
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, VOL 1, ISSUE 1, JANUARY 2020

IJSTR©2020

www.ijstr.org

Comparative Analysis of Path-finding Algorithm

on Unrestricted Virtual Object Movable

for Augmented Reality
Aninditya Anggari Nuryono, Alfian Ma’arif, Iswanto

Abstract — Pathfinding is a necessary method in gaming, especially in 3D games. Path-finding is used by an object to find paths from one

place to another based on the state of the map and other objects. Path-finding requires algorithms that can process quickly and produce the

shortest path to reach a destination location. In this paper, path-finding is applied in Augmented Reality. The Intel RealSense camera is used

to reconstruct the real environment and display virtual objects. The path-finding algorithm is reviewed that the A*, A* smooth, and Navigation

Mesh algorithms. Each of these algorithms is implemented into the Unity 3D object game. Each object game will move simultaneously to the

destination point with different starting positions and goals by avoiding many obstacles. It is obtained in the 3D simulation that the A* smooth

algorithm is superior to the A* algorithm and NavMesh. The travel time required a game object with A* smooth algorithm is 1.54 seconds

faster, and 1.4 seconds compared to A* and NavMesh. Virtual objects can use pathfinding algorithms as a navigation path in the real world.

The navigation path is located in the grid area that generated by Intel RealSense cameras.

Index Terms — A*, Unity 3D, Intel RealSense, Pathfinding, NavMesh, Augmented Reality, Intel RealSense

—————————— ◆ ——————————

1. INTRODUCTION

Augmented Reality (AR) is research in computer science that
combines digital and real-world data. AR uses techniques in
computer vision, image processing, and computer graphics to
merge digital content into the real world [1][2]. Users can see
3D (3D) objects projected by the camera against the real world
[3]. Utilization of cameras such as a webcam or 3D camera that
has depth can be used in AR technology. One of the depth
technology in the 3D camera is Intel RealSense R200 [4]. AR
allows real-time interaction between users, native objects, and
virtual objects. One example of an AR application can be
applied to a navigation system. This navigation system uses the
pathfinding method. Pathfinding is a method searching in
artificial intelligent (AI) [5][6].
The pathfinding method, such as APF (Artificial Potential Field)
[7] and A* (A-Star) algorithm is to find the shortest path from the
starting point to the destination point [8][9]. One of the problems
with AR is syncing virtual data with the environment. An
approach using both marker and markerless methods can solve
problems using visual markers, such as barcodes, two-
dimensional drawing paper (2D). In the marker method, the
virtual object will appear above the marker. This is still one of
the problems that exist in AR.

The problem is because the virtual object that appears above
the marker cannot move freely because it is limited to the area
of the marker.

Therefore, this paper a method will be proposed without using
markers to display AR using Intel RealSense 3D cameras.
The Intel RealSense R200 camera is used to reconstruct real-
world environments in three dimensions. This environment
used virtual objects as terrain to appear in the real world. Virtual
objects are non-player characters (NPCs) using A*, A* smooth,
and NavMesh algorithms as navigation systems

2. LITERATURE REVIEW

Game is a form of entertainment that can be played using
electronic media [10]. The game required AI so that the game
can be more lively and exciting [5]. One of the in-game AI
components that can be applied in AR is pathfinding. Some
research on Augmented Reality and Pathfinding has been
widely practiced. In a study conducted by Kim, et al utilizing AR
with a markerless method. This method uses a smartphone
camera to display AR object games on pictorial imagery. AR
object game designed using the Unity 3D game engine [11].
In a study conducted by Kaydin, et al. Presented an adaptive
grid path planning technique, an image-based approach to
generating navigation mesh (NavMesh). NavMesh is
reconstructed based on images taken from above on an urban
3D model. Navigation simulations in the crowd are done in a
virtual environment. Comparison between the adaptive grid
method and other path planning algorithms, namely Dijkstra
and A* is done to obtain accuracy and better memory. In static
path planning, the adaptive grid method shows better
performance. Adaptive grid can be applied to both static and
dynamic planning [12].

