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INTRODUCTION 

 

The preparation of the Econometrics 1 module is basically to help with the literature 

needs of students of the Faculty of Economics and Business. Besides being intended 

to help students understand Econometrics 1, this module can be used to study other 

courses related to economics. For this reason, this module explains various materials 

about what regression analysis, polynomial equations, log-linear models, variable 

indicators, and difference estimators is. 

Hopefully this module can provide broader knowledge to the reader. Although this 

module has many drawbacks. The author needs constructive criticism and 

suggestions. Thank You. 

Yogyakarta, March 2022 

The Writer 
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A. Polynomial Equations 

A polynomial equation is an equation where a polynomial is set equal to zero. 

i.e., it is an equation formed with variables, non-negative integer exponents, and 

coefficients together with operations and an equal sign. It has different 

exponents. 

Formula: 

SALES = β1 + β2PRICE + β3ADVERT + e     

Coefficient β3 is constant, does not depend on the level ADVERT, does not 

capture diminishing returns in reality. 

Solution: 

SALES = β1 + β2PRICE + β3ADVERT + β4ADVERT2 + e   

𝛥𝐸(𝑆𝐴𝐿𝐸𝑆)

𝛥𝐴𝐷𝑉𝐸𝑅𝑇
  (PRICE held constant) =

𝜕𝐸(𝑆𝐴𝐿𝐸𝑆)

𝜕𝐴𝐷𝑉𝐸𝑅𝑇
 = β3 + 2 β4ADVERT  

The number implies the marginal effect of advertising on sales. 

 

Example:  

SALES = 109.72 – 7.640 PRICE + 12.151 ADVERT – 2.768 ADVERT2 

(se) (6.80)  (1.046)  (3.556)  (0.941) 

And the marginal effect of advertising on sales will be: 

𝛥𝐸(𝑆𝐴𝐿𝐸𝑆)

𝛥𝐴𝐷𝑉𝐸𝑅𝑇
 = 12.151 – 5.536 ADVERT 

How does it imply? When ADVERT = 0.5, the marginal effect of advertising 

on sales is 9.38. When ADVERT = 2, the marginal effect is 1.08. 

 

Interaction variables: 

We wish to study the effect of income and age on an individual’s expenditure on 

pizza take a random sample of 40 individuals, age 18 and older, and record their 

annual expenditure on pizza. 

PIZZA = β1 + β2AGE + β3INCOME + e 

And the estimation will be: 

PIZZA = 342.88 – 7.576 AGE + 1.832 INCOME 
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Implication: regardless of age, an increase in income should lead to an increase 

in pizza spending. However, as a person gets older, the marginal propensity to 

buy pizza decreases so income is age dependent. 

Effect of one variable is modified by another → interaction variable, example: 

PIZZA = β1 + β2AGE + β3INCOME + β4 (AGE x INCOME) + e 

The estimation model: 

PIZZA = 161.47 – 2.977AGE + 6.980INCOME – 0.1232 (AGE x INCOME) 

Hence, marginal effect of age upon pizza expenditure: 

𝜕𝐸(𝑃𝐼𝑍𝑍𝐴)

𝜕𝐴𝐺𝐸
  = b2 + b4 INCOME 

   = -2.977 – 0.1232 INCOME 

   = {
−6.06 𝑓𝑜𝑟 𝐼𝑁𝐶𝑂𝑀𝐸 = 25
−14.07 𝑓𝑜𝑟 𝐼𝑁𝐶𝑂𝑀𝐸 = 90

 

So, individual with $25k income will reduce pizza expenditures by $6.06, 

whereas individual with $90k income will reduce pizza expenditures by $14.07. 

 

B. Log-Linear Model 

A log-linear model is a mathematical model that takes the form of a function 

whose logarithm equals a linear combination of the parameters of the model, 

which makes it possible to apply (possibly multivariate) linear regression. 

