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ABSTRACT

This research investigates Logarithm Decreasing Inertia Weight
(LogDIW) to improve the performance of Particle Swarm
Optimization (PSO). The general problem of PSO algorithm is
premature convergence when solving complex optimization
problem. Some researchers try to solve the problem by
modifying the PSO or proposing another PSO variants. Some
PSO variants proved to have a better performance than the
original PSO. The purpose of this research is o obtain some
experimental facts to prove the efficiency of LogDIWPSO if the
parameters ann tuned correctly and to show that the
LogDIWPSO performs better compared to the other PSO
variants. In the early step of the experiment, a percentage value
of search space boundary is obtained. This step is important to
compute the velocity threshold of LogDIW based on the
optimization problem. The next experiment is done to measure
the performance of LogDIWPSO using six benchmark functions
in optimization problems and to prove the superiority of
LogDIWPSO compared to the other PSO variants. The
experiment result shows that LogDIW achieves better
performance than the other PSO variants.

General Terms
Algorithms, Optimization Problems

Keywords
Inertia  weight, particle
decreasing inertia weight

1.INTRODUCTION

Since introduced in 1995, Particle Swarm Optimization (PSO)
had been improved and waly used in many applications. A
modified PSO mainly focus to improve the convergence in order
not to be trapped in the local optima. Some modifications also
done in the parameters such as in the inertia weight, velocity
clamping, the change in cognitive and social aspect value, and in
the determination of personal best position (Pbest) and the
global best position (Gbest).

swarm  optimization, logarithm

Inertia weight plays important role in the trade-off process
between the diversification and intensification ability of PSO
algorithm. When inertia weight strategy implemented in PSO
algorithm, the particles will move around and adjust their
velocity and position according to the original PSO equation in
E search space. Inertia weight also has a role to balance the
exploration and exploitation. Inertia weight will determine the
contribution of the previous particle’s velocity for the current
velocity. Original PSO that introduced by Kennedy and Eberhart
in 1995 did not have inertia weight [1]. The concept of inertia

weight was introduced in 1998 by Shi and Eberhart [2] [3]. In
their research, a constant inertia weight was included in the
algorithm. A large value of inertia weight facilitates the global
search while a small value of inertia weight facilitates the local
search. Therefore, the best result of PSO algorithm can be
achieved by choosing the correct inertia weight. Several studies
using inertia weight in PSO were carried out by [4][5][6].

Dynamic adjustment of inertia weight to improve the PSO
performance have been proposed by many researchers. One of
them is Random Inertia Weight (RIW) [7]. The experiment
proved that this strategy will improve the convergence at the
earlier iteration of the algorithm. Linearly Decreasing Inertia
Weight (LDIW) strategy [8] also proposed to improve the
efficiency and performance of PSO. The experiment shows that
the inertia weight from 0.9 up to 0.4 produces the best result.

Fang et al. (2008) proposed Chaotic Inertia Weight that took the
advantage of chaos optimization. The research compares Chaotic
Random Inertia Weight (CRIW)-PSO and Random Inertia
Weight (RIW)-PSO and resulted in the better performance of
CRIW-P50 [9]. The algorithm performs rough search step and
fine search step alternately on its all evolutional process. Malik
et al. (2007) presented a Sigmoid Increasing Inertia Weight
(SIIW) [10]. They find that sigmoid function contributes in
obtaining temporary minimum fitness function while Linearly
Increasing Inertia Weight (LDIW) contributes to a faster
convergence. Therefore, they combine the sigmoid function and
Linearly Increasing Inertia Weight and also introduce SITW that
produces a significant improvement in the aspect of fast
convergence and narrowing the aggressive movement to the
solution region. Oscillating Inertia Weight [11] proposed a
periodic change between the global search and local search and
proved that the strategy is competitive in some cases especially
in the aspect of convergence speed.