————————————————

• Aninditya Anggari Nuryono received his M.Eng from
Department of Electrical Engineering and Information
Technology Universitas Gadjah Mada, Indonesia. E-mail:
anindityanuryono@mail.com

• Alfian Maarif is a lecturer at Department of Electrical
Engineering, Universitas Ahmad Dahlan, Indonesia. E-
mail: alfianmaarif@ee.ac.id

• Iswanto is a lecturer at Department of Electrical
Engineering, Universitas Muhammadiyah Yogyakarta,
Indonesia.

mailto:alfianmaarif@ee.ac.id

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, VOL 1, ISSUE 1 JANUARY 2020

IJSTR©2020

www.ijstr.org

Subsequent research conducted by Stamford et al combined
the A* algorithm and occupancy grids for unexplored
pathfinding. This pathfinding navigation is simulated using Unity
3D. The incorporation of the algorithm is applied to Non-
Playable Character (NPC) to make environmental
representations by themselves and to plan pathways based on
this information [13]. Furthermore, research conducted by
Kallman et al reviewed the structure and algorithm of navigation
to obtain dynamic navigation in real-time with simulations of
many agents and in the virtual world. This research uses
existing methods such as A*, Euclidean, R-funnel, and Dijkstra
algorithms. These methods can be applied to simulations with
a busy environment when there are many agents and complex
environments in the virtual world [14].
Research is conducted by Algfoor, et al on the study of
pathfinding techniques for robotics and video games in the last
10 years. This research categorizes pathfinding algorithms
based on the search for 2D and 3D environments. The
algorithms are described in this study, such as A* and IDA*,
improved A*, IEA* and IDA*, and D * techniques. The video
games industry can use this pathfinding algorithm in future
generations, which will be based on Augmented Reality
interactive as expectations of future trends [15].
AR technology consists of a combination of real-world and
computer graphics, the interaction with objects in real-time, the
detection of objects or Images, and provides contextual data
and information [16]. Augmented Reality uses marker and
markerless methods. This method is the method used in AR
technology to perform the process of tracking objects that exist
in the real world and display virtual objects.

2.1 Marker Based Tracking

Marker-based tracking is illustrated with paper that has a black

and white square with a thick black border and a white

background. The computer will recognize the position and

marker orientation and create a 3D virtual world [17].

2.2 Marker Based Tracking

Markerless based tracking does not require a marker to display
digital content [18]. As AR has now been developed by the
largest companies, such as Microsoft with Hololens, Google
Inc. with Project Tango and ARCore technology, Apple Inc. with
ARKit technology, and Intel Inc. with Intel RealSense cameras.
Hololens combines virtual reality and Augmented Reality to
create a mixed reality. Hololens has a 3D camera for
reconstructing a real 3D environment with spatial mapping [19].
Project Tango is AR developed by Google company. Project
Tango is designed into a smartphone using a 3D camera.
Project Tango has three algorithms to be able to run AR, which
is motion tracking, area learning, and depth perception [20]. AR
technology using ARCore and ARKit requires only red, reen,
and blue (RGB) cameras to visualize virtual objects, while Intel
RealSense is a 3D camera developed by Intel company. The
perception scene algorithm on Intel RealSense is used to
display AR in the real world. In this paper, aka using the Intel
RealSense 3D camera. Intel RealSense Camera is shown in
Fig. 1.

Fig. 1. Intel RealSense Camera [21]

2.3 Pathfinding

Pathfinding is a much-needed method for many games,
especially 3D games. Pathfinding is used to determine the
direction of the movement of an object from one place to
another based on the state of the map and other objects. In
solving pathfinding, algorithms will need to be able to quickly
process and produce the shortest direction to reach a
destination location. One of the algorithms used for pathfinding
is the A* algorithm. Algorithm A* is an improvement of Dijkstra's
method by modifying heuristic functions. A* will minimize the
total trajectory cost contained in the Dijkstra method.
A* will provide the best solution at the optimal time. In a simple
case search path, when there is no obstruction on the map, A*
works as fast and as efficient as Dijkstra. In the case of a map
with a hitch, A* can find a route solution without being trapped
by an existing obstacle [22]. The pseudocode and flowchart of
the A* algorithm are shown in Algorithm 1.

