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1. INTRODUCTION

In the high-performance drives; field-oriented or direct torque control, accurate torque estimation is
essential to avoid improper drive operation and to achieve a highly stable system. Most of the torque
estimation techniques proposed so far are based on the voltage model (VM), or the current model (CM).

The voltage model is the common name for a stator flux estimator used in sensorless induction
motor drives since the rotor speed information is not required for the stator flux estimation, and the only
essential parameter of the model is the stator resistance [1]. The VM is normally used in a high speed range,
since at low speed, some problems arise. There are two well-known problems if a pure integrator is used: (1)
drift and eventually saturation in the estimated flux due to the presence of the DC offset in the measured
current [1]-[2], and (2) extreme sensitivity to stator resistance mismatch due to temperature increase, notably
at low speed when the stator voltage is low [3]. To overcome (1), a low-pass filter (LPF) is normally used in
place of a pure integrator. However, this method reduces the performance of the system drive because of the
phase and magnitude errors due to the LPF, especially when frequencies are close to the cutoff frequency [4].
An attempt to solve this drawback, Karanayil et. al. [5] have proposed a small-time-constant cascaded LPFs
to reduce the DC offset decay time. Comanescu and Longya [6] have addresse@x estimation based on a
phase locked loop (PLL) programmable LPF showing an improvement in the magnitude and phase of the
estimated flux.
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The current-model estimation, on the other hand, is normally applied at low frequency, and requires
information on d and q stator current and rotor speed (or position) [2], [7]. In practice, accurate speed
measurement is important for robust and precise control of IMs. However, the use of an incremental encoder
to get the speed or position of the rotor is unattractive since it reduces the robustness and reliability of the
drive, and increases hardware complexity and cost [8]. Thus, speed estimation techniques based on terminal
variables that can replace mechanical speed sensors, have received increasing attention in recent decades. It
is well-known that even though the use of CM has managed to remove the sensitivity to the stator resistor
variation at low speed, on the other hand, it introduced parameter-sensitivity due to the rotor parameter
variations, especially at high speed region. To address this problem, various methods have been proposed.
For instance, Salmasi and Najafabadi [9] have proposed an adaptive observer which is capable of concurrent
estimation of stator currents and rotor fluxes with online adaptation of rotor and stator resistances. Toliyat er
al. [10] have developed artificial neural networks (ANNs) in closed loop observer for estimating rotor
resistance and mutual inductance. There is also a stochastic approach that uses extended Kalman filter (EKF)
in estimating the variables of an induction motor (IM), such as speed, torque, and flux [3]. Using EKF-based
observer, it is possible to estimate the unknown parameters of IM, taking into account the parameter
variations and measurement noises, in a relatively short time interval [11]-[16].

This paper investigates the real time calculation of torque using the estimated state variables based
on the LPF filter and EKF and then compares them with simulated torques. In this way, it will be shown
which technique is closer to simulation. The paper is organized in five sections. The following section
presents the EKF-based torqulculator, Section 3 deals with the low pass filter, which represents the
voltage model. Simulation and experimental results are presented in Sections 4. Finally, section 5 concludes

the work.

2. EXTENTDED KALMAN FILTER ALGORITHM

In this study, EKF is used to concurrently estimate current, rotor flux, and rotor speed for speed
sensorless control of IMs. However, the precise estimation of these state variables is very much reliant on
how well the filter matrices are selected over a wide speed range [17]. The extended model to be used in the
development of the EKF algorithm can be written in the following general form (as referred to the stator
stationary frame.

()= i () ule)) + wi(t)

(n
(), u(n)) = Aj(x () x (1) + Bu (1) 2)
Y(t)=H(x (1)x (1) + Bu(t) + v, (1) (3)

There i = 1, 2, extended|{{&lte vector x; is representing the estimated states, f; is the nonlinear
function of the states and inputs, 4; 1s the system matrix, u is the control-input vector, B is the input matrix, w;
is the process noise, H is the measurement matrix, and v; is the measurement noise. The general form of IM
can be represented by (4) and (5).
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g’here i,y an are the d and q components of stator current, ¥, and ¥, are d-q rotor flux
cmnpcnnts, @, is the rotor electric angular speed in rad/s, v,y and v,, are the stator voltage components, L,
L.and L, are the stator, rotor and mutual inductances respectively, R is the stator resistance, and R, is the
rotor resistance.

