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An Optimized Switching Strategy for Quick
Dynamic Torque Control in
DTC-Hysteresis-Based Induction Machines

Auzani Jidin, Student Member, IEEE, Nik Rumzi Nik Idris, Senior Member, IEEE,
Abdul Halim Mohamed Yatim, Senior Member, IEEE, Tole Sutikno, Student Member, IEEE, and
Malik E. Elbuluk, Senior Member, IEEE

Abstract—A dynamic overmodulation strategy for fast dynamic
torque control in direct torque control (DT C)-hysteresis-based in-
duction machine is proposed. The fastest dynamic torque response
with a six-step mode can be achieved in the proposed method
by switching only the most optimized voltage vector that pro-
duces the largest tangential component to the circular flux locus.
This paper also discusses the performance of dynamic torque
control in basic DTC in order to justify on how the proposed
selected voltage vector results in excellent dynamic torque perfor-
mance. The main benefit of the proposed method is its simplicity,
since it only requires a minor modification to the conventional
DTC-hysteresis-based structure and does not require a space
vector modulator. To verify the feasibility of the proposed dy-
namic overmodulation strategy, simulation and experimentation,
as well as comparison with the conventional DTC scheme, are
carried out. Results showed a significant improvement in the dy-
namic torgque response when compared to the conventional DTC-
hysteresis-based method.

Index Terms—Direct torque control (DTC), dynamic over-
modulation, hysteresis controller, induction machine, torque
control.

L. INTRO TION
VER THE past years, ﬁe{:t torque control (DTC)
scheme for induction motor drives has received enormous
attention in industrial motor drive applications. The main rea-
son for its popularity is due to its simple structure, particularly
when compared with field-oriented control (FOC) scheme,
which was introduced a decade earlier. Since DTC was first
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introduced, several variations to its original structure (which
we referred to as DTC hysteresis based) [1] were proposed to
overcome the inherent disadvantages in any hysteresis-based
controller, such as variable switching frequency, high sampling
requirement for digital implementation, and high torque ripple
[2]-[11]. Recently, predictive control strategy has found appli-
cations in motor drives [12]-[21]. Predictive control applied to
DTC has gain considerable amount of attention, particularly
due to its ability to reduce the torque ripple, as well as the
switching frequency [8]-[10], [21]. In particular, model pre-
dictive control (MPC), which was applied in [8] and [9], uses
hysteresis comparators but with the switching table replaced
with online optimization algorithm. However, the application
of MPC during a large step change in torque demand will
result in significant computational burden, whereas as will be
shown later in this paper, a simplified method can be used.
Furthermore, the use of MPC during the large step change in
torque command does not guarantee the fastest torque response.

The most popular variation of DTC of induction motor
drives is the one that is based on space vector modulation
(SVM), which normally referred to as DTC-SVM [22]-[31].
The major difference between DTC-hysteresis-based induction
motor and DTC-SVM is the way the stator voltage is generated.
In DTC-hysteresis-based induction motor, the applied stator
voltage depends on voltage vectors, which are selected from
a lookup table. The selections are based on the requirement
of the torque and flux demands obtained from the hysteresis
comparators. On the other hand, in DTC-SVM, a stator voltage
reference is calculated or generated within a sampling period,
which is then synthesized using the space vector modulator.
The stator voltage reference vector is calculated based on the
requirement of torque and flux demands. Due to the regular
sampling in SVM, the DTC-SVM produces constant switching
frequency, as opposed to the variable switching frequency
in hysteresis-based DTC, however, at the expense of more
complex implementation. Various methods to estimate the
voltage reference vector had been reported; these include the
use of proportional-integral current controller [23], stator flux
vector error [24], [25], proportional-integral torque and flux
controllers [26]-[28], and predictive and deadbeat controllers
[29]-[31]. During the large torque demand, it is inevitable that
this reference exceeds the voltage vector limits enclosed by
the hexagonal boundary. Under this condition, the SVM has
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to be operated in what is termed as dynamic overmodulation
mode. The voltage reference vector has to be modified such
that it will lie on the hexagonal boundary. Several methods
[29]. [301], [32], [33] have been proposed, and to some extent,
these methods have managed to minimize the voltage vector
error, as well as obtained a fast torque response; however,
the majority of them do not guarantee the fastest torque re-
sponse.

