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1. Introduction

The automobile sector is one of the key problem areas in global
warming |[1]. With demand for automobiles growing rapidly, the
supply of oil will diminish, the price of oil will rise sharply and

mobile transportation will face a crisis. Without aggressive
% measures, the rapid growth in automobiles on a global scale
will increase emissions and result in the further degradation of
human health and the environment. To reduce emissions, an
alternative technology such as electric vehicles (EV) is one of the
options for future transportation. With ever increasing concerns
about energy efficiency and environmental protection, the pace of
development of EVs for mass marketing has accelerated [2-4].
An EV drive system must include the major features are
marized as follows [56]: (i) high instant power and high
er density; (ii) high torque at low speeds for starting and
bing, as well as high power at high speed for cruising; (iii) very
wide speed ge including constant-torque and constant-power
ns; (iv) torque response; (v) high efficiency over wide speed
torque ranges; (vi) high efficiency for regenerative braking; (vii)
reliability and robustness for various vehicle operating condi-
tions; and (viii) reasonable cost. Therefore, selection of a proper drive
and control method are the most important factors in EVs; in
addition, robust energy management is the other major crucial
element of an EV [7,8].

A comparison of electric motors concluded that the induction
motor (IM) is the best selection for EV applications owing to its
robustness, low price, mature technology and maintenance-free

-ation. From the control system theory point of view, the

I thod is the key for improving motor efficiency, length-
ening ry life and as result increasing the driving distance [9-11].
Today, sensorless control as a variable frequency drive is the mature
technology among various motor drives. The sensorless control is
suitable for critical applications such EV and has advantages in terms
of reliability, effidency improving and energy savings [12]. The two

st popular sensorless control methods of IM are field oriented
control (FOC) and direct torque control (DTC). Unlike FOC, DTC does
not require coordinate transformation, pulse width modulator

M) signal generators, current controllers and a position encoder,

ch introduces delays and requires a mechanical transducer. In
m of its simplicity, DTC provides fast instantaneous torque control

he steady state and under transient operating conditions with
simple control structure [13,14]. Since an EV drive system must
feature a fast torque res, se, reasonable cost, reliability and
robustness, the DTC of IM appears to be very convenient for EV
applications [15-17].

This paper briefly reviews the direct torque control of induction
motors as well as its implementation for EV applications. Section 1
introduces that selection of the proper electric drive should be
addressed in the development of EVs for future green transporta-
tion. Section 2 discusses the basic DTC technique based on
hysteresis controllers. Section 3 is devoted to the overview of the
major problems in the basic DTC scheme. Section 4 studies some
improvements to the basic DTC. Section 5 will present a critical
review of the DTC for EV applications. Section 6 will review the
reliability of DTC for EV applications that it can operate for a wide
range of speed, and Section 7 is the conclusion. The paper aims to
provide important guidelines and insights for future research and
development on the DTC of IM drives for sustainable reliability
and energy efficient EV applications.

88
2. ect torque control (DTC)

g DTC offers a much simpler structure than the FOC system. The
'oblem of decoupling the stator current in a dynamic fashion in the
FOC is avoided in DTC. This method was proposed by Takahashi [18]
and Depenbrock [19] for induction motor drives in the mid-1980s.
The basic principle of DTC is to directly select stator voltage vectors
(switching states) according to the differences between the reference
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Fig. 1. Control structure of DTC based induction machine.
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mhe gual values of torque and stator flux linkage. The DTC can
provide d Very quick and precise torque response without the need
for a complex field orientation block and inner cuirent regulation
loop. Hw DTC is very well suited for operation at saturated
voltage. FIg. 1 shows a simple stru f hysteresis-based DTC
based on the work of Takahashi [18]. A déCoupled control of torque
and flux tablished to permit fast instantaneous control. The
stator flux 1s controlled using a 2-level hysteresis @rator. while
the electromagnetic torque is controlled using a 3-level hysteresis
comparator. The ms of the comparators, along with sector flux
infolmation%‘g to index the look-up table, to select the
appropriate e vectors to control simultaneously both the stator
flux and the torque. The most sign i@t element that can guarantee
a satisfactory DTC performance is estimation of the stator flux

an&m torque [14,18-21].