Gao et al. in 2008 proposed a Logarithmic Decreasing Inertia
Weight (LogDIW) with chaos mutation operator. Chaos
mutation operator able to increase the ability to jump out from
the premature convergence and increase the convergence speed
and accuracy [12]. To handle the stagnation and premature
convergence from PSO algorithm, Gao et al. in 2009 proposed
Exponent Decreasing Inertia Weight (e-DIW) with stochastic
mutation (SM) [13]. Stochastic mutation (SM) is used to
increase the diversity of swarm while the e-DIW is used to
increase the personal convergence speed. The larger inertia
weight facilitates at the inclusive phase of the search space and
then decrease linearly into smaller inertia weight. In [14] an
improved particle swarm optimization (EWPS0) have proposed
a novel strategy for inertia weight. In this algorithm, a nonlinear
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inertia weight used. An exponential function of maximal and
minimal fitness used this new inertia in each iteration. The result
was compared with the standard PSO with linear decreasing
inertia weight and RNW-PSO. Form the simulation showed that
EWPSO more effective and efficient for the benchmark test.

Based on the idea from [9], this research will investigate the
used of Logarithm Decreasing Inertia Weight in PSO. The study
will cover the comparison of the best fitness value and the speed
of convergence between this algorithm and the other PSO
variants. This paper is organized into six sections. Section 1
introduces the problems and the reason why logarithm
decreasing inertia weight is proposed to handle some problems
in PSO. Section 2 explains the strategy of particle swarm
optimization and the review of seven inertia weight strategies of
particle swarm optimization will be explained in Section 3.
Section 4 explains the experiment scenario and discusses the
result in detail. The conclusion of this work is presented in
Section 5.

2. PARTICLE SWARM OPTIMIZATION

PSO was introduced by Eberhart and Kennedy in 1995 then
modified by Shi and Eberhart 1998 by adding a constant
inertia weight in the algorithm. Large inertia weight facilitates
olobal search while small inertia weight facilitates local search.
The original PSO algorithm performs velocity updated and
position updated (Everhart and Kennedy, 1995) as shown in
equation (1) and equation (2) respectively. vii' = w.vi;, +
oy -1 (Pig = Xig) + €3 72(Pga — Xig)(1)
xft =2l + 0l (2)

Where ¢y and ¢y are positive constants called acceleration
coefficients, ry and r, are random numbers in the range of [0, 17,
and w is the inertia weight. Large inertia weight will facilitate
global exploration while small inertia weight will facilitate local
exploitation.  The [fth  particle is  presented as
Xi= (xi,xi2, .., %), The best previous position of the i-th
particle is stored and presented as P, = (p;,Pia, «u Pig). The
position gives the best fitness value. Index of the best particle in
the population is presented with g symbol. The velocity of the i-
th pm& presented as V; = (v;, vy .., vyp). During the
update, the particle’s velocity in each dimension is bounded to
Vmax- D is a dimension of the search space.

3.AREVIEW OF INERTIA WEIGHTE

This study covers some PSO variants namely: (1) Constant
Inertia Weight (CIW), (2) Random Inertia Weight (RIW), (3)
Linearly Decreasing Inertia Weight (LDIW), (4) Chaotic
Decreasing Inertia Weia (CDIW), (5) Chaotic Random Inertia
Weight (CRIW), (6) Logarithm Decreasing Inertia Weight
(LogDIW}.

3.1. Constant Inertia Weight

A modified PSO with the concept of inertia weight w was
introduced for the first time by Shi and Eberhart [2]. The
research used a constant inertia weight (CIW) where a large
constant is suitable for exploration while a small constant is
suitable for exploitation. CIW can be computed using equation

(5).
w' = constant (3)

3.2. Random Inertia Weight

Randomize in PSO was introduced by Eberhart and Shi [3]
through the inertia weight strategy. A new method to compute
the inertia weight is by using particle swarm to search and
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optimize the dynamic system. The random value of inertia
weight is computed using equation (4).

wp = 0.5+ 50 (4)

Where rand (.) is the random value in the range of 0 and 1.
Equations

3.3. Linearly Decreasing Inertia Weight

LDIW-PSO is a PSO variant that implements linear descending
(decreasing) inertia weight [4]. The strategy improves the
algorithm significantly. In LDIW, inertia weight starts from
a'ne initial values and linearly decrease to smaller final values.
Large inertia weight facilitates global search while small inertia
weight facilitates local search.

