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Abstract. Latent phase of Coronavirus infection is a period of time in which an infected person is noninfectious and 

asymptomatic, so that it does not have a high risk of transmission. We construct a mathematical model that describes human 

inflammatory response system, i.e. interaction between pro-inflammatory and anti-inflammatory cytokine during Coronavirus 

infection to identify the sufficient condition for global stability of latency equilibria of the model, so that the latency period of 

an infected person can be maintained and transmission of Coronavirus can be prevented. The model is a three-dimensional 

differential equation system that has an equilibria that represents the latent phase of Coronavirus infection. The latency 

equilibria is globally asymptotically stable if the maximum concentration of Coronavirus is less than the ratio between the 

natural degradation of pro-inflammatory cytokine and the increasing rate of pro-inflammatory cytokine concentration caused 

by Coronavirus. Fulfillment of the sufficient condition to create a globally asymptotically stable latency equilibria results in 

Coronavirus infection on the infected person will remain in latent phase, so that Coronavirus transmission can be suppressed. 

INTRODUCTION 

Covid-19 is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 

or Coronavirus [1]. Covid-19 was first reported in Wuhan, Hubei Province, China [2], [3]. Since 2020, Covid-19 has 

become global pandemic as announced by WHO [4]. By 27 July 2021, there are 194 million Covid-19 positive cases 

and more than 4 million death cases [5]. 

Reproduction of Coronavirus takes place in a bat as its natural host [6], [7]. Coronavirus can be transmitted from 

animal to human or between humans [8], [9]. Close contact, droplets, and objects contaminated with the virus can 

become a means of the virus transmission [10]. Latent phase of Coronavirus infection is a period of time when an 

infected person is asymptomatic and noninfectious [11]. It is a period before an infected person can transmit the 

infection to another person [11]. 

Coronavirus infection in human body is responded by an inflammatory response system which contains 

interaction between pro-inflammatory and anti-inflammatory cytokine [7], [12], [13]. Pro-inflammatory cytokine is 

induced to respond the existence of Coronavirus and it induces anti-inflammatory cytokine as its reductor in order to 

maintain it from being overexpression [14]. 

Mathematical models of human inflammatory response to Coronavirus infection have been constructed in [12] 
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and [13]. The model in [13] only concerns on characterizing the dynamics between pro-inflammatory cytokine and 

anti- inflammatory cytokine in common condition while the model in [12] also concerns on characterizing the 

dynamics of the two cytokines, but especially in cytokine storm condition [15], [16]. Coronavirus has not been 

included as a variable in these two models, so that we still do not know the dynamics of Coronavirus in human body, 

especially during the latent phase. In this research, we construct a new mathematical model which includes 

Coronavirus as a new variable, so that we can characterize the sufficient condition related to Coronavirus 

concentration to maintain the infection in the latent phase and does not progress to the infectious phase. 

Furthermore, the transmission of Coronavirus can be suppressed. 

MATHEMATICAL MODEL 

Covid-19 is caused by Coronavirus that exists in the human body. In this paper, we focus on latent phase of 

Coronavirus infection. In contrast to active viral infection characterized by continuous viral replication, latent viral 

infection is inactive or dormant, not chronic, persistent, and static [17], i.e. the virus reaches a certain concentration, 

does not replicate anymore [18], and lasts until the host cell dies [17].  Based on this fact, we decide to form the 

change of Coronavirus concentration in the body into logistic model which is appropriate to describe the latent 

Coronavirus infection phenomenon, because it has an interpretation to denote the static concentration of Coronavirus 

in latent viral infection, i.e. carrying capacity that represents the maximum concentration of Coronavirus in latent 

infection. 

The presence of Coronavirus in the human body is responded by inflammatory response which consists of pro- 

inflammatory cytokine and anti-inflammatory cytokine interaction [7], [12], [13]. Pro-inflammatory cytokine is 

produced to respond Coronavirus infection [14], [12], [13] while anti-inflammatory cytokine is induced by the pro- 

inflammatory cytokine to keep it from being overproduction [14] by reducing its concentration [7], [12], [13], because 

the overproduction of pro-inflammatory cytokine causes cytokine storm [19], i.e. inflammation on blood vessels which 

can lead to death. Pro-inflammatory and anti-inflammatory cytokine also undergo a natural degradation [7], [12], 

[13]. 

