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Abstract
The efficiency of a metaheuristic algorithm for global optimization is based on its ability to

search and find the global optimum. However, a good search often requires to be balanced

between exploration and exploitation of the search space. In this paper, a newmetaheuristic

algorithm called Ringed Seal Search (RSS) is introduced. It is inspired by the natural behav-

ior of the seal pup. This algorithm mimics the seal pup movement behavior and its ability to

search and choose the best lair to escape predators. The scenario starts once the seal

mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The

seal pup strategy consists of searching and selecting the best lair by performing a random

walk to find a new lair. Affected by the sensitive nature of seals against external noise emit-

ted by predators, the random walk of the seal pup takes two different search states, normal

state and urgent state. In the normal state, the pup performs an intensive search between

closely adjacent lairs; this movement is modeled via a Brownian walk. In an urgent state,

the pup leaves the proximity area and performs an extensive search to find a new lair from

sparse targets; this movement is modeled via a Levy walk. The switch between these two

states is realized by the random noise emitted by predators. The algorithm keeps switching

between normal and urgent states until the global optimum is reached. Tests and valida-

tions were performed using fifteen benchmark test functions to compare the performance of

RSS with other baseline algorithms. The results show that RSS is more efficient than

Genetic Algorithm, Particles Swarm Optimization and Cuckoo Search in terms of conver-

gence rate to the global optimum. The RSS shows an improvement in terms of balance

between exploration (extensive) and exploitation (intensive) of the search space. The RSS

can efficiently mimic seal pups behavior to find best lair and provide a new algorithm to be

used in global optimization problems.
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Introduction
In the last recent years, several metaheuristic algorithms have been introduced. The signifi-
cance of using such approaches to solve optimization problems justifies their popularity. The
metaheuristic optimization algorithms-based population is one of the useful models where its
principle usually starts with an initial set of variables, and proceeds to a specific process to
obtain the global minimum or maximum of the objective function. Genetic Algorithm (GA) is
considered as one of the most popular approaches [1]. It uses operators inspired by natural
genetic variation and natural selection [1–4]. Particles Swarm Optimization (PSO) was inspired
by the fish and bird swarm intelligence [2]; on the other hand, Firefly Algorithm (FA) was
inspired by the flashing pattern of tropical fireflies [5–9]. The Cuckoo Search (CS) was inspired
by the brood intelligent behaviour of some cuckoo species. Its strategy consists of laying its
eggs in other cuckoos’ nests [10,11]. A very huge number of researches have introduced the use
of metaheuristics approaches to resolve optimization problems, particularly NP-hard prob-
lems, such as Travelling Salesman Problem (TSP) and Minimum Spanning Tree Problem
(MSTP) [3,6–8,12–14]. The main advantage of metaheuristics algorithms is the ability to keep
good performance in dynamic changes [1]. This power of robustness comes from the fact that
they imitate natural phenomena that have existed and evolved on the earth since millions of
years. Particularly, a metaheuristic algorithm is considered as robust only if it fulfils two
requirements: intensification and diversification [6,15]. Intensification consists of exploring
the local search area to find the best quality of solutions whereas diversification consists of
ensuring that the algorithm is able to be efficient in covering the entire search domain. There-
fore, the ability of a metaheuristic algorithm to find the global optima is in correlation with its
capability to find an optimal balance between the intensification (exploitation) and the diversi-
fication (exploration) of the search space.

Various studies showed that CS outperformed GA, PSO and other conventional algorithms
for global optimization problems [10]. This is partially due to the fact that CS which is based
on Levy flights shows an optimal balance between exploitation and exploration, which has a
major impact on the algorithm efficiency [16]. On the other hand, GA, PSO and CS are poten-
tially dominating the global optimization algorithms that are used explicitly or implicitly for
many applications in science and technology, and they have been used to compare many new
developed algorithms [10,11,17–21]. However, they show a weakness in terms of the balance
between the exploitation and exploration during search for new solutions [22,23]. For example,
in multi-objective problems the search is not intensified on the visited regions effectively and
oftentimes it usually shows a precocious convergence and lack of diversification. In order to
treat this problem, various approaches have been proposed in the literature [9,24–34]. In most
of the introduced approaches, extensive and intensive search are adjusted using the parameters
setting, however this has an impact on the search abilities of the algorithms to deal with multi-
objective problems [29]. Another popular technique used particularly in evolutionary algo-
rithms consists of starting an intensive search, and then gradually exploring other locations
until all the search space is covered [26,30]. However, such techniques make solving of multi-
objective problems difficult especially in cases where the problem holds many optima.