n order to estimate the stator flux and the electromagnetic
torque, several parameters need to be determined. The mathema-
tical model to be u@:}s tailored to the needs of controlled drives.
With considering * r flux and electromagnetic torque estima-
tors” block in Fig. 1; first, the stator currents from the motor I, and
I, are transformed into a-/ coordinates, which are adequately
suited to the DTC algorithm, as follows [7,14,18-20,22,23]

;a:f&l ”-:'

J'ﬁ:?uaJrzth (2)

mhe same time, by using the switching status (54, Sy and S.)
produced by the switching table, the stator voltages in the a-/#
reference frame are determined:

Vg

v,,:T‘*rzsa—sb—sc; (3)
V3

Vip =5 VaelSp—50) (4)

hen, using the calculated I, I3, V,, and Vj, the estimation of the
stator flux in a—f coordinates is performed as follows:

Po= (Baw +tva_RSL1JT$ ISJ
@p =@y, + Vi —RslpTs (6)
Finally, Eq. (7) calculates the flux magnitude by using a square

root calculation, whereas the electromagnetic torque is estimated
through Eq. (8).

Ps=\/Pa+e} (7
3
T = ;_lP“ﬁ(oﬂ_ LI(BISJ (8)

The original scheme is based on hys@is controllers, where
the output status from the controllers, ther with the sector
flux information, are used to select the optimized voltage vectors
from the look-up table to satisfy simultaneously both flux and
torque references. The flux vector is controlled to form a circular
flux shape [18].

3. The major problem in basic DTC scheme

In spite of its simplicity, the basic DTC s based on
hysteresis controllers causes some quite major acks such
as variable inverter switching frequency, high torque ripple and

hence high sampling requirement to minimize the problems for
digital implementation [14,20,21,23-28].

3.1. Variable mrrer switching frequency

In the basic DTC, the switching frequency of voltage source
inverter (VSI) is totally contributed by the switching in the
hysteresis comparators [18]. The slopes of torque and flux, which
relatﬁ affect the switching in their hysteresis comparators, vary
with rating conditions (i.e. rotor speed, stator and rotor fluxes
and DC link voltage) [28-31]. This causes the switching frequency
of VSI also to vary with operating conditions. For this reason, the
switching devices cannot be fully utilized to maximum frequency
capability for most operating conditions, since the selection of
hysteresis bandwidth is based on the worst conditions [29].
Consider the torque slope in a discrete form which is given by
Eq. (9).

. Teni1—Ten 1 1
Torque slope == xr = len (o_rs+o_rr)
3, L . ;
+EPO'L:ILr[WS'” —Jﬂ)rq'rs.nj'jq'rr.n] 9)

where Pikklectromagnetic torque; ¥ stator flux linkage space
vectors In stationary reference frame; ¥, rotor flux linkage space

vectors i tionary reference frame; . rotor electrical speed in
rad/s; vs " voltage space vector in stationary reference frame.
Eq. (9) cates that the torque slope depends on the stator

flux, rotor flux, the speed and the stator voltage.
3.2. High torque ripple

In digital implementation, the output torque is calculated, and
the appropriate switching states are determined at fixed sampling
time (which is DT in Fig. 1). This, however, causes a delay between
the instant the variables are sampled (ie. the instant torque is
calculated) and the instant the corresponding switchfifflstatus
passes to the inverter. Because of that, the torque ripple Cannot be
restricted exactly within the hysteresis band. If the band is set too
small, this, however, does not lmmze the torque ripple. This is
because incidents of overshoot he estimated torque atﬁthe
torque hysteresis band may occur and hence cause the rse
voltage vector to be selected. The selection of the reverse voltage
vector as mentioned previously causes the torque to decrease
rapidly and as a result the torque ripple increases [2932-35].

3.3. The need for high-speed processor

Reducing torque ripple by lowering the band width of the
hysteresis comparator would be fruitless when the processor used
has a limited sampling frequency. All the constraints which have
been mentioned above can be eliminated if a high-speed processor
is utilized, where the discrete hysteresis controller performs
similarly to the analogue based comparator. The rapid decrease
of torque due to the selection of reverse voltage can be avoided if
the sampling time (DT} is sufficiently decreased [33,34].

