Editorial Board

Editor-in-chief
Dr. (Mrs.) Ojiya Parashar
9, Gestaltan enclave, Malviya Nagar, New Delhi, 110017, India

Section A: Environmental Science

Associate Editor-in-chief
Prof. Abhijit Mitra
Oceanography Division, Techno India University, Department of Marine Science, University of Calcutta, India

Dr. P.S. Narasaj
Department of Zoology, Yedvuru College, Madurai, Tamil Nadu

Editor
Prof. P.K. Sharma
N. V. University, Jodhpur, (Rajasthan), India

Dr. Usha Balaji
Department of Physics, University of Lucknow, Lucknow, U.P., India

Dr. A.D. Saroch
Department of Zoology and Applied Aquaculture, Barkatullah University, Bhopal, M.P., India

Dr. Chhaya Bhatnagar
Department of Zoology, M.L. University, Udaipur, Rajasthan, India

Dr. Syeda Azemunnisa
Research Officer, Osmania University, Hyderabad, A.P., India

Dr. Syeda Azemunnisa
Research Officer, Osmania University, Hyderabad, A.P., India

Dr. Ebrahim Azarpaz
Islamic Azad University, Lahaian, Iran

Dr. Kizas, B.R
Environmental Science, DDE, Kuwait University, Shandarzaphoto-57451, Kuwait

Dr. P. Sattish Kumar
Institute of Environmental & Water Resource Management, Universiti Teknologi Malaysia, 81316 Skudai, Johor Bahru, Malaysia

Dr. Aditya Kishore Dash
Faculty in Environmental Engineering, IITER, Under S6™/O4™ University, Bhusanpur, Odisha, India

Dr. Tarit Roychowdhury
School of Environmental Studies Jadavpur University, Kolkata 700032

Dr. Okoye Elizabeth Regina
Department of Geological Sciences Nnamdi Azikwe University P.M.B. 50055, Awka, Nigeria

Dr. Dania Ahmed Mohammed
Faculty of Agriculture, Bel and Water Science Department, Sulaimani University, Iraq

Dr. Alphonse Ojip
Faculty of Science, Department of Biology, Gulu University/P. O. Box 165, Gulu, Uganda

Dr. M.G. Palli
Professor & Head, Department of Horticulture College of Agriculture, Raichur-584102, India

Dr. Vijay Kumar
Sugarcane Agriculture, University of Mysore, Karnataka, India
Dr. V. Belegi
Electrical Engineering, Nagpur University, Nagpur
Anuradha Kumar Latleivanvato
Civil Engineering, National Institute of Technology, Jammshedpur, India
Dr. Chandrasekhar Sathe
Prajapati College of Engineering, Nagpur, India
Dr. R. Saravan
Anna University, Chennai, India
Dr. L. Nageswararao
Sri Venkateswara University, Tirupathi, India
Dr. Nural Fadly Habidin
Financial Economics, Universiti Pendidikan Sultan Idris, Malaysia
Dr. Venkata Ragahavendra Bhirupally
Electronics & Communication Engineering, From Bhavnath University, Rajasthan, India
Dr. M. Shamlal Bin Zamir
Dept. Of Agriculture, University Of Agriculture, Faisalabad, Pakistan
Prabhu Jha
Department of Mechanical Engineering, Faculty of Engineering, Rajasthan
Department of Mechanical Engineering, Faculty of Engineering, Rajasthan
Mr. Naveen Mishra
CUIFST, Maharashtra prath University of Agriculture & Technology, Rajasthan, India
Akhil Singh Jhala
Purdue University, West Lafayette, Indiana
Prof. Nitin V. Ingole
Department of Civil Engineering, Prof. Ramagiri Institute of Technology and Research, Baddana Amruthi, M.H., India
Dr. Akbar Noorani
Research scientist in DC/VH-CCISWY funded SRF funded project in Eastern Gangetic Plains of Bangladesh (Rangpur and Dinajpur district)
Dr. Amankrishna R. Tudi
California Department of Transportation (Caltrans) District 8 Office Division of Operations, 464 W. Fourth St, 8th Floor,
33511 San Bernardino, CA 92401-1400
Dr. Dhirendra Chakraborty
Head, Department of Statistics, Handicrafts College, Guwahati University
Mr. Ajay B. Gadicha
Department of IT, P.V. Patil College of Engg & Tech, Amravati, Maharashtra, India
Dr. Monika Chauhan
Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
Dr. Vishnu Narayan Mishra
Department of Mathematics, North Eastern Regional Institute of Technology, Raja Harishchandra University, Agartala, India
Agriculture and Technology (NERIT), Bhujnagar, Bangladesh
Dr. Dana Ahmed Mohammed
Member of the Indian agriculture engineering of Kurdistan
Dr. Alah Shrestha
Nepal Agricultural Research Council, National Livestock Research Program (outside), Rampur, Chitrak, Nepal