Many other proposed approaches can be found in [9,23,30,32,35]. Another significant
approach used in metaheuristics for exploring the search space is randomization [2,6,16,22,36].
Randomization to balance between exploration and exploitation can also be used to jump the
local optimum, which gives the opportunity to explore the search space efficiently. On the
other hand, randomization can be used to perform an intensive search at the local region
around the current best solution. Randomization can also be found in some approaches com-
bined with stochastic rules [37–40]. Some other approaches are based on complex methods

Ringed Seal Search and Global Optimization

PLOS ONE | DOI:10.1371/journal.pone.0144371 January 20, 2016 2 / 31



such as Monte Carlo simulations [41]. They can also be more detailed such as the computa-
tional model proposed by Nurzaman [42–46]. It is shown that for low target density regions,
Levy walk performs well. However, Brownian walk performs better when the targets are abun-
dant [47]. Exploitation consists of the search for knowledge at the search space, and using the
found solution for defining the new search moves at the local area where the local optimum
may be located. However, sometimes the local optimal cannot be the global optimum. It is
shown that too much of exploitation increases the possibility to be trapped in a local optimum
[16]. On the other hand, a strong exploration increases the possibility to find the global opti-
mum but with less efficiency [23]. The first and only theoretical basis found in the literature for
the optimal exploitation and exploration for multi-objective problems was introduced by Yang
et al [16]. The study shows the ratio of search times interpreted by efforts of exploration and
exploitation stages, it also provides some efforts done on the global exploration which is in
correlation with the local exploration. Thus, there is a need for a mechanism to balance the
right value of exploration and the right dose of exploitation. Although big efforts have been
done on search approaches, there is no specific guideline for balancing exploitation and explo-
ration, resulting in each heuristic algorithm to have a different method of exploration and
exploitation.

In this paper, a novel nature-inspired metaheuristic algorithm, known as the Ringed Seal
Search (RSS) is proposed for solving global optimization problems. The RSS is based on the
search behavior of seal pups to find best lair to escape predators. The sensitive nature of seal
pups against external noise has a big impact on their search, especially against the noise pro-
duced by polar bear movements. Seal pup movement is based on two search states, normal
state and urgent state. In normal state, the pup moves between closely adjacent lairs (intensive
search). In urgent mode, at low temperatures, during polar bear movement, ice transmits noise
very well; the pup leaves the proximity area far away (extensive search) to find a new lair from
sparse targets. Some approaches focus on enhancing the conventional metaheuristic algorithms
by merging some techniques for balancing the exploration and the exploitation dose. Examples
include incorporating Levy flights for revisiting targets and using intermittent search strategy
for non-revisiting targets [48,49]. In contrast, the proposed RSS algorithm introduces the sensi-
tive search model inspired from seal movement. The sensitive search model incorporates Levy
walk and Brownian walk, known for their potential capacity for exploration and exploitation,
respectively [43,46,47]. The sensitive search model divides the search into two states: normal
and urgent. At each state, the seal pup shows a different movement behavior. By default, at the
beginning is the normal state (exploitation) where the pup moves at the multi-chambered lair,
the algorithm changes the state of the search into urgent state in case of emitted noise, and thus
the pup moves far away to find a safe lair. The noise is characterized by a uniformly distributed
pseudorandom integer that is transmitted randomly. The algorithm keeps switching between
normal and urgent states until the optimum is reached. As a result, the sensitive search model
can ultimately improve the balance between exploitation and exploration of the RSS, likewise it
also maintains the search behavior of seal pups observed in nature. To explain the proficiency
and robustness of RSS, it was compared to GA, PSO and CS. The comparison investigates dif-
ferent standard benchmark functions that are usually used to test global optimization algo-
rithms [10,17–21]. Experimental results show that the proposed RSS algorithm is faster in
finding the global optima over its homologs, as a result of balance between exploitation and
exploration.

