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 At the beginning of 2020, the world was shocked by the coronavirus, which 

spread rapidly in various countries, one of which was Indonesia. So that the 

government implemented the Work from Home policy to suppress the spread 

of Covid-19. This has resulted in many people writing their opinions on the 

Twitter social media platform and reaping many pros and cons of the 

community from all aspects. The data source used in this study came from 

tweets with keywords related to work from home. Several previous studies in 

this field have not implemented feature selection for sentiment analysis, 

although the method used is not optimal. So that the contribution in this study 

is to classify public opinion into positive and negative using sentiment 

analysis and implement PSO for feature selection and Naïve Bayes for 

classifiers in building sentiment analysis models. The results showed that the 

best accuracy was 81% in the classification using Naive Bayes and 86% in 

the classification using naive Bayes based on PSO through a comparison of 

90% training data and 10% test data. With the addition of an accuracy of 5%, 

it can be concluded that the use of the Particle Swarm Optimization algorithm 

as a feature selection can help the classification process so that the results 

obtained are more effective than before. 
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1. INTRODUCTION 

The spread of the Covid-19 pandemic that has taken place in Indonesia has changed the order of people's 

lives and gave birth to a new order that was never thought of before so that people are required to adapt a new 

lifestyle that is regulated by health protocols that have been adjusted. One of the living arrangements in question 

is the application of Work from home. This policy is one of the efforts to strengthen the implementation of 

physical restrictions to prevent the spread of virus transmission cases. This policy causes activities such as 

seminars, meetings, teaching and learning processes to be carried out online. With the implementation of work 

from home, it encourages people to express their opinions through social media platforms, one of which is 

Twitter. Twitter is known for its practical and simple use [1]. Twitter is a very popular communication tool 

used today as an important source of information because of the rapid spread of information [2]. This social 

media utilizes a microblogging service that allows its users to read and send messages to each other. Messages 

sent by users are known as tweets [3]. The opinions expressed have many pros and cons. Therefore sentiment 

analysis can be used to solve this problem. Sentiment analysis deals with differences in consumer or expert 

opinion about a product, service, or agency through different media and is a combination of data mining and 

text mining [4]. Sentiment analysis aims to identify the ways in which sentiment is expressed in text form to 

determine whether the expression is positive or negative towards a subject [5][6]. By using sentiment analysis, 

it can be seen that the output of positive or negative sentiment from a tweet will be visualized in the form of a 

cloud. 
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Several previous studies related to sentiment analysis using Naive Bayes have been carried out in various 

fields, which can be explained as follows. In this study, it discusses sentiment analysis on candidates the 2019 

Presidential Election of the Republic of Indonesia, and comparisons were made using the Naive Bayes method, 

SVM, and the K-Nearest Neighbor method, which were tested using RapidMiner with a Naive Bayes accuracy 

value of 75.58%, 63.99% SVM accuracy value and K-NN accuracy value of 73.34% [7]. Further research 

related to online comments from news portal readers about sentiments on the attitudes and actions of state 

officials in carrying out their duties, the data used consists of 200 data classified into positive and negative 

classes. The results of this study produce a system that can classify sentiment automatically with an accuracy 

of 67% for Naive Bayes and 76% for Naive Bayes based on PSO. With a fairly high level of accuracy, this 

model can provide a solution in classifying public opinion on state officials' news to be more accurate and 

optimal [8]. Another study compared three Machine Learning methods such as Naïve Bayes, Vector machine, 

and Maximum entropy by classifying the data into positive, negative, and neutral. The results showed that 

machine learning methods such as Naïve Bayes have the highest accuracy with an accuracy of 86% [9]. The 

next study is related to sentiment analysis on the use of E-money by comparing C4.5 Decision Tree Classifier 

and Naive Bayes. The sample data used is sourced from Twitter posts by mentioning links to e-money service 

providers in Indonesia, namely Ovo, Dana, Gopay, with a total of 205 data. The results showed that Naive 

Bayes gave better results than C4.5 Decision Tree in sentiment analysis with 80% accuracy for C4.5 decision 

tree and 84% for Naive Bayes [10]. 

