Development of Modified CNN Algorithm for Agriculture Product A Research Review

Sharma, Deepika and Agrawal, Navneet (2022) Development of Modified CNN Algorithm for Agriculture Product A Research Review. [Artikel Dosen]

[thumbnail of Development of Modified CNN Algorithm for Agriculture Product A Research Review.pdf] Text
Development of Modified CNN Algorithm for Agriculture Product A Research Review.pdf - Published Version
Restricted to Registered users only

Download (493kB)

Abstract

Now a day, with the increase in world population, the demand for agricultural products is also increased. Modern days electronic technologies combined with machine vision techniques have become a good resource for precise weed and crop detection in the field. It is becoming prominent in precision agriculture and also supporting site-specific weed management. By reviewing as there are so many different kinds of weed detection algorithms that were already used in the weed removal process or in agriculture. By the comparative study of research papers on weed detection. In this paper, we have suggested advanced and improved algorithms which take care of most of the limitations of previous work. The main goal of this review is to study the different types of algorithms used to detect weeds present in crops for automated systems in agriculture. This paper used a method that is based on a convolutional neural network model, VGG16, to identify images of weeds. As the basic network, VGG16 has very good classification performance, and it is relatively easy to modify. Download the weed dataset. This image dataset has 15336 segments, being 3249 of soil, 7376 soybeans, 3520 grass, and 1191 broadleaf weeds. Our model fixes the first 16 layers of VGG16 parameters for layer-by-layer automatic extraction of features, adding an average pooling layer, convolution layer, Dropout layer, fully connected layer, and softmax for classifiers. The results show that the final model performs well in the classification effect of 4 classes. The accuracy is 97.76 %. We will compare our result with the CNN model. It provides an accurate and reliable judgment basis for quantitative chemical pesticide spraying. The results of this study can provide an overview of the use of CNN-based techniques for weed detection.

Item Type: Artikel Dosen
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisi / Prodi: Faculty of Industrial Technology (Fakultas Teknologi Industri) > S1-Electrical Engineering (S1-Teknik Elektro)
Depositing User: M.Eng. Alfian Ma'arif
Date Deposited: 07 Feb 2023 01:49
Last Modified: 07 Feb 2023 01:49
URI: http://eprints.uad.ac.id/id/eprint/37434

Actions (login required)

View Item View Item