Based on the interaction between Coronavirus, pro-inflammatory cytokine, and anti-inflammatory cytokine in 

the inflammatory response system due to the Coronavirus infection, we define some variables and parameters. The 

variable definition is listed in Table 1. 

 

TABLE 1. Model variables. 

Variable Interpretation Initial Value Unit 

V Coronavirus concentration Estimation pg/mL.noca 

P Pro-inflammatory cytokine concentration Estimation pg/mL.noca 

A Anti-inflammatory cytokine concentration Estimation pg/mL.noca 

t Time Estimation hour 
a noc is number of cells 

 

All of the variables are non-negative, because V, P, A represent concentration and t denotes time. The parameter 

definition are listed in Table 2. 

 

TABLE 2. Model parameters. 

Parameter Interpretation Value Unit Reference 

κ Coronavirus replication rate 0.343 ± 0.178 or 0.81 
𝑝𝑔

𝑚𝐿. ℎ𝑜𝑢𝑟. 𝑛𝑜𝑐𝑎
 Assumption 

σ Induction rate of pro-inflammatory cytokine due to 

Coronavirus infection 

0.009 ± 0.004 or 0.81 
𝑝𝑔

𝑚𝐿. ℎ𝑜𝑢𝑟. 𝑛𝑜𝑐𝑎
 Assumption 

ω Induction rate of anti-inflammatory cytokine due to its 

interaction with pro-inflammatory cytokine 

0.009 ± 0.004 or 0.81 
𝑝𝑔

𝑚𝐿. ℎ𝑜𝑢𝑟. 𝑛𝑜𝑐𝑎
 [20] 

μ Ratio of Coronavirus replication rate to the maximum 

concentration of Coronavirus 

0.751 ± 0.198 
𝑝𝑔

𝑚𝐿. 𝑛𝑜𝑐𝑎
 Assumption 

φ Degradation rate of pro-inflammatory cytokine due to 

its interaction with anti-inflammatory cytokine 

0.343 ± 0.178 
𝑝𝑔

𝑚𝐿. ℎ𝑜𝑢𝑟. 𝑛𝑜𝑐𝑎
 [20] 

ϑ Natural degradation rate of pro-inflammatory cytokine 0.751 ± 0.198 hour-1 [20] 
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ε Natural degradation rate of anti-inflammatory cytokine 0.87 ± 0.281 hour-1 [20] 
a noc is number of cells 

 

All of the parameters are positive, because they represent the interaction rate between the cytokines and 

Coronavirus. 

Interactions between Coronavirus, pro-inflammatory cytokine, and anti-inflammatory cytokine in the 

inflammatory response system due to the Coronavirus infection are illustrated in compartment diagram presented in 

Figure 1. 

 

 

FIGURE 1. Compartment diagram of the interaction between Coronavirus, pro-inflammatory cytokine, and anti-inflammatory 

cytokine in the inflammatory response system due to Coronavirus infection. 

 

By referring to the compartment diagram in Figure 1, we construct the mathematical model as a non-linear 

ordinary differential equation system with three-dimensional variable and seven-dimensional parameter as follows. 

𝑑𝑉

𝑑𝑡
= 𝑉(𝜅 − 𝜇𝑉) 

(1) 

𝑑𝑃

𝑑𝑡
= 𝜎𝑉𝑃 − 𝜑𝑃𝐴 − 𝜗𝑃 

(2) 

𝑑𝐴

𝑑𝑡
= 𝜔𝑃𝐴 − 𝜀𝐴 

(3) 

Equation (1) represents the rate of change in Coronavirus concentration with respect to time. The first term 

denotes Coronavirus replication and death which is denoted by a logistic form with κ as the Coronavirus replication 

rate and µ is the ratio of Coronavirus replication rate to the maximum concentration of Coronavirus. It follows 

logistic form, because the latent viral infection is persistent and static [17], so that Coronavirus does not replicate 

anymore [18] and lasts until the host cell dies [17]. This phenomenon fits the logistic model that has a maximum 

limit interpretation expressed by the carrying capacity which represents the static concentration of Coronavirus in 

latent viral infection. 

Equation (2) represents the rate of change in pro-inflammatory cytokine with respect to time. The first term is the 

induction of pro-inflammatory cytokine concentration caused by Coronavirus infection with σ as the rate. The second 

term is the reduction of pro-inflammatory cytokine concentration caused by the interaction between pro-inflammatory 

cytokine and anti-inflammatory cytokine with ϕ as the rate. The third term is the reduction of pro-inflammatory 

cytokine concentration caused by its natural degradation with ϑ as the rate. 