OPEN //the set of nodes to be evaluated
CLOSED //the set of nodes already evaluated
add the start node to OPEN
loop

current = node in OPEN with the lowest f_cost
remove current from OPEN
add current to CLOSED
if the current is the target node //path has been found
return

for each neighbor of the current node
if the neighbor is not traversable or neighbor is in
CLOSED

skip to the next neighbor
if the new path to a neighbor is shorter OR neighbor is
not in OPEN

set f_cost of neighbor
set parent of neighbor to current
if the neighbor is not in OPEN

add the neighbor to OPEN

2.3 NavMesh

Navigation Mesh (NavMesh) is a data structure that describes
the walkable surfaces of the gaming world and makes it
possible to find paths from one walkable location to another in
the gaming world. Data structures are built, or baked,
automatically from existing geometries. NavMesh consists of a
convex polygon that covers an empty space, so the path can be
found without the occurrence of a collision with a hitch.

ALGORITHM 1. PSEUDOCODE A*

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, VOL 1, ISSUE 1 JANUARY 2020

IJSTR©2020

www.ijstr.org

This mesh is a pathfinding algorithm integrated with unity 3D
and can be used in Augmented Reality applications. In Fig. 2,
is shown a convex polygon. The white and gray areas represent
areas that are not accessible. Blue areas represent areas that
can be accessed and used.

Fig. 2. Convex polygons of NavMesh in Unity 3D

3. WORKING SYSTEM

The block diagram of the system in this research starts with
system design. The system block diagram of this system in Fig.
3. with an explanation as follow. Start Application is about going
to the desired starting position in the user environment and start
the app from the Intel RealSense menu. The scan is when the
application has started, a text will appear, letting the user place
the dot into an area with a certain distance. When you get that
distance, there is information to place a point in an area with a
less flat surface or more area structure. The start button to
perform the scan will appear when the previous conditions are
met.

Start application
Walk around and scan

the environment

Generate grid

Hide mesh

Place the virtual

object tin the

environment

Fig. 3. Block diagram of the Augmented Reality system

The next is to Generate a grid. This stage starts with a
calculation where all the existence of the floor is the area that
has been scanned by using the perception scene. The farthest
positions of each other are used to generate the grid between
these points. This grid is a collection of nodes, with each node
on set unwalkable. Next set to walkable if the existing floor
position is within the node area. A valid floor node will result in
a value depending on how close the floor node is to the
unwalkable node. This information is used as a heuristic in
pathfinding. The grid will remember the last position of the
object to be tracked next.
This will be used with a pathfinding A* algorithm to find the
shortest path between AR starting point and AR destination

point. Hide Mesh is a visible mesh that can be set on-off. When
scanning the environment, with an excellent environment to see
that it has been scanned or not, the condition may result in the
system slightly lag when compared to not displaying the mesh.
Therefore, to make the system run smoother, the visible mesh
is hidden when scans and grid making is done. The last is a
Place object virtual. Unity 3D is used to display virtual objects
in the real world. 3D environments in the real world are used as
AR terrain.

4. EXPERIMENTAL AND RESULT

The results of the research stages based on a research
methodology that has been done. The results and discussion
are starts from the algorithm implementation stage using
simulation in Unity 3D and Augmented Reality and simulation
data taking in Unity 3D and Augmented Reality. The data used
in this study are generated randomly. The data used is the
position of the coordinates of virtual objects consisting of x and
z coordinates on the simulation of Unity 3D and x, y, and z in
the real world. The data used had variations of 29 obstacle
coordinate positions, three agents with the same initial position,
and one position of the destination point. Each obstacle
coordinate position with a simulation test in Unity 3D is shown
in Fig. 4.

