negative sample [30]. As the ROC curve gets closer to the top left corner of the graph, the model can 

classify better [32].  

 

3. RESULTS AND DISCUSSION  

3.1. Data Transformation After Preprocessing 

The data generated after the preprocessing stage will undergo data transformation, decreasing the number 

of data lines and each feature value with categorical data. After the data transformation, the previous sum of 

data, which is 5110, was reduced to 4908. The results of the data transformation can be seen in Table 3.  

 

Table 3. Data Transformation 

id 

Feature Data 

gender age hypertension 
heart 

disease 

ever 

married 

work 

type 

residence 

type 

Avg 

glucose 

level 

BMI 
smoking 

status 
stroke 

9046 1 67 0 1 1 0 1 228.69 36.6 1 1 

31112 1 80 0 0 1 1 0 105.92 32.5 2 1 

60182 0 49 0 0 1 1 1 171.23 34.4 0 1 

1665 0 79 1 0 1 1 0 174.12 24 2 1 

….. ….. ….. …. ….. ….. ….. ….. ….. ….. ….. ….. 

44679 0 44 0 0 1 2 1 85.28 26.2 0 0 

 

As seen in Table 3, a change has been made to categorical features based on the categorical variable 

encoding. The variables previously had string as their type of data, while currently, their values are changed 

into encoding lists represented by integers such as 0, 1, or 2. However, special features such as avg glucose 

level and BMI still use decimals since their values vary or have uncategorical characteristics. The total number 

of transformed data is now 4908, composed of 75% of training data and 25% of testing data. Hence, the total 

number of training data is 3681, and the total number of testing data is 1227. 

 

3.2. Model Feyn Qlattice 

Based on stages in using the Feyn Qlattice model as in Fig. 4, as many as 17596 models were resulted 

and will be tested after the autorun mode was done in 10 epochs. This model with stypes input as ‘gender’ 

results in the best predictor features at 57s: hypertension and age. The autorun process of the Feyn Qlattice 

model can be seen in Fig. 6. 

 

 

Fig 6. AutoRun Feyn Qlattice 

 

After 17956 models were obtained, the best model, the top first or first ordered model, is chosen. The best 

model is visualized with a plot graph that results in the training metrics and testing metrics. Training metrics 

result in 0.723 of accuracy, 0.851 AUC, 0.116 precision, and 0.828 recall. Meanwhile, the testing metrics result 

in 0.695 of accuracy, 0.818 of AUC, 0.103 of precision, and 0.808 of recall. 
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According to Fig. 6, it is most likely that age and hypertension are predictors of stroke cause disease when 

viewed based on the age feature. The next test is to narrow the feature based on additional query string 

parameters, which contain age and hypertension as the parameter values. The plot graph of the model that 

resulted from the addition of query string parameters can be seen in Fig. 7. 

 

 
Fig 7. Addition of Query Strings: Age and Hypertension 

 

After the query strings named age and hypertension were added, the autorun was re-run for ten epochs 

and resulted in 1245 machine learning models in 4s. The best model will then be visualized with a plot graph 

that results in training and testing metrics. Training metrics result in 0.731 of accuracy, 0.851 AUC, 0.117 

precision, and 0.809 recall. Meanwhile, testing metrics result in 0.708 of accuracy, 0.818 AUC, 0.106 precision, 

and 0.788 of recall. An increase in accuracy can be seen based on the results. In training metrics, the accuracy 

was increased from 0.723 to 0.731. However, an increase of accuracy from 0.695 to 0.708 was found in testing 

metrics. 

 

3.3. Evaluasi Model 

The evaluation of the Feyn Qlattice model was done with a confusion matrix and ROC curve analysis. 

The evaluation was done to a model with the highest accuracy, which is 73.1%. The evaluation results of the 

training metrics can be seen in Fig. 8, while the results for testing metrics can be seen in Fig. 9. The AUC 

resulting in training metric evaluation was 0.85 and 0.82 for the testing metrics. 

 

 
Fig 8. Evaluating Training Metrics 

 

 
Fig 9. Evaluating Testing Metrics 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&


430 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN 2338-3070 

 Vol. 7, No. 3, December 2021, pp. 423-432 

 

 

Linkage Detection of Features that Cause Stroke using Feyn Qlattice Machine Learning Model (Purwono) 

According to Fig. 8 and Fig. 9, the quality of the training metrics was reasonably good since the blue line 

(AUC) value is close to the left corner of the graph, which is 0.85. The quality of the testing metrics was also 

reasonably good with a similar condition to training metrics; the AUC value of the testing metrics was 0.82. 

The results of this study were then compared with the results of previous researchers. A comparison of the 

results of using the model can be seen in Table 4. 

 

Table 4. Comparison of Research Result 

No Researcher 
Results 

Models Results 

1 Zhu CNN 80% 

2 Jamthikar CNN 93.15% 

3 Liu Random Forest 85.03% 

4 Own Qlattice 85% 

5 Dobryvecher SVM 80.2% 

  

Decision Tree 82.2% 

KNN 77.3% 

Naïve Bayes 80% 

Logistic Regression 84% 

 

4. CONCLUSION 

The results of the test carried out in this study indicate that the Feyn Qlattice model can be a solution to 

obtain features that are used to predict stroke. The Feyn Qlattice autorun method can produce the main features 

of stroke trigger based on a person's gender, i.e., age and hypertension. This autorun method was run for 10 

epochs and produced 17596 test models in 57s. The query string parameter in the Feyn Qlattice then focused 

on the features of age and hypertension.  Once applied, there are 1245 models in 10 epochs with a time of 4s. 

The experimental results showed an increase in accuracy in training metrics from 0.723 to 0.731 and in testing 

metrics from 0.695 to 0.708. The results of the evaluation using the confusion matrix with the ROC curve show 

that this model has fairly good performance where the blue curve line (AUC) has approached the top-left corner 

of the graph.  
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