The initial and final values that usually used are 0.9 or 0.4. High
initial value makes the particle moves in low viscosity medium
that facilitates exploration while small inertia value makes
particles moves in high viscosity medium that facilitates
exploitation. However, by using linearly decreasing inertia
weight lead PSO to premature convergence which is a fast
convergence to the early optimum position. Equation (3) shows
how to compute the LDIW.

wr = (Wseare — f-'Ja:() (%) + weng (3)
Where o, and eig are the initial value and final value of
the inertia weight, ¢ is the iteration at run time, T, is the
number of maximum iteration, and w, € [0, 1] is the value
of inertia weight at t-th iteration.

34. Chaotic Descending Inertia Weight

The idea of Chactic Inertia Weight (CIW) uses chaotic mapping
to find the inertia weight coefficients. Feng et al. [6] proposed to
ae logistic mapping. Chaotic inertia weight strategy consists of
Chaotic Descending Inertia Weight (CDIW) and Chaotic
Random Inertia Weight (CRIW). CDIW strategy uses the
advantages of chaos optimization. Chaos is a non-linear dynamic
system that sensitive to the initial value. The system has
ergodicity and stochastic property characteristic. The final goal
is to handle the premature convergence that occurred in
LDIWPSO. Equation (6) presents the chaotic descending inertia
weight.

Zyyy =H*Z (1 —2y) (5)
Where y = 4 and z;, is the k-th chaotic number. The generator
map has value between 0 and 1, initial value of z, € (0.1)
and z, ¢ (0.0,0.25,0.5,0.75,1.0).

— Tinax=T
Wy = (L'-'smrt - ""End)( Tona

)+ Oena * Zierr )

Where wgpqpy and weyy is the initial and final inertia weight.
CDIWPSO shows a better convergence precision, faster
convergence speed and better global search performance.

3.5. Chaotic Random Inertia Weight

Chaotic Random Inertia Weight (CRIW) was introduced by
Feng et al [6] and the formula is shown in equation (7). The
purpose of this strategy is to improve the random inertia weight
in equation (4) using logistic map in equation (5) and to avoid
the local optima in the search process using the advantages of
chaotic optimization. .
5
w, =" 05 7, (7
Where rand (.) is uniform random number in the range of [0, 1].

36




3.6. Logarithm Decreasing Inertia Weight

The empirical study shows that PSO with large value of inertia
weight (w) has better global search capability compared to the
smaller w with faster convergence. Gao et al. [9] introduce
Logarithm Decreasing Inertia Weight (LogDIW) as shown in
equation (8).

i= Winax + (Winin — Winax) x logip(@ + 10t /Tray)

(3

Where a is constant to adjust the evolutionary speed,a=1.

4. EXPERIMENT RESULT

The claim of this research is validated using various
experiments. Experiment is done by comparing the Logarithm
Decreasing Inertia Weight Particle Swarm Optimization
(LogDIWPSO) with the other five varants of PSO namely
Chaotic Descending Inertia Weight Particle Swarm Optimization
(CDIWPS0): Constant Ineria Weight Particle Swarm
Optimization (CIWPSO), Random Inertia Weight Particle
Swarm Optimization (RTWPSO), Linear Decreasing Inertia
Weight Particle Swarm Optimization (LDIWPSO), and Chaotic
Random Inertia Weight Particle Swarm Optimization
(CRIWPSO).

Six benchmark functions from the literature are used to test the
performance of CDIW-PS0, CIW-P50, RIW-PS0, LDIW-PSO,
ChIW-PSO, CRIW-PSO, LogDIW-PSO, and e-DIW-PSO.
Those benchmarks are chosen because its combination can be
used to validated various kinds of PSO. The scenario of
experiment involves different setting of parameters. Some
parameter values in this research ¢ =c3 = 2.0 Wy =
0.9 Winin = 04, Vipin = aXmin and Vipar = &Xmar, where
a=0.1.