Based on the literature review from previous studies, several studies have not implemented feature 

selection, even though this method can reduce the number of features that are considered as noise while at the 

same time increasing the accuracy of the model. Several previous studies did not normalize and clean the 

preprocessing data, even though this process is very important to remove noise in inconsistent data and 

normalize any non-standard words into standard words that can affect the results of the model evaluation. In 

addition, there have been many studies that discuss sentiment analysis by taking data from Twitter, but no one 

has conducted research related to public sentiment on the application of work from home, so it can be concluded 

that this research is still very minimally done until now. 

Based on this background, the contribution in this study is to classify public opinion into positive and 

negative using sentiment analysis and implement PSO for feature selection and Naïve Bayes for classifiers in 

building sentiment analysis models, the selection of this method is carried out by considering the accuracy of 

the classification results in previous studies so that this research is expected to be able to produce an even better 

performance on sentiment analysis text classification. The basis of this research is to determine the accuracy 

results of combining the two methods carried out by considering the accuracy of the classification results in 

previous studies so that this research is expected to be able to produce better performance than previous studies. 

 

2. METHOD 

At this stage, a review is carried out as a step in achieving the desired output. This study uses the Naive 

Bayes method, which will compare the results with the addition of the Particle Swarm Optimization algorithm 

as a feature selection. Therefore, a flowchart will be made to explain the series of processes that will be carried 

out. Fig. 1 is a flowchart of the system design that has been made. 

 

 
Fig. 1. System design 

 

2.1. Data Collection 

The data used in this study is 1.200 data of Indonesian language tweets with a time span from March 2020 

to December 2020 and stored in .csv form as input data. The data will be used as training data and test data, 

where each data consists of two classes, namely the positive class and the negative class. Data collection is 

carried out by crawling data through a tweet data crawler from the Twitter API using RapidMiner and manually 
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collected through tweets from Twitter users containing keywords related to the implementation of work from 

home. The use of Rapid miner tools can make it easier to collect data because this tool is open source which is 

devoted to the use of data mining. The development of this application supports all stages of the machine 

learning process, such as data collection and visualization of results. 

 

2.2. Manual Labeling 

The process of making datasets in this study requires a mechanism so that the data collected has the 

correct class label. Data labels are purchased manually. The manual labeling process is an analysis of 

determining whether tweet sentiment is positive or negative. Because it uses a lot of data, the determination of 

class labels is carried out by three analysts by labeling the original tweets that have not been obtained. Manual 

labeling produces accurate data because humans can distinguish a sentiment by reading and understanding each 

content of the tweet. The data is divided equally (balanced) in each class because unbalanced data will 

complicate the method on the generalization function so that it can produce poor performance. The distribution 

of balanced data resulted in 600 positive sentiment data and 600 negative sentiment data. The same sentiment 

labels are combined into a .csv file extension. Data from the manual labeling process are shown in Table 1. 

 

Table 1. Example Dataset 

Text Label 

#Work from Home sometimes makes us more creative and of course increases our body 

weight, just enjoy it 
Positive 

WFH certainly has a different feel to working in an office. When the house is filled with so 

many things that are not very clear, the house feels cramped, full, and crowded 
  Negative 

 

2.3. Preprocessing Text 

Preprocessing is the data preparation stage that aims to simplify the data processing process that works 

by ignoring unwanted items from the dataset [11]. Preprocessing focuses on data cleaning, such as removing 

noise in the data, overcoming bad data structures, and missing information. This stage is a process where data 

is prepared into data that is ready to be analyzed and into a machine-understandable data format [12]. The 

preprocessing stages in this study include Case folding, tokenization, normalization, Stop Forward Removal, 

Stemming and Data Cleaning. The display of the data after pre-processing the text is shown in Table 2. 

 

Table 2. Preprocessing text 

 

2.4. Word Weighting (Term Weighting) 

TF-IDF word weighting is a way to weigh a term with a document [13][14]. This method combines two-

weight calculation concepts. That is the frequency of a term in one document and the frequency of occurrence 

of the term throughout the document. 