Fig. 4. Obstacle position in Unity 3D

In the simulation in Unity 3D, the data is analyzed and
discussed is the movement of the pathfinding path that is
implemented to the game object. Pathfinding simulation in Unity
3D has three scenarios: two scenarios with different coordinate
points and one scenario with the starting point to the three
objects having the same coordinates. This experiment is
conducted five times. This is done to test the consistency of the
path through which the object passes. In this study, it has two
scenarios, that the target is not moving or in a fixed position
coordinate position and the target is moving.

4.1 Scenario 1
In scenario 1, the initial point coordinates are on the x-axis with
the coordinates of 0.42, on the y-axis with the coordinates of 0,
and on the z-axis with coordinates -3.03. The destination is on
the x-axis with the coordinates of -8.09, on the y-axis with the

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, VOL 1, ISSUE 1 JANUARY 2020

IJSTR©2020

www.ijstr.org

coordinates of 0, and on the z-axis with the coordinates of 1.25.
The location of the object at the starting point and destination
are shown in Fig. 5.

Fig, 5. Initial and Destination position of the object in scenario 1

In Fig. 5, the blue object is the location of the starting point, while
the red object is the destination point. The result of object
movement to reach the target can be seen in Fig. 6 and Table
1. The black line is the path generated by the movement of the
A* algorithm. The green line is the path generated by the A*
smooth algorithm, and the blue path is the path generated by
the NavMesh algorithm.

Fig. 6. Path of initial to a destination position in scenario 1

TABLE 1.
RUNNING TIME IN SCENARIO 1

Try A* A*

Smooth

NavMesh

1 4.5 seconds 3 seconds 4.4 seconds

2 4.5 seconds 3 seconds 4.4 seconds

3 4.5 seconds 3 seconds 4.4 seconds

4 4.7 seconds 3 seconds 4.4 seconds

5 4.5 seconds 3 seconds 4.4 seconds

Mean 4.54 seconds 3 seconds 4.4 seconds

Based on Table 1, the experiment was conducted 5 times, the
travel time generated by the object using the A* algorithm was
4.54 seconds. The travel time generated by the object using the
A* smooth algorithm is 3 seconds. The travel time generated
by the object using the NavMesh algorithm is 4.4 seconds. This
shows that the A* smooth algorithm has a higher lead time
compared to the A* and NavMesh algorithms.

4.2 Scenario 2

In scenario 2, the initial point coordinates are on the x-axis with

the coordinates of -4.33, on the y-axis with the coordinates of 0,

and on the z-axis with the coordinates -19.4. The location of the

destination is on the x-axis with the coordinates of 4.37, on the

y-axis with the coordinates of 0, and on the z-axis with the

coordinates of 3.01. The location of points on the coordinates of

the starting and destination points are shown in Fig. 7.

Fig. 7. Initial and destination position of the object in scenario 2

The result of object movement to reach the target coordinates

are shown in Fig. 8 and Table 2. The black line is the path
generated by the movement of the A* algorithm. The green line
is the path generated by the A* smooth algorithm, and the blue
path is the path generated by the NavMesh algorithm.

Fig. 8. Path of initial to a destination position in scenario 2

TABLE 2.

RUNNING TIME IN SCENARIO 2

Try A* A* Smooth NavMesh

1 8.4 seconds 8.1 seconds 8.8 seconds

2 8.4 seconds 8.1 seconds 8.8 seconds

3 8.4 seconds 8.1 seconds 8.8 seconds

4 8.4 seconds 8.2 seconds 8.8 seconds

5 8.3 seconds 8.2 seconds 8.8 seconds

Mean 8.38 seconds 8.14 seconds 8.8 seconds

Destination

Initial

Destination

Initial

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, VOL 1, ISSUE 1 JANUARY 2020