The benchmark functions can be classified into two groups
namely unimodal and multimodal functions [15]. The
benchmark functions that used in this research are Sphere
Function (F1), Rastrigin Function (F2), Griewank Function (F3),
Schaffer Function (F5), Ackley Function (F5), and Rosenbrock
Function (F6) as shown in Table 1. The purpose of this
experiment is to compare LogDIWPS0O with the other five PSO
variants. The six benchmark functions use dimension of 30
except Chaffer function which use dimension of 2. The number
of maximum iteration is 1500 with swarm size is 20. The
experiment is done 30 times. The goal of this experiment is to
prove that LogDIWPSO is more efficient compared with the
other PSO variants.

Sphere Function

Figure 1 shows the comparison of mean value of best fitness
against the number of iteration. The mean value of Best Fitness,
Worst Fitness, Mean and Deviation Standard of Sphere function
for seven inertia weight based PSO variants is shown in Table 1.
Although the CRIWPSO and LogDIWPSO show a fast
convergence in the early search stage, they are a little behind the
other five inertia weights after approximately 200 iterations. The
final solution of LogDIWPSO and the other six inertia weights
after approximately 800 iterations is similar.

Figure 3 shows the comparison of mean value of best fitness
against the number of iteration. The mean value of Best Fitness,
Worst Fimess, Mean and Deviation Standard of Griewank
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function of seven inertia weight based PSO variants is shown in
Table 1. Although the CRIW-PSO and LogDIW-PSO show a
fast convergence in the early search stage, they are a little behind
the other five inertia weights after approximately 150 iterations.
The final solution of LogDIW-PS0, CRIW-PSO and CIW-P50
alter approximately 800 iterations is similar.

Table 1. The Six Benchmark functions

Name Expression and Condition

Sphere function | f,(x) = ¥, x2,n=30
X; € [=100,100], Ve = 100,

min(f,) = f,(0,...,0) = 0

Rastrigin f,(x) = YL, [x? — 10 cos(2mx;) + 10],
function n=30
X; € [—600,600], v, = 600,
min(f,) = £(0,..,0) =0
Griewank _ .1 sn 2_gn X
fonction f3(x) = Tooo2i=1 X [li=; cos (ﬁ) +1,
n=30
X; € [—600,600], vy = 600,
min(fy) = £:(0,..,0) =0
Schaffer’s . a( : 2
function - JXMHL)

)=y o5+ ——— 7
4(0) = Zist (U.UU1.+[xfn+xf])1
n=30,

X; € [~100,100], V0 = 100,
min(f,) = £,(0,..,0) =0

Ackley function 1

f5(x) = —20exp| —0.2 ;Z}leiz +
20+ e, n=30

% € [—32,32],vimax = 32,

min(fy) = f(0,..,0) =0

Rosenbrock f6 (30 = ZEN(L00Ci10 —xF)* + (% —
function
1)2, n=30
% € [—100,100],v a0, = 100,
min(fy) = f(0,..,0) =0
Griewank Function
Covergence Curve Sphere Function
.
= CDIWPSO
CIWPSO
6 CRIWPSO
= LDIWPSO
—— LogDIWRSO
-5 | ——RIWPSO
@
g
(7]
74
@,
23
£
T
2
1
"
200 400 600 800 1000 1200 1400

lteration
Fig. 1: Comparison between the best fitness values of Sphere
function to the number of iteration
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Table 2. Comparison of best fitness, worst fitness, and mean and deviation standard value of seven PSO variants based on
inertia weight on six benchmark functions