In hysteresis-based DTC, during the large torque demand, the
torque hysteresis comparator will give an output that demands
the selection of voltage vector to increase the torque. At the
same time, a flux hysteresis comparator will regulate the flux to
achieve a circular flux path. This circular flux path, however,
does not correspond to the fastest torque demand. In other
words, the basic method that is used to select the voltage vectors
in hysteresis-based DTC will not guarantee the fastest torque
response. A minor modification to the voltage vector selection
needs to be performed to ensure the fastest torque response
during this condition.

In this paper, a simple DTC-hysteresis-based induction ma-
chine with fastest dynamic torque response is presented. The
voltage vector used in this proposed dynamic overmodulation
is similar with that proposed in [31] and [34]: however, in
[31], Tripathi et al. use a DTC-SVM with complex predictive
stator flux control structure, while in [34], the stator current
contains lower harmonic contents at any operating condition
due to the hexagonal shape of the stator flux locus. In this
paper, the optimized voltage vector to produce fast dynamic
response that corresponds to the voltage vector that produces
the largest tangential flux component is selected. The selec-
tion of the optimized voltage vector can be simply done by
modifying the flux error status before it is being fed to the
lookup table. In this way, the fastest dynamic torque control
with six-step operation is achieved, and the simple structure
of DTC-hysteresis-based induction machine is retained without
the need of SVM. In Section I of this paper, the basic principle
of DTC is briefly discussed. Section III discusses the previous
proposed methods of dynamic overmodulation. The dynamic
overmodulation operation in basic DTC-hysteresis-based in-
duction machine and the proposed dynamic overmodulation
method for DTC-hysteresis-based induction machine are also
discussed. Section IV presents the simulation and experimental
results of the proposed method. Finally, conclusion is given in
Section V.

II. PRINCIPLE OF DTC

The behavior of induction machine in DTC drives can be
described in terms of space vectors by the following equations
written in stator stationary reference frame:

AW,
= $- - 1
Vg =Telg ai ) (n
. ) w
0=ri — juw, ¥, + dfr (2)
W = Lsis + Lyir (3)
‘Dr - Lrir Ll Lua is (4)

3 ]
T, = 5P|, [is] sin 6 (5)
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Fig. 1. Structure of basic DTC-hysteresis-based induction machine.

where I? is the number of pole pairs; w,. is the rotor electric
angular speed in radians perfGcond; L., L., and L,, are
the motor inductances; and 4 15 the angle between the stator
flux linkage and stator current space vectors. Based on (1),
the d*- and ¢°-axis stator fluxes in a stationary reference frame
can be written as

Wia= /(v:__d — % gr) dt
vy, = /(u:__q — ’j:__qf‘.s) dt .

Elerms of switching states S,,, S, and S, (can be either zero
or one), the voltage vectors in (6) are given by

(6a)

(6b)

1
Vo= §Vdc(25u — Sy —S.) (Ta)

“

. T,
Ve, == ]"'\lt?('gb -

LN \/§

The gecu“omagnelic torque given in (5) can be rewritten in
d*—g*® coordinates as

Se).- (7b)

3 3 L] .8 & .8
Te= 5P (Viaity — Vi gita)- (8)

Fig. 1 shows the structure of DTC-hysteresis-based induc-
tion machine, as initially pmpﬂsem [1]. The output stator
voltage is applied based on the selection of the switching
states (Su, Sp, and S..) obtained from the lookup table. These
switching states are selected based on the requirement as to
whether the torque and the stator flux need to be increased or
decreased and also on the stator flux position. The decisions
as to whether the torque and/or the flux need to be increased
or otherwise come from the three- and two-level hysteresis
comparators for the torque and stator flux, respectively. The
outputs from the torque and flux hysteresis comparators are
labeled as T, (torque error status) and U (flux error status),
respectively. Fig. 2 shows the two optimized voltage vectors
in every sector, which are selected from the eight possible
switch configurations, using the lookup table given in Table I
[1]. Notice that, in order to control the flux, two active voltage
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Fig. 2. Selection of the optimum inverter output voltage vectors. (a) Each
sector indicates the appropriate voltage vectors. (b) Eight possible switch
configurations in the three-phase voltage source inverter.

vectors are required. On the other hand, to control the torque,
one active voltage vector is used to increase the torque, while
a zero voltage vector is used to reduce it. By limiting the
torque and flux errors within their hysteresis bands, a decoupled
control of torque and flux is achieved.