Other Journals

UJHCC: International Journal of Green and Herbal Chemistry
JCBBC: Journal of Chemical, Biological and Physical Sciences
SCMCA: Scientific and Competitive Association
Publication House

Editor-in-chief

Dr. (Mrs.) Bhagya Parameswar
9, Geetanjali enclave, Malaya Nagar, New Delhi, 110017, India
9442424933, balparisha@gmail.com

Chief Editor

Prof. V.K. Sharma (Retired)
Department of Chemistry, M.L.S. University, Udaipur (Rajasthan) INDIA
vijarambh@gmail.com

Reach us

Dhurche office:
9, Geetanjali enclavel,Malaya Nagar, New Delhi, 110017, India

Rajasthan office:
9, Astitva Eshwa, Bhojwada, Udaipur, 313001

Selection in Subset Polynomial Regression Model by Using Reversible Jump MCMC Algorithm

Role of Information Communication Technology (ICT) in Inventory Management of Small to Medium Enterprises (SMEs): A Case Study of Chikwanha Business Centre in Chitungwiza, Zimbabwe

Sentiment Analysis from Text

Changing the Way and Making Technology Visible in Classrooms: An Analysis

Information and Communication Technology (ICT) and Women Employment in Zimbabwe

Database Optimization Oracle via MYSQL

Case Study and Analysis of Complex Queries of Cloud Database Using Firefly Algorithm

Contrast Modification as a Tool to Study the Structure of Blood Components

Mobile Cloud Intrusion Detection System Based On User's Behavior

Water Resource Allocation Planning Based On Fuzzy Multi-Objective Non-Linear Programming

A Secure Identity-Typed Encryption Approach Using Quadratic Residues

Data HIDing Technique Based On the Lucas System Representation of Digital Images
Below are the plagiarism and references report of MS# JECET: 1082 which you submitted for consideration for publication in the *Journal of Environmental Science, Computer Science and Engineering & Technology*. We have checked your article in the plagiarism software and the following results observed/found:

<table>
<thead>
<tr>
<th>Section</th>
<th>Plagiarism Report:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>100% Unique Content and 00% copying from other journal/internet.</td>
</tr>
<tr>
<td>Introduction</td>
<td>99% Unique Content and 01% copying from other journal/internet.</td>
</tr>
<tr>
<td>Likelihood Function</td>
<td>100% Unique Content and 00% copying from other journal/internet.</td>
</tr>
<tr>
<td>BAYESIAN</td>
<td>100% Unique Content and 00% copying from other journal/internet.</td>
</tr>
<tr>
<td>REVERSIBLE JUMP MCMC ALGORITHM</td>
<td>100% Unique Content and 00% copying from other journal/internet.</td>
</tr>
<tr>
<td>Conclusion</td>
<td>100% Unique Content and 00% copying from other journal/internet.</td>
</tr>
<tr>
<td>Overall</td>
<td>99% Unique Content and 01% copying from other journal/internet.</td>
</tr>
</tbody>
</table>

Result of PlagLevel: the article having more than 100% Unique Content and only 01% text of article match with the text of another journal/internet. The article is suitable for publication.