Equation (3) represents the rate of change of anti-inflammatory concentration with respect to time. The first term 

is the induction of anti-inflammatory cytokine concentration caused by the interaction between pro-inflammatory 

cytokine and anti-inflammatory cytokine with ω as the rate. The second term is the reduction of anti-inflammatory 

cytokine concentration caused by its natural degradation with ν as the rate. 

 

POSITIVITY AND BOUNDEDNESS 

Positivity and boundedness of the model solution should be guaranteed in order to get the biological 

interpretations of the solution. Furthermore, the interpretations make the model more realistic. 

Positivity of the model solution states that the solution will be positive for every time which is appropriate for 

expression of concentration described by the model variables. 
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Theorem 1. The set 𝛺 = {(𝑉, 𝑃, 𝐴) ∈ ℝ+
3 ∪ {0}: 𝑉 ≤

𝜅

𝜇
} is a positive invariant set with 𝑉(0), 𝑃(0), 𝐴(0) ≥ 0 as the 

initial condition for the model and for all 𝑡 ∈ [0, 𝜏]. 

Proof: According to Equation (1), we obtain 
𝑑𝑉

𝑑𝑡
= 𝑉(𝜅 − 𝜇𝑉) ≥ −𝜇𝑉2. Based on this inequality, we get 𝑉(𝑡) ≥

1

𝜇𝑡
≥ 0. According to Equation (3), we obtain 

𝑑𝐴

𝑑𝑡
= 𝜔𝑃𝐴 − 𝜀𝐴 ≥ −𝜀𝐴. Based on this inequality, we get 𝐴(𝑡) ≥

𝑒−𝜀𝑡 ≥ 0. According to Equation (2), we obtain 
𝑑𝑃

𝑑𝑡
= 𝜎𝑉𝑃 − 𝜑𝑃𝐴 − 𝜗𝑃 ≥ −𝜑𝑃𝐴 − 𝜗𝑃 = −(𝜑𝐴 + 𝜗)𝑃. Based on 

this inequality, we get 𝑃(𝑡) ≥ 𝑒−(𝜑 ∫𝐴(𝑡)𝑑𝑡+𝜗)𝑡 ≥ 0. We obtain 𝑉(𝑡), 𝑃(𝑡), 𝐴(𝑡) ≥ 0 and they are ∈ 𝛺 for 𝑡 ∈
[0, 𝜏]. 

In Theorem 1, we obtain that the model solution will be bounded, so that the solution is not blow up to unlimited 

expression. It is appropriate with the fact that a concentration of a substance in the body has a maximum limit. 

Theorem 2. The solution of the model 𝑉(𝑡), 𝑃(𝑡), 𝐴(𝑡) with 𝑉(0), 𝑃(0), 𝐴(0) ≥ 0 as the initial condition for the 

model is bounded for all 𝑡 ∈ [0, 𝜏]. 

Proof: Solution of Equation (1) is 𝑉(𝑡) =
𝑉(0)

𝜅

𝜇

(
𝜅

𝜇
−𝑉(0))𝑒−𝜅𝑡+𝑉(0)

, so that lim
𝑡→∞

sup𝑉(𝑡) ≤
𝜅

𝜇
= 𝑀1. Therefore, 𝑉(𝑡) is 

bounded. By adding Equation (2) and Equation (3), we get 
𝑑𝑃

𝑑𝑡
+
𝑑𝐴

𝑑𝑡
= 𝜎𝑉𝑃 − 𝜗𝑃 − 𝜀𝐴 

≤
𝜎𝜅

𝜇
𝑃 − 𝜗𝑃 − 𝜀𝐴 

= −(𝜗 −
𝜎𝜅

𝜇
)𝑃 − 𝜀𝐴 

≤ −𝜂(𝑃 + 𝐴), 

with 𝜂 = min {(𝜗 −
𝜎𝜅

𝜇
) , 𝜀}. Hence, we obtain (𝑃(𝑡) + 𝐴(𝑡)) ≤ 𝑒−𝜂𝑡 = 𝑀2. Therefore, 𝑃(𝑡) and 𝐴(𝑡) are bounded. 