III. DYNAMIC TORQUE CONTROL

In practice, a fast dynamic torque control can be achieved
by fully utilizing a dc bus voltage through an overmodulation
strategy. The switching strategy to perform overmodulation
mode during torque transient condition is usually referred to as
dynamic overmodulation. In DTC-SVM, dynamic overmodula-
tion occurs whenever there is a large torque demand such that
the generated voltage reference vector exceeds the hexagonal
boundary on a voltage vector plane. In hysteresis-based DTC,
there is no voltage reference vector involved. However, an
equivalent condition occurs whenever the hysteresis torque
comparator produces a demand to continuously increase the
torque. At the same time, the flux is regulated to follow the
circular path using two active voltage vectors.

A. Previous Methods Used for Dynamic Overmodulation

It had been reported that the overmodulation strategy is
commonly utilized in SVM approach [23], [29]-[31], [35].
[36]. For advanced motor control, the use of SVM is preferable
than the other techniques (for example, Hava et al. [37] and
Kerkman et al. [38] use triangular carrier based) since it is more
flexible (uses only a single reference voltage as the input modu-
lator) and able to exploit the overmodulation region to six-step
mode [23], [31]. [36]. However, the motor control performance
using SVM is dependent on the accuracy of the estimation of
the reference voltage. Moreover, the computations of reference
voltage and maximum possible voltage used for the imple-
mentation of dynamic overmodulation lead to more complex
control structures. Several methods of dynamic overmodulation
are reported. Fig. 3 shows the comparison of some modified
voltage references vy (e.g., when ¢ = 1, proposed in [1]) with

respect to the original voltage reference vector v yer, Which
is beyond the hexagonal boundary of the voltage vectors. Note
that the voltage vector components are not drawn to scale. It can
be seen that (from Fig. 1) [31] and [34] switched only a single
voltage vector which is vy 2 during dynamic overmodulation.
This single selection of vector shows the occurrence of a six-
step operation that produces the fastest dynamic torque control,
as will be discussed later in this paper. On the other hand,
the other methods result in slower dynamic torque response
since two active states are alternately switched during the
dynamic condition. For example, [29] Habetler er al. used two
active states utilizing deadbeat control in order to maintain the
magnitude of stator flux under control for any condition.

Later, [30] was proposed to simplify the complexity control
structure in [29] (where it does not provide a deadbeat control
of the magnitude flux as a transient torque is encountered), and
hence, it results in a faster dynamic torque control. In this way,
the modified voltage vector vgp) has the same angle + as the
original reference voltage v rer but with a modified magnitude.

In [32], the reference voltage vg .or was modified to vigy
such that the error between the magnitudes of vi3z and vs_:rcf
is minimized. This means that the modified volmge \fecl()l'v-gg-
should be closest to the original reference vector vs__mf'b)'*
ensuring that the line joining vs rer and vz 1s orthogonal to
the hexagon boundary. o

Although the SVM technique has been widely used in many
advanced DTC and FOC of motor drives, it actually compli-
cates the original control and structure of the drive system.
This is due to the fact that more computations involving the
estimation of vg er and the approximation of the modified volt-
age reference are required, as mentioned earlier. The simplicity
advantage of DTC-hysteresis-based structure is lost.

B. Dynamic Torgue Control in Basic Hysteresis-Based DTC

It is well known that the original DTC scheme proposed by
Takahashi and Naguchi [1] offers fast instantaneous torque and
flux control due to the optimized voltage vector selection in
controlling simultaneously both flux and torque. During large
torque demand, and, hence, large torque error, the hysteresis
torque comparator produces a single status that requires an
increase in torque. This means that, under this condition, no
zero vectors are selected to reduce the torque. At the same
time, the flux hysteresis will regulate the flux to follow the
circular path using two active voltage vectors. This 1s similar to
a condition in DTC-SVM in which the stator voltage reference
vector follows the hexagonal boundary in the overmodulation
mode, which is the reference voltage viag) in Fig. 3. Since
no zero voltage vectors are applied, ralpid chamges in the flux
vector position and, hence, a quick dynamic torque response
are achieved. However, this method does not give the fastest
dynamic torque response simply because two active voltage
vectors are switched during the dynamic condition. In order
to achieve the fastest dynamic torque response, only a single
vector should be switched and held instead of two active voltage
vectors.