References: we have checked the references in Google website and all the references are matched.
Below are the reviews of MS# JECET: 1082 which you submitted for consideration for publication in *Journal of Environmental Science, Computer Science and Engineering & Technology*. Here we are giving comments, suggestions and recommendations of the Editorial reviewer.

Editorial Recommendations:

Editorial General Comment

1. **Manuscript No** JECET 1082
 Entitled: Selection in Subset Polynomial Regression Model by Using Reversible Jump MCMC Algorithm

2. **Type of manuscript:** Research Article/ Review article/ Short notes/Short communication
 Research Article

3. **Is the length of the paper adequate?** Yes

4. **Are the title and the abstract pertinent, descriptive and concise?** Yes

5. **Does the paper contain new data or new ideas or both of them?** Yes

6. **Is the language fluent and precise?** Ok

7. **The figures are up to the mark in quality/ printing.** --

8. **Originality:** Yes

9. **References:** I have checked all the references on Google and found all Correct.

10. **Latest Reference.** 2015

Result of Plag Level: The article having more than 86% Unique Content and only 14% text of article match with the text of another journal/internet. The article is suitable for publication.

Object of research: developed the estimation of the parameter for subset polynomial regression model where the order is unknown with using reversible jump MCMC algorithm

- **Overall comments:** Authors have reported the following major finding in the research work:
 - Reported that subset polynomial regression model is a model that is very flexible for modeling data.
 - Subset polynomial regression is more flexible than full polynomial regression for modeling data. Subset polynomial is often used in many fields.
 - Authors have proposes a method for selecting the subset polynomial regression where the order is unknown. The method used to estimate the parameters of the subset polynomial regression is the Bayesian method.
 - Authors suggested that If the subset polynomial regression model fitted to the data, the model parameter is generally unknown. For the order is known, many methods have proposed to estimate the model parameter.
 - To overcome this problem, they have proposed the reversible jump MCMC method.
 - Authors have described Likelihood Function and Bayesian approach.
 - Described Reversible Jump MCMC Algorithm
 - Authors suggested the advantage of this algorithm of this algorithm is both the order, coefficient and variance can simultaneously be estimated.
- They have also suggested that a comparison with other existing approach is currently under investigation.

12. **Recommendation:** with consideration the above points, Article recommended for publication
Selection in Subset Polynomial Regression Model by Using Reversible Jump MCMC Algorithm

Suparman

Department of Mathematics Education, Ahmad Dahlan University, Yogyakarta, Indonesia

Received: 29 July 2016; Revised: 13 August 2016; Accepted: 18 August 2016

Abstract: Subset polynomial regression is more flexible than full polynomial regression for modeling data. If the subset polynomial regression is fitted to the data, then the parameters are generally unknown. This paper proposes a method for selecting the subset polynomial regression where the order is unknown. The method used to estimate the parameters of the subset polynomial regression is the Bayesian method. However, the Bayesian estimator is analytically not able to be found. To solve these problems, the reversible jump MCMC algorithm is proposed. The key of this algorithm is the producing of the Markov Chain that converges to the limit distribution of the posterior distribution.

Keywords: Subset Polynomial Regression, Bayesian, Reversible Jump MCMC algorithm.

INTRODUCTION

Selection in subset polynomial regression is to find a subset of the available subset polynomial regressions that does a good predicting. Subset polynomial regression model is a model that is very flexible for modeling data. Subset polynomial is often used in many fields. For example, it is used in the health for diagnosing breast cancer and for segmenting medical image.