Formula: 

Wage depends on years of education and years of experience: 

ln (WAGE) = β1 + β2EDUC + β3EXPER + e 

If we believe the effect of an extra year of experience on wages will depend on 

the level of education, then: 

ln (WAGE) = β1 + β2EDUC + β3EXPER + β4(EDUC x EXPER) + e 

ln (WAGE) = 1.392 + 0.09494EDUC + 0.00633EXPER – 0.0000364 (EDUC x 

EXPER) 

The greater the number of years of education (experience), the less valuable is 

an extra year of experience (education). For a person with 8 years education, 

how much increase in wages for additional years of experience? If 16 years? 
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Formula: 

ln (WAGE) = β1 + β2EDUC + δFEMALE 

ln (WAGE) = {
𝛽1 +  𝛽2𝐸𝐷𝑈𝐶                      𝑀𝐴𝐿𝐸𝑆 (𝐹𝐸𝑀𝐴𝐿𝐸 = 0)
(𝛽1 +  𝛿) + 𝛽2𝐸𝐷𝑈𝐶      𝐹𝐸𝑀𝐴𝐿𝐸𝑆 (𝐹𝐸𝑀𝐴𝐿𝐸 = 1)

 

That dependent variable is ln (WAGE), does that have an effect? 

 

Rough Calculation: 

ln (WAGE)FEMALES – ln (WAGE)MALES = δ 

ln (WAGE) = 1.6539 + 0.0962EDUC – 0.2432FEMALE 

We estimate 24.32% differential between male and female wages. 

 

Exact Calculation: 

ln (WAGE)FEMALES – ln (WAGE)MALES = ln (
𝑊𝐴𝐺𝐸 𝑓𝑒𝑚𝑎𝑙𝑒𝑠

𝑊𝐴𝐺𝐸 𝑚𝑎𝑙𝑒𝑠
) =  𝛿 

𝑊𝐴𝐺𝐸 𝑓𝑒𝑚𝑎𝑙𝑒𝑠

𝑊𝐴𝐺𝐸 𝑚𝑎𝑙𝑒𝑠
 = eδ 

𝑊𝐴𝐺𝐸 𝑓𝑒𝑚𝑎𝑙𝑒𝑠

𝑊𝐴𝐺𝐸 𝑚𝑎𝑙𝑒𝑠
− 

𝑊𝐴𝐺𝐸 𝑚𝑎𝑙𝑒𝑠

𝑊𝐴𝐺𝐸 𝑚𝑎𝑙𝑒𝑠
= 

𝑊𝐴𝐺𝐸 𝑓𝑒𝑚𝑎𝑙𝑒𝑠−𝑊𝐴𝐺𝐸 𝑚𝑎𝑙𝑒𝑠

𝑊𝐴𝐺𝐸 𝑚𝑎𝑙𝑒𝑠
 = 

eδ – 1 

= 100 (eδ – 1) % = (100 (e-0.2432 – 1) % = -21.59% 

The percentage difference between wages of females and males is 21.59%. 

 

C. Measuring Goodness of Fit 

Coefficient of determination R2 is a measure of the proportion of variation in the 

dependent variable that is explained by variation in the explanatory variable, 

how well the estimated regression fits the data. 

R2 = SSR/SST = 1- (SSE/SST) 

note: 

SSR : variation in y explained by the model 

SST : total variation in y about its mean 

SSE : portion of the variation in y that is not explained by the model 

SST = (N – 1) s2
y 

Example: 
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R2 = 0.448 → 44.8% variation in variable y is explained by the variation in x1 

and x2 → 55.2% in our sample is left unexplained due to variation in the error 

term. If model does not contain an intercept parameter, R2 is no longer 

appropriate → SST ≠ SSR + SSE → better not to report R2. 

 

D. Indicator variables 

Indicator variables are used to account for qualitative factors in econometrics 

models, called as dummy, binary, or dichotomous → take just two values, one 

or zero, to indicate the presence or absence or to indicate a condition is true or 

false, or numeric variable for qualitative characteristic, ex: D = 1 if characteristic 

is present, or 0 if it is not present. 

Formula: 

PRICE = β1 + δD + β2SQFT + e 

The price of a house is explained as a function of the value of land and square 

foot of living area (SQFT). 

E (PRICE) = {
(𝛽1 +  𝛿) + 𝛽2𝑆𝑄𝐹𝑇                     𝑤ℎ𝑒𝑛 𝐷 = 1
𝛽1 +  𝛽2𝑆𝑄𝐹𝑇                                 𝑤ℎ𝑒𝑛 𝐷 = 0

 

In the desirable neighborhood D = 1, & the intercept of the regression function 

is (β1+δ). In other areas the regression function intercept is β1, assuming that δ > 

0. The interpretation of δ is a location premium → intercept dummy variable. If 

δ = 0 → no location premium. 