In this section, the EKF algorithm used in the IM model will be derived using the extended model in
(4) and (5). For nonlinear problems, such as the one in consideration, the KF method is not strictly
applicable, since linearity plays an important role in its derivation and performance as an optimal filter. The
EKF technique attempts to overcome this difficulty by using a linearized approximation, where the
linearization is performed about the current state estimate. This process requires the discretization of (4) and
(5) as follows:

X (k+1) = fi(x (F)suk)) + w; (k) ©6)
Si(x (k),u(k))= A;(ﬁ)m (k)+ Bu(k) 7
Y(k) = H, (x5 (k))yx; (k) + Bu(k) + v;(k) )
The linearization of (7) is performed around the current estimated state vector i, given as follows.

(k) = a%g(k},um

0 g ©)
The resulting EKF algorithm can be presented with the following recursive relations:
P(k)= F(k)P(k)F (k)" +Q (10)
K(l) = H'P(kY(HP(k +DHT + R)™! an
Fk+1) =.f"'(k).u(k))+x(k)(r(k)—Hx‘(k)) (12)
Plk+1) =(I —K(k +)HP(k) (13)

In (10)-(13)Q is the covariance matrix of the system noise, namely, model error, R is the covariance
matrix of the output noise, namely, measurement noise, and P are the covariance matrix of state estimation
error. The algorithm involves two main stages: prediction and filtering. In the prediction stage, the next
predicted states f(-) and predicted state-error covariance matrices, H-)are processed, while in the filtering
stage, the next estimated states x(k + 1) obtained as the sum of the next predicted states and the correction
term [second term in (12)], are calculated. The structure of the EKF algorithm is shown in Figure 1.

The electromagnetic torque based on EKF is expressed based on the selected state variables which
are the stator current and rotor fluxr:
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The electromagnetic torque based on EKF is expressed based on the selected state variables which
are the stator current and rotor flux.
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3. VULTACEIDDEL-BASED TORQUE ESTIMATOR
The stator flux estimation based on the voltage model is derived from the stator voltage equation
given by:

dyr,
di

v.§ = RS!S +

The stator flux, therefore, can be written as:

'7.9 = J- (vs' - Es'Rs )d{‘

(15)

Under sinusoidal steady-state condition, this reduces to:
J®e s = Vs —isRg.
— vs _Es‘Rs
5 = ‘ﬂ) *
Jo, (16)

Outputs

\

Figure 1. Structure of extended Kalman filter

To avoid the integration drift problem due to the dc offset or measurement noise, an LP filter is
normally used in place of the pure integrator. With an LP filter, (16) becomes

—r _ ;s _i_.s‘Rs
b jo, v, (17)

where @, is the cutoff frequency of the LP filter in radians per second and 7 is the estimated stator
flux which is obviously not equal to 7, of (16).

Choosing a cutoff frequency which is closer to the operating frequency will reduce the dc oftset in
the estimated stator flux, which on the other hand will introduce phase and magnitude errors.

The electromagnetic torque equation for LPF is calculated based on the estimated stator flux and
measured stator current:

3Ipi— . .
Tc = 5% [lt{/.vd Lig =W syl s ) (18)
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4. SIMULATION AND EXPERIMENTAL RESULTS

In order to study the performance and feasibility of the estimators, experimental results obtained
from both the EKF- and LPF-based estimators are compared with the results obtained from simulations using
Matlab/SIMULINK. In both simulations and experiments, the induction motor is run using constant Volts per
Hertz (V/Hz) control scheme. In the experiment, the torque is calculated using the LPF and EKF-based
estimators. The calculated torque from the experiment is then compared with the 1 or ‘actual’ torque
directly obtained from the induction motor SIMULINK block in the simulation. The parameters of the
induction motor used in the simulation and experiment are as shown in Table 1.