In our previous researches [21,23 33 36|, some experimental
results of output torque ripple obtained in hysteresis-based DTC at
different applied sampling frequencies and/or torque hysteresis
bands are presented as sk in Fig. 1{a)-(c). For each case, the
control of torque at 6 N m performed at the same load torque
condition so that the rotor speed operated at around 400 rpm.
The nominal level of torque hysteresis band is HBy. (0.9 N m) and
the minimum sampling time achievable using the digital signal

processing (DSP) is 55 s, i.mss Ms.
From Fig. 2(a), the output e ripple is high when the torque

hysteresis band is set to twice HBq.. Thus, to reduce the torque
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Fig. 2. Experimental results of control of output torque utilizing three-level hysteresis comparator (in hysteresis based-DTC). (a) Hysteresis band=2HBy., sampling
time=2DT, (b) hysteresis band = HBr., sampling time=2DT and (c) hysteresis band = HBr., sampling time=DT [26].

ripple of the b DTC scheme, one can ideally reduce the
hysteresis hand.m 2(b) shows the results of output torque
control when the torque hysteresis band reduces to HBy.. How-
ever, owing to the sampling time used in Fig. 2(a) and (b) being
twice the nominal DT (ie. 110 ps), in practice this leads to incorrect
or reverse voltage vector selections (where Tiq= —1), which
causes rapid decreases in output torque and hence increases the

torque ripple, as noted in Fig. 2(b). Therefore, to eliminate reverse
voltage vector selections, the sampling time needs to be reduced,

as demons 1 in Fig. 2(c), whereby the sampling is set to DT.
Obviouslyin Fig. 2(c), the output torque ripple decreases
and no active Voltage v@‘ is selected to reduce the torque.
Basically, the output torque ripple can be reduced by reducing
the band wid hysteresis comparator to the appropriate value.
The selection of the appropriat d width is based on the worst
operating conditions. This will ure the switching frequency of
switching devices does not exceed its limit (or thermal restriction).
It is also desirable to use a high speed processor to keep the ripple




552

within the band, in such a way that the discrete hysteresis
controller will perform lilke the analogue one. The best way to
perform the DTC algorithm at the highest sampling rate with a low
cost and fast speed processor is the use of Field Programmable
Gate Arrays (FPGA) [23].

4. Some DTC improvements to solve problems

As seen in the above overview, the basic DTC has some
disadvantages. Several variations to its original st re (which
referred to DTC as hysteresis-based) were proposed to improve the
performance of DTC of induction machines. Noticeably, most
research m:cts in recent decades have aimed to overcome the
inherent vantages of hysteresis-based DTC schemes, such as
variable switching frequency and high torque ripple. Some of
those improvements will be presented in this section.

4.1. Switching control strategies

The wvarious methods of switching techniques in DTC are
summarized in Fig. 3, which shows a typical torque and the
corresponding three-phase inverter voltage waveforms, assuming
the orientation of the stator flux is in sector 5.

To increase and to reduce the flux, while at the same time
incr the torque in this sector, the preferable voltage vectors
are 1] and [101], respectively. The zero voltage vectors
(either [000] or [11 1]) are used to reduce torque. The torque
waveforms for a hysteresis-based controller with the width of the
hysteresis marked as &7 are shown in Fig. 3(a). The torque over-
shoots and undershoots beyond and below the hysteresis bands
will occur owing to the delay in the micr cessor implementa-
tion or sensors. The positive slope is high at low speed, which will
increase the possibility of the torque touching the upper band,
thus selecting the reverse voltage to reduce the torque. The
method, which employs fixed switcl but with the whole
sampling period applied with a single age vector, is depicted
in Fig. 3(b) and (c) shows the controlled duty cycle method in
which various methods can be used to determine the duty cycle
for every sampling period Ts. Fig. 3(d) depicts the method which
synthesizes the voltage using SVM technique [28,30,3538]. The
fixed switching frequency methods require a fast processor for

T. Sutikno et al ,-"glewabie and Sustainable Energy Reviews 32 (2014) 548-558

realization since the duty cycles or voltage vectors need to be
calculated for every sampling period, particularly when a small
sampling period is required for appreciably small torque ripple
[29,36,37].