 

Choosing the Reference Group: 

LD = {
1                  𝑖𝑓 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑
0                      𝑖𝑓 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑

 

The indicator variable is the opposite from D, and LD = 1 – D, if we include in 

the model: 

PRICE = β1 + δD + λ LD + β2SQFT + e 

In this model, D + LD = 1 → exact collinearity → least square estimator is not 

defined → dummy variable trap. 

 

Slope Indicator Variables: 

PRICE = β1 + β2SQFT + ϒ (SQFT x D) + e 
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(SQFT x D) is a interaction variable, capture the interaction effect of location & 

size on house price, slope dummy variable, allows for a change in slope of the 

relationship, taking value equal to SQFT for houses in the desirable 

neighbourhood, and zero for homes in other neighbourhoods. 

E (PRICE) = β1 + β2SQFT + ϒ (SQFT x D) = LD = 

{
β1 + (β2 + ϒ)𝑆𝑄𝐹𝑇          𝑤ℎ𝑒𝑛𝐷 = 1
β1 +  β2𝑆𝑄𝐹𝑇                     𝑤ℎ𝑒𝑛𝐷 = 0

 

An Example: 

A real estate economist collects information on 1000 house price sales from 

university town and in a neighbourhood about three miles from university. 

PRICE = β1 + δ1UTOWN + β2SQFT + ϒ (SQFT x UTOWN) + β3AGE + δ2POOL 

+ δ3FPLACE + e 

AGE (in years), location (UTOWN – 1 for homes near the university, 0 

otherwise), whether the house has a pool (POOL – 1 if present, 0 otherwise), and 

whether the house gas a fireplace (FPLACE = 1 if present, 0 otherwise). 

The estimated regression function for the houses near the university: 

PRICE = (24.5 + 27.453) + (7.6122 + 1.2994) SQFT – 0.1901AGE + 

4.3772POOL + 1.6492FPLACE 

  = 51.953 + 8.9116SQFT - 0.1901AGE + 4.3772POOL + 

1.6492FPLACE 

For houses in other areas, 

PRICE  = 24.5 + 7.6122 SQFT - 0.1901AGE + 4.3772POOL + 

1.6492FPLACE 

Estimate the regression results! 

Picture 1. Slope Indicator Variables 
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E. Interaction Between Qualitative Factors 

We want to know whether wage determination is not discriminatory. 

WAGE  = β1 + β2EDUC + δ1BLACK + δ2 FEMALE + ϒ (BLACK x FEMLAE) 

+ e 

E (WAGE) = 

{
 

 
β1 + β2𝐸𝐷𝑈𝐶                                          𝑊𝐻𝐼𝑇𝐸−𝑀𝐴𝐿𝐸
(β1 +  δ1)+  β2𝐸𝐷𝑈𝐶                           𝐵𝐿𝐴𝐶𝐾−𝑀𝐴𝐿𝐸
(β1 +  δ2)+  β2𝐸𝐷𝑈𝐶                      𝑊𝐻𝐼𝑇𝐸− 𝐹𝐸𝑀𝐴𝐿𝐸
(β1 +  δ1 +   δ2 +  ϒ)+  β2𝐸𝐷𝑈𝐶  𝐵𝐿𝐴𝐶𝐾− 𝐹𝐸𝑀𝐴𝐿𝐸

 

White males are the reference group, black = 0 and female = 0. 

 

F. Qualitative Factors with Several Categories 

An example is the variable region of the country in our wage equation: northeast, 

mid-west, south and west. 

WAGE  = β1 + β2EDUC + δ1SOUTH + δ2 MIDWEST + δ3WEST + e 

The sum of regional indicator variables will be 1 → exact collinearity → dummy 

variable trap → least squares estimation fails → solution: reference group. 

E (WAGE) = 

{
 

 
(β1 +  δ3)+ β2𝐸𝐷𝑈𝐶                                        𝑊𝐸𝑆𝑇
(β1 +  δ2)+  β2𝐸𝐷𝑈𝐶                                𝑀𝐼𝐷𝑊𝐸𝑆𝑇
(β1 +  δ1)+  β2𝐸𝐷𝑈𝐶                                       𝑆𝑂𝑈𝑇𝐻
β1+  β2𝐸𝐷𝑈𝐶                                            𝑁𝑂𝑅𝑇𝐻𝐸𝐴𝑆𝑇

 

 

G. Testing the Equivalence of Two Regressions 

Regression functions for the house prices in two locations. 

