The 2015 International Conference on Science in Information Technology (ICSITech)

Big Data Spectrum for Future Information Economy

Yogyakarta, October 27th - 28th, 2015

IEEE Catalog Number: CFP15B09-USB
ISBN : 978-1-4799-8385-8
2015 International Conference on Science in Information Technology (ICSITech)

27-28 October 2015
Yogyakarta, Indonesia

COPYRIGHT AND REPRINT PERMISSION:

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Operations Center, 445 Hoes Lane, Piscataway, NJ 08854.

All rights reserved. Copyright ©2015 by IEEE.

Papers are printed as received from the authors.

All opinions expressed in the Proceedings are those of the authors and are not binding on the Institute of Electrical and Electronics Engineers, Inc.

IEEE Catalog Number : CFP15B09-USB
ISBN : 978-1-4799-8385-8

Editor : Andri Pranolo, Yana Hendriana, Adhi Prahara, Dewi Pramudi Ismi
Publisher : IEEE
Secretariat : Informatics Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
PROCEEDING

2015 International Conference on Science in Information Technology (ICSITech)

“Big Data Spectrum for Future Information Economy”

27 - 28 October 2015
Yogyakarta, Indonesia
Foreword from Conference Chair

Welcome you to The 2015 International Conference on Science in Information Technology (ICSITech) on “Big Data Spectrum for Future Information Technology” organized by Universitas Ahmad Dahlan as a host, Universitas Pendidikan Indonesia, Universitas Mulawarman, UPN “Veteran” Yogyakarta, and UTM Big Data Centre-Universiti Teknologi Malaysia. It is both an honor and a privilege to stand before you today and welcome you to this learned community.

As we know, Big data is a popular term used to describe the exponential growth and availability of data, both structured and unstructured. And big data may be as important to business – and society – as the Internet has become. Why? More data may lead to more accurate analyses. To raise awareness of the Big Data and its challenges, Informatics Department of Universitas Ahmad Dahlan holds this conference to offer you a unique opportunity to share ideas and experiences and to discuss evolving Big Data and its challenges, which we definitely hope to result in the improved research and practice of Big Data in Universitas Ahmad Dahlan.

This conference is the first ICSITech Conference and next year it will be hosted by Universitas Mulawarman, Samarinda Indonesia. This conference is IEEE conference so that papers accepted and presented will be forwarding for consideration to be published in the IEEE Xplore Digital Library.

From more than hundreds paper that came to us, with the long and tight review process, we only accepted 66 paper that will be presented today in parallel session, so that, it is free to all of you to choose which room to be attended according to your interest. I thank to Ministry of Research, Technology, and Higher Education (RISTEKDIKTI), Republic of Indonesia for funding this conference, IEEE Indonesia Section as technical co-sponsor for this conference. I also thank to our partner, Universitas Pendidikan Indonesia, Universitas Mulawarman, UPN “Veteran” Yogyakarta, and UTM Big Data Centre-Universiti Teknologi Malaysia.

With this conference, we are expanding the value of the partnership today with our colleagues outside the continent. We certainly will benefit from the 3 expert fellow friends from University Teknologi Malaysia (Malaysia), National Taiwan University of Science and Technology (Taiwan), and AGH University of Science and Technology (Poland). I hope this expanded partnership can be further deliberated during the conference. I believe that the session ahead provide us the opportunity to discuss on the fields of Big Data: Challenges and Practical Applications, Data Science vs. Big Data @ UTM Big Data Centre, and Comparison of Data Mining Techniques for Money Laundering Detection System. With that note, again, a very warm welcome to all of you and I hope that the Conference will be fruitful and your next few hours here will be productive and also enjoyable.

