Validation of isoniazid for therapeutic drug monitoring in human plasma by high-performance liquid chromatography

By Dyah Aryani Perwitasari
Validation of isoniazid for therapeutic drug monitoring in human plasma by high-performance liquid chromatography

Citation: AIP Conference Proceedings 1746, 020030 (2016); doi: 10.1063/1.4953955

View online: http://dx.doi.org/10.1063/1.4953955

View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1746?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Validation of pyrazinamide in human plasma using Hplc-Uv for therapeutic drug monitoring
AIP Conf. Proc. 1746, 020031 (2016); 10.1063/1.4953956

Accurate measurement of dopant concentration in organic light-emitting diodes by combining high-performance liquid chromatography and TOF-SIMS
J. Vac. Sci. Technol. B 32, 030604 (2014); 10.1116/1.4871756

Carbon Nanotube Stationary Phase in a Microfabricated Column for High-Performance Gas Chromatography

Baseline Noise in High-Performance Liquid Chromatography with Electrochemical Detection

High-performance liquid chromatography fraction marker-timer controller
Validation of Isoniazid for Therapeutic Drug Monitoring in Human Plasma by High-Performance Liquid Chromatography

S.P.V.D. Jaikishin1a, D.A. Perwitasari1b, E. Darmawan1c, U.A. Mulyani2d, J. Athobari3e

1Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta
2Basic Technology Center for Biomedical and Health Research and Development Board of Health, Yogyakarta
3Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta

baCorresponding author: dishperwitasari2003@yahoo.com
bsheila.pvd@yahoo.com
cendarmawan@gmail.com
dullyadnie@gmail.com
ej.athobari@gmail.com

\textbf{Abstract.} Isoniazid is one of the anti-tuberculosis agents which can cause hepatotoxicity. However, not all of the TB patients and health providers can recognize early symptoms of antituberculosis-induced hepatotoxicity. Thus, the Therapeutic Drug Monitoring (TDM) needs to be performed to monitor the hepatotoxicity symptoms. The aim of this study is to establish the validity of the Isoniazid assay method using High-Performance Liquid Chromatography from human plasma. We recruited 6 healthy subjects for this validation study. The validation was performed using Shimadzu HPLC 214 pump with a model AT LC20 LC-10AT detector SPD-20A and LC solution software. We used C18 column shim-pack VP-ODS (250 mm x 4.6 mm, 5 mm) as well as other tools such as centrifuge, vortex, chamber glass (Pyrex Iwaki) and other supporting tools. The solvents and solvents were used from Merck Germany. Isoniazid standard compounds were obtained from Sigma. Our study has been approved by the National Ethics Committee of Health Research. Our study shows that the method applied in HPLC has the good linearity (r = 0.998) with coefficient of variance (CV) of system appropriate test is 0.61% and the equation of linearity was y=8756.8x+2772.82. The value of Limit of Detection (LoD) and Limit of Quantification (LOQ) were 1.517 μg/ml and 4.597 μg/ml, respectively. The precision of the concentration of 0.5, 5.0, 15.0 μg/ml is 3.24%, 0.79%, 2.83%, respectively for intraday precision and 4.8%, 2.1%, 2.01%, respectively for interday precision. The recoveries on the particular concentration are 106.79%, 108.91%, 92.19%, respectively for intraday recovery and 101.73%, 99.63%, 82.75%, respectively for interday recovery. This validation method is a good alternative for the application of TDM in monitoring the treatment of TB patients' clinical practice.

\textbf{Keywords:} Validation, isoniazid, therapeutic, monitoring

\section*{BACKGROUND}

Currently, Indonesia is in the 5th rank of the highest tuberculosis prevalence over the world [1]. Since 1995, WHO introduced the Directly Observed Treatment Shortcourse (DOTS) program, and this program has been proven as effective in controlling the tuberculosis disease. The mortality rate decreased about 45% and the tuberculosis prevalence decrease about 42%. However, the incidence of tuberculosis is still high [1,2].

Anti-tuberculosis agents which used in the treatment of tuberculosis are isoniazid, rifampicin, ethambutol and pyrazinamide. One of the most popular side effect due to the use of the mediation is hepatotoxicity [3,4]. Isoniazid is the most possible drug caused hepatotoxicity due to its toxic metabolite [5].

