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ABSTRACT Magnetic Levitation System or Maglev system is a modern and future technology that has
many advantages and applications. Its characteristic is highly nonlinear, fast dynamics, and unstable, so it
is challenging to make a suitable controller. The model of the Maglev system is in nonlinear state-space
representation, and then feedback linearization is implemented to obtain the linear model system. Then, the
integral state feedback control that tuned by the coefficient diagram method is implemented. The robustness
of the controller is determined using the coefficient diagram method. The result of the standard coefficient
diagram parameter will be compared with the robustness parameter. The open-loop test simulation showed
that the maglev system has a nonlinear characteristic. Among all of the uncertainties, the uncertainty of
resistance provides the highest nonlinearity, even by the small value of uncertainty. The examination of the
mass, inductance, and resistance uncertainties showed that the robustness parameter is able to handle them
and to provide a robust controller.

INDEX TERMS State feedback, robust control, coefficient diagram method, magnetic levitation, integral
control.

I. INTRODUCTION
The Maglev (the short of Magnetic Levitation) System is a
modern and future technology that levitates an object using
electromagnetic force. The simplest maglev system is shown
in Fig. 1. It consists of an object from an iron or steel ball, the
inductor to generate electromagnet force, a driver to generate
a voltage, a controller (Microprocessor or something else),
and a sensor to measure the object’s height from the inductor.
It has a contactless and frictionless characteristic. Thus, it can
give high efficiency (almost one hundred percent) [1].

The application of maglev is the maglev train [2] [3], bear-
ing [4], wind turbine [5], suspension [6], [7], and vehicles [8].
Maglev can give high efficiency so that amaglev train that can
reach 600 km/hour speed, and maglev wind turbine produces
power ten times bigger than a standard wind turbine.

In a maglev system, the electromagnetic force from the
inductor must greater than or equal with the gravity force
of its object weight. It should be generated fast so that the
object does not fall down. Therefore, a maglev system has
fast dynamic characteristics.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hao Luo .

FIGURE 1. The simplest magnetic levitation ball systems.

Another challenge comes from the uncertainty parameter
of the inductor when its temperature increases. Besides, it still
has some amount of electromagnetic force even though it is
not supplied by electrical power. This made a maglev system
has uncertainty and highly nonlinear characteristics.

Based on its natural characteristics, a maglev system needs
a highly robust controller. It is beneficial to design a suit-
able controller to control the object’s height position, which
can accommodate the uncertainty of the maglev system’s
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parameters and its fast dynamic characteristics. The tuning
of parameter controllers also plays an important role in the
effectiveness and efficiency of the controller; hence a trial and
error method should be avoided. A standard method to tune
the controller’s parameters is needed to guarantee the high
performance of the augmented system.

There are some proposed methods to control the maglev
system such as PID controller [9], the fuzzy logic controller
[10], [11], LQR [12], Fault-tolerant control and state observer
[13], nonlinear power shaping [14], sliding mode control
[15], Global Sliding Mode Control [16], Modified Sliding
Mode Control [17], feedback linearization [18] and back-
stepping [19]. Each of them has its own advantages and
disadvantages. A linear control is not suitable for a maglev
system, while nonlinear controllers need complex mathemat-
ical analysis to match the system model.

Therefore, it is best to combine both nonlinear controllers
with linear control to provide a simple controller yet robust
and effective to control themaglev system. In the research, the
simplest nonlinear control feedback linearization was used to
convert the nonlinear model to a linear model. Hence, a linear
controller, state feedback control [20], can be implemented.
A modification of state feedback control is then proposed by
adding integral control to eliminate the steady-state error of
the system.

The state feedback controller is a controller in the modern
control system that supports multiple inputs and multiple
outputs (MIMO) and uses state-space model representation.
Based on the previous work [21], a process to determine the
controller’s parameters always become a problem. It is very
important to choose the correct parameter value because it
will affect the augmented system performance. Because of
that, the coefficient diagram method (CDM) [22], [23] was
used to solve the problem. The CDM, which was proposed
by Manabe, could avoid the trial and error [24]. It has
a standard parameter, and the system performance can be
chosen based on it. The standard parameter of CDM is enough
to give the best performance from the side of transient-
response and steady-state error specifications, but not for the
robustness [25].