ICSITech 2015 Chairman
Rusydi Umar, Ph.D
Welcome Message from the Rector of UAD

First of all, let us thank Allah, the Almighty, for blessing and guiding us into the right path, and for granting all means and opportunities together here to attend this very meaningful occasion. On behalf of the Universitas Ahmad Dahlan, we are greatly honored and pleased to welcome you all to The 2015 International Conference on Science in Information Technology (ICSITech). I thank to Ministry of Research, Technology, and Higher Education (RISTEKDIKTI), Republic of Indonesia for funding this conference, IEEE Indonesia Section as technical co-sponsor for this conference. I also thank to our partner, Universitas Pendidikan Indonesia, Universitas Mulawarman, UPN “Veteran” Yogyakarta, and UTM Big Data Centre-Universiti Teknologi Malaysia. I also thank to steering committee, all reviewer from across the globe as a scientific committee, and organizing committee. Without all your effort this conference will not be held as it is now.

We would also like to extend our gratitude especially to Prof. Siti Mariyam Shamsuddin, UTM Big Data Centre, Universiti Teknologi Malaysia, Malaysia. Assist. Prof. Rafał Dreżewski (AGH University of Science and Technology, Poland), Prof. Shi-Jinn Horng (National Taiwan University of Science and Technology, Taiwan) who have accepted our invitation to become the invited speakers of today's Conference. Special Guest from IEEE Indonesia Section, Special Guests from Ministry of Research, Technology, and Higher Education (RISTEKDIKTI), Republic of Indonesia which also funding this conference. Distinguished Guests from Universitas Pendidikan Indonesia, Universitas Mulawarman, UPN “Veteran” Yogyakarta, and Universiti Teknologi Malaysia.

Ladies and gentlemen, finally allow me on behalf of the big family of Universitas Ahmad Dahlan to wish you a fruitful and pleasant international conference.

Yogyakarta, October 27, 2015
Dr. Kasiyarno. Rector of UAD
Organizers and Sponsors

Organized by

Universitas Ahmad Dahlan, Indonesia
Universitas Pendidikan Indonesia, Indonesia
Universitas Mulawarman, Indonesia
UPN “Veteran” Yogyakarta, Indonesia
Universiti Teknologi Malaysia, Malaysia

Sponsored by

IEEE Indonesia Section
Universitas Sriwijaya, Indonesia
Universiti Malaysia Pahang, Malaysia
PT. Qwords International Company

Funded by

Ministry of Research, Technology, and Higher Education (RISTEKDIKTI), Republic of Indonesia
Committee and Reviewers

Steering Committee
- Dwi Hendratmo Widyantoro (Institut Teknologi Bandung, Indonesia)
- Kuncoro Wastuwbowo (IEEE Indonesia Section)
- Siti Mariyam Shamsuddin (Universiti Teknologi Malaysia)
- Tole Sutikno (Universitas Ahmad Dahlan, Indonesia)
- Tutut Herawan (Universitas Ahmad Dahlan, Indonesia)

Scientific Committee
- Abderrafiaa Koukam (Université de Technologie de Belfort-Montbéliard (UTBM), France)
- Agus Harjoko (Universitas Gadjah Mada, Indonesia)
- Amer Ali Sallam (Limkokwing University of Creative Technology, Sama’a, Yamen)
- Anca Ralescu (University of Cincinnati Ohio, USA)
- Arda Yunianta (University of Mulawarman, Indonesia)
- Azuraliza Abu Bakar (Universiti Kebangsaan Malaysia)
- Deris Siawwan (Faculty of Computer Science, Sriwijaya University, Indonesia)
- Edi Kurniawan (Research Center for Informatics LIPI, Indonesia)
- Esa Prakasa (Research Center for Informatics LIPI, Indonesia)
- Hamzah Bin Ahmad (Universiti Malaysia Pahang)
- Hanung Adi Nugroho (Universitas Gadjah Mada, Indonesia)
- Herlina Jayadianti (Universitas Pembangunan Nasional Veteran Yogyakarta, Indonesia)
- Ito Wasito (Universitas Indonesia)
- Iwan Tri Riyadi Yanto (Universitas Ahmad Dahlan, Indonesia)
- Kamarul Hawari Bin Ghazali (Universiti Malaysia Pahang)
- Lala Septem Riza (Universidad de Granada, Spain)
- Lian Duan (New Jersey Institute of Technology, USA)
- Khabib Mustofa (Universitas Gadjah Mada, Indonesia)
- Masayu Leylia Khodra (Institut Teknologi Bandung, Indonesia)
- Mohd Shahizan Bin Othman (Universiti Teknologi Malaysia)
- Moslem Yousefi (Universiti Tenaga Nasional (UNITEN), Malaysia)
- Munir (Universitas Pendidikan Indonesia, Bandung, Indonesia)
- Mustafa Kaiiali (Mevlana University, Turkey)
- Nataniel Dengen (University of Mulawarman, Indonesia)
- Noel Lopes (Polytechnic of Guarda, Portugal)
- Omar Al Jadaan (Medical and Health Sciences University, United Arab Emirates)
- Omid Motlagh (Commonwealth Scientific and Industrial Research Organization, Australia)
- Ouri Wolfson (University of Illinois, USA)
- Paulus Insap Santosa (Universitas Gadjah Mada, Indonesia)
- Per Johan Runeson (Systems Lund University, Sweden)
- Rafah Mohamed Almuttairi (University of Babylon, Iraq)
- Rafał Dreżewski (AGH University of Science and Technology, Poland)
- Reza Firsandaya Malik (Sriwijaya University, Indonesia)
Organizing Committee