The rest of the paper is organized as follows. First, the RSS behavior is presented. After then
a description of the seal’s sensitive search model is introduced. In accordance with that, the
description the proposed algorithm is presented in detail. After then a discussion of the experi-
mental results is introduced. A case study about Field-Programmable Gate Array (FPGA)
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using RSS is introduced. The contribution of this work is highlighted, followed by the signifi-
cance of the proposed algorithm. Finally, the conclusions of this work are formulated.

Ringed Seal Search Behaviour
Optimization is a substantial challenge for organisms, where escaping predators searching for
habitats and foraging defines their behaviour. The mechanism used by organisms to search
optimally to get best habitats is developed through hundreds of years in nature. In this paper,
the focus is on ringed seal which is a semi aquatic animal, not only because of its extraordinary
ability to stay and dive underwater for a long time, but also because of its amazing behaviour
used to resist natural fluctuations. This behaviour is developed since thousands of years, mak-
ing the seal to be adaptable to unexpected and difficult conditions. As all semi aquatic animals,
underwater activities of diving for seals are constrained by the need for surface gas exchange.
The seal breeding also requires a suitable environment to guarantee the reproduction of new
generations [50].

During autumn and winter in the Canadian arctic, the ice starts freezing over, so the seals cre-
ate breathing holes and snow covered lairs. Between March and May, ringed seals give birth to
pups in snow-covered lairs connected to the ocean. These lairs provide a thermal protection
against cold air temperatures and high wind chill, and afford at least some protection from preda-
tors such as bears [51–53]. A seal could have a complex of lairs at one specific area [54–56],
which can be used for many functions: breeding and birthing of young pups and resting. Lairs
are maintained until the end of the breeding season in spring, approximately six weeks after pup-
ping, or until snowmelt causes structural collapse [51]. In nature, two different types of lairs
were observed [57]. Generally, the famous type in both coastal and offshore habitats is haul-out
lairs, which is characterized by a single- chambered room and has a round design. Another differ-
ent type of lairs found is called the birth lair. A birth lair can be characterized by the existence of
placental remains, hair and also by extensive tunnels created by pups. The seal pup strategy con-
sists of searching the best lair to avoid predators. The young pup moves between lairs within her
complex of lairs. If a lair is attacked, destroyed or its quality not good, pups are able to change the
location between lairs structures [56,57]. The search movement of the seal is sensitive to external
noise emitted by predators such as polar bears. In case of noises, the pup leaves the proximity far
away. However, in normal situation where there is no external noise; the pup keeps browsing the
proximity (the multi-chambered lair) searching for best location. Basically, the quality of the hab-
itat depends on the structure of the lairs, therefore during the breeding season male ringed seal
emits a strong gasoline smell which may indicate the location of the lairs [57,58]. Wounds on
both males and females represent another smell index that can mark territories. This makes seals
very vulnerable and unsafe and could be targeted by bears. A polar bear can locate seal lairs using
the smell index [52]. Its strategy consists of sniffing the ice surface with self-possession searching
for a seal meal; if a smell is detected, the polar bear will run and jump on the snow over the hole
to collapse the lair and block the exit. The bear can then catch the mother and the pup together.
The ringed seal strategy used to search and choose the best lair can be associated with the objec-
tive problem to be used to balance between the exploitation and the exploration of the search.
The proposed approach is based on the randomized noise emitted by predators to combine dif-
ferent search patterns for the seal to design a new algorithm for global optimization problems.
The seal sensitive search model is described in the following section.