IJSTR©2020

www.ijstr.org

Based on Table 2, the experiment was conducted 5 times, the
travel time generated by the object using the A* algorithm was
8.38 seconds. The travel time generated by the object using the
A* smooth algorithm is 8.14 seconds. The travel time generated
by the object using the NavMesh algorithm is 8.8 seconds. This
shows that the A* smooth algorithm has a higher lead time
compared to the A* and NavMesh algorithms

4.3 Scenario 3
In scenario 3, the target destination object to be achieved in this
scenario has coordinates that change as the destination will
move. The starting point of the object and destination have the
same coordinates. this with the starting point coordinates with
the initial point A, the object and target are on the x-axis with
the coordinates of 13.09, on the y-axis with the coordinates of
0, and on the z-axis with the coordinates -21,07. The object will
follow the target. When the target moves from point A to point
B, the object will follow it until the target reaches point H. The
visualization of movements in the achievement of a moving
target is shown in Fig. 9 and Table 3.
Based on Table 3, the movement of objects following the target
movement from point A to H obtained travel time generated by
the object using the algorithm A* is 34.1 seconds. The travel
time generated by the object using the A* smooth algorithm is
3.25 seconds. The travel time generated by the object using
the NavMesh algorithm is 42.1 seconds. This shows that the A*
smooth algorithm has a superior travel time compared to the A*
and NavMesh algorithms.

Fig. 9. Path of initial to a destination position in scenario 3

TABLE 3.
RUNNING TIME IN SCENARIO 3

Movement A* A* Smooth NavMesh

From

Initial

to

Destination

6.1 seconds 6 seconds 6.7 seconds

2 seconds 2 seconds 2.5 seconds

7.4 seconds 6.8 seconds 12.4 seconds

1.9 seconds 1.5 seconds 2.3 seconds

7.8 seconds 7.6 seconds 9.6 seconds

2.4 seconds 2.2 seconds 2.6 seconds

6.5 seconds 6.4 seconds 7.7 seconds

Total 34.1

seconds

32.5

seconds 42.1 seconds

4.3 Running Time

System testing is done on the ability of algorithms to find the
path. The travel time data will be compared to find out how fast
the A*, A* smooth, and NavMesh algorithms are in finding
paths. The smaller the travel time it takes, the faster the object
gets to its destination. The travel time of an object depends on
the position of the origin and destination coordinates, which
affects the length of the path. The farther the coordinates of the
starting point and destination, then the travel time gained
higher. The closer the coordinates of the starting point and
destination, the travel time is getting smaller. The distance and
proximity of the starting point and destination affect the length
of the path. The data of travel time obtained based on the
location of the starting point and destination with the
coordinates that have been reviewed in the previous scenario.
Based on the experiment conducted 5 times in scenario 1, the
travel time generated by the object using the algorithm A* is
4.54 seconds. The travel time generated by the object using the
A* smooth algorithm is 3 seconds. The travel time generated by
the object using the NavMesh algorithm is 4.4 seconds. This
shows that the A* smooth algorithm has a superior travel time
compared to the A* and NavMesh algorithms.

In scenario 2, the travel time generated by the object using the
A* algorithm is 8.38 seconds. The travel time generated by the
object using the A* smooth algorithm is 8.14 seconds. The
travel time generated by the object using the NavMesh
algorithm is 8.8 seconds. This shows that the A* smooth
algorithm has a superior travel time compared to the A* and
NavMesh algorithms. In scenario 3, the movement of the object
following the target movement from point A to H, the travel time
generated by the object using the A* algorithm is 34.1 seconds.
The travel time generated by the object using the A* smooth
algorithm is 32.5 seconds. The travel time generated by the
object using the NavMesh algorithm is 42.1 seconds. This
shows that the A* smooth algorithm has a superior travel time
compared to the A* and NavMesh algorithms [14].