Preprocessing Before After 

Case folding 

Work from Home sometimes makes us 

more creative and of course we gain 

weight, just enjoy it 

work from home sometimes makes us 

more creative and of course we gain 

weight just enjoy it 

Tokenization 

Work from Home sometimes makes us 

more creative and of course we gain 

weight, just enjoy it 

work, from, home, sometimes, make, 

us, more, creative, and, of course, we, 

gain, weight, just, enjoy, it 

Normalization 

Work from Home sometimes makes us 

more creative and of course we gain 

weight, just enjoy it 

work, from, home, sometimes, make, 

us, more, creative, and, of course, we, 

gain, weight, just, enjoy, it 

Stop Forward Removal 

Work from Home sometimes makes us 

more creative and of course we gain 

weight, just enjoy it 

work, from, home, sometimes, creative, 

of course, gain, weight, enjoy 

Stemming 

Work from Home sometimes makes us 

more creative and of course we gain 

weight, just enjoy it 

work from home sometimes creative of 

course gain weight enjoy 

Cleaning 

Work from Home sometimes makes us 

more creative and of course we gain 

weight, just enjoy it 

Work from Home sometimes makes us 

more creative and of course we gain 

weight. Enjoy it 
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2.4.1. Term Frequency (TF) 

Term Frequency is a weighting concept by finding how often (frequency) a term appears in a document 

[15][16]. This concept is usually divided by the total length of words in a document [17]. The more words that 

appear, the higher the TF value. This process will display the TF results. 

 𝑡𝑓𝑖𝑗 =

𝑓𝑑(𝑖)

𝑚𝑎𝑥 𝑓𝑑 (𝑗)
 (1) 

where 𝑓𝑑(𝑖) is Frequency of appearance of term 𝑖 in document 𝑗 and 𝑚𝑎𝑥 𝑓𝑑 (𝑗) is a total term on document 

𝑗. 

 

2.4.2.  Inverse Document Frequency (IDF) 

Inverse Document Frequency is the frequency of occurrence of the term in the entire text document [18]. 

In contrast to TF, the IDF value will be greater if the number of words in the document decreases. In this 

process, the IDF value will be displayed.             

 𝑖𝑑𝑓(𝑡, 𝑑) = 𝑙𝑜𝑔 (
𝑁

𝑑𝑓(𝑡) + 1
) (2) 

Where 𝑁 is the Total number of documents, 𝑑𝑓(𝑡) + 1 is the Number of documents that contain the term 𝑡 and 

the value 1 to avoid dividing by the value  0 if it is not found in the corpus. 

After getting the data from the Pre-Processing results, the TF-IDF stage is carried out to detect the words 

that appear most often and get a value so that each word from the entire document has a weight. The results of 

TF-IDF can be seen in Table 3. 

 

Table. 3 TF-IDF Results 

Term TF TF-IDF 

mood 

kalau 

ken 

marah 

terus 

0.038461538461538464 

0.038461538461538464 

0.038461538461538464 

0.038461538461538464 

0.038461538461538464 

0.197852564838761 

0.10612859598037541 

0.153809017708376 

0.21079380474392276 

0.11214190638001749 

 

Table 3 is the output of the weight value of each word obtained from the multiplication of the TF value 

and the IDF value. The smaller the TF IDF weight/value, the more often the word appears in the document. On 

the other hand, the higher the TF IDF value, the less often the word appears in the document or dataset. 

 

2.5. Particle Swarm Optimization (PSO) 

In this study, the Particle Swarm Optimization algorithm is used as a feature selection. The use of PSO 

feature selection helps the classification process and optimizes the workings of naive Bayes. One of the 

advantages of using this feature selection compared to other methods is that it is easy to implement because it 

only uses a few parameters [19][20]. Particle Swarm Optimization (PSO) starts with a population consisting 

of a number of particles that are randomly generated by searching using a population (swarm) of individuals 

(particles) to iteratively update the position and flight speed of each particle to produce a new solution that is 

more efficient, good. Particle Swarm Optimization will stop when the optimum solution has been found, or 

certain conditions have been reached. There are four steps to optimize Naïve Bayes using PSO, namely, 

initialize the population (swarm), calculate the accuracy value based on the selected characteristics, choose the 

best classification accuracy and update the position and velocity [21]-[23]. The following is an explanation of 

the Particle Swarm Optimization algorithm process flow: 

 

1. Initialize the particles randomly with the initial velocity of all particles 0. 

2. Evaluate the fitness value based on the lowest value of each particle. 

3. Compare the fitness values and determine the Local Best and Global Best particles. 

4. Updating the speed (𝑉𝑖, 𝑚) and position (𝑋𝑖, 𝑑) of each article randomly using the lower limit (𝑋𝑥𝑚𝑖𝑛) 

and upper limit (𝑋𝑚𝑎𝑥). 