Description of the Seal’s Sensitive Search Model
Generally, in nature a lot of organisms perform random search during foraging and searching
for resources such as food and water. Several recent studies show that many animals perform
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random search based on statistical procedures [42,59–64]. One of the random walk techniques
that have got much interest is the Levy walk, which is characterized by a heavy tailed step
length distribution. On the other hand, some new introduced search techniques [47,65] show
that Levy walk performs better for search with sparse targets. In contrast, Brownian walk is
more efficient where the step lengths are not heavy tailed. The aim of this section is to describe
the search behavior of the seal pup during normal and urgent state. Particularly, the movement
of seal pup is characterized by a high sensitivity to external noise as shown in the figure below.

Fig 1 shows a seal pup inside a birthing lair, on the other side a bear in movement on the ice
surface. In case of an urgent state, the seal pup strategy consists of two options, keep silent and
wait for unknown destiny, or jump inside the sea through the hole to find another lair to escape
the predator.

Recent researches showed that some noise-based strategies, namely biological fluctuation
has an effect on the life sciences [66]. This strategy also exists in many varieties of bacteria,
where its role consists of providing an adaptation to environment changes. Stimulated by this
natural phenomenon, several models have been introduced to explain the biological fluctuation
[42,66,67]. The movement of seal is also characterized by sensitive reaction to external noise.
The search of the seal is therefore designed to have two different patterns, normal search (nor-
mal state) where there is no noise or urgent search (urgent state) in case of noise.

For the urgent search state, the seal pup leaves its own lair and performs a long step lengths
using a Levy walk as shown in (Fig 1). The purpose of this long step search pattern is to escape
the external noise threat emitted by the predator and explore if other lairs could be safer. In
terms of global optimization point of view, this could be interpreted as an exploration of the
search space. For the normal search state, the seal exploits the local area searching for a better
location as shown in (Fig 2). In contrast to the urgent state, in normal state the seal is not
threatened by an external noise and that is an enough reason to keep exploiting the proximity
of the current lair.

Fig 2 shows a seal pup inside a multi-chambered lair. In the absence of external noise, the
seal prefers to exploit the local area (the chambers of the lair). This represents a normal search
state when the seal pup performs a Brownian walk with a non-heavy tailed step length that can
be interpreted as an intensive search at the proximity (exploitation). In nature, one mother seal
can have a complex structure of lairs at one place.

Fig 1. Seal’s movement when leaving the lair (urgent state).

doi:10.1371/journal.pone.0144371.g001
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Why Levy Walk and Brownian Walk?
In mathematics, the definition of a random walk is introduced as a formalization of a path that
is constructed using a series of successive random steps. Levy walk is considered as one of the
random walk techniques that are potentially used to model animal movement. It is character-
ized by a specific step size (random number), where the length between two consecutive por-
tions of direction is calculated from a probability distribution with an inverse power-law tail
described as below [65,69,70].

Levy � u ¼ t�l; ð1Þ

where 1< λ< 3 and t is the flight length. In fact, the generation of random numbers with Levy
walk particularly consists of two main steps: the selection of a random direction and the calcu-
lation of step size which is in conformity with Levy distribution. Selecting a random direction
is calculated through a uniform distribution. In case where λ� 3, the distribution will not be in
a heavy tail and the total sums of the lengths converge to a Gaussian distribution. Levy walk is
characterized by an anomalous diffusion, where the mean squared displacement increases
faster linearly with time. However, Brownian walk is characterized with a normal diffusion
where the mean squared displacement increases linearly.

In [43], it is shown that animals perform Levy walk patterns during search for resources
that are distributed in different patches. For this, animals use two modes, intensive mode to
concentrate on the search inside the patch (exploitation), and extensive mode to move from
one patch to another (exploration). In [44,46,64], it was shown that animals route is quite simi-
lar to Levy walk. However, some models demonstrated that when prey resources are abundant,
Brownian walk is performed by animals whereas when preys are distributed into different
patches Levy walk is performed [64]. In [42] a model of Levy and Brownian is presented, show-
ing how Escherichia-Coli switches from Levy to Brownian mode based on target densities.
Implicitly, the main question is what mechanism animals use to switch from one mode to
another. As explained above, the seal search used to find other lairs (exploration) is in correla-
tion with the presence of the external noise. However, in the opposite case where there is no
external noise, the seal stays at the same lair and keeps exploiting the multi-chambered lairs.
Based on this approach, the seal search can be divided into two states: normal and urgent. In
each state, the individual (seal pup) exhibits a specific walk pattern (Levy or Brownian).