PRICE  = β1 + δD + β2SQFT + ϒ (SQFT x D) + e 

E (PRICE) = {
𝛼1 + 𝛼2 𝑆𝑄𝐹𝑇                                  𝐷 = 1
𝛽1 +  𝛽2 𝑆𝑄𝐹𝑇                                 𝐷 = 0

 

Estimating separate regressions for each neighbourhood → Chow Test for the 

equivalence of two regressions. 

WAGE  = β1 + β2EDUC + δ1BLACK + δ2 FEMALE + ϒ (BLACK x FEMALE)  

+ e 

Are there differences between the wage regressions for the south and the rest of 

the country? 

WAGE  = β1 + β2EDUC + δ1BLACK + δ2 FEMALE + ϒ (BLACK x FEMALE)  
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+ Ɵ1SOUTH + Ɵ2(EDUC x SOUTH) + Ɵ3(BLACK x SOUTH) + Ɵ4 (FEMALE 

x SOUTH) + Ɵ5(BLACK x FEMALE x SOUTH) + e 

E (WAGE) =  

{

β1 +  β2𝐸𝐷𝑈𝐶 +  δ1𝐵𝐿𝐴𝐶𝐾 +  δ2 𝐹𝐸𝑀𝐴𝐿𝐸 +  ϒ (𝐵𝐿𝐴𝐶𝐾 x 𝐹𝐸𝑀𝐴𝐿𝐸) 
                                                                                                                  𝑆𝑂𝑈𝑇𝐻 = 0
(β1 +  Ɵ1)+ (β1 +  Ɵ2)𝐸𝐷𝑈𝐶 + (δ1 + Ɵ3)𝐵𝐿𝐴𝐶𝐾+ (δ2 + Ɵ4)𝐹𝐸𝑀𝐴𝐿𝐸
+ (ϒ+  Ɵ5) (𝐵𝐿𝐴𝐶𝐾 x 𝐹𝐸𝑀𝐴𝐿𝐸)                                                    𝑆𝑂𝑈𝑇𝐻 = 1

 

H0: Ɵ1 = Ɵ2 = Ɵ3 = Ɵ4 = Ɵ5 = 0 

If rejected, so some difference in the wage equation in the southern & rest of the 

country. 

𝐹 =
(𝑺𝑺𝑬𝒓 − 𝑺𝑺𝑬𝒖)/𝑱

𝑺𝑺𝑬𝒖/ (𝑵 − 𝑲)
 

SSEU is obtained from the full model, SSER from model with SOUTH = 0, J is 

for added variables, N is for total observations, K is for total parameter in full 

model. When F-stat < F-tab → fail to reject H0 → wage equation is the same in 

the southern region and rest of the country. 

 

H. Controlling for Time 

Seasonal indicators: 

1. Summer → outdoor cooking on BBQ grills → sales of Royal Oak charcoal 

briquettes (dependent variable). 

2. Explanatory variables: price of Royal Oak, price of competitive brands, 

price of complementary goods, advertising. 

3. Monthly indicator variables, AUG = 1 if August, AUG = 0 otherwise. 

4. Seasonal indicator variable, SUMMER = 1 if June, July, or August; 

SUMMER = 0 otherwise. 

Regime effects: 

Economic regime: set of structural economic conditions for certain period → 

may behave differently, ex: investment tax credit (enacted in 1962, suspended in 

1966, reinstated in 1970, and eliminated in 1986). 

ITCt  = {
1        if t = 1962 − 1965, 1970 − 1986
0                                                   otherwise

 

INVt = β1 + δ1ITCt + β2GNPt + β3GNPt - 1 + et 

If tax credit was successful, δ > 0. 
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I. The Linear Probability Model 

Problem: 

1. Usual error term assumptions cannot hold → y only takes two values, so do 

the error term → distribution of errors is not bell-shaped curve. 

2. The error is not homoscedastic → variance estimator is incorrect. 

3. Predicted values can fall outside the (0,1) interval → interpretation as 

probabilities does not make sense. 

4. Advantage of simplicity → good estimates of marginal effects of changes 

in explanatory variables on choice probability p. 