5. Check whether the last solution has converged or not. If the position of all the particles goes to the same 

value, it can be called convergent. If not, then it is necessary to iterate again until all particle positions go 

to the same value. 
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6. The process will stop automatically if it has reached the stopping criteria value. 

7. Data output after the Particle Swarm Optimization process. 

 

PSO by using the fitness value to evaluate each feature. In each iteration, the fitness value of the attribute 

is calculated using the fitness function. The PSO iteration will stop after reaching the target fitness value or 

reaching the maximum iteration. The results obtained from this stage are in the form of data whose weight has 

been optimized for each term. All terms will be directly processed at the classification stage using the Naïve 

Bayes Classifier method. 

 

2.6    Naive Bayes Classifier Method 

The Naive Bayesian classifier is a simple classification that uses Bayes' theorem with strong independent 

assumptions [24]-[26]. This method is widely used because it only requires a small amount of training data to 

estimate the parameters (mean and variance of the variable) required for classification. This algorithm utilizes 

the probability of each feature per category to get a prediction [27][28]. Naive Bayes classifies using two 

processes that divide the data into training data and testing data. The classification process in Naive Bayes on 

data is done by representing each data into "X1, X2, X3, ..., Xn" [29]. The set of categories is represented by 

K. Naive Bayes looks for the highest probability value when classifying. The following is the equation of 

Bayes' theorem [30]: 

 𝑃(𝑋|𝐻) = 𝑝
(𝐻|𝑋)𝑝(𝐻)

𝑃(𝑋)
 (3) 

Where X is Data whose class is unknown, H is Hypothesis data, X is a certain class, P(H|X) is the probability 

of hypothesis H based on condition X (posterior probability), P(H) is the probability of hypothesis H (prior 

probability), P(X|H) is Probability of X according to the conditions in the hypothesis H, P(X) is Probability of 

X. 

The following is the flow of the Naive Bayes calculation. 

1. Getting data from preprocessing and TF-IDF 

2. Probability calculations are carried out from the training data where 𝑉𝑗𝑉1 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑓 and 𝑉2 = 𝑛𝑒𝑔𝑎𝑡𝑖𝑓 

3. The probability model is stored for processing at the data testing stage. 

4. Determines the highest probability value to place the test data in the most appropriate category. 

 

3. RESULTS AND DISCUSSION 

In this study, the evaluation process was performed to test the performance of using the Naïve Bayes 

method based on the PSO to have better performance. Testing is done by evaluating using the Confusion 

Matrix. In this study, accuracy, precision, recall, and F-Measure is used as evaluation parameters. A confusion 

matrix is a tool that can be used to analyze how well the classification has been generated and can recognize 

tuples from different classes. This study applies a classification method with two scenarios. The first scenario 

uses Naive Bayes and the second scenario uses Naive Bayes based on Particle Swarm Optimization. This 

scenario process uses 3 data split tests with a ratio of 90:10, 80:20, and 70:30. 

 

3.1. First Scenario Using Naïve Bayes 

In the first scenario, testing is carried out using the Naive Bayes classification. The scenario was carried 

out with three tests with a ratio of 90%-10%, 80%-20%, and 70%-30%. The experiment using these three tests 

aims to find out which test is the best in the classification process. In the first test, the prediction results from 

the classification process on the test data resulted in a True positive of 47, False positive of 10, False-negative 

of 13, True negative of 50. In the second test, it resulted in a True positive of 98, False positive of 33, False-

negative of 22, True negative of 87. In the third test, it resulted in a True positive of 149, False positive of 51, 

False-negative of 31, True negative of 129. The results of the implementation of the first scenario can be seen 

in Table 4. 

 

Table 4. Scenario 1 Results (Naive Bayes) 

Ratio 
% precision Recall % F1-score % 

% accuracy 
Positive Negative Positive Negative Positive Negative 

90%-10% 82 79 78 83 80 81 81 

80%-20% 75 80 82 72 78 76 77 

70%-30% 74 81 83 72 78 76 77 
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Table 4 shows the results of the confusion matrix on the test data, which is divided into positive and 

negative labels on the results of precision, recall, and f1-score using Naive Bayes classification. For the first 

test using 90% of train data and 10% of test data, the average precision is 80.5%, recall is 80.5%, f1-score is 

80.5%, and accuracy is 81%. For the second test using 80% of the train data and 20% of the test data, the 

average precision of 77.5%, 77% recall, 77% f1-score, and 77% accuracy was obtained. For the third test using 

70% of train data and 30% of test data, the average precision is 77.5%, recall is 77.5%, f1-score is 77%, and 

accuracy is 77%. 