Fig 2. Seal inside a multi-chambered lair during a normal state, designed by Robert Barnes, UNEP/
GRID-Arendal [68].

doi:10.1371/journal.pone.0144371.g002

Ringed Seal Search and Global Optimization

PLOS ONE | DOI:10.1371/journal.pone.0144371 January 20, 2016 6 / 31



The Formal Definition of the Sensitive Search Model
The movement of the seal pup inside its multi-chambered lair or during search for new lairs
can be described as a series of events. Formally, let (O,β,@,ρ) be a search space that contains β
predator and @ seal pup. In the interpretation, (O,ρ) is the state of the search space. If the cur-
rent state of the search space ρ is ω where ω = 1 (ω represents the external noise), then @ is
informed that O contains β, which is a predator emitting a noise ω during movement. Given E
event in O, a state (O,ρ) is called urgent state if O includes β and @ members of the event at the
search space that contains the noise ω. Let A be an event where (O,β,@,ρ) is the search space. If
the current state of the search space ρ is ω where ω = 0, then @ is not informed that O contains
β, then (O,ρ) is considered as a normal state. In urgent state @ performs a Levy walk, however
in the opposite case (normal state) @ performs a Brownian walk. Considering this description
of the search space, the movement of the seal pup from a lair to another (urgent state) can be
described as shown in Fig 3(A).

From Fig 3(B), moving from a lair to a new lair requires a specific search pattern. During
the generation of new solutions (new lairs) x(g+1) for, say, a seal i, a new lair is found:

xgþ1
i ¼ xgi þ a� Dx; ð2Þ

where α is the step size which is related to the search pattern, during normal or urgent state.

Dx ¼ LevyðlÞ; o ¼ 1

BrownianðlÞ; o ¼ 0
; ð3Þ

(

where ω is considered as a pseudo-random integer from a uniform discrete distribution. In
case of Levy walk, the random walk is characterized by a step size calculated from a probability
distribution with an inverse power-law tail as shown in Eq 1. In case of Brownian walk, the
search for a new chamber inside the structure of a multi-chambered lair as shown in Fig 3(B),
the search is characterized by a step size described as below.

S ¼ ðk � randnðd;NdotsÞÞ: ð4Þ
where k is the standard deviation of the normal distribution for diffusion rate coefficient, d is
the dimensions of the problem and Ndots represents the number of particles of the Brownian
in the search space.

The Algorithm
Ringed Seal Search (RSS) is particularly based on seal pup search for best lairs to escape preda-
tors. Everytime a new lair with a good quality is found, the pup will move into it. At the end,
the lair (habitat) with the best fitness (quality) will be the term that RSS is going to optimize.
The RSS scenario is based on the following representations:

1. Each female seal gives birth to one pup at a time in a specific habitat chosen randomly.

Fig 3. A model of Seal Search during urgent state (a), and normal state (b).

doi:10.1371/journal.pone.0144371.g003
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2. The seal pup moves randomly inside its ecosystem to find a good lair to escape predators.

3. The movement of the seal pup can take two states: Normal where the search is intensive
using a Brownian walk or Urgent where the search is extensive using Levy walk.

4. If Lbest,k the best seen lair from the current K of the existing lairs Lbest,k is better than Lbest,k−1

the best of the previous iteration in term of fitness value, Lbest is updated to be Lbest,k, other-
wise Lbest remains with no update.

5. Gradually, worse lairs will be abandoned and seals continue moving to other lairs (or cham-
bers) (convergence to good solutions).