Based on the three scenarios above, the A* smooth algorithm
is superior to the A* and NavMesh algorithms because it has
less travel time. This is because the A* smooth algorithm is a
modification of the A* algorithm from the ray cast side [13]. The
ray cast function in Unity 3D is to provide information to objects
that use the ray cast function to find objects in the environment
and can return additional information such as the intersection
point or not as well as obstacles. Ray cast on the A* algorithm
is also used for line-of-sight testing or knowing something that
is in front of the object. Pathfinding algorithms A* and A* smooth
are implemented into game objects in Unity 3D. Game objects
that have been created and have been simulated and
implemented into Augmented Reality.

Game objects on Augmented Reality are called virtual objects.
The pathfinding of Augmented Reality to be reviewed is that the
virtual object will follow the movement of a point as it moves
called the following. Augmented Reality results following the
target are shown in Fig. 10, and Fig. 11.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, VOL 1, ISSUE 1 JANUARY 2020

IJSTR©2020

www.ijstr.org

Fig. 10. Path of initial to a destination position in Augmented Reality

In Fig. 10, is an Augmented Reality movement following the
target movement. The target goes up and down the stairs above
the grid that overlaid the stairs in the real world. The grid is built
using the Intel RealSense 3D camera. In Fig. 11, there are
tracking, reconstruction, meshing, save mesh, reset, quit, and
shoot menu. Tracking works to track the environment and return
tracking results as it did when losing track. "Reconstruction"
works to reconstruct the real environment for virtual objects to
be used in real life. "Meshing" serves to create three dimensions
of the real environment. Save mesh serves to store meshing
results. "Reset" function to reset when the scanning results are
not after the desired. "Shoot" can issue a virtual object shaped
box. "PosisiAStarSmooth" is used to store the coordinates of
the movement of virtual objects using the A* smooth algorithm.
"PosisiAStar" is used to store the coordinates of the movement
of virtual objects using the A* algorithm. "PosisiTujuan" is used
to store the coordinates of the movement of the target virtual
object.

Fig. 11. Augmented Reality Interface

5. CONCLUSION

The algorithm is implemented on simulation in Unity 3D and
Augmented Reality, and simulation data taking in Unity 3D and
Augmented Reality. Pathfinding simulation in Unity 3D has
three scenarios, two scenarios with different coordinate points
and one scenario with the starting point to the three objects
having the same coordinates. This experiment is conducted five
times. This is done to test the consistency of the path through
which the object passes. In this study, it has two scenarios, that
the target is not moving or in a fixed position coordinate position
and the target is moving. It is obtained in the 3D simulation that
the A* smooth algorithm is superior to the algorithm A* and
NavMesh. The travel time required game object with A* smooth

algorithm is 1.54 seconds faster, and 1.4 seconds compared to
A* and NavMesh. Virtual objects can use pathfinding algorithms
as a navigation path in the real world. The navigation path is
located in the grid area that generated by Intel RealSense
cameras.

REFERENCES

[1] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier,

and B. MacIntyre, “Recent advances in augmented

reality,” IEEE Computer Graphics and Applications, vol.

21, no. 6, pp. 34–47, 2001.

[2] S. Siltanen, “Theory and applications of marker-based

augmented reality,” in Espoo 2012. VTT Science Series

3, VTT, 2012, p. 198 p. + app. 43 p.

[3] M. Billinghurst, A. Clark, and G. Lee, “A Survey of

Augmented Reality,” Foundations and Trends® in

Human–Computer Interaction, vol. 8, no. 2–3, pp. 73–

272, Aug. 2015.

[4] P. Zanuttigh, G. Marin, C. Dal Mutto, F. Dominio, L.

Minto, and G. M. Cortelazzo, Time-of-Flight and

Structured Light Depth Cameras. Springer International

Publishing, 2016.

[5] P. Norvig and S. J. Russell, Artificial Intelligence: A

Modern Approach. Upper Saddle River, NJ: Prentice

Hall, 2010.

[6] J. R. Puigvert, T. Krempel, and A. Fuhrmann,

“Localization Service Using Sparse Visual Information

Based on Recent Augmented Reality Platforms,” in

2018 IEEE International Symposium on Mixed and

Augmented Reality Adjunct (ISMAR-Adjunct), 2018, pp.