4.2, DIC based on space vector modulation

The E{)st popular variation of DTC of induction motor drives is
the one that is based on space vector modulation (SVM), which is
normally referred to as DTC-SVM [22 25 39-44], The advantages
provided by this scheme not only solve the inherent problems in
hysteresis-based DTC. The major difference between hysteresis-
based DTC and DTC-SVM is the way the stator voltage is gener-
ate| hysteresis-based DTC the applied stator voltage depends
on g ors, which are selected from a look-up table. The
selections are based on the requirement of the torque and flux
demar btained from the hysteresis comparators. On the other
hand, DTC-SVM, a stator voltage reference is calculated or
generated within a sampling period, which is &n synthesized
using the space vector modulator. The stator voltage reference
vector is calculated based on the requirement of torque and flux
demands.

4.2.1. DTC with voltage SVM

2. 4 presented a block diagram of DTC with voltage SVM

-SVM with closed-loop torque and stator flux) [24,44].
The outputs of the PID controllers are \mnd Ve representing
the reference stator voltage components he PI stator flux and
torque controllers, respectively. Then, the DC voltage commands
are transformed into stationary reference frames (&), and as
outputs are Vi, and Vig.. These outputs are forwarded to the SVM
block. 'TC with voltage SVM can be seen as hysteresis DTC in
mch witching table is replaced by a SVM, and a hysteresis

ue and Mr flux controllers are replaced by PI controllers. As
a result, the ue and flux are dmly controlled in closed loops,
and therefore the DTC-SVM will rate at a constant switching
frequency to reduce torque and flux ripples.

4.2.2. DTC with flux SVM
Further simplificatio@gyAthe hysteresis DTC can be achieved by
flux vector modulation, as shown in Fig. 5. A PI controller is used

a b
Actual torque Te Acglaltorque
" N 4
Tref AR i Tee /N /AN AN
N '\e'/ ~ I 71~ 7 !
1 1 N Yo H
Vc VC
C T ST Actual torque d
. h e ! Ty Actual torque
mi'/x‘a-\_\;'\ S A A Toef ’\_V}.. A< A
[ — -
i
E Va Vg
H |
i Vb [ Y
O ; v

Fig. 3. Typical torque waveforms in various switching strategies of DTC. {a) Hysteresis-based controller. (b) Fixed switching tormue. () Fixed switching torque with controlled

duty ratio. (d) Fixed switching torque with space-vector modulation [30].
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,
generates an increment in
the torque angle (Asy). If the rotor and flux magnit re
assumed equal, so the changing of the torque angle () can be
used to control the torque which corresponds to the increment of

for torque adjustment, and its o

the stator flux vector (A
changing of the torque angle

he estimated flux position and
‘e used to calculate the commanded

stator flux vector. Then, the outputs of the commanded stator flux
vector are directly used to calculate the VSI switching states
[25,44].

Owing to the regular sampling in SV DTC-SVM produces
constant switching frequency as opposed he variable switching
frequency in hysteresis-based DTC, albeit at the expense of more
complex implementation [44 |. The generation of reference voltage
often involves complex calculation. For example: Habetler [42]
used dead-beat control with several complicated equations (i.e.
quadratic equations) to geneg the reference voltage in real-time
and [25] utilized predictive COntrol of stator flux error vector to
estimate the reference voltage and needed extra calculation on the
synchronous angular velocity. Others include the use of propor-
tional-integral current controller [41], stator flux vector error
39,4546, proportional-integral torque and flux controllers
122,47 48] and predictive and dead-beat controllers [43,49]. More-
over, the implementation of DTC-SVM becomes complicated as
the reference voltage needs to modify whenever it passes outside
the hexagon, particularly during a large torque demand. Ulti-
mately, all of the proposed methods complicate the basic control
structure of DTC drive systems as originally proposed.
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4.3. Constant switching frequency of torque controller