General Chair
- Rusydi Umar (Universitas Ahmad Dahlan, Indonesia)

General Co-Chair
- Anton Yudhana (Universitas Ahmad Dahlan, Indonesia)

Secretary
- Sarina Sulaiman (Universiti Teknologi Malaysia)
- Dewi Octaviani (Universiti Teknologi Malaysia)
- Dewi Pramudi Ismi (Universitas Ahmad Dahlan, Indonesia)

Treasury
- Yana Hendriana (IEEE Member, Universitas Ahmad Dahlan, Indonesia)
- Hidayatullah Himawan (UPN Veteran, Yogyakarta, Indonesia)

Marketing and Public Relation
Chair
- Andri Pranolo (IEEE Member, Universitas Ahmad Dahlan, Indonesia)

Co-Chair
- Ummi Rabaah Hashim (Universiti Teknikal Malaysia Melaka)
2015 International Conference on Science in Information Technology (ICSITech)

Members
- Azhari SN (Universitas Gadjah Mada, Indonesia)
- Chatchada Kaewpruksapimon (Suan Dusit Rajabhat University, Thailand)
- Danial Hooshyar (University of Malaya, Malaysia)
- Houssen Ahmadi (Universiti Teknologi Malaysia)
- Intan Ermahani A Jalil (Universiti Teknikal Malaysia Melaka)
- Julian Supardi (University of Sriwijaya, Indonesia)
- Mahmoud Ali Ahmed (Khartoum University, Sudan)
- Rasim (Universitas Pendidikan Indonesia, Bandung, Indonesia)
- Rofilde Hasudungan (University of Mulawarman, Samarinda, Indonesia)
- Rosdiyana Binti Samad (Universiti Malaysia Pahang)
- Ridwan Suhud (Lembaga Ilmu Pengetahuan Indonesia)
- Wahyudin (Universitas Pendidikan Indonesia, Bandung, Indonesia)
- Yudi Wibisono (Universitas Pendidikan Indonesia, Bandung, Indonesia)

Publication
- Deris Stiawan (Faculty of Computer Science, Sriwijaya University, Indonesia)
- Imam Riadi (Universitas Ahmad Dahlan, Indonesia)
- Kartika Firdausy (Universitas Ahmad Dahlan, Indonesia)
- Nur Ahmadi (Institut Teknologi Bandung, Indonesia)
- Shafaatunnur Hasan (Universiti Teknologi Malaysia)
- Siti Nurmaini (Faculty of Computer Science, Sriwijaya University, Indonesia)
- Yuliah Qotimah (Institut Teknologi Bandung, Indonesia)

