
Ajax

Asynchronous JavaScript+CSS
+DOM+XMLHttpRequest

• Coined the
term Ajax in
2005

• Describing
technology
already in use.

What is it?

• Combines several technologies:

- (X)HTML, CSS - presentation

- DOM - structured data

- XML (for interchange)

- XMLHttpRequest - asynchronous
communication

- JavaScript

Basic idea

Server side

Browser client

web server

db, backend

user interface

HTTP
request

HTML+CSS
data

Server side

Browser client

web server

db, backend

user interface

HTTP
request XML data

Ajax engine

JavaScript call HTML+CSS
data

History
• Asynchronous loading of content first

possible with Java applets (1995)

• XMLHttpRequest - concept created by
Microsoft for Outlook WebAccess

• Mozilla implemented it in 2002 (?)

• And there it sat.

• Google suggest - 2004

• And then the idea took off...

General approach
1. Get whatever data you need from the Web

form.

2. Build the URL to connect to.

3. Open a connection to the server.

4. Set up a function for the server to run
when it's done.

5. Send the request.

6. Response is sent in XML or ...

7. JavaScript - onreadystatechange - takes
action

XML or ?

• XML was “the” solution for structured text
for a while.

• But it is often more cumbersome than
necessary.

• Alternatives?

JSON

• JavaScript Object Notation

• A light-weight data-interchange format

• Subset of JavaScript

- collection of name value pairs

- un-ordered list of values

• A JSON object can be eval’d by JavaScript

Example

{

“name” : “Karen Reid”,

“courses” : 5,

“address” : {

“street” : “40 St. George”,

“city” : “Toronto”

}

}

When Not to Use Ajax

• If the content never or rarely changes.

• If you don’t see any benefits.

• When it will result in more calls to the
server than necessary

When to use Ajax

• When you want to stage in a lot of data or
let the user decide which data to bring in.

• Filtering data

• Form validation (but do it on the server
too)

• Instant feedback (polls)

Advantages

• More responsive UI

• Potentially fewer connections to the server

- only changing data needs to be updated

Drawbacks
• Complexity

• Back button

• Bookmarks

• Search engines

• Same origin policy

• Debugging and testing

• Security

• Performance!

• Accessibility