rder to provide a constant switching frequency the torque
hysteresis controller can be replaced with the technique that
superimposes the torque error with a dithering signal [50] or
comparing the error with a triangular waveform [37,51]. In so
doing the simple structure of original DTC can be retained as

a
&,

a
(Mm)
3 o
a
Totque etffor &
N 3
(Nm)
o
-3
Torque error 1
status o
=1
al
Tomjue
(Nm) &
3
o
Torque error 300
(Nim) 200
100
o
Ofque error i
slatus [u]
-1
c
a
Tomue 3
(Mm)
3
o
300
Torque error 200
(Bim) 100
o
Torque error 1
status a

@Z Experimental results for step response of torque in (a) DTC-hysteresis based,
(b) DTC with CFTC [30] and (¢) DTC with improved CFTC [44] (time scale: 2 ms/div.).
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compared to that of using SVM technique. Using the dithering
signal it can effectively minimize the torque ripple even perform-
ing DTC at limited sampling frequency. On the other hands,
applying a triangular carrier-based in controlling the torque
requires a proper Pl controller as shown in Fig. 6 [37]. This
technique has gained further improvement in minimizing the
torque ripple significantly by enlarging the carrier frequency evgsy|
for application of processor with limited sampling frequency, as
reported in [51]. Fig. 7 depicts the experimental results of torque
ripple obtained in hysteresis based DTC, DTC with triangular
carrier-based [37] and DTC with enlarging carrier frequency [51]
for a step change of reference torque.

44. Predictive control scheme

Recently, predictive control strategy for DTC has gained a
mmerable amount of attention, particularly owing to its ability

‘educe the torque ripple and switc| equency. In particular,
model predictive control (MPC) uses steresis comparators
but with the switching table replaced with an online optimization
algorithm. The predictive m ith input angular shaft speed
(£2,,), stator flux and torque is used to predict the future behmr
of the controlled variables [26,52-54|. The simplified block
diagram of the DTC-MPC is shown in Fig. 8.

The important advantages of the MPC are that it is intuitive and
simple to understand; straightforward inclusion of non-linearities in
the model; simple treatment of constraints; easy to realize; and open
to comprise adjustments and expansions depending on specific
applications. However, the advantages are offset by troubles when
implementing the DTC-MPC, ie.: larger amount of online calcula-
tions compared with hysteresis DTC, and the accuracy of the
predictive model has a direct influence on the quality of the
predictive controller [44].

4.5. Intelligent control techniques

Intelligent approaches used nhance the performance of the
drive include the use of artificial intelligence (Al), such as
al network, fuzzy logic, genetic algorithm or particle swarm

optimization [55-60]. Fuzzy logic controllers can be used in place
of the hysteresis comparators and voltage vector selector. Fuzzy
logic can also be applied to determine appropriate instances for
applying a zero voltage vector within a switching period. Instead

+Vne-
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Te(k) > - >
Online
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Predicti * minimalization b source
EIYE ] (el i inverter
Model of cost function S.(k) vsD)
[y Y Te(ktl [ s | e
YYy
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T wikl| | Qalk) calculation |
Ve Vgt
Stator flux, electromagnetic torque and ¢ ™

speed estimators

-( current
calculation

F 3

Fig. 8 The simplified block diagram of the DTC-MPC.
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of fuzzy logic, a neural network can be used for selecting the
voltage vector. But increases in the complexity of the drive to an
extent diminish the simple control structure inherent in DTC.

All the techniques discussed above need a high-speed processor
for implementation since the duty cycles or voltage vectors need
to be calculated for every sampling period, mainly when a small
sampling period is needed for considera@mall torque and flux
ripples. This is usually accomplished using a high-speed digital signal
processor (DSP) or field programmable gate array (FPGA).