415–416.

[7] I. Iswanto, A. Ma’arif, O. Wahyunggoro, and A. Imam,

“Artificial Potential Field Algorithm Implementation for

Quadrotor Path Planning,” International Journal of

Advanced Computer Science and Applications, vol. 10,

no. 8, pp. 575–585, 2019.

[8] A. Maarif, S. Iskandar, and I. Iswanto, “New Design of

Line Maze Solving Robot with Speed Controller and

Short Path Finder Algorithm,” International Review of

Automatic Control (IREACO), vol. 12, no. 3, p. 154,

2019.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.

Stein, Introduction to Algorithms, Third Edition, 3rd ed.

The MIT Press, 2009.

[10] P. de Byl, Holistic Game Development with Unity. 2017.

[11] S. L. Kim, H. J. Suk, J. H. Kang, J. M. Jung, T. H. Laine,

and J. Westlin, “Using Unity 3D to facilitate mobile

augmented reality game development,” in 2014 IEEE

World Forum on Internet of Things (WF-IoT), 2014, pp.

21–26.

[12] A. Akaydın and U. Güdükbay, “Adaptive grids: an

image-based approach to generate navigation

meshes,” Optical Engineering, vol. 52, no. 2, p. 027002,

2013.

[13] J. Stamford, A. S. Khuman, J. Carter, and S. Ahmadi,

“Pathfinding in partially explored games environments:

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, VOL 1, ISSUE 1 JANUARY 2020

IJSTR©2020

www.ijstr.org

The application of the A* Algorithm with occupancy grids

in Unity3D,” in 2014 14th UK Workshop on

Computational Intelligence (UKCI), 2014, pp. 1–6.

[14] M. Kallmann and M. Kapadia, “Navigation Meshes and

Real-time Dynamic Planning for Virtual Worlds,” in ACM

SIGGRAPH 2014 Courses, 2014, pp. 3:1--3:81.

[15] Z. Abd Algfoor, M. S. Sunar, and H. Kolivand, “A

comprehensive study on pathfinding techniques for

robotics and video games,” International Journal of

Computer Games Technology, vol. 2015, 2015.

[16] M. Ramirez, E. Ramos, O. Cruz, J. Hernandez, E.

Perez-Cordoba, and M. Garcia, “Design of interactive

museographic exhibits using Augmented reality,” in 23rd

International Conference on Electronics,

Communications and Computing, CONIELECOMP

2013, 2013, pp. 1–6.

[17] J. Wang et al., “Augmented Reality Navigation With

Automatic Marker-Free Image Registration Using 3-D

Image Overlay for Dental Surgery,” IEEE Transactions

on Biomedical Engineering, vol. 61, no. 4, pp. 1295–

1304, 2014.

[18] S. Bedoya-Rodriguez, C. Gomez-Urbano, A. Uribe-

Quevedoy, and C. Quintero, “Augmented reality RPG

card-based game,” in 2014 IEEE Games Media

Entertainment, 2014, pp. 1–4.

[19] R. Furlan, “The future of augmented reality: Hololens -

Microsoft’s AR headset shines despite rough edges

[Resources_Tools and Toys],” IEEE Spectrum, vol. 53,

no. 6, p. 21, 2016.

[20] T. Araújo et al., “Life Cycle of a SLAM System:

Implementation, Evaluation and Port to the Project

Tango Device,” in 2016 XVIII Symposium on Virtual and

Augmented Reality (SVR), 2016, pp. 10–19.

[21] Intel, “RealSense,” 2015. [Online]. Available:

https://www.intel.com/content/www/us/en/architecture-

and-technology/realsense-overview.html. [Accessed:

01-Jan-2015].

[22] M. Kallmann and M. Kapadia, “Geometric and discrete

path planning for interactive virtual worlds,” ACM

SIGGRAPH 2016 Courses on - SIGGRAPH ’16, pp. 1–

29, 2016.