For the purpose of studying the effect of voltage vectors on
the torque in DTC-hysteresis-based drives, the torque equation
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TABLE 1
LooKUP TABLE (VOLTAGE VECTOR SELECTION)
Stator flux error Torque error | Sector | Sector | Sector | Sector | Sector | Sector
status, Wy status, Ty 1 1l 111 v Ay Ay
1 A Vi Y3 Vs Vi ¥i
(100} (110} (010} {011} (001) (101
0 0 Vi Va Vo V7 Vo Ve
(000 (111 (000) (111} (000) (111)
1 Al ¥i Y2 Y3 Yy Vg
{001) (ory | (100 (110 (010} {011)
1 AE] Vi Vs Vg Vi V2
(110) (010} (11 (001} (101) (100}
0 0 Y7 Vi Y7 Yo V3 Yo
(111) (000} (111} {000} (111) (000)
-1 Vs Vi Vi V2 Vi Vi
(011) (001} (101) (100} (110} (101}
*Note: Vel
vy proposed in [i] iy
Y\ Y Vi mﬁ.,.,
Vi Vg k2 o\ S Vi1
Hexagonal g
. boundary =/ 3rad,

AW, = vy At
o

¥

Locus of flux

- Ktd kel " reference

Fig. 3. Variations of the proposed voltage vectors applied during the dynamic
overmodulation mode.

will be expressed in terms of the stator and rotor flux magni-
tudes, as given in the following:

LJ” -
W sin dey

)

Rt s

where o is the total leakage factor and §,, is the angle difference
between the stator and rotor flux vectors and plays a vital role
in controlling the output torque. The relationship between the
rotor and stator flux vectors in the rotor flux reference frame

can be written as

where 7, is the GEbr time constant. If the ohmic drop in (1) is
neglected, then we can approximate the change in stator flux as

Lua )'(Ls ‘I'r

8

W= s
Y 1+ poT,

AW, = v AL (11)
Equation (11) indicates that an instantaneous angular velocity
of the stator flux is irregular due to the switching voltage
vectors. According to (10), the rotor flux will follow the stator
flux, however with the irregular motion removed due to the low-
pass-filtering action.

m= 0 rad.

Vil

(b}

Fig. 4. Effects of selecting different switchings under dynamic condition.
(a) Stator voltage vector in stator flux. (b) Comparison of the load angles 4,
generated by the same magnitude of appropriate voltage vectors.

Fig. 4 shows the space vectors of the stator and rotor flux
linkages moving in the counterclockwise direction. The motion
of the stator flux is dictated by the voltage vectors v, and
Vik42. Case 1 is when the stator flux is about to enter sector k
(at evy, = O rad), while case 2 is when the stator flux is about to
leave sector k (at ayr, = /3 rad). The dynamic torque response
can be studied by looking at the effects of applying the possible
two voltage vectors on the angle Ad,.. For this purpose, the
vectors are redrawn as shown in Fig. 4(b). From Fig. 4(a) and
(b), it can be seen that vy has a larger tangential component
to the circular flux locus, while the component of vi42 has
a larger radial (negative) component in case 1. On the other
hand, vy, has a larger radial component, while vy » has a
larger tangential component to the circular flux locus in case 2.
Fig. 4(b) shows the effect of selecting different switching states
on Ade,.. Based on the continuous rotation of the rotor flux as
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Fig. 5. Structure of DTC-hysteresis-based induction machine with the pro-
posed modification of flux error status block.

compared to the irregular rotation of stator flux, it can be seen
that Ad,, , is larger when vy q is switched for case 1, and
on the other hand, Ad,, » is larger when vy o is switched for
case 2. In fact, if the sector 1s subdivided into subsectors (1)
and (ii) based on (12), vector vy 1 will result in a larger Ad.,
throughout subsector (i), and vi2 will give a larger Ad.,
throughout subsector (ii)

0 <oy < w/6rad, for subsector i

/6 <ap < w/3rad, for subsector ii. (12)

According to (9), with a larger Ad,,. Vi1 and vy o will
give a faster dynamic torque response in subsectors (i) and (ii),
respectively.