 

A marketing example: 

COKE = {
1        if  Coke is chosen
0        if Pepsi is chosen

 

E (COKE) = pCOKE = 0.8902 – 0.4009PRATIO + 0.0772DISP_COKE – 

0.1657DISP_PEPSI 

If coke is 10% more expensive than Pepsi → probability of purchasing Coke 

reduced by 0.04. A store display for Coke is estimated to increase the probability 

of purchasing Coke by 0.077. A Pepsi display is estimated to reduce the 

probability of purchasing Coke by 0.166. 

 

J. Treatment Effects 

1. Those who had not gone to the hospital vs those who had been to the 

hospital. 

2. Post hoc, ergo propter hoc → one event’s preceding another does not mean 

the first cause of the second. 

3. Those who had been in a hospital are less healthy but does not imply that 

going to the hospital causes less healthy. 

4. Selection bias: some people chose (self-selected) to go to the hospital & the 

others did not. 

5. When membership in treated group is determined by choice → not random 

sample. 
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6. Selection bias is an issue when asking how much participation in job training 

program increase wage? If voluntary, greater proportion of less skilled 

workers taking advantage. 

7. Causal effect/treatment effect: measuring the effect of a new type of fertilizer 

on rice production → randomly assign identical rice fields to be treated with 

a new fertilizer (treatment group), others being treated with existing product 

(control group) → comparing both → randomized controlled experiment → 

preventing selection bias. 

 

K. Difference Estimator 

Simple regression model with explanatory variable as dummy variable. 

di  = {
1        individual in treatment group
0              individual in control group

 

yi = β1 + β2di + ei , i = 1, …, N 

E (yi) = {
β1 +  β2        if in treatment group, 𝑑𝑖 = 1
β1                        if in control group, 𝑑𝑖 = 0 

 

Those who had not gone to the hospital (control group) had average health score 

of 3.93, those who had been to the hospital (treatment group) had average health 

score of 3.21 → bias because the pre-existing health conditions for the treated 

group are poorer than the control group → solution: randomly assign. 

 

The differences in differences estimator: 

1. Randomized controlled experiments: expensive and involving human 

subjects. 

2. Natural experiments (quasi experiments): approximate that would happen in 

randomized controlled experiment → before & after data. 

3. Treatment group: affected by policy, control group: unaffected by policy → 

examine any change & compare it. 
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Note: 

1. Before the policy → treatment group: B, after the policy: C. 

2. Before the policy → control group: A, after the policy: E. 

3. BD: what we imagine the treatment group growth in the absence of policy 

change. 

δ = (C – E) – (B – A) 

δ: differences in differences → estimator of treatment effect. 

Formula: 

yit = β1 + β2TREATi + β3AFTERt + δ (TREATi x AFTERt) + eit 

E (yit) = {

β1                                𝑇𝑅𝐸𝐴𝑇 = 0, 𝐴𝐹𝑇𝐸𝑅 = 0 [𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑏𝑒𝑓𝑜𝑟𝑒 = 𝐴]  
β1 +  β2             𝑇𝑅𝐸𝐴𝑇 = 1, 𝐴𝐹𝑇𝐸𝑅 = 0 [𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 = 𝐵]
β1 +  β3                       𝑇𝑅𝐸𝐴𝑇 = 0, 𝐴𝐹𝑇𝐸𝑅 = 1 [𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑓𝑡𝑒𝑟 = 𝐵]

β1 +  β2 + β3 +    𝑇𝑅𝐸𝐴𝑇 = 0, 𝐴𝐹𝑇𝐸𝑅 = 1 [𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑎𝑓𝑡𝑒𝑟 = 𝐵]

 

δ  = (C – E) - (B – A) = [(β1 + β2 + β3 + δ) – (β1 + β3)] – [(β1 + β2) - β1] 

δ  = [(b1 + b2 + b3 + δ) – (b1 + b3)] – [(b1 + b2) – b1] 

 = (ytreatment, After) – (ycontrol, After) - (ytreatment, Before) – (ycontrol, Before) 

 

Estimating the Effect of Minimum Wage Change: 

Card & Krueger (1994) collected data on 410 fast food restaurants in New Jersey 

(treatment group) & Pennsylvania (control group), before period Feb 1992 and 

after period Nov 1992 → estimate the effect of treatment: raising minimum wage 

in New Jersey on employment in New Jersey → no significant reduction. In 

Pennsylvania, employment fell during Feb-Nov. Recall: minimum wage level 

was changed in New Jersey so that employment levels in Pennsylvania were not 

affected. 