The number of lairs is fixed where the mortality rate of seals is interpreted by the rate of
lairs destruction which is equal to 15% [58]. The complete algorithm is divided into three main
parts. The first part corresponds to the initialization stage, while the remaining two stages rep-
resent the search for new solutions (lairs) and abandonment of worse lairs, respectively. All the
optimization processes consists of a vector of values Li (i = 1,2,� � �,n) representing the initial
solution. The overall process of optimization is described in Fig 4.

Fig 4 shows the main skeleton of RSS. The algorithm starts with an initial number of birth-
ing lairs n. In this algorithm we assume that the lairs are multi-chambered. The pups move in
the search space to get new lairs with better quality. For each new found lair, the fitness is eval-
uated based on the seal’s decision to move, if the new lair is better than previous. After ranking
the lairs, the RSS selects randomly 15% from the search space and replaces the worse lairs. At
the end, according to the stop criterion, the RSS returns the best lair. The main steps of Fig 4
are described in details as below:

Generating Initial Lairs
Solving an optimization problem always starts with initial values. For that it is necessary that
these initial values be formed as an array. Here in RSS algorithm the values represent the lair in
which the seal pup is living. The lair is defined as below:

Li; i ¼ ð1; 2; � � � ; nÞ: ð5Þ

The lairs are distributed randomly, and each lair l contains many chambersm. For example,
for a lair i, it is an array of [1 ×m], representing current existing lair l of a habitat.

L ¼ ½1�m	: ð6Þ
Such values are randomly and uniformly distributed at the search space between the pre-

defined lower bound Lbj and upper bound Ubj, as illustrated in the following expression:

Li ¼ Lb þ ðUb� LbÞ:randðsizeðLbÞÞ ð7Þ

i ¼ ð1; 2; � � � ; nÞ
where i represents the number of the lair and n indicates the number of the initialized lairs.

Seal’s Search for Lairs
During each iteration, the pup performs a movement and selects a lair randomly (a new solu-
tion). The movement can be in two different patterns: in normal state using Brownian (inten-
sive) or in an urgent state using Levy walk (extensive). For each mode there is a specific type of
random walk, where the steps are determined in terms of the step length, with a specific
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probability distribution with the search direction being random. The main operators of search
are described as below:

Random Noise. In order to simulate the random external noise emitted by predators, the
proposed algorithm generates a uniformly distributed pseudorandom integer to model the
noise ω. The noise ω takes two values: ω = 0 and ω = 1. If ω = 0, the search space state (O,ρ)
will be in a normal state, and an intensive search (exploitation) will be performed by the seal
pup at the proximity of the multi-chambered lair. By contrast if ω = 1, the search space (O,ρ)

Fig 4. The Ringed Seal Search algorithm.

doi:10.1371/journal.pone.0144371.g004
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state will be in a urgent state, as a result the seal performs an extensive search to find a new lair
(exploration).

Normal State. In the normal state, the random noise value ω = 0, then the seal @ experi-
ment a normal behavior and search. Such state is characterized by a randommovement at the
proximity of the multi-chambered lair. Therefore, the movement is modeled via a Brownian
walk as a non-heavy tailed step length that can be interpreted as an intensive search
(exploitation).

Urgent State. In the urgent state, the seal is threatened by the external noise emitted. As a
result, the search space (O,ρ) takes an urgent state affected by the external noise emitted ω = 1.
This state is characterized by an extensive walk in the search space. It is modeled via a Levy
walk which is known by a heavy tailed step length distribution which is suitable for search in
case of sparse targets. The nature of the urgent state case stimulates the seal to move outside
the lair, and tries to get another solution to escape the predator’s threat.

Best Lair Updating
Despite the fact that this updating process is not a part of the Sensitive Search Model, it is used
to simply select and store the best so far solution (lair) found. In order to update the best lair
Lbest found so far, the best seen lair from the current K of the existing lairs Lbest,k is compared to
the best lair of the previous iteration Lbest,k−1. If Lbest,k is better than Lbest,k−1 according to its fit-
ness value, Lbest is updated to be Lbest,k, otherwise Lbest remains with no update. Thus Lbestmem-
orizes the best historical lairs found so far.