Technical Program Committee
- Andri Pranolo (IEEE Member, Universitas Ahmad Dahlan, Indonesia)
- Anton Yudhana (Universitas Ahmad Dahlan, Indonesia)
- Adhi Prahara (Universitas Ahmad Dahlan, Indonesia)
- Arda Yunianta (University of Mulawarman, Indonesia)
- Dewi Octaviani (Universiti Teknologi Malaysia)
- Haviluddin (University of Mulawarman, Indonesia)
- Herlina Jayadianti (UPN Veteran Yogyakarta, Indonesia)
- Lili Ayu Wulandhari (Bina Nusantara University, Indonesia)
- Shafaatunnur Hasan (Universiti Teknologi Malaysia)

Sponsor
- Ali Tarmuji (IEEE Member, Universitas Ahmad Dahlan, Indonesia)
- Eddy Prasetyo Nugroho (Universitas Pendidikan Indonesia, Bandung, Indonesia)
- Imam Azhari (Universitas Ahmad Dahlan, Indonesia)
- Tawar (Universitas Ahmad Dahlan, Indonesia)
- Wawan Setiawan (Universitas Pendidikan Indonesia, Bandung, Indonesia)
Recognition of Malaysian Sign Language Using Skeleton Data with Neural Network
Sutarman, Mazlina Abdul Majid, Jasni Binti Mohamad Zain, Arief Hermawan

Perspective Rectification in Vehicle Number Plate Recognition Using 2D-2D Transformation of Planar Homography
Daniel Paulus Sihombing, Hanung Adi Nugroho, Sunu Wibirama

Enabling Custom Application Content through Semantic Web Filters
Sailesh Kumar Sathish, Anish Anil Patankar, Nimesh Priyodit and Nirmesh Neema

Preferred Model of Dialog Style in Expert System of Physical Examination of Skin Disease
Fajar Suryani, Izzati Muhimmah, Sri Kusumadewi

Proof of Attributes Based CL Signature Scheme on E-Health Applications
Mike Yuliana, Aries Pratiarso, Amang Sudarsono

Dynamic Tunnel Switching using Network Functions Virtualization for HA System Failover
Hery Dian Septama, Ardian Ulvan, Gigih Forda Nama, Melvi Ulvan, Robert Bestak

Multicriteria Decision Analysis for Optimizing Site Selection of Electronic and Electricity Equipment Waste Dismantling and Sorting Facility (Case Study: in Indonesia, using AHP)
Pertiwi Andarani, Wiwik Budiawan

Design and Implementation of Web-Based Geographic Information System for Public Services in Bandar Lampung City - Indonesia
Gigih Forda Nama, Melvi Ulvan, Ardian Ulvan, Abdul Munif Hanafi

Negotiation Strategies for Meeting Scheduling Conflict Management
Rani Megasari, Emir Mauludi Husni, Kuspriyanto, Dwi Hendratmo Widyantoro

Reporting System Architecture Using Temporary Data Store, Performance Analysis on ESCALATION Report
Yanuar Firdaus Arie Wibowo, Kusuma Ayu Laksitowening

Research Classification in Strategic Information System Planning Development: A Critical Review
Asep Wahyudin, Zainal A. Hasibuan

Comparisons of Scalar Multiplication Methods with Proposed Efficient Blind Signature Scheme for E-Voting System
Aye Aye Thu, Khin Than Mya

An Online Lab for Digital Electronics Course Using Information Technology Supports
Muchlas, M. Andang Novianta

Forecasting Trend Data Using a Hybrid Simple Moving Average-Weighted Fuzzy Time Series Model
Winita Sulandari, Yudho Yudhanto

Altitude Control for Quadrotor with Mamdani Fuzzy Model
Nia maharani raharja, Iswanto, Oyas Wahyunggoro, and Adha Imam Cahyadi
An Online Lab for Digital Electronics Course Using Information Technology Supports

Muchlas
Member of IEEE
Department of Electrical Engineering
Ahmad Dahlani University
Jalan Prof. Dr. Soepomo, S.H., Yogyakarta, Indonesia
muchlas.1962.id@ieee.org