 

3.2. Second Scenario Using PSO-Based Naïve Bayes 

In the second scenario, testing is carried out using Naïve Bayes classification based on PSO. The purpose 

of this test is to find out whether the implementation of using the PSO feature selection has an effect on the 

test. The scenario was carried out with three tests with a ratio of 90%-10%, 80%-20%, and 70%-30%. The 

experiment using these three tests aims to find out which test is the best in the classification process. In the first 

test, the prediction results were obtained from the classification process on the test data True positive of 51, 

False positive of 8, False-negative of 9, True negative of 52. In the second test, it resulted in a True positive of 

96, a False positive of 25, a False-negative of 24, True negative of 95. In the third, it resulted in a True positive 

of 149, False positive of 51, False-negative of 31, True negative of 129. 

Table 5 shows the results of the confusion matrix on the PSO-based Naive Bayes classification. For the 

first test using 90% of train data and 10% of test data, the results obtained an average precision of 85.5%, 86% 

recall, 86% f1-score, and 86% accuracy. For the second test using 80% of train data and 20% of test data, the 

average precision is 79.5%, recall is 79.5%, f1-score is 79.5%, and accuracy is 80%. For the third test using 

70% of train data and 30% of test data, the average precision is 80.5%, recall is 80.5%, f1-score is 80.5%, and 

accuracy is 81%. 

Table 5. Scenario 2 Results (Naïve Bayes PSO) 

Ratio 
% precision Recall % F1-score % 

% accuracy 
Positive Negative Positive Negative Positive Negative 

90%-10% 86 85 85 87 86 86 86 

80%-20% 79 80 80 79 80 79 80 

70%-30% 79 82 83 78 81 80 81 

 

3.3. Determining the Best Scenario 

Based on the two scenarios, the results have been obtained through the visualization of the confusion 

matrix in the two classification processes. In the first scenario using Naive Bayes classification with three tests, 

the first test obtained an accuracy of 81%, then in the second test, an accuracy of 77% was obtained, and the 

third test obtained an accuracy of 77%. In the second scenario using PSO-based Naive Bayes classification, 

the accuracy results are 86% for the first test, 80% for the second test, and 81% for the third test. All 

classification processes that use the Particle Swarm Optimization algorithm as a selection feature affect the 

evaluation value in the confusion matrix as seen in the comparison results of the two scenarios above that the 

best scenario is the PSO-based Naive Bayes classification with an accuracy value of 86% through a comparison 

of train data of 90% and test data by 10%. The following is a comparison of the two scenarios. 

Table 6 shows the results of the comparison of the two scenarios for the first scenario using Naive Bayes 

classification with three tests. The first test obtained an accuracy of 81%, then the second test obtained an 

accuracy of 77%, and the third test obtained an accuracy of 77%. For the second scenario using PSO-based 

Naive Bayes classification, the accuracy results are 86% for the first test, 80% for the second test, and 81% for 

the third test. 

Table 6.The results of the comparison of scenario 1 and scenario 2 

Scenario Ratio Accuracy  

Naive Bayes 

90%-10% 81% 

80%-20% 77% 

70%-30% 77% 

Naive Bayes+PSO 

90%-10% 86% 

80%-20% 80% 

70%-30% 81% 

 

4. CONCLUSION 

Based on the results of the tests that have been carried out that the best scenario is obtained in the Naive 

Bayes classification based on Particle Swarm Optimization, which can be seen in the accuracy results obtained. 
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This study consisted of three tests where the best results were found in the first test through a comparison of 

90% train data and 10% test data. So it can be analyzed that the use of a larger data train is able to produce a 

better value in the confusion matrix. From the trials that have been carried out, the best accuracy results are 

81% for classification using Naive Bayes and 86% for classification using Naive Bayes based on PSO. The 

performance of this test is able to provide optimal results with the addition of an accuracy of 5%. The PSO 

algorithm performs feature selection in the three tests whose results are able to reduce from 2033 features to 

1225 features in the first test, 1229 features in the second test, and 1212 features in the third test. So with this, 

it can be concluded that the use of particle swarm optimization feature selection can help the Naive Bayes 

classification process to be more effective and accurate. 
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