 

LATENCY EQUILIBRIA 

Latency equilibria is important to identify the noninfectious and asymptomatic condition in Coronavirus 

infection. The latency equilibria was investigated by solving 
𝑑𝑉

𝑑𝑡
=

𝑑𝑃

𝑑𝑡
=

𝑑𝐴

𝑑𝑡
= 0 [13]. In the calculation, we want to 

generate the latent phase of Coronavirus infection through equilibria interpretation represented by two conditions. 

The first condition states that Coronavirus reaches its maximum concentration in latent phase (𝑉 =
𝜅

𝜇
), because 

latent viral infection is persistent and static [17], so that Coronavirus does not replicate anymore [18] and lasts until 

the host cell dies [17]. The second condition states that pro-inflammatory and anti-inflammatory cytokine are not 

produced (𝑃 = 𝐴 = 0) in Coronavirus latent infection, because the virus is inactive or dormant in latent viral 

infection [17], so that the infection does not cause inflammation. 

Theorem 3. The latency equilibria is 𝐸𝑙 = (
𝜅

𝜇
, 0,0) which exist for all conditions. 

Proof: By setting 
𝑑𝑉

𝑑𝑡
=

𝑑𝑃

𝑑𝑡
=

𝑑𝐴

𝑑𝑡
= 0, we obtain 

𝑉(𝜅 − 𝜇𝑉) = 0  (4) 

𝜎𝑉𝑃 − 𝜑𝑃𝐴 − 𝜗𝑃 = 0  (5) 

𝜔𝑃𝐴 − 𝜀𝐴 = 0  (6) 

Based on Equation (6), we obtain 𝐴 = 0 or 𝑃 =
𝜀

𝜔
. We choose 𝐴 = 0, because virus is inactive or dormant in 

latent viral infection [17], so that the infection does not cause inflammation, i.e. anti-inflammatory cytokine are not 

produced in Coronavirus latent infection. We substitute 𝐴 = 0 to Equation (5), so that we get 𝑃 = 0 or 𝑉 =
𝜗

𝜎
. We 

choose 𝑃 = 0, because virus is inactive or dormant in latent viral infection [17], so that the infection does not cause 

inflammation, i.e. pro-inflammatory cytokine are not produced (𝑃 = 𝐴 = 0) in Coronavirus latent infection. 

According to Equation (4), we obtain 𝑉 = 0 or 𝑉 =
𝜅

𝜇
. We choose 𝑉 =

𝜅

𝜇
, because latent viral infection is persistent 

and static [17], so that Coronavirus does not replicate anymore [18] and lasts until the host cell dies [17], i.e. it 

reaches its maximum concentration in latent phase. Based on the calculation, we obtain an equilibria 
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𝐸𝑙 = (
𝜅

𝜇
, 0,0) 

𝐸𝑙  exists for all conditions, because the parameters values are positive including κ and μ. Since 𝐸𝑙  satisfies the to 

conditions for latent viral infection stated in the beginning of this section, this equilibria is called latency equilibria 

which describes the condition of Coronavirus infection that remains in the latent phase, so that the infection is 

asymptomatic and noninfectious. 

STABILITY ANALYSIS 

Dynamics of Coronavirus, pro-inflammatory, and anti-inflammatory cytokine relative to 𝐸𝑙  are characterized 

through its local and global stability analysis. 

Local Stability 

Local stability analysis describes the dynamic of the solution when the initial condition is around the latency 

equilibria. This analysis is carried out by linearization method. 

Theorem 4. If 
𝜅

𝜇
>

𝜗

𝜎
, then 𝐸𝑙  is saddle. If 

𝜅

𝜇
<

𝜗

𝜎
, then 𝐸𝑙  is locally asymptotically stable. 

Proof: The Jacobian matrix of the system at 𝐸𝑙  is 

𝐽 (
𝜅

𝜇
, 0,0) = (

−𝜅 0 0

0
𝜎𝜅

𝜇
− 𝜗 0

0 0 −𝜀

) (7) 

Based on the Jacobian matrix in Equation (7), the Jacobian matrix at the infection equilibria 𝐸𝑙  is. Let 𝜆 is the 

eigen value of the Jacobian matrix in Equation (7) and 𝐼 is an 3 × 3 identity matrix. We obtain a characteristic 

equation |𝜆𝐼 − 𝐽 (
𝜅

𝜇
, 0,0)| = 0 which is equivalent to 

(𝜆 + 𝜅) [𝜆 − (
𝜎𝜅

𝜇
− 𝜗)] (𝜆 + 𝜀) = 0 (8) 