M. Andang Novianta
Department of Electrical Engineering
Institute of Science & Technology AKPRIND
Jalan Kalisahak 28, Yogyakarta, Indonesia
m_andang@akprind.ac.id

Abstract—This study is an implementation of information technology for education, aimed to produce a model of online lab course with a collaborative environment using a desktop sharing application. In the digital electronics lab course, participants were divided into the groups, each of them consists of three members. A desktop sharing application was used to the digital circuit simulator as an offline program that can be accessed online. The results show that the application can be used to introduce a collaborative environment in an online lab course. The application was possible to make an offline program such of a digital circuit simulator that can be accessed online by each member of the groups. This model has got a positive response from the participants of digital electronics lab course.

Keywords—online lab; desktop sharing application; breadboard simulator; digital electronics course

I. INTRODUCTION

Digital Electronics, one of the subjects in the Department of Electrical Engineering, is the prerequisite of the subjects of Computer Architecture and Microprocessors. During the lecture, this subject is delivered through two methods: firstly, direct lecture/face-to-face between lecturer and the students in the class and secondly, the activity was run in lab course. Currently, lab course is run through hands-on activities in the real laboratory by preparing the electronic circuit on the breadboard and testing it using a logic probe. This was done because of its flexibility and low cost for operation.

Unfortunately, practical work in the real laboratory using a hands-on method experiences the problems when the number of students are large. In this case, the main problem is the availability of instruments and electronic parts, also the scheduling as a limitation of lab space. This condition makes the lab course sessions increase drastically exceeds the standard capacity. Based on this fact, it is necessary to develop a lab teaching model that can encourage students/participants remain active and involve in collaboration work, but flexible in the implementation.

 Inline with the rapid information technology development, nowadays, there are many learning models created based on the online technique. Many education’s experts believe that the online learning is promising method that is flexible and efficient. Even, previous studies have shown that the online lab course has been able to improve the efficiency in funding rather than the practical work using a hands-on method [1]-[2].

The online lab course is possible to be implemented as the internet technology is available to support it. The use of this technology has penetrated into all sectors of human life such as banking, hospitality, travel services, entertainment, news, variety of applications in everyday life, and has great influence on education [3]. Today there are many lab course designs apply the internet facility as one part to support its implementation. This phenomenon introduces the emergence of new terms such as web-based laboratories [4], and web-based experiments [5] that was triggered up by the high access of the internet network at any educational institution especially in the universities and in the family.

To provide similar lab environment as run in a real practical work, the online lab course supported by information technology requires the lab simulator. Many studies have shown that the simulator is effective, efficient and flexible to support practical work activities. The use of simulator in practical work activities can enhance understanding of the material provided [6]. In addition, the use of simulator for supporting the practical work activities can also provide the same effectiveness with hands-on method [7]-[9]. Previous research has also shown that the use of the simulator is more efficient rather than the use of real laboratory [10], and provide conveniently and high flexibility [11].

Regarding the simulator, a breadboard simulator based on Java program has been developed by Bailey and Freeman [12]. However, this simulator is a desktop application that can only be run on the computers with an offline mode. Meanwhile, the lab course will be a flexible learning if it is held in an online mode. Therefore, it is necessary to design the breadboard simulator that can be accessed online by the practical work participants to provide the learning more flexible process and at the same time it can create a collaborative learning environment.

Currently, there are many application programs that can be used to access a computer remotely, to share a desktop screen and to create a collaborative learning environment such as Team Viewer. This application provides all necessary components for a collaborative online learning like video conferencing, and also desktop sharing. With this, it is possible to access an offline-based applications program such as breadboard simulator using an online mode.
II. PEDAGOGICAL ASPECT OF ONLINE LAB COURSE

The principle of online lab course is similar to that of the principle to apply the hands-on practical work. The difference is in the media used, in which the hands-on is using a real media, meanwhile the online lab course is using the computer media connected to the other computers equipped with a simulator to replace the real instrument and electronic parts. According to the learning process aspects, an online lab course is run using the same procedures as the hands-on done. Like the hands-on lab, an online lab course needs an implementation method that can generate interest and motivation and able to guide the students to participate actively in the learning process. At the end of the activity, an online lab course should provide a set of evaluation instruments to measure the student learning’s outcome.