In the research, uncertainty and disturbance will be used
to evaluate the robustness of the proposed controller. The
controller is based on a combination of nonlinear and linear
control. The nonlinear control used in the proposed con-
trollers is feedback linearization, while the linear control
used is state feedback with integral control. Both types of
CDM parameters (robust and standard parameter) are used
for tuning the controller. The achieved simulation results will
then be compared and analyzed.

The paper will be arranged as follows. Section one is the
introduction. Section two will discuss the proposed method.
Section three will discuss the methodology of the research,
which consists of Maglev system modeling, feedback lin-
earization method, integral control with state feedback,
Coefficient Diagram Method, and Ackermann’s Formula.
Section four will provide a result and discussions. The last

FIGURE 2. The proposed controller system.

section will consist of conclusions and future work of the
research.

II. PROPOSED METHOD
The proposed method in the research is shown in Fig. 2.
The Maglev system block is the nonlinear model. The set
point is used to give the object reference position, and the
proposedmethodmust follow it. Comparing the set point with
the feedback will be obtained the difference value or the error
value that becomes an input for integral control.

The input of the state feedback block is all of the states,
while the feedback only sends one state, the position. The
proposed controller consists of the nonlinear control signal
from feedback linearization and the linear control signal from
state feedback with integral control. The parameter gains of
state feedback and integral control will be tuned by using a
coefficient diagram with the robustness criteria. The output
system is the object position.

III. MODEL OF MAGLEV SYSTEM
There are somemethods to determine themodel of themaglev
system. It can use Newton or Lagrange equations. Generally,
it can be generated from a mechanical and electrical analyt-
ical point of view. The maglev system model is a nonlinear
system. The diagram of the simplest maglev system is shown
in Fig. 3.

FIGURE 3. The simplest maglev system.

Based on Fig. 3, The inductor produces electromagnetic
force, and the object mass produces the gravity force. To
levitate the object, the electromagnetic force and the gravity
force needs to be equal. If the electromagnetic force is larger
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than the gravity force, the object will hit the inductor. Vice
versa, if the gravity force is larger than the electromagnetic
force, the object will fall.

Based on the mechanical approach using the Newton sec-
ond law, the dynamic equation of the maglev system in Fig. 3
is,

m
d2x
dt2
= mg− k

(
i
x

)2

(1)

wherem is mass of the object, g is the gravity constant, k is the
electromagnetic constant, i is current, x is the object position.
Meanwhile, based on the electrical analysis using

Kirchhoff’s voltage law, the equation is

di
dt
= −

R
L
i−

2k
L

i
x2
dx
dt
+

1
L
e (2)

where R is the resistance, L is the inductance, e is the supply
voltage.

The state variables must be determined to get a nonlinear
state-space model. It could be written as x1 = x (position),
x2 = ẋ (velocity), x3 = i (current), u = e (applied voltage).
Thus, the input model for the maglev system is

 ẋ1ẋ2
ẋ3

 =


x2

−
kx23
mx21
+ g

−
R
L
x3 +

2k
L

(
x2x3
x21

)
+

 0
0
1
L

 u. (3)

The output model is the position, and it could be written as

y = x1. (4)

Based on the input model, it can be known that the maglev
system has a nonlinear part, which is shown by the quadratic
part of the equation. The nonlinear method was used to elim-
inate the quadratic part. It was because that the suitable con-
troller to handle nonlinear systems is the nonlinear method.
Because of that, the feedback linearization was used.

IV. FEEDBACK LINEARIZATION
The applied feedback linearization in the research is based
on Slotine and Li [26] and Khalil [27]. It is used to get the
linear model. The idea of Feedback Linearization is to cancel
the nonlinearity using a control signal that contains a similar
nonlinear part. Thus the model will become an equivalent
linear model.