Based on Equation (8), we get the eigen value of Jacobian matrix in Equation (7) are 𝜆1 = −𝜅 < 0, 𝜆2 =
𝜎𝜅

𝜇
− 𝜗, 

and 𝜆3 = −𝜀 < 0. According to this result, if 
𝜎𝜅

𝜇
− 𝜗 > 0 which is equivalent to 

𝜅

𝜇
>

𝜗

𝜎
, then the equilibria 𝐸𝑙  is 

saddle. If 
𝜎𝜅

𝜇
− 𝜗 < 0 which is equivalent to 

𝜅

𝜇
<

𝜗

𝜎
, then the equilibria 𝐸𝑙  is asymptotically stable. 

Global Stability 

Global stability analysis for the latency equilibria describes the characteristic that should be fulfilled in order to 

make Coronavirus infection in latent phase for a long time and any initial condition. 

Theorem 5. 𝐸𝒍 is globally asymptotically stable if 
𝜅

𝜇
<

𝜗

𝜎
. 

Proof: By defining 𝐿 = 𝑃 + 𝐴, we obtain 
𝑑𝐿

𝑑𝑡
= 𝜎𝑉𝑃 − 𝜗𝑃 − 𝜀𝐴 

≤
𝜎𝜅

𝜇
𝑃 − 𝜗𝑃 − 𝜀𝐴 

≤ (
𝜎𝜅

𝜇
− 𝜗)𝑃 − 𝜀𝐴 

≤ 0 

Beside that, 
𝑑𝐿

𝑑𝑡
= 0 if and only if 𝑃 = 0 and 𝐴 = 0. It shows that the largest invariant set in {(𝑉, 𝑃, 𝐴) ∈ 𝛺,

𝑑𝐿

𝑑𝑡
=

0} is 𝐸𝑙 . According to LaSalle-Lyapunov Theorem [21], 𝐸𝑙  is globally asymptotically stable. 
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NUMERICAL SIMULATION 

In local case, the dynamics are simulated when the maximum concentration of Coronavirus is greater than the 

ratio between the natural degradation of pro-inflammatory cytokine and the increasing rate of pro-inflammatory 

cytokine concentration caused by Coronavirus and when the maximum concentration of Coronavirus is less than the 

ratio between the natural degradation of pro-inflammatory cytokine and the increasing rate of pro-inflammatory 

cytokine concentration caused by Coronavirus. These simulations are created to illustrate the difference between the 

saddle and asymptotically stable dynamics around the latency equilibria if the sufficient condition is fulfilled. In 

global case, the dynamics are simulated when the maximum concentration of Coronavirus is less than the ratio 

between the natural degradation of pro-inflammatory cytokine and the increasing rate of pro-inflammatory cytokine 

concentration caused by Coronavirus. This simulation is created to illustrate the globally asymptotically stable 

dynamics towards the latency equilibria for any initial conditions if the sufficient condition is fulfilled. 

Local Dynamics 

Dynamics of the system solution are obtained by setting the parameter values, so that they fulfill the sufficient 

condition to generate two different local dynamic of the latency equilibria, i.e. the saddle dynamic which requires 
𝜅

𝜇
>

𝜗

𝜎
 and locally asymptotically stable dynamic which requires 

𝜅

𝜇
<

𝜗

𝜎
. The parameter values are listed in Table 3. 

TABLE 3. Parameter values for the simulation of the latency equilibria local stability dynamic. 

Parameter 
Saddle Dynamic Case 

Value 

Locally Aymptotically Stable Dynamic 

Case Value 

κ 0.81 0.165 

σ 0.81 0.005 

ω 0.005 0.81 

μ 0.553 0.949 

φ 0.165 0.521 

ϑ 0.553 0.949 

ε 1.151 0.589 

 

Based on the parameter values in Table 3, we obtain the latency equilibria in saddle dynamic case is 𝐸𝑙𝑠 =
(0.727, 1.189,0) and in locally asymptotically stable dynamic case is 𝐸𝑙𝑎𝑠 = (0.727,1.189,0). The simulation is 

presented in Figure 2. 