Although it is an online mode that distributes the participants into different rooms/locations, this lab course-based internet network should be adjusted to make the participants can collaborate each others during the learning process. Lab course in secondary schools and universities are usually implemented into small groups [13]. The groups will carry out two activities, i.e. cooperation and collaboration forms [14]. Cooperation form is an activity that introduces the group to share tasks, meanwhile collaboration form is an activity among the individual in a group to provide a mutual reinforcement. A collaboration form is very important activity in the practical work because it is potential to motivate individuals in a group. It can be effective media for mutual learning among the individuals.

Evaluation in an online lab course can be done through a portfolio or practical work report that includes an introduction, background, methodology, instrument, results, data analysis, discussion, and conclusions [15]. The whole processes of learning are conducted online, including the evaluation of learning outcomes, for example by submitting a portfolio to virtual laboratory prepared to support this online lab course.

III. BREADBOARD SIMULATOR

A software that can be used to support the online practical work activities in Digital Electronics is a breadboard simulator. This simulator provides virtual instruments and electronic parts, consists of a breadboard with its power supply, various types of IC logic TTL (transistor-transistor logic), switch components, 7-segment LED display, wiring and logic probe. This software is a desktop application based on Java program that can only be run using a local computer under Windows operating system. Nevertheless, this program has an advantage, it can provide virtual devices and simulation features for a general logic circuit design both combinational and sequential circuits [16].

It is important to note that the operating requirements must be adjusted to allow the breadboard simulator working properly based on the available hardware and software. This simulator requires a hardware like a desktop or laptop computer with standard specifications for desktop applications operation. The desktop or laptop computer is mandatory to use Windows operating systems such as Windows XP, Windows Vista or Windows 7, and the plug-in Java Runtime Environment [17].

A. User Interface

The user’s interface of breadboard simulator is a main window that is similar to the other application programs. This window is the most important graphical user interface of the program. The structure consists of menu, toolbar, selection pane, dipswitch component, status bar, wires, probes, chips, LEDs, breadboard, circuit pane, and logic probe bar.

By using this interface, the user can plug a breadboard and digital components required. For more complex digital circuit designs which require more wide board sizes, this simulator provides a multi breadboard access. With this, the user can display many breadboards on this main window. Interface visualization of this simulator is similar to the breadboard used in hands-on practical work. Figure 1 shows an example design of 4-bit shift register circuit using chip 7474.

![Fig. 1. Four bit shift register using 7474 chip.](image1)

From the circuit shown in Figure 1, if 4-bit shift register is implemented using a breadboard simulator, the result obtained is shown in Figure 2.

![Fig. 2. User interface of breadboard simulator for 4-bit shift register.](image2)

B. Simulation

Breadboard simulator provides a variety of simulation to display the characteristics of circuit prepared. By using interface, user can select continuous simulation mode (run) or step by step mode. In the step-by-step mode, the program will execute data every 1 ns. Generally, a testing of digital circuits is done using a run mode because more simple and the user can interact directly with devices installed on the breadboard.

IV. ONLINE MEDIA FOR COLLABORATIVE LEARNING

Online lab course can be implemented by dividing the class into small groups for member of three persons in each
group. Each group was guided by an instructor. With this, one member of an online group consists of three students and one instructor. This online lab course requires the information technology facility as shown in Figure 3.

![Diagram of facility for an online lab course required.](image)

Beside requiring the hardware and internet facility, the design of an online lab course also requires software support. To support the growing of a collaborative environment, we need two conditions of: (1) availability of an offline breadboard simulator that can be accessed in an online condition and (2) provide an online media that can serve the video conferencing, voice calls (VoIP) and text conferencing. One of the software that can support both steps are TeamViewer program that providing the application of desktop sharing and collaboration online.