5. DTC for EV applications

m‘w control strategies have been proposed for induction
motors [7-9]. Among e strategies and as the requirements
mentioned in Section 1, DTC appears to be very convenient for EV
applications. The required measurements for this strategy are only
the input currents, whereas flux, torque and speed can be
estimated. The reference speed sed as the control command
(input) of the motor controller, Which is directly applied by the
pedal of the vehi@l{ated flux is used as a reference for below
the rated speed stant torque region), and a flux weakening
method can be used for above the rated speed which may imply
the need to exceed the supply voltage limits to maintain speed.
The current limit and the voltage limit, smooth and precise
transition can be obtained, as the onset of the field weakening
operation is automatically adjusted in accord with the flux level
[21,61].

Fig. 9 s the configuration of a DTC scheme, and shows how
the EV dynamics will be taken into consideration.

Spﬁoad load and tractive force

We gn evaluate both the driving power and require rgy to
ensure vehicle operation, taking into consideration the principles
of vehicle mechanics and aerodynamics [ 8,62,63].

The first step is to derive an equation for the tractive force. This
is the required energy to propel the vehicle forward and trans-
mitted to the ground/floor through the wheels, if the vehicle has
mass m and is moving at a speed v, up an angle a slope, as shown
ﬁjg. 10. The tractive force has to accomplish the following:

rcome the rolling resistance (F,.), overcome the aerodynamic
drag (Fuq), overcome the vehicle weight (mg), and accelerate—this
comprises both linear acceleration (Fy,) and the acceleration force
[Fwa) of the vehicle [8,62,63]. So, the total tractive force is given as
a 10).

te = Frr +Foq +Fpc+Fiy+Fua

The rolling resistance F is produced by the friction of the @de
tyre at the roadway contact surface and hardly depends on icle
speed, tyre pressure and type and road surface characteristic.
The rolling resistance is non-linear as Eq. (11).

(10)

Fip = p mg cos(a) (11)

where p: Tire rolling resistance coefficient (0.015 < u < 0.3).
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Aerodynamic drag Fy is the force required to move the @i{m
of the vehicle body through the air. The force is a function of the
frontal area, the shape, protrusions such as side mirrors, ducts and
air passages, spoilers, etc as Eq. (12).
Fad =%{)Cmﬂr“" +Va) (12)
where p: air density; C,4: aerodynamic drag coefficient (0.2 < Cyy
< 0.4); Af: vehicle frontal area; v: vehicle speed; v,: head-wind
velocity. g

The required force to drive the vehicle up a slope is the most
simple to calculate. It is only the vehicle weight compo@ that
acts along the slope, as Eq. (13). It is also known as climbing
resistance (since positive operational sign) or the downgrade force
(since negative operational sign).

Fi. = + mg sin(a) (13)
An addi | force is needed when the speed of the vehicle

is varying. This force will provide the linear acceleration of the

vehicle.

Fiy=ma (14)

where a: vehicle acceleration.

However, we should also consider rotational acceleration in
addition to the above linear acceleration for a more precise
calculation of the required force to accelerate the vehicle. The
needed acceleration force by incorporating the gear system
efficiency 1 is as Eq. (15).

c2
Fuo =]—a

1,72 (15)

where J: Total inertia (rotor and load); G: Gear ratio; #,: Gear
system efficiency; r: Tire radius.

The Fi, and F,,, values will be negative if the vehicle is slowing
down and F,. will be negative if it is going downhill.

5.2, Motor ratings and transmission

The choice of the driving motor on electric vehicles primarily
should consider the rated power and rated speed. The higher the
power grade selected, the more reserve pow, produced and the
vehicle's driving feature are improved. But he same time the
volume and weight of the motor will rise rapidly, which can lead

Moving direction
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Fig. 10. Elementary forces acting on a vehicle.
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Fig. 9. The configuration of a DTC scheme for EV applications.
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Fig. 11. More rapid motor acceleration achieved with the flux weakenin,gm'\ a step change of reference speed is applied at time t,.

to a decline in the motor's efficiency. So the motor power should
not be too great [8,62,63]. g

The power necessary to drive a vehicle a speed v has to
compensate for road load (counteracting forces), i.e.