If the subset polynomial regression model fitted to the data, the model parameter is generally unknown. For the order is known, many methods have proposed to estimate the model parameter, for example. In fact, the order is unknown. Because the order of the subset polynomial regression is unknown, previous method cannot used to estimate the parameter of the subset polynomial regression. To overcome this
problem, the reversible jump MCMC4 is proposed. There are many subset polynomial regressions; here they are limited to the subset polynomial regression model with the mean 0 and variance unknown.

1. LIKELIHOOD FUNCTION

Let \(y = (y_1, \cdots, y_n) \) be a dependent variable and let \(x = (x_1, \cdots, x_n) \) be a independent variable where \(n \) is the number of observations. The subset polynomial regression can be written by:

\[
y_t = \beta_0 + \beta_{n_i} x_t^{n_i} + \cdots + \beta_{n_p} x_t^{n_p} + z_t
\]

The set \(\{n_1, \cdots, n_p\} \) is a subset of the set \(\{1, \cdots, p\} \) where \(p \) is the order. For a polynomial regression with \(p = 3 \), there are \(2^4 = 16 \) subset polynomial regressions. In this case, the residual \(z_t \) are normally distributed with mean 0 and variance \(\sigma^2 \), denoted by \(z_t \sim N(0, \sigma^2) \). So for \(t = 1, 2, \cdots, n \)

\[
f(z_t \mid \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} z_t^2\right).
\]

If the variable transformation \(z_t = y_t - \beta_0 - \beta_{n_i} x_t^{n_i} - \cdots - \beta_{n_p} x_t^{n_p} \) is used, then \(\frac{dz_t}{dy_t} = 1 \). So that

\[
f(y_t \mid p, \beta, \sigma^2, x_t) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (y_t - \beta_0 - \beta_{n_i} x_t^{n_i} - \cdots - \beta_{n_p} x_t^{n_p})^2\right).
\]

If \(\beta = (\beta_0, \beta_{n_i}, \cdots, \beta_{n_p}) \), then the likelihood function is

\[
L(y \mid p, \beta, \sigma^2, x) = \prod_{t=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (y_t - \beta_0 - \beta_{n_i} x_t^{n_i} - \cdots - \beta_{n_p} x_t^{n_p})^2\right)
\]

\[
= (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{t=1}^{n} (y_t - \beta_0 - \beta_{n_i} x_t^{n_i} - \cdots - \beta_{n_p} x_t^{n_p})^2\right).
\]

2. BAYESIAN

To use the Bayesian approach5, the prior distribution is selected. The same choice with6, the prior distribution of \(p \) is a binomial distribution with hyper parameter \(\lambda \), denoted by \(p \sim \text{BIN}(\lambda, p_{\text{max}}) \),

\[
\pi(p \mid \lambda) = \binom{p_{\text{max}}}{p} \lambda^p (1 - \lambda)^{p_{\text{max}} - p}
\]

Where \(p = 0, 1, 2, \cdots, p_{\text{max}} \).
The prior distribution of \((\beta, \sigma^2)\) is a Jeffreys prior distribution,
\[\pi(\beta, \sigma^2|p, \lambda) \propto \sigma^{-2}.\]

As in \(^7\), the hyper parameter \(\lambda\) is considered as a variable. So, hyper prior distribution of \(\lambda\) is also selected. The prior distribution of \(\lambda\) is a Jeffreys prior distribution,
\[\pi(\lambda) \propto [\lambda(1-\lambda)]^{-\frac{1}{2}}.\]

Therefore, the prior distribution of \((p, \beta, \sigma^2, \lambda)\) is
\[\pi(p, \beta, \sigma^2, \lambda) = \pi(\beta, \sigma^2|p, \lambda) \pi(p|\lambda) \pi(\lambda)\]
\[\propto \left(\frac{p_{\text{maks}}}{p}\right)^p (1-\lambda)^{p_{\text{maks}}-p} \sigma^{-2} [\lambda(1-\lambda)]^{-\frac{1}{2}}.\]