As to implement feedback linearization, the new variables
are stated as,

z1 = x1, (5)

z2 = x2, (6)

z3 = g−
kx23
mx21

. (7)

Thus, the new differential equations are,

ż1 = z2, (8)

ż2 = z3, (9)

ż3 = −
2k
m

(
x3ẋ3
x21

)
+

2k
m

(
x23 ẋ1
x31

)
, (10)

ż3 = α (x)+ β (x) u, (11)

where

α (x) = −
4k2x2x23
mLix41

+
2kRx23
mLix21

+
2kx23x2
mx21

, (12)

β (x) = −
2kx3u

mx21Li
. (13)

The new state equations are,

ż1 = z2, (14)

ż2 = z3, (15)

ż3 = α (x)+ β (x) u, (16)

The nonlinearity part can be canceled by using the control
input u as

u =
1

β (x)
(v− a (x)) , β (x) 6= 0, (17)

where v is the new input signal from other controllers. There-
fore, the linear state equations become,

ż = Az+ Bu (18)

y = Cz (19)

where

A =

 0 1 0
0 0 1
0 0 0

 B =

 0
0
1

 C =
[
1 0 0

]
(20)

The system is categorized as a 3rd order of the integrator
system, which can be written in transfer function representa-
tion as

1
s3

(21)

Hence, the system (21) cannot be controlled by a PID con-
troller as the system has a higher order than a second-order
system [28].

V. INTEGRAL STATE FEEDBACK CONTROL
The state feedback is a controller in the modern control sys-
tem that uses state-space representation. The block diagram
of the proposed controller is shown in Fig. 4. The proposed
controller consists of state feedback and integral control. The
integral control could be known as feed-forward or r-scale
technique (another servo state feedback). It is used to elimi-
nate the steady-state error. Meanwhile, state feedback is used
to make the system have a good response performance, such
as fast rise time, quick settling time, a minimum overshoot
without undershooting response. The FL block is the Feed-
back Linearization (FL), and the MLS block is the Magnetic
Levitation System (MLS).
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FIGURE 4. Integral state feedback.

Based on Fig. 4, the equations for the system are

ẋ = Ax + Bu (22)

y = Cx (23)

u = −Kx + kI ξ (24)

ξ̇ = r − y, (25)

ξ̇ = r−Cx, (26)

where x is state vector of the plant (n-vector), u is control
signal (scalar), y is the output (scalar), r is the reference input
signal (step function, scalar), A is n× n constant matrix, B is
n × 1 constant matrix, C is 1 × n constant matrix, kI is the
integral gain, K is the state feedback gain, ξ is the output the
integrator.

Assume the reference signal is step unit,[
ẋ
ξ̇

]
=

[
A
−C

0
0

] [
x
ξ

]
+

[
B
0

]
u+

[
1
0

]
r, (27)

For t > 0, the state equation is

ė = Âe+ B̂ue, (28)

where

e =
[
x
ξ

]
Â =

[
A
−C

0
0

]
B̂ =

[
B
0

]
(29)

and the overall control signal is

ue = −K̂e (30)

where

K̂ =
[
K | −kI

]
=
[
k1 k2 k3 | −kI

]
(31)

The state error equation is

ė = (Â− B̂K̂)e (32)

The system must be examined first to implement the pro-
posed controller. It is to investigate the system, whether it
fulfills the controllability matrix criterion and states control-
lability or not. The controllability matrix is written as

M =
[
B AB A2B

]
(33)

and the state controllable matrix is

P =
[

A B
−C 0

]
(34)

The rank of the controllability matrix and state controllable
matrix will determine the possible arbitrary pole placement.

The rank value of the state controllable matrix must be rank
> 0 in order to be able to implement the integral state feed-
back controller.

VI. COEFFICIENT DIAGRAM METHOD
The CDM is proposed by Manabe [29]. It uses a polynomial
approach to design a controller. It belongs to the third method
in control system design after the classical control system and
a modern control system. It is similar to the pole placement
method [30] but has standardized parameters.

In pole placement, the pole location can be determined
anywhere in s-plane. If the pole is too far from the imagi-
nary axis, the control signal will be too big and unrealistic
for real implementation. In CDM, target pole locations are
determined based on the specific performance specifications
that we want to achieve, for example, settling time less than 5
seconds and no overshoot in response. The desired pole loca-
tions are described by the closed-loop polynomial. Hence, the
CDMwill provide better system response and amore realistic
control signal.

