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Abstract: Subset polynomial regression is more flexible than full polynomial regression 

for modeling data. If the subset polynomial regression is fitted to the data, then the 

parameters are generally unknown. This paper proposes a method for selecting the subset 

polynomial regression where the order is unknown. The method used to estimate the 

parameters of the subset polynomial regression is the Bayesian method. However, the 

Bayesian estimator is analytically not able to be found. To solve these problems, the 

reversible jump MCMC algorithm is proposed. The key of this algorithm is the producing 

of the Markov Chain that converges to the limit distribution of the posterior distribution.  

Keywords: Subset Polynomial Regression, Bayesian, Reversible Jump MCMC algorithm. 

 

INTRODUCTION  

Selection in subset polynomial regression is to find a subset of the available subset polynomial 

regressions that does a good predicting. Subset polynomial regression model is a model that is very 

flexible for modeling data. Subset polynomial is often used in many fields. For example, it is used in the 

health for diagnosing breast cancer1 and for segmenting medical image2. 

If the subset polynomial regression model fitted to the data, the model parameter is generally unknown. 

For the order is known, many methods have proposed to estimate the model parameter, for example3.  In 

fact, the order is unknown. Because the order of the subset polynomial regression is unknown, previous 

method cannot used to estimate the parameter of the subset polynomial regression. To overcome this 
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problem, the reversible jump MCMC4 is proposed. There are many subset polynomial regressions; here 

they are limited to the subset polynomial regression model with the mean 0 and variance unknown. 

1. LIKELIHOOD FUNCTION 

Let )y,,y(y n1  be a dependent variable and let )x,,x(x n1   be a independent variable where n is 

the number of observations. The subset polynomial regression can be written by: 
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2. BAYESIAN 

To use the Bayesian approach5, the prior distribution is selected. The same choice with6, the prior 

distribution of p  is a binomial distribution with hyper parameter , denoted by )p,(BIN~p max  , 

pppmaks maks)1(
p

p
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Where maksp,,2,1,0p  .  
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The prior distribution of ),( 2  is a Jeffreys prior distribution, 

22 ),p,(  . 

As in7, the hyper parameter  is considered as a variable. So, hyper prior distribution of   is also selected. 

The prior distribution of   is a Jeffreys prior distribution, 
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Therefore, the prior distribution of ),,,p( 2   is 
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Using Bayes theorem, the posterior distribution of ),,,p( 2   is written in the following way: 
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3. REVERSIBLE JUMP MCMC ALGORITHM 

Suppose that ),,,p( 2  . The MCMC algorithm is a method of sampling to produce a homogeneous 

Markov Chain m21 ,,,    that satisfies aperiodic and irreductibel8 such that m21 ,,,    can be 
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considered as a random variable whose distribution )x,y,,,p( 2  . Thus m21 ,,,   can be used to 

estimate parameter  . The algorithm consists of three steps: 

1. Simulate )x,y,,,p(~ 22   

2. Simulate )x,y,,,p(~ 2  

3. Simulate )x,y,,,p(~),p( 2   
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But because the conditional distribution of ),p(  given ),( 2  is unknown distribution, it is not easy to 

simulate )x,y,,,p(~),p( 2  .  To simulate it, the reversible jump MCMC algorithm is used.   

Let ),p(  be the actual point of the Markov chain. There are three types of transformations are used, 

namely: the birth of the order, the death of the order and the change of the coefficient. Further suppose 
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that 
pN  is the probability of transformation from p to p + 1, 

pD is the probability of transformation from 

p + 1 to p, and 
pC  is the probability of transformation from p to p (the same order). 

3.1. Change of the coefficient: The transformation of the change of coefficient does not change the order. 

Let ),p(   be a current point and let ),p( ***   be a updated point.  If the change of the coefficient 

is selected, then pp*  and simulate ),(N~ 2*  .  Let  
p  be the probability of acceptance for the 

change of the coefficient.  This probability of acceptance is written by 
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3.2 Birth of order: Transformation of the birth of order changes from p to p+1. Let ),p(   be a 

current point and let ),p( ***   be a updated point.  If the birth of the coefficient is selected, then 
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1i   where ).1,0(U~u  Let  n  be the probability of acceptance for 

the birth of order.  This probability of acceptance is given by 
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3.3 Death of order: Transformation of the death of order changes from p+1 to p. Let ),1p(   be a 

current point and let ),p( ***   be a updated point.  If the death of the coefficient is selected, then 

pp*  and 
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 .  Let  d  be the probability of acceptance for the death of order.  This 

probability of acceptance is defined by 
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4. CONCLUSION 

This paper developed the estimation of the parameter for subset polynomial regression model where the 

order is unknown with using reversible jump MCMC algorithm. The advantage of this algorithm of this 

algorithm is both the order, coefficient and variance can simultaneously be estimated. Because the 

polynomial regression is special case of this subset polynomial regression, then this algorithm can use to 

estimate the parameter of the polynomial regression. A comparison with other existing approach is 

currently under investigation. 
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