Picture 2. The differences in differences estimator 
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The differences in differences estimate of the change in employment due to 

change in minimum wage: 

δ = (FTE NJ After – FTE PA After) – (FTE NJ Before – FTE PA Before) 

 = (21.0274 – 21.1656) – (20.4394 – 23.3312) 

 = 2.7536 

Based on DD using sample means, employment increased by 2.75 employees 

during the period of increased New Jersey minimum wage →  positive effect. 

FTE: employment, treatment variable → NJ = 1 if New Jersey & 0 if 

Pennsylvania, time indicator → D = 1 if from November & 0 if from February, 

then the regression: 

FTEit = β1 + β2NJi + β3Dt + δ (NJi x Dt) + eit 

Using 794 observations, with α = 0.05 → not significant → we cannot conclude 

that the increase in minimum wage in New Jersey reduced employment at New 

Jersey. 

L. Regression 

Example: 

Table 1. 

Restaurant 

Number 

of 

Consumer 

Business 

Ranking 

Restaurant 

Annual 

Revenue 

Predicted 

value (ŷ 

=125,29 + 

14,2 + 

22,81) 

Residual 

Value 

1 20,8 3 527,1 489,08 38,02 

2 27,5 2 548,7   

3 32,3 6 767,2   

4 37,2 5 722,9   

5 39,6 8 826,3   

6 45,1 3 810,5   

7 49,9 9 1040,7   

8 55,4 5 1033,6   

9 61,7 4 1090,3   

10 64,6 7 1235,8   

SSE = (38,02)2 + ..... + ..... + ...... + ..... =   

 

We can write the regression equation: 

ŷ =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 
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become, 

= 125,29 + 14,2 + 22,81 

We can call the above equation the "predictive value of the regression equation" 

(least square prediction equation). To get the residual value, you must get the 

"predicted" value of each restaurant, in the following way: 

ŷ = 125,29 + 14,2(20,8) + 22,81(3) 

= 489,08 

Since the annual revenue value of restaurant 1 is 527.1, the residual value of 

restaurant 1 is: 

𝑦 −  ŷ = 527,1 − 489,08 = 38,02 

If the residual values of 10 restaurants have been obtained, and the total results 

are added up, we will get the Sum of Squared Residual (SSE) value. After getting 

the SSE value, the next step is to find the mean square error (MSE) and standard 

error (SE) values. We can write the formula for MSE as follows: 

𝑠2 =
𝑆𝑆𝐸

𝑛 − (𝑘 + 1)
 

the model applies utility to equation (k) where k is the number of independent 

variables, and (n) is the number of restaurants. In the standard error equation, we 

can write as follows: 

𝑠 =  √𝑀𝑆𝐸 

 

Conduct R2 and Adjusted R2: 

In simple regression, we have performed calculations related to R-squared and 

Adjusted R-Squared. In multiple linear regression it is not much different from 

what we have done in simple regression. We can write the formula as follows: 

∑(𝑦𝑖 − ӯ)
2 −∑(𝑦𝑖 − ŷ𝑖)

2 =∑(ŷ𝑖 − ӯ)
2 

With the data we use, we can write it as follows: (Looking back at the simple 

regression notes), we can call the total variation below as a whole. 

∑(𝑦𝑖 − ӯ)
2 = (527,1 − 860,31)2 + (548,7 − 860,31)2 +⋯………………

+ (1235,8 − 860,31)2 = 𝟒𝟗𝟓𝟕𝟕𝟔, 𝟓𝟏 
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The SSE value can also be called the unexplained variation, so to calculate the 

R-squared value, we can write the equation: 

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 − 𝑈𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 

Then the R-squared formula is: 

𝑅2 = 
𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
 

The equation for the multiple regression correlation value is as follows: 

𝑟 = √𝑅2 

While the equation for the adjusted R-squared value is as follows: 

Ř2 = (𝑅2 − 
𝑘

𝑛 − 1
)(

𝑛 − 1

𝑛 − (𝑘 + 1)
) 

where k = number of independent variables, n = number of restaurants, and R2 = 

is the value of R-squared. The next step is to determine the f-count value, with 

the equation we can write as follows: 

𝐹 =  
(𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛)/𝑘

(𝑈𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛)/(𝑛 − (𝑘 + 1))
 

How to read from each result obtained is the same as what we have learned in 

simple regression. (Look again at the simple regression notes). 
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