The incidence of hepatotoxicity due to the use of anti-tuberculosis was 20% [6]. Due to the long duration of treatment of tuberculosis, we need to do the monitoring of hepatotoxicity symptoms and provide the appropriate treatment [7]. One of the method to do the monitoring is Therapeutic Drug Monitoring (TDM) which is one part of...
the pharmaceutical care services [8]. TDM may help the physician to understand about the complexity treatment of tuberculosis and also help the physician to decide about the dose or treatment recommended after having the results of TDM [9].

Isoniazid or isonicotinic acid hydrazide (INH) is a white, colorless crystal or white crystalline powder and odorless. It is slowly affected by air and light and is easily soluble in water, slightly soluble in ethanol, sparingly soluble in chloroform and in ether. INH is well absorbed in the gastrointestinal after oral administration and is distributed throughout the body. Its peak concentration in serum is depend on the dose administered. The peak serum levels achieved within 1-3 hours after oral administration and the effective concentration was found 24 hours after the drug is swallowed. The average half-life is in fast acetylators reaches nearly 80 minutes, while the value of hours is typical for slow acetylator [10].

This study objective is to establish the validity of the Isoniazid assay method using High-Performance Liquid Chromatography from human plasma.

METHODS

Subjects

We recruited 6 healthy subjects as volunteer of blood plasma sample. The blood was taken 2 hour after the antituberculosis agents were taken by the patients. We gave the informed consent to the subject and asked them to sign the informed consent form as the agreement for participation in this study. Our study has been approved by the National Ethnic Committee of Health Research.

Reference Compound and Reagents

Chemicals and solvents used from Merck Germany, among others: methanol pro analysis (pa) (350669839), Diethyl ether pa, Trichlor solution of acetic acid (TCA) 10% pa (3659707643), pa Acetonitrile (1632732013) and aquabidest. The isoniazid as standard compounds was obtained from SIGMA.

Chromatographic Conditions

This study used a Shimadzu HPLC system with a model of AT LC20 LC 10AT, detector SPD 20A and LC solution software. The column used was a C18 column shim-pack VP-ODS (250 mm x 4.6 mm, id 5μm). Mobile phase consisted of Aquabidest : Acetonitrile (97.5)% with flow rate 1 mL/ minute, UV detection at a wavelength of 262 nm, retention time 15 minute and inject volume 20 μL.

Preparation of plasma standards and samples

The standard samples were prepared from 450 μL of plasma, then added by 50 μL validation solution to make 5.00; 50.00 and 150.00 μg/mL. The solution concentrations for linearity were 0.5; 1.00; 3.00; 5.00 and 15.00 μg/mL. The solution concentrations for accuracy, intra-day and inter-day precision were 0.5; 5.0; 15.00 μg/mL.

The 1000 mL of 10% TCA was added unto each the concentration solutions then follow these procedures such as: 20 seconds of vortex for with a maximum speed and 10 minutes of centrifuged at a speed of 13000 rpm, temperature of 4°C. The supernatant was poured into the tube and added by 3 mL of ether. The extraction was performed using these procedures; 20 seconds of vortex 10 minutes of centrifuged at 4000 rpm. Finally, the 20 mL water phase was injected into the HPLC [11,12].

Validation Method

The validation method of INH using HPLC was modified from the previous studies [11,12]. We used HPLC due to this instrument has high selectivity and sensitivity and also can perform the analysis with small concentration of sample using UV absorbent detector [13].

System Suitability

The system suitability was examined from the one point of 20 μL solution from standard curve which was injected into HPLC. We repeated this method for six times. From the chromatograph we defined the coefficient of variance (CV) of retention time and width of area ratio [14,15].