Inertia Performance Inertia Weight PSO
Weight PSO | Index Sphere Rastrigin Griewank | Schaffer's Ackley Rosenbrock
Best Fitness 1,0370E-23 | 2,7859E+01 | 3,3307E-16 | 0,0000E+00 | 1.6462E+00 | 7.7156E+01
CDIWPSO Mean Fitness 6,0860E-25 | 1.8274E+01 | 3,3307E-17 | 0,0000E+00 | SA4874E-02 | 2.5185E+01
Deviation Standard 1.9291E-24 | 4,0266E+00 194E-17 | 0,0000E+00 | 3,0056E-01 | 1.7703E+01
‘Worst Fitness 1.8547E-29 | 1.2934E+01 | 0,0000E+00 | 0,0000E+00 | 44409E-15 | 2.,1481E+00
Best Fitness 24387E-01 | 10039E+02 | 1,2511E-02 | 92174E-02 | 55774E-01 | 1.,3520E+02
RIWPSO Mean Fitness 1,3807E01 | 6,5914E+01 | 5,2350E-03 | 16327E02 | 37202E-01 | 6.2797E+01
Deviation Standard | 5,3480E02 | 1 4330E+01 | 2,6764E03 | 1,5767E02 | 1,1259E-01 | 2.8596E+01
Worst Fitness 33440E-02 | 34124E+01 | 2,2706E-03 | 76228E-03 | 1,7466E-01 | 3.,5634E+01
Best Fitness T.2414E-09 | 8,5566E+01 | 2,1474E-02 | 38952E-02 | 42572E-05 | 8,0315E+01
LDIWPSO Mean Fitness 4,6305E-10 | 5,044 E+01 | 9,6232E04 | 1,5866E02 | 59092E-06 | 2.6547E+01
Deviation Standard | 1,4926E-09 | 1.2455E+01 | 4,1023E-03 | 8,7258E-03 | 9,3318E-06 | 1.,0402E+01
‘Worst Fitness 1,2239E-12 | 33829E+01 | 1.4433E-14 | 54916E03 | 42102E07 | 1.7396E+01
Best Fitness 9.7898E02 | 7T6712E+01 | 74310E03 | 2.592E02 | 6.5311E-02 | 8.5450E+01
CIWPSO Mean Fitness 3.4953E-02 | 39595E+01 | 5,7337E-04 | 12784E-02 | 3.2867E-02 | 3.2734E+01
Deviation Standard | 2,1221E-02 | 1,1424E+01 1.8626E-03 | 63775E-03 1.1635E-02 | 1,5812E+01
‘Worst Fitness 5,0652E03 | 24192E+01 1,8920E-05 | 22256E-03 1 A385E-02 | 2,3945E+01
Best Fitness 6,0332E-14 | 79596E+01 | 1,146TE01 | 35814E02 | 22210E+00 | 8,1771E+01
CRIWPSO Mean Fitness 3,7870E-15 | 49449E+01 | 3,8222E-03 | 16363E-02 | 6,8442E-01 | 2.9496E+01
Deviation Standard | 1,1332E-14 | 1,5403E+01 | 2,0935E02 | 7,7067E03 | 76I111E01 | 1.6906E+01
Worst Fitness 9,5795E-19 | 2,0894E+01 | 0.0000E+00 | 6,5614E03 | 7.9251E-10 | 1,7603E+01
Best Fitness 6,4000E-14 | 30844 E+01 | 2,0317E-14 | 22256E03 | 20133E+00 | 7.9851E+01
LoeDIWPSO Mean Fitness 4,3969E-15 | 2.2950E+01 | 1,9355E-15 | 1,1145E04 | 39915E-01 | 1,1533E+01
Deviation Standard | 1.4829E-14 | 3.2732E+00 561E-15 | 44838E04 | TA211E-01 | 2.5302E+01
‘Worst Filness 4.1195E-19 | 1.6914E+01 | 0.0000E+00 | 0,0000E+00 | 2.5788E-06 | 6.6449E-03
Rastigrin Function Covergence Curve

Figure 2 shows the comparison of mean value of best fitness
against the number of iteration. The mean value of Best Fimess,
Worst Fitness, Mean and Deviation Standard of Rastrigin
function of seven inertia weight based PSO variants is shown in
Table 1. Although the CRIW-P50 and LogDIW-PSO show a
fast convergence in the early search stage, they are a little behind
the other five inertia weights afier approximately 500 iterations.
The final solution of LogDIW-PS0, CRIW-PSO and CIW-PSO
after approximately 700 iterations is similar.