Parameters of CDM, such as equivalent time constant and
stability index are used to build the target polynomial. These
parameters have recommended based on specific functions,
i.e. standard and robust parameters.

In CDM, there are open-loop polynomial, the target poly-
nomial, and the closed-loop polynomial. The open-loop poly-
nomial (POL (s)) is the system characteristic before the con-
troller is implemented, it can be obtained as follow,

POL (s) = |sI − A| (35)

= ansn + an−1sn−1 + . . .+ a1s+ a0, (36)

Meanwhile, the target polynomial (PT (s)) is the desired
characteristic built of CDM parameters and specific per-
formance specifications that we want to achieve. Later, it
is equivalent to the closed-loop polynomial PCL (s). The
closed-loop polynomial contains the target pole locations.

PT (s) = a0


n∑
i=2

i−1∏
j=1

1

γ
j
i−j

 (τ s)i
+ τ s+ 1

 (37)

PCL (s) = αnsn + αn−1sn−1 + . . .+ α1s+ α0, (38)

where τ is the equivalent time constant, γ is the stability
index, αn is the coefficient, and

α0 =

∏n−1
j=1 γ

j
n−j

τ n
. (39)

Its parameters (stability index and equivalent time con-
stant) affect the system performances. It can determine the
robustness (disturbance rejection) and performance specifi-
cations (such as fast settling time). For the best response
performances, the standard parameter of CDM can be used.

Based on the Manabe criterion [22], the recommended
standard parameter of stability index for (37) to obtain the
best system response performance is,

γi =
[
2.5 2 2 . . .

]
, (40)
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While the robust stability index parameter for (37) is

γi =
[
4 4 4 . . .

]
, (41)

for i equal to integer numbers, i.e., 1, 2, 3, and etc. Moreover,
the stability index value must not be greater than 4, or it will
result in an unrealistic value of control signal.

Furthermore, another parameter is the equivalent time con-
stant τ , which affects the settling time. Smaller values of
equivalent time constant provide faster settling time as can
be shown as follow,

τ =
ts
2.5
∼
ts
3
. (42)

The chosen τ then is also used to determine the characteristic
of target polynomial in (37). This polynomial then is applied
for Ackermann Formula to get the controller gains value.

In CDM, there is a specific graph called a coefficient dia-
gram that provides information about the stability and system
response in the logarithmic value. The effect of the stability
index and the response is shown in Figure 5. Meanwhile, the
effect of the equivalent time constant is shown in Figure 6.
Based on the Figure, the x-axis is the i-th coefficient, and
the y-axis is the coefficient value based on the closed-loop
polynomial in (35).

FIGURE 5. The effect of the stability index value.

VII. ACKERMANN’S FORMULA
Consider a system in state-space representation as follows,

ẋ = Ax− Bu (43)

and the state feedback control signal is

u = −Kx. (44)

Hence, the equation of system (43) with state feedback
control (44) becomes

ẋ = (A− BK) x. (45)

Assume that

Ã = A− BK, (46)

FIGURE 6. The effect of the equivalent time constant.

so that the desired characteristic equation is

|sI− A+ BK| = |sI − Ã| (47)

= sn+α1sn−1+. . .+αn−1s+αn=0. (48)

Based on the Cayley-Hamilton theorem, Ã satisfied its own
characteristic equation as

φ
(
Ã
)
= Ãn

+ α1Ãn−1
+ · · · + αn−1Ã+ αnI = 0 (49)

Consider the following identities

I = I (50)

Ã = A− BK (51)

Ã2
= (A− BK)2 = A2

−ABK− BKÃ (52)

Ã3
= (A− BK)3 = A3

−A2BK− BKÃ−BKÃ2 (53)

Using n = 3, the characteristic equation (49) as

α3I+ α2Ã+ α3Ã
2
+ Ã3

= α3I+ α2A+ α1A2
+ A3 (54)

−α2BK− α1ABK−α1BKÃ

−A2BK− ABKÃ−BKÃ2 (55)