Using Bayes theorem, the posterior distribution of \((p, \beta, \sigma^2, \lambda)\) is written in the following way:
\[\pi(p, \beta, \sigma^2, \lambda|y, x) \propto L(y|p, \beta, \sigma^2, x) \pi(p, \beta, \sigma^2, \lambda)\]
\[\propto (2\pi \sigma^2)^{-\frac{n}{2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_{n_1} x_i^{n_1} - \cdots - \beta_{n_p} x_i^{n_p})^2\right)\]
\[\left(\frac{p_{\text{maks}}}{p}\right)^p (1-\lambda)^{p_{\text{maks}}-p} \sigma^{-2} [\lambda(1-\lambda)]^{-\frac{1}{2}}\]
\[\propto (2\pi)^{-\frac{n}{2}} (\sigma^2)^{-\frac{n-1}{2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_{n_1} x_i^{n_1} - \cdots - \beta_{n_p} x_i^{n_p})^2\right)\]
\[\left(\frac{p_{\text{maks}}}{p}\right)^{p+\frac{1}{2}-1} (1-\lambda)^{p_{\text{maks}}-p+\frac{1}{2}-1}\]

3. **REVERSIBLE JUMP MCMC ALGORITHM**

Suppose that \(\xi = (p, \beta, \sigma^2, \lambda)\). The MCMC algorithm is a method of sampling to produce a homogeneous Markov Chain \(\xi_1, \xi_2, \cdots, \xi_m\) that satisfies aperiodic and irreductible\(^8\) such that \(\xi_1, \xi_2, \cdots, \xi_m\) can be
considered as a random variable whose distribution \(\pi(p, \beta, \sigma^2, \lambda | y, x) \). Thus \(\xi_1, \xi_2, \cdots, \xi_m \) can be used to estimate parameter \(\xi \). The algorithm consists of three steps:

1. Simulate \(\sigma^2 \sim \pi(\sigma^2 | p, \beta, \lambda, y, x) \)
2. Simulate \(\lambda \sim \pi(\lambda | p, \beta, \sigma^2, y, x) \)
3. Simulate \((p, \beta) \sim \pi(p, \beta | \sigma^2, \lambda, y, x) \)

Because the conditional distribution of \(\sigma^2 \) given \((\beta, p, \lambda) \) is

\[
\pi(\sigma^2 | p, \beta, \lambda, y, x) = IG\left(\frac{n}{2}, s^2\right)
\]

where \(s^2 = \frac{1}{2} \sum_{i=1}^{n} (y_i - \beta_{0} - \beta_{n_1} x_i - \cdots - \beta_{n_p} x_i) \), it is easy to simulate \(\sigma^2 \sim IG\left(\frac{n}{2}, s^2\right) \). In the same reason, since the conditional distribution of \(\lambda \) given \((\beta, p, \sigma^2) \) is

\[
\pi(\lambda | p, \beta, \sigma^2, y, x) = \text{Beta}\left(p + \frac{1}{2}, \frac{1}{2} \left(p_{\max} - p + \frac{1}{2}\right)\right),
\]

It is also easy to generate \(\lambda \sim \text{Beta}\left(p + \frac{1}{2}, \frac{1}{2} \left(p_{\max} - p + \frac{1}{2}\right)\right) \).

The conditional distribution of \((p, \beta) \) given \((\sigma^2, \lambda) \) is

\[
\pi(p, \beta | \sigma^2, \lambda, y, x) = \int_0^\infty \int_0^\infty \pi(p, \beta, \sigma^2, \lambda | y, x) d\lambda d\sigma^2
\]

\[
\propto (2\pi)^{-\frac{n}{2}} \frac{\Gamma\left(1 + \frac{1}{2}\right) \Gamma\left(p_{\max} - p + \frac{1}{2}\right)}{\Gamma\left(p_{\max} + 1\right)} \Gamma\left(\frac{n}{2}\right) \times \left[\frac{1}{2} \sum_{i=1}^{n} (y_i - \beta_{0} - \beta_{n_1} x_i - \cdots - \beta_{n_p} x_i)\right]^{n/2}.
\]

But because the conditional distribution of \((p, \beta) \) given \((\sigma^2, \lambda) \) is unknown distribution, it is not easy to simulate \((p, \beta) \sim \pi(p, \beta | \sigma^2, \lambda, y, x) \). To simulate it, the reversible jump MCMC algorithm is used.