Pre = VFie = v (Frr FFag +Fpe + Frg +Fua) (16)

EV has the characters of frequent starting-stopping and accelera-
tion. It is required that the drive system should has accurate control of
speed, better tracking performance and high predsion of stability.
Therefore, drive system has a strong require to the control strategy.
DTC is one of the common technologies in drive system. The DTC gets
rid of decoupling feedback idea in sector control and changes the
direction from rotor to stator. Through controlling the value of stator
and the angle of sector can achieve the goal of controlling torque. The
DTC has the characters of direct control, simple and efficient structure,
good control performance and dynamic speed; but also reduces the
power consumption. Considering the above characters, DTC is fit for
the conth electric vehicle (EV). However, the above DTC improve-
ments to optimize the efficiency of EV drive according to the driving
pattern and operating conditions should be considered to ensure
effidently controlled vehicle, lengthening battery life, safety, stability
and reliability at lower cost.

6. Reliability of DTC for EV applications

@ecent years DTC as an innovative control memod@gained
the attraction for EV application, because it can also produces fast
torque control of the induction motor and does not need heavy
mputation on-line, in contrast to FOC. DTC is low cost dEflo

hout mechanical speed sensors at the motor shaft. The r
speed is estimated from sensed stator voltages and currents at the
gor terminal. Hence, it can reduces hardware complexity and

of the drive machine, elimination of the sensor cable,
improved noise invulnerability, increased reliability, and less
maintenance requirements in EV applications |7,64,65].

A wide speed high torque capability is a very important feature in
many EV drive applications. In automotive applications, it is usually
referred to a high constant power speed range (CPSR). The
availability of e range of speed operations with the maximum

capability of torque is of main concern, especially ﬁle@ electric
vehicles where multiple gears have to be avoided. is also reliable
to provide a robust field weakening as well as supports frequent
starting-stopping and acc jon. In practice, a flux weakening
strategy is normally used nd the motor speed operations
beyond the base speed and to enhance the ﬁ:ility of torque. The
common approach adopted is to estimate the mal flux level of the
motor based on the maximum values of inverter voltage and inverter
all [43,66-68].

r to achieve the fastest torque dynamic response as well as
high tolque capabilimeﬂux weakening region, the D ds to
have the capability rate in six-step mode [G9]. e flux
weakening region, a higher capability of torque can be achieved as the
overmodulation strategy operates stator voltage in the six-step mode
by continuously controlling the flux vector to form onal locus.
A conventional flux-wealkening method can be used er to retain
the simple control structufigbut with a minor modification. Using
the modified method, the Magnitude of the hexagonal stator flux is
inversely proportional to the rotor s@lmen the motor operates
beyond the base speed [21,33,7 he control of stator flux magnitude
and its corresponding locus for p change of reference speed from
@y O @y, 5 s illustrated in Fig. 11. However, a step reduction of 13.4%
in the flux magnitude is applied as the hexagonal flux locus is
instantaneously changed back to the circular locus when the motor
speed reaches its target | 33,71]. The percentage of the step reduction is
actually the maximum differen magnitude of a hexagonal flux
locus. This reduction is to ensure the output torque can be well-
regulated to its reference. Therefore, the modified strategy (with
hexagonal flux locus) offers an extended constant torque region and
a wider speed range, so @,y e 1S higher than @y, g g

The above presentation has explained that DTC can operate for
wide range of speed, and because it is reliable and capable of providing
acceleration, braking and above rated speed (flux weakening) feature
of sustainable reliability and energy efficient drives for EV applications.

7. mnclusion

This paper has presented a brief review of DTC of induction
motors as well as its implementation for EV applications. The
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paper has explained that DTC is very suitable for EV applications.
DTC is capable of operating over increases and decreases of speed
in positive and negative directions (four quadrants) and offers
optimal energy management for EV applications. In the first
sections, the concepts and major problems of basic DTC are
explained and explored. Then some improvements to basic DTC
are presented as well as a critical review of DTC for EV applica-
tions. The detailed dynamic model of an EV that is associated

DTC drive strategy is explained. It is clear that DTC promises
efficiency in order to extend the running distance per battery
charge. The paper is important to provide guidelines and insights
for future research and development on DTC of IM drives for
sustainable reliability and energy efficiency of EV applications.
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