250

200

100

Filness (Best Score)

a0+

200 400

——CDIWPS0D
CIWPSD
CRIWPSO

—— LDIWPSO

—— LogDIWPSO|

——RIWPSO

600 800

Iteration

1000

1200 1400

Fig. 2: Comparison between the best fitness values of
Rastrigin function to the number of iteration
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Covergence Curve Griewank Function

0.3 ——— COIWPSO
CIWPSD
CRIWPSO
0.25 ——LDIWPSO
e LogDIWPSO
- ——RIWPSO
@
g 02 J
o
@
k7
L
@ 015 1
0
o
@
]
oot 1
0.05
] - —
200 400 600 800 1000 1200 1400

Iteration
Fig. 3: Comparison between the best fitness values of
Griewank to against the number of iteration.

Schaffer Function

Figure 4 shows the comparison of mean value of best fitness
against the number of iteration. The mean value of Best Fitness,
Worst Fitness, Mean and Deviation Standard of Schaffer
function of seven inertia weight based PSO variants is shown in
Table 1. Although the CRIW-P50 and LogDIW-PSO show a
fast convergence in the early search stage, they are a little behind
the other five inertia weight after approximately 150 iterations.
The final solution of LogDIW-PSO and CRIW-PSO after
approximately 400 iterations is similar.

C Curve Schaffer Function
0.35 !

0.3

}
o
= [¥]
R o

o
[

Fitness (Best Score

0.1 3

0.05

—

200 400 600 800 1000 1200 1400
[teration
Fig. 4: Comparison between the best fitness values of
Schaffer function to the number of iteration.

Ackley Function

Figure 5 shows the comparison of mean value of best fitness
against the number of iteration. The mean value of Best Fitness,
Worst Fitness, Mean and Deviation Standard of Ackley function
of seven inertia weight based PSO variants is shown in Table 1.
Although the CRIWPSO and LogDIWPSO show a fast
convergence in the early search stage, they are a little behind the
other five inertia weights after approximately 180 iterations. The
final solution of LogDIWPSO, CDIW and CRIWPSO for
approximately 1000 iterations is similar.

International Journal of Computer Appl ic‘arioin 0975 — 8587)
Volume 183 — No. 21, August 2021

Covergence Curve Ackley Function

3.5
——CDIWPSO
CIWPSO
3 CRIWPSO
——LDIWPSO
= LogDIWPSO
—2.5 ——RIWPSD
o
Q
@
- 2
?
@
o
215
@
£
i
4
0.5
) ‘\“——_;
200 400 600 800 1000 1200 1400
Iteration

Fig. 5: Comparison between the best fitness value of Ackley
function to the number of iteration.

Rosenbrock Function

Figure 6 shows the comparison of mean value of best fitness
against the number of iteration. The mean value of Best Fitness,
Worst Fitness, Mean and Deviation Standard of Rosenbrock
function of seven inertia weight based PSO variants is shown in
Table 1. Although the CRIW-PSO and LogDIW-PSO show a
fast convergence in the early search stage, they are a little behind
the other five inertia weights afier more than 300 iterations. The
final solution of LogDIW-PSO, LDIW and CRIW-PSO after
more than 900 iterations is similar.

Covergence Curve Rosenbrock Function

= CDIWPSO
CIWPS0
CRIWPSO

400 -

Fitness (Best Scora)

200 400 600 800 1000 1200 1400
Iteration

Fig. 6: Comparison between the best fitness value of
Rosenbrock function to the number of iteration.

From the result of experiments that have been carried out using
the benchmark function, it can be seen that the convergence of
LogDIWPSO algorithm is better than other PSO variants. This
can be seen in Fig.2 - Fig.6.
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6. CONCLUSION

In this study, a strategy of inertia weight is proposed using a
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logarithmic decreasing inertia weight (LogDIW). In this paper
the use of a decreasing inertia wegiht strategy in several varian
of PSO also describe. The experimental results show that the
strategy using LogDIW on PSO convergence is better than other
linear strategy during early stages of the search process. In
various optimization problems tested on commonly used
benchmark functions, this strategy has better performance than
other linear inertia weight strategies.

The proposed algorithm LogDIW PSO can be applied to image
processing such as image segmentation. The image can be a
grayscale or color image.
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