![Diagram of a desktop sharing application for accessing breadboard simulator.](image)

Online meeting application of Team Viewer program provides features required to make a collaborative environment in an online lab course like video conferencing, audio conferencing and text conferencing. In addition, the online meeting application also provides the desktop sharing feature that can be used as a media to access online the desktop application-based program run on a computer. Figure 4 shows an illustration of online access to breadboard simulator in an offline condition by another computer in an online lab course. Figure 5 shows its screenshot display.

![A screenshot display of a share desktop.](image)

V. Experiment and Result

An online lab course in Digital Electronics has been implemented in 8 sessions that covers the topic of: (1) Characteristic of Basic Logic Gate; (2) Designing of Combinational Logic Circuit; (3) Comparator and Binary Adder; (4) Multiplexer and Demultiplexer; (5) Encoder and Decoder; (6) Flip-flop; (7) Counter; and (8) Register. Pre-test was given to subjects at the beginning in every session, and post-test at the end of the session. To find out the description of the subject's perception, at the end of the online lab activities were given a questionnaire on perception.

Before running the online lab course, each participant sends a preliminary task to the instructor via the virtual laboratory portal based on CMS (Content Management System). This task will be corrected by the instructor, each participant will get the feedbacks online. Instructor gives an assessment for this task and the results will be put into the database as one element of evaluation.

Implementation of an online practical work is initiated by the instructor, by inviting the participants to join the meeting using Team Viewer program. The process is carried out by the instructor by sending the password to the participants and the teacher through communication facilities such as a chat. After all the participants in one group join the online meeting, the instructor and participants have to make sure that each of them can do video conferencing. For the next step, the participants working on an online pre-test supervised by the instructor through the video conference feature.

The next procedures, the instructor was running the breadboard simulator and setting up the online meeting panel to allow the participants access the breadboard simulator online. Furthermore, all participants in each group will prepare a logic circuit on the virtual breadboard, collaboratively. Through this procedure, the instructor can monitor the activity of the participants via desktop sharing and video conferencing features. The instructor will record the participants’ activity and put it into the database as an assessment’s result of the process. Meanwhile, the lecturer can visit and give an advice to the participants via desktop sharing and video conferencing.

Through this procedure, the instructor can monitor the activity of the participants via desktop sharing and video conferencing. The instructor will record the participants’ activity and put it into the database as an assessment’s result of the process. Meanwhile, the lecturer can visit and give an advice to the participants via desktop sharing and video conferencing.

The online lab course was ended by the post-test activities online. All participants will prepare the portfolio or practical work report individually, they will submit it to the virtual laboratory portal. From the experiment done to 8 sessions, the results are given in Figure 6.
According to Figure 6, the online lab for Digital Electronics course can give a significant increase on the learning outcomes. All sessions of practical work have given an increase on the learning outcome averaged by 22.5%. Interesting findings occurred in session 4, which shows the lowest increase of 6.1%. This lowest value is due to the difficulties experienced by the students to identify the input and output pins of the multiplexer and demultiplexer (topic in session 4). This similar result was also observed by Herman et al. [18]. It is important to note that in the topic of multiplexer and demultiplexer, the use of online practical work does not affect significantly to improve learning outcomes.

From the perception aspect towards the implementation of online lab course, response of the students can be visualized in Figure 7.

From that figure, it is shown that understanding aspect of the material has the lowest perception compare to the other aspects. This can be happened because the students experienced a misconception during the lesson. Perceptions of interactivity and ease of operation are found to be high. This shows that the model is quite acceptable by the students and at the same time it can create an online collaboration environment as expected. Similarly, on the quality aspect of communication which have high perception, this indicates that the online practical work are not overly constrained by the communication facilities. The study also found that the TeamViewer software and the breadboard simulator can be used as a flexible online learning tools. Generally, it can be argued that the online lab course obtained a good perception of students with an average percentage of 72.22%.

VI. CONCLUSION

This study has shown that the combining between the desktop sharing software and breadboard simulator can be used as an online media of lab course, especially in Digital Electronics. The online practical work model using both applications have also been able to create a collaborative learning environment and got a positive feedback from the participants of the online lab course.

REFERENCES