Based on (46), the equation is

α3I+ α2Ã+ α1Ã
2
+ Ã3

= φ
(
Ã
)
= 0 (56)

Also

α3I+ α2A+ α1A2
+ A3

= φ (A) 6= 0 (57)

Substitute (56) and (57) in α3 obtained

φ
(
Ã
)
= φ (A)−α2BK−α1ABK

−BKÃ2
−α1BKÃ

−ABKÃ−A2BK (58)

Since φ
(
Ã
)
= 0 obtained

φ (A) = B
(
α2K−α1KÃ−KÃ2

)
+AB

(
α1K−KÃ

)
+ A2BK (59)
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= [ B | AB | A2B]

×

α2K−α1KÃ−KÃ2

α1K−KÃ
K

 (60)

Multiplying both sides of (60) by the inverse of the con-
trollability matrix, obtained

[B | AB | A2B] −1φ (A)=

α2K−α1KÃ−KÃ2

α1K−KÃ
K

 (61)

Multiplying both sides of (58) by
[
0 0 1

]
, obtained[

0 0 1
] [

B | AB | A2B
]−1

φ (A)

=
[
0 0 1

]α2K+ α1KÃ+KÃ2

α1K+KÃ
K

 (62)

Which can be written as

K =
[
0 0 1

] [
B | AB | A2B

]−1
φ (A) . (63)

For an arbitrary positive integer n, the state feedback gain
is,

K =
[
0 0 · · · 0 1

][
B | AB | · · · | Bn−1 B

]−1
φ(A) (64)

where

φ (A) = An
+ α1An−1

+ · · · + αn−1A+ anI. (65)

where, α1 is the coefficient closed-loop polynomial. In MAT-
LAB, the function of Ackermann formula can be applied by
using the acker command.

VIII. RESULT AND DISCUSSION
There are six examinations that will be simulated. The first
examination is coefficient diagram method examination. The
next examination is the open-loop stimulation of the maglev
system. The next examination is conducted to analyze the
proposed controller under the uncertainty of mass, the uncer-
tainty of inductance, the uncertainty of resistance, and distur-
bance.
The parameters of the Maglev system are as follows. The

mass is 0.36kg, the inductance is 0.12H , the resistance is
9�, the inductor constant is 0.00013Nm2/A∧2, the equilib-
rium position is 0.01m, and the equilibrium current is 3.2A.
The maximum height of an object is 0.02 meters from the
inductor. If the height exceeds the maximum limit, then the
examination is considered to fail.
Based on the (34), the rank of the system in (28) is 3, which

is rank > 1. Thus, the system completely states controllable.
Therefore, the state feedback with integral control is applica-
ble to the system.

TABLE 1. Integral state feedback gains parameter.

A. COEFFICIENT DIAGRAM METHOD EXAMINATION
Based on the CDM, using the standard stability index and
the robustness stability index, target closed-loop polynomial
in (38), also using the Ackermann’s formula in (64), the
integral state feedback gains can be obtained. The result of
the target closed-loop polynomial and integral state feedback
gains is shown in Table 1. The coefficient diagram of the
target closed-loop polynomial is shown in Fig. 7.

FIGURE 7. Coefficient diagram method.

Fig. 7 is the relation between the stability index to the
coefficient value of the closed-loop polynomial. The bigger
the stability index, then the coefficients of the closed-loop
polynomial are also bigger. Bigger coefficients mean bigger
pole values. Bigger poles mean the pole locations are located
farther than the imaginary axis, or closer to the infinity value.
Meanwhile, it is known that pole locations that provide more
stability are the ones located farther from the imaginary axis
on the half-left plane. Hence, the bigger value of stability
index improves the system’s stability better.

The robustness of the system also can be inferred from
Fig. 7. The convexity curve of the graph line contains infor-
mation about stability and robustness. The coefficient curve
shape sensibility due to plant parameter variation is a measure
of system robustness. The larger and the higher the position of
the coefficient curve, the system is more robust to disturbance
and more immune to the change of parameters. The blue-
colored line is higher and has larger curvature based on the
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coefficient diagram so that the system will be more robust to
disturbance and uncertainties.