The experimental set-up consists of an insulated-gate bipolar transistor inverter, a dSPAaE 1104
controller card, XILINX field programmable gate array (FPGA) and a 1.5-kW 4-pole squirrel-cage induction
motor. An incremental encoder with 1024 ppr is used to measure the rotor speed.For safety reason, the DC
voltage is limited to 100 V, which means that the based speed is reduced to 28 rad/s. The main tasks of the
dSPACE are to produce the PWM control signals using the constant V/Hz scheme and, more importantly, to
estimate the torque using LPF and EKF algorithms. The FPGA device is used for blanking time generation.
The sampling period of the constant V/Hz scheme, including the state estimators, is 280 us.

The initial values of the P, R and Q in the EKF algorithm are found by trial-and-error to achieve a
rapid initial convergence as well as the desired transient- and steady-state Perfm'manca Thus, the initial
values for EKF scheme — P= diag[I 1 1 11], Q = diag[107'" 107" 107 1077 10°], R=diag[107” 107 ]. As
for LPF, the estimated stator flux is based on the cutoff frequency set to 5 rad/s.

DC Voltage
[l
IGBT-based o
VSi [ o

Controlled signals T
after

Gate drives and
Isolations.

Controlled signals — iik ik

before isolation
i FPGA (baysis2)
PC
\g}«—» DSPACE 1104 -—

Speed encoder

Figure 2. Schematic representation of the experimental setup

Ap Table 1. Induction Motor Parameters
1 R, L L L, Ji
K (o] [H [H] [H] [Kg. nr]
3 4.1 0.3419 03513 0324 0.00952 4

The constant V/Hz drive, both in simulation and experiment, is run in an open loop mode where a
step change in the speed reference from 0 to 28 rad/s is applied at t=2.8s.
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1gure 3. Simulation results: d-q stator current, torque, and speed
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Figure 4. Experimental results: ﬁstator voltage, d-q stator current, and measured speed

Figure 3 shows the simulation results, under ideal condition, 9 the d-q stator currents, simulated
torque and rotor speed. Figure 4 shows the results obtained from experiment for the measured d-q stator
currents and voltages, and speed, under the same condition. The performance of the EKF algorithm is
evaluated experimentally through the estimated speed and the calculated torques as shown in Figure 5. In
order to further examine the differences between the simulated and calculated torque based on EKF
estimator, the waveforms are zoomed and shown Figure 8(a), where the differences (error) are also plotted.
The EKF not only can be used to estimate the torque, but also can be utilized to estimate the speed; the
estimated speed and measured speed obtained from experiment is shown in Figure 6. It can be seen that
estimated and measured speeds almost coincided except at start-up, where significant error can be observed
due to the lack of flux rotation at zero speed.

4
1(J
[
o ~ AR
=
-1
£
g o |
= 0
%)
Wy
d_ 50 T T | T T | I
0 p— : 1
bk £ .
W | I i i i | I
500 1 2 3 4 5 6 7 8
Time(s)

Figure 5. Experimental results: d-q rotor flux, estimated torque, and estimated speed for EKF

The experimental results of the d-q axes of the estimated stator flux, and the magnitude of the
calculated torque with the LPF cutoff frequency set to 5 rad/s is shown in Figure 7. The differences between
the calculated torque based on LPF voltage model and the simulated torque can be clearly seen in Figure
8(b), where the waveforms are zoomed. Examining Figure 8(a) and 8(b), one can clearly see the torque
estimation using LPF is poor because of the uncertainties of parameters, nonlinearty of the inverters,
measurement noise of current. For these reasons, the EKF observer is used as it can take into account all of
these uncertainties and noises. This can be proved by inspected the narrower error band of the EKF torque.
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Figure 8. Comparison between the torques obtained from the simulation and experiment for (a) EKF, (b) LPF
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Experimental results: Measured and estimated speed obtained from EKF estimator
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4. CONCLUSION

In this paper, a comparison of state estimations for torque calculation based on EKF and LPF filters
applied for an induction motor control has been performed. The performances of the EKF and LPF schemes
under the same conditions are experimentally evaluated by comparing them with the results obtained from
the simulation. When comparing both results, the EKF-based state estimation shows much better accuracy
than the LPF-based state estimation in calculating the torque. The EKF-based is also capable of estimating
the speed under transient and steady state conditions. The drawback of EKF-based estimation is the large
sampling time due to the complex mathematical equations involved.
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