Linearity

The equation of linear regression: y = bx+a described the association between INH concentration and area wide ratio of chromatograph or the high of chromatograph peak. The calibration curve was used to define the sample concentration [14,15].
LoD and LoQ

The value of LoD and LoQ were defined from the equation and standard of deviation (SD). LoD was defined as the signal-to-noise ratio (S/N) with the 3:1 comparison. The LoQ was defined using 10:1 comparison of S/N. [14,15]

Accuracy

The recovery describes the value of accuracy. The Area Under the Curve (AUC) of isoniazid was processed by linear regression equation to get the actual levels. The value of recovery can be seen from the average % of recovery or actual levels divided theoretical level and multiplied by 100%. The value of good recovery was 80-120%. [14,15]

Intra-day and Inter-day precision

Intra-day precision values can be seen from the % of coefficient of variance (CV) of each replication. The method met the requirements of precision if the value of the average % CV was <15%. [14,15]

RESULTS

The results of this study are listed in Table 1. The suitability system shows the CV T_R and CV peak area are 0.26% and 0.61% respectively. The equation for regression line of 0.5, 1, 3, 5, 10, 15 μg/mL concentration is:

\[y = 8756.873x + 27724.816, \]
with \(r = 0.998 \). The regression line can be seen in Graph 1. The LoD and LoQ met the criteria of FDA and ICH [14,15] which are 1.57 μg/mL and 4.597 μg/mL, respectively.

TABLE 1. Results of validation measurement for INH using HPLC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required Criteria*</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>System suitability</td>
<td>CV ≤ 2%</td>
<td>CV T<sub>R</sub> = 0.26%</td>
</tr>
<tr>
<td></td>
<td>CV peak area = 0.61%</td>
<td>r = 0.998</td>
</tr>
<tr>
<td>Inemirity</td>
<td>r ≥ 0.99</td>
<td>y = 8756.873x + 27724.816</td>
</tr>
<tr>
<td>LOD</td>
<td>S/N ≈ 3:1</td>
<td>1.517 μg/mL</td>
</tr>
<tr>
<td>LOQ</td>
<td>S/N ≈ 10:1</td>
<td>4.597 μg/mL</td>
</tr>
</tbody>
</table>

\(CV = \text{Coefficient of variance}; \ T_R = \text{Retention Time}; \ r = \text{Coefficient of correlation}; \ \text{LOD} = \text{Limit of Detection}; \ \text{LOQ} = \text{Limit of Quantification}; \ *\text{Adopted from [14,15]} \)

FIGURE 1. Linearity of INH concentration and AUC

Table 2 shows the results of accuracy and precision. The accuracy of this method are shown by % recovery of intraday and interday sample for 0.5, 5.0, and 15.0 μg/mL concentration, which are 100.79%, 108.91%, and 92.19%, respectively and 101.73%, 99.63%, and 82.75%, respectively. The intraday precision is defined as CV (%) from the concentration of 0.5; 5.0 and 15.0 μg/mL are 5.24%, 0.79% and 2.83%, respectively. Furthermore,
the interday precision on those particular concentration are 4.86%, 2.18%, and 2.01% respectively.

<table>
<thead>
<tr>
<th>Concentration (µg/mL)</th>
<th>Mean ± SD (µg/mL)</th>
<th>Precision (CV %)</th>
<th>Accuracy (R %)</th>
<th>Required criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraday (n = 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.50 ± 0.03</td>
<td>5.24%</td>
<td>100.79%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.45 ± 0.04</td>
<td>0.79%</td>
<td>108.91%</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>13.83 ± 0.39</td>
<td>2.83%</td>
<td>92.19%</td>
<td>Precision = CV ≤ 15%</td>
</tr>
<tr>
<td>Interday (n = 5)</td>
<td></td>
<td></td>
<td></td>
<td>Accuracy = 80-120%</td>
</tr>
<tr>
<td>0.5</td>
<td>0.51 ± 0.02</td>
<td>4.86%</td>
<td>101.73%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.98 ± 0.11</td>
<td>2.18%</td>
<td>99.63%</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12.41 ± 0.25</td>
<td>2.01%</td>
<td>82.73%</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

Our study found that the method used in HPLC is valid and reliable. HPLC has high selectivity and sensitivity, also it can measure the component of sample until nanogram limit using UV detector. Plasma has many components which may affect the isoniazid concentration measurement. Thus, using HPLC is appropriate method to measure isoniazid concentration [13]. The validation which defined in this study were system suitability, linearity, LoD and LoQ, accuracy and precision [8].

The suitability system was performed before the validation procedures to assure that HPLC can work appropriately during the analysis [14,16]. This suitability system test assures that the chromatography has good reproducibility and resolution for the analysis [17]. Linearity was performed to understand the association between the real concentration of isoniazid and the instrument response [16,18].