C. Proposed Dynamic Torque Control

In the proposed dynamic overmodulation method, the most
optimized voltage vector that produces the largest tangential to
the circular flux locus is switched and held (instead of selecting
two active voltage vectors) during torque dynamic to achieve
the fastest dynamic torque control. As discussed in the previous
section, if sector k is considered, this would be vector vy 1
in subsector (1) and vector v, » in subsector (11). Fig. 5 shows
the structure of DTC-hysteresis-based induction machine with
the proposed modification of flux error status. Notice that all
components of the DTC-hysteresis-based scheme are retained,
except for the inclusion of the “modification of flux error
status” block which is responsible to perform the dynamic
overmodulation mode. The selection of the optimized voltage
vector to give the fastest torque response can be simply done by
modifying the flux error status (W) to a new flux status (V)
before it is being fed to the lookup table. The “modification of
flux error status™ block, and, hence, the proposed dynamic over-
modulation, is activated when the torque error E'r. is greater
than twice of the hysteresis band of torque controller H B,.

‘When the “modification of flux error status™ block is acti-
vated, the output of this block ¥, depends on the position
of the flux position within a sector, as shown in Fig. 6. If it

3305
qS
A
Sector Sector
111
Sector d
I >
"‘sq. 1
.qu 2]
|

Fig. 6. Proposed digital outputs in modified flux error status correspond to the
optimized voltage vectors for every subsector in each sector.

TABLE 11
DTC-HYSTERESIS-BASED SYSTEM AND
INDUCTION MACHINE PARAMETERS

Induction machine

Rated power 1.5 kW
Rated voltage 400V
Rated current 339A
Rated speed 1410 rpm
Rated torque 9 Mm
Rated flux 0.892 Wh
Stator resistance 550
Rotor resistance 451Q
Stator self inductance 306.5 mH
Rotor self inductance 306.5 mH
Mutual inductance 291.9 mH

Number of poles 4
DTC-Hysteresis based System

Flux hysteresis band, HBy 0.045 Wh
Torque hysteresis band, HB . 0.9 Nm
DC link voltage, Vg, 240V

is in subsector (i) W, = 0, hence vy, is selected, and if it
is in subsector (i) W, =1, vy, is selected. The border of
the sectors and subsectors can be easily calculated using the
threshold values of llfj:_.,),, denoted as W, 1 and W, 2, which
can be calculated as

(13)
(14)

‘-[I.s'r,l._]. = ll!:._ri tﬁn(ﬂj{ﬁ)

Way o =W tan(r/3).

IV. SIMULATION AND EXPERIMENTAL RESULTS

To study on the effectiveness of the proposed dynamic over-
modulation method, a simulation of the DTC-hysteresis-based
induction motor drive is performed using a Matlab/Simulink
simulation package. The parameters for the DTC drive and
the actual parameters of an induction motor are as shown in
Table II. To verify the feasibility of the proposed dynamic
overmodulation scheme, a complete drive system, as shown in
Fig. 7, has been realized. The experimental setup consists of
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Hest PC for
D51102 DSP-bdard

FPGA and sensors —"

Induction Motor

1

(a)

Fig. 7.

an insulated-gate bipolar transistor inverter and a 1.5-kW four-
pole squirrel-cage induction motor. The DTC-hysteresis-based
system and induction machine parameters are the same to the
parameters used for the simulation. For safety reason, the dc
voltage was limited to 240 V, which means that the based speed
is reduced to 570 r/min. It should be noted that using a higher
dc voltage would further enhance the torque response since the
higher dc voltage will result in a higher rate of change of torque.

The control algorithm is implemented on a DSPACE 1102
and Altera field-programmable gate array (APEX20KE). The
sampling period of the DTC scheme, including the proposed
dynamic overmodulation, is 55 us.

Some tests have been carried out to compare the perfor-
mances of dynamic torque control in the basic hysteresis-based
DTC with and without the proposed dynamic overmodulation.
For the sake of identification, the DTC without the proposed
overmodulation is referred as DTC1, while the one with the pro-
posed dynamic overmodulation strategy is referred as DTC2.
The dynamic torque control is performed by applying a step
change of torque reference from 1.5 to 9.0 N - m at two different
stator flux positions. Based on W and W7, a step change in
the torque reference is introduced at c¢;, = 7 /24 rad [subsector
(i) within sector 2] and at oy, = 7 /6 rad [subsector (ii) within
sector 2]. To make the comparisons fair, the dynamic torque
controls in both DTC schemes were performed under the same
load torque conditions so that the rotor speed operated at around
410 r/min.