Let \(\xi = (p, \beta) \) be the actual point of the Markov chain. There are three types of transformations are used, namely: the birth of the order, the death of the order and the change of the coefficient. Further suppose
that \(N_p \) is the probability of transformation from \(p \) to \(p + 1 \), \(D_p \) is the probability of transformation from \(p + 1 \) to \(p \), and \(C_p \) is the probability of transformation from \(p \) to \(p \) (the same order).

3.1. Change of the coefficient: The transformation of the change of coefficient does not change the order. Let \(\xi = (p, \beta) \) be a current point and let \(\xi^* = (p^*, \beta^*) \) be a updated point. If the change of the coefficient is selected, then \(p^* = p \) and simulate \(\beta^* \sim N(\beta, \sigma^2) \). Let \(\alpha_p \) be the probability of acceptance for the change of the coefficient. This probability of acceptance is written by

\[
\alpha_p = \min\left\{1, \exp\left(-\frac{1}{2\sigma^2}(s^{*2} - s^2)\right)\right\}
\]

where \(s^2 = \frac{1}{2} \sum_{t=1}^{n} (y_t - \beta_0^* - \beta_{n_1}^* x_1 - \cdots - \beta_{n_p}^* x_{n_p}) \).

3.2 Birth of order: Transformation of the birth of order changes from \(p \) to \(p+1 \). Let \(\xi = (p, \beta) \) be a current point and let \(\xi^* = (p^*, \beta^*) \) be a updated point. If the birth of the coefficient is selected, then \(p^* = p + 1 \), \(\beta_{n+1}^* = \beta_i + u \) and \(\beta_{i+1}^* = \beta_i - u \) where \(u \sim U(0,1) \). Let \(\alpha_n \) be the probability of acceptance for the birth of order. This probability of acceptance is given by

\[
\alpha_n = \min\left\{1, \frac{p_{\text{max}} - p}{p + 1} \frac{\lambda}{1 - \lambda} \exp\left(-\frac{1}{2\sigma^2}(s^{*2} - s^2)\right)\right\}
\]

3.3 Death of order: Transformation of the death of order changes from \(p+1 \) to \(p \). Let \(\xi = (p+1, \beta) \) be a current point and let \(\xi^* = (p, \beta^*) \) be a updated point. If the death of the coefficient is selected, then \(p^* = p \) and \(\beta_i^* = \frac{(\beta_{i+1}^* + \beta_{i+1}^*)}{2} \). Let \(\alpha_d \) be the probability of acceptance for the death of order. This probability of acceptance is defined by

\[
\alpha_d = \min\left\{1, \frac{p + 1}{p_{\text{max}} - p} \frac{1 - \lambda}{\lambda} \exp\left(-\frac{1}{2\sigma^2}(s^{*2} - s^2)\right)\right\}
\]

4. CONCLUSION

This paper developed the estimation of the parameter for subset polynomial regression model where the order is unknown with using reversible jump MCMC algorithm. The advantage of this algorithm of this algorithm is both the order, coefficient and variance can simultaneously be estimated. Because the polynomial regression is special case of this subset polynomial regression, then this algorithm can use to estimate the parameter of the polynomial regression. A comparison with other existing approach is currently under investigation.
ACKNOWLEDGMENT

I would like to thank the Ahmad Dahlan University in Yogyakarta who has supported the grant for this research.

REFERENCES

* Corresponding author: Suparman;

Department of Mathematics Education, Ahmad Dahlan University, Yogyakarta, Indonesia