Accuracy was defined to assure that the method used in the analysis can show the concentration of sample is almost similar to the real concentration [14]. The precision was performed to assure that the repeated measurement has similar results of concentration [16,18].

Previous study about rifampicin validation method for TDM using stirbar-sorption extraction/HPLC-UV showed that the method could be applied in real situation due to the similar effectiveness to liquid-liquid extraction/HPLC-UV. The intrassay and interassay precision and accuracy were performed in the concentration less than 25.0 microgram/mL and had the results of less than 10%. Other parameters also met the criteria for validation [19]. However, previous other study used Hydrophilic Interaction Liquid Chromatography (HILIC). The benefit of using HILIC was the ion-pair reagent of mobile phase was free detected. This method could be applied in the TDM method, due to the precision and accuracy were less than 10% and the limit of quantification was 4 ng/mL for isoniazid and rifampicin [21]. In the HPLC method, the modification of mobile phase component is required due to the character of the drugs. In this study, isoniazid has hydrophilic character thus we only used acetonitrile and aquabidest as the mobile phase.

The other method for TDM of antituberculosis is matrix-assisted laser desorption/ionization source equipped with tandem time-of-flight (MALDI-TOF/TOF) mass spectrometry. This method was introduced by Sirgel et al and presented that the minimal concentration detected using this method was until 0.08 pmol/microL [20]. The qualitative method of rifampicin and isoniazid ingestion also performed in previous study using non-invasive method. This procedure presented that the qualitative method was as effective as the method used in HPLC [21].

Many methods have been performed in the previous studies with valid results of antituberculosis TDM method. However, we need to consider the instrument which is available in our country such as HPLC-UV. Regarding to the budget in performing the TDM method, it is not possible to do the TDM in all tuberculosis patients. We need to make the priority for patients selection such as: ineffective treatment and patients with multidrug resistance of antituberculosis.
CONCLUSION

According to the results it can be concluded that the use of HPLC has met the criteria of accuracy, precision, suitability of the system, linearity, LoD and LoQ. Such methods have validity in accordance with the required Anonymous (2001) and Anonymous (2005) so that the validation method can be used to establish the levels of INH in the plasma in the handling of patients with tuberculosis as well as an effort to monitor the effectiveness of treatment in the activities of Therapeutic Drug Monitoring (TDM).

REFERENCE

Validation of isoniazid for therapeutic drug monitoring in human plasma by high-performance liquid chromatography

Originality Report

14%

Similarity Index

Primary Sources

<table>
<thead>
<tr>
<th>#</th>
<th>Source</th>
<th>Title</th>
<th>Authors</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>www.ijppsjournal.com</td>
<td>Internet</td>
<td>Xu, . "Caffeine", Analytical Methods for Therapeutic Drug Monitoring and Toxicology</td>
<td>35 words — 1%</td>
</tr>
<tr>
<td>2</td>
<td>eprints.ugd.edu.mk</td>
<td>Internet</td>
<td>Kole, P.L. "Determination of diclofenac from paediatric urine samples by stir bar sorptive extraction (SBSE)-HPLC-UV technique", Talanta, 20110930</td>
<td>29 words — 1%</td>
</tr>
<tr>
<td>4</td>
<td>www.islandscholar.ca</td>
<td>Internet</td>
<td>Khameneh, Bahman, Bibi Sedigheh Fazly Bazzaz, Alireza Amani, Javad Rostami, and Nasser Vahdati-Mashhadian. "Combination of anti-tuberculosis drugs with vitamin C or NAC against different Staphylococcus aureus and Mycobacterium tuberculosis strains", Microbial Pathogenesis, 2016.</td>
<td>21 words — 1%</td>
</tr>
</tbody>
</table>
M UPLEKAR. "The WHO Stop TB Strategy for the coming decade", Tuberculosis, 2009

www.nims.go.jp

apb.tbzmed.ac.ir

ccj.springeropen.com

www.chemweb.com

Shipkova, Maria, and Dobrin Svinarov. "LC–MS/MS as a tool for TDM services: Where are we?", Clinical Biochemistry, 2016.

Akira Kotani. "Baseline Noise in High-Performance Liquid Chromatography with Electrochemical