The simulation and experimental results under these two
conditions are shown in Figs. 8 and 9, respectively. It can
be seen that, for DTCI, two active voltage vectors are se-
lected during the torque dynamic; this is indicated by the
flux error status waveform which switches between one and
zero. For the proposed overmodulation (DTC2), the single
flux error status is held; hence, only a single vector is se-
lected during the torque dynamic. The selected voltage vec-
tor, as discussed in the previous section, provides the fastest
torque response. The effect of the proposed overmodulation
on the stator flux locus for the two different stator flux
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Fig. 8. Companson by simulation of dynamic torque performances between
(a) DTC1 and (b) DTC2, when a dynamic torque control occurs as the stator
flux position at v, = 724 rad or ey, = /6 rad (at the middle of sector 2).
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Fig. 9. Comparison by experimental of dynamic torque performances be-
tween (a) DTC1 and (b) DTC2, when a dynamic torque control occurs as
the stator flux position at evy, = /24 rad or oy, = 76 rad (at the middle of
sector 2).
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oy, = m,/24 rad.

positions can be seen from the experimental results, as shown
in Figs. 10 and 11.

The shape and. hence, the magnitude of the stator flux are
affected since the single voltage vector is switched during the
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Fig. 11. Comparison of stator flux loci obtained in (a) DTCI and (b) DTC2

(for one complete flux wave cycle), when a dynamic torque condition occurs at
oy = /6 rad.

dynamic overmodulation. When the torque dynamic occurs
in subsector (1), the single voltage vector that produces the
fastest torque response is selected. This vector also increases
the flux, causing the flux locus to deviate from the circular locus
momentarily, as shown in Fig. 10. On the other hand, when
the torque dynamic occurs in subsector (ii), a single voltage
vector that gives the fastest torque response and at the same
time reduces the flux is selected. This is indicated by the stator
flux locus shown in Fig. 11. For both cases, the deviation in the
flux locus from the circular locus occurs momentarily during
the torque dynamic.

It is quite interesting to observe the behavior of motor
currents as the flux magnitude is suddenly distorted due to
the proposed switching strategy during the torque dynamic
condition. Figs. 12 and 13 show the behavior of motor currents
for DTC2 at three different operating speeds, named as Speed 1
(at 100 r/min), Speed 2 (at 300 r/min), and Speed 3 (at
550 r/min). These speeds represent the “low,” “medium,” and
“high” speed ranges, respectively, relative to the reduced based
speed of 570 r/min. For each operating speed, a step change
of reference torque is applied at oy = 7/24 rad and o) =
m/6 rad. As can be seen from the figures, the three-phase
stator currents show rapid change during the torque dynamic,
which occurs in a relatively very short period particularly for
Speed 1. Thus, the possibility of facing an overcurrent problem
is not serious, as the sharp increases of currents occur within a
very short period of time. It can also be noticed that (in Figs. 12
and 13) the performance of dynamic torque control decreases
(i.e., produces slower torque response) as the motor speed op-
eration increases. This 1s due to the fact that the rate of change
of torque depends on the operating conditions (i.e., dc voltage,
load torque, and speed). which has been discussed in [39] and
[40]. Nevertheless, regardless of the speed of operation, the
torque response with the proposed dynamic overmodulation
would give faster torque response when compared with the
conventional DTC that uses two voltage vectors during the
torque dynamic.

V. CONCLUSION
A simple dynamic overmodulation to achieve the fastest
dynamic torque response in DTC-hysteresis-based induction
machine has been proposed. An optimized voltage vector that
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produces the largest tangential to the circular flux locus is
switched and held so that a fast rate of change of angle Ad,,
is achieved. The selection of the optimized voltage vector is
simply obtained by modifying the flux error status before it is
being fed to the lookup table. The main benefit of the proposed
method is its simplicity and, at the same time, be able to
produce the fastest dynamic torque response with a six-step
mode. The dynamic overmodulation is achieved without the
need of space vector modulator.
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