B. OPEN LOOP SIMULATION
The first examination is an open-loop simulation. It is used
to determine the characteristics and behavior of the maglev
system. It can be shown in Fig. 8. The y-axis is time in second,
and the x-axis is the position in the meter.

FIGURE 8. Open loop response simulation.

It can be seen in Fig. 8 that the natural characteristics of
the system are highly unstable with fast dynamic nonlinear
behavior. The system is highly unstable because the response
is unbounded while the given input is bounded. Fast dynamic
nonlinear can be known from the time needed for the output
to get to a certain amplitude; the system can reach 100 meters
in position in less than 1 second of simulation time.

C. RESPONSE OF MASS UNCERTAINTY
The examination is done by replacing the ball’s mass in a
maglev system with varying mass values. The default mass
is 0.36kg, and the examination uses 1kg of object mass. The
response is shown in Fig. 9. The red line is the response from a
standard parameter of CDM, and the blue line is the response
from a robust parameter of CDM. The x-axis is the time value,
and the y-axis is the object height from the inductor.

Based on Fig. 9, it can be seen that a good system
response performance with better disturbance rejection can
be achieved from a controller with a stability index parameter
as [4 4 4]. Meanwhile, an oscillated response is obtained from
the standard parameter of the stability index as [2.5 2 2].

D. RESPONSE OF INDUCTANCE UNCERTAINTY
In this experiment, the test is done by changing the inductance
value at specific seconds. The experimental results are shown
in Fig. 10, and the changes in the inductance value are set at
the third second. The default inductance value is 9H, and the
examination uses 9.1H of inductance. Based on the test in Fig.
10, the stability index with a value of [4 4 4] is more robust
against changes in the value of resistance. Meanwhile, the

FIGURE 9. The response of mass uncertainty.

FIGURE 10. The response of inductance uncertainty.

stability index with a value of [2.5 2 2] is highly affected by
changes in the resistance value, giving overshoot in response.
However, it is able to stabilize the change of the value and
to return to its preferred position with a longer time than the
use of [4 4 4] parameters. Moreover, these results can still
be tolerated because they do not exceed the maglev system
height limit of 0.02 meters.

E. RESPONSE OF RESISTANCE UNCERTAINTY
In this experiment, the test is done by changing the resistance
value at specific seconds. The experimental results are shown
in Fig. 11. and the changes in the resistance value are set at
the third second. The default resistance value is 0.12�, and
the examination uses 0.15� of resistance. Based on the test
in Fig. 11, the stability index with a value of [4 4 4] is more
robust against changes in the value of resistance. It even looks
like the augmented system did not get affected at all with the
uncertainty. Meanwhile, the stability index with a value of
[2.5 2 2] makes the augmented system affected by changes in
the resistance value. However, it is still able to return to the
preferred position. These results can still be tolerated because
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FIGURE 11. The response of resistance uncertainty.

FIGURE 12. The response of disturbance.

they do not exceed the maglev system height limit of 0.02
meters.

F. RESPONSE OF DISTURBANCE
In the test, a disturbance is given to the system in the third
second of the simulation time. The test result is shown in
Fig. 12. The blue-colored line represents the system response
when the robust parameters are implemented to the controller.
Meanwhile, the red-colored line shows the system response
when a standard parameter is used in the controller. Based on
the test result, the implementation of robust parameters to the
controller provides a faster and smaller undershoot response
in stabilizing the system back to the reference target after
the disturbance is given. However, the standard parameter
provides a faster rise time before the disturbance is given
while the robust parameter makes the system respond a bit
slower.

IX. CONCLUSION
Based on the simulation results, it can be concluded that the
coefficient diagram method can provide parameter gains that
fulfill robustness criteria from disturbance and uncertainties

without compromising the object position of the maglev sys-
tem.Moreover, the standard parameter of CDM is not suitable
for a system with high disturbance and uncertainties. The
best parameter of stability index for robustness criterion is
[4 4 4] which guarantees both zero steady-state error and best
disturbance and uncertainties rejection.
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