 
(a) 
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(b) 

 
(c) 

 

FIGURE 2. Saddle dynamic of the system solution around Els (a), locally asymptotically stable dynamic of the system solution 

around Elas (b), and periodic solution in saddle dynamic of the system solution around Els (c). 

Simulation in Figure 2 (a) illustrates the saddle dynamic around the latency equilibria when 
𝜅

𝜇
>

𝜗

𝜎
, i.e. the 

maximum concentration of Coronavirus is less than the ratio between the natural degradation of pro-inflammatory 

cytokine and the increasing rate of pro-inflammatory cytokine concentration caused by Coronavirus. It generates two 

manifold, i.e. stable manifold and unstable manifold. The stable manifold converge to the latency equilibria while 

the unstable manifold move out from the latency equilibria and form some periodic solutions. This saddle dynamic 

represents two possibilities on the dynamics of Coronavirus, pro-inflammatory cytokine, and anti-inflammatory 
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cytokine concentration around the latency equilibria. The first one is converge to the latency equilibria which 

implies the maintenance of latent phase in Coronavirus infection for a long time when the initial condition is around 

the latency equilibria, so that Coronavirus transmission can be suppressed. The second one is move out from the 

latency equilibria and form a periodic solution which implies Coronavirus still infects, so that the inflammation 

always occurs. The inflammation is responded by the reciprocal interaction between pro-inflammatory cytokine and 

anti-inflammatory cytokine forming a cycle. A clearer illustration of the cycle can be seen in Figure 2 (c). 

Simulation in Figure 2 (b) illustrates the locally asymptotically stable dynamic around the latency equilibria 

when 
𝜅

𝜇
<

𝜗

𝜎
. The dynamic of Coronavirus, pro-inflammatory cytokine, and anti-inflammatory cytokine 

concentration around the latency equilibria converge to the latency equilibria when the maximum concentration of 

Coronavirus is less than the ratio between the natural degradation of pro-inflammatory cytokine and the increasing 

rate of pro- inflammatory cytokine concentration caused by Coronavirus. It represents the maintenance of the latent 

phase in Coronavirus infection for a long time when the initial condition is around the latency equilibria. In this 

condition, Coronavirus transmission can be suppressed, but only for initial conditions that around the latency 

equilibria. 

Global Dynamics 

Dynamic of the system solution is obtained by setting the parameter values, so that they fulfill the sufficient 

condition to generate the globally asymptotically stable dynamic of the latency equilibria, i.e. 
𝜅

𝜇
<

𝜗

𝜎
. We set the 

parameter values to be the same as the parameter value in the local dynamic simulation, because they have the same 

sufficient condition. We obtain the latency equilibria in globally asymptotically stable dynamic case is 𝐸𝑔𝑎𝑠 =

(0.727,1.189,0). The simulation is presented in Figure 3. 

 

 
(a) 
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(b) 

 
(c) 
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(d) 

 

FIGURE 3. Globally asymptotically stable dynamic of Egas (a), Coronavirus concentration dynamic with respect to time relative 

to Egas (b), pro-inflammatory cytokine concentration dynamic with respect to time relative to Egas (c), and anti-inflammatory 

cytokine concentration dynamic with respect to time relative to Egas (d). 

 

Simulations in Figure 3 illustrate the globally asymptotically stable dynamic of the latency equilibria. They 

represent the dynamics of Coronavirus, pro-inflammatory cytokine, and anti-inflammatory cytokine concentration 

that converge to the latency equilibria for a long time and any initial condition if the sufficient condition, i.e. 
𝜅

𝜇
<

𝜗

𝜎
 

is fulfilled. It means that the latent phase of Coronavirus infection can be maintained for a long time and any initial 

condition if the maximum concentration of Coronavirus is less than the ratio between the natural degradation of pro- 

inflammatory cytokine and the increasing rate of pro-inflammatory cytokine concentration caused by Coronavirus, so 

that the transmission of Coronavirus can be suppressed. 

CONCLUSION 

Latency equilibria represents a condition when Coronavirus infection remains in latent phase, so that an infected 

person is noninfectious and asymptomatic. The maximum concentration of Coronavirus should be less than the ratio 

between the natural degradation of pro-inflammatory cytokine and the increasing rate of pro-inflammatory cytokine 

concentration caused by Coronavirus in order to maintain the latent condition of Coronavirus infection in an infected 

person for any initial condition, so that the transmission of Coronavirus can be suppressed. 
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