Abandoning Worse Lairs
After all the seals have moved to new lairs, certain lairs with high smell index will be detected
and destroyed by the bear. The percentage of destruction of lairs (mortality rate of seals) is set
to 15% by default, the same rate found in nature [42], and it can be modified according to the
nature of optimization problem. These abandoned lairs will not be suitable to host pups again
and will be abandoned definitively. The rest of the lairs will host pups until the pups decide to
leave due to one of the reasons below:

1. The snow covered the lair has melted.

2. A predator attacks the lair, so the seal escapes the area.

Another interesting feature for seal pups is that one lair can be used communally by differ-
ent seal pups [58], something that occurs rarely in nature.

Convergence to Optimal Lairs
After certain iterations, all the seal pups move to a new lair (new solutions), which is better
than the previous locations. These newfound lairs will provide better protection to the pups to
avoid the predator’s threat. As a consequence, there will be less killed seal pups by predators,
which can ensure the reproduction of new generations. The fast convergence to the optimal
locations (lairs) ends the RSS algorithm quickly.

Fig 5 below shows a data flow of the proposed algorithm. Like other metaheuristic algo-
rithms, the proposed algorithm starts with initial birthing lairs containing seal pups. To make
the terminology clear and easy, we can use the following simple terms. Each lair represents a
solution. The quality of the lairs represents the quality of the solution, and thus the suitability
of the lair for seal pupping.
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Fig 5. Data flow in the RSS algorithm.

doi:10.1371/journal.pone.0144371.g005
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The RSS in this paper can be described as an iterative algorithm based on population.
Despite other population-based algorithms such as GA, where the reproduction of new genera-
tions ensures generating new solutions, the RSS is based only on seal pups life cycle. As all pop-
ulation based algorithms, RSS starts with an initialized number of lairs.

Certain studies about asymptotic probability convergence theories considering the underly-
ing operations which are characterized by a Markov nature, requires to be balanced, and thus
resulting in the algorithm wasting a lot of its efficiency. The power of stochastic algorithms
mainly is based on the fact that the probabilistic nature of the algorithms guarantee that the
algorithms do not necessarily get trapped at local optima.

The RSS consists of two search states that alternate randomly via the noise emitted by pred-
ators. This can provide a balance between exploitation and exploration of the search, and thus
the probability to get local optima easily is very low.

In the following section, RSS is tested and validated using 15 benchmark optimization prob-
lems (benchmark functions). Then, a comparison with GA, PSO and CS is presented.

Experimental Results
A comprehensive set of 15 test functions, collected from references [10,17,19,20,71–75] were
used to test the performance of the proposed algorithm. Table 1 presents the benchmark test
functions used in this experimental study. According to the references mentioned above, the
selected functions fulfil the requirements of uni-objective and multi-objective problems. It is
very important to highlight that the main target of this benchmarking test is to check whether
the proposed algorithm RSS is able to solve uni-objective and multi-objective optimization
problems. The values of n represent the dimension of the problem (function), f� indicates the
optimum value of the test function, and S indicates the search space bounds. The optimum val-
ues of the functions F1,F4,F6,F9,F10,F11,F12,F13,F15 is at f� = 0, for F2 is at f� = −1, for F3 is at f� =
−418.982n, for F5 is at f� = −1.8013, for F7 is at f� = −4.6877, for F8 is at f� = −186.730, for F14 is
at f� = −186.730.

A description of the test function F5 (Bivariate Michalewicz) is presented in Fig 6 (for other
test functions: refer to Figs A-N in S1 Appendix). It is considered as a multi-objective function,
which have n local optima. This function is characterized by the parameterm that defines the
ruggedness (steepness) of the valleys. The setting ofm with a large value conducts to uneasy
search. When them value is very large, the functions perform as a needle in the haystack,
something that is so difficult to find, especially because the area of search is too large.

The search area is bounded to a hypercube, where (x,y) 2 [0,5]×[0,5],i = 1,� � �,n, and the
value of m = 10. The global minimum is approximated by f� = −1.8013 for n = 2. The landscape
of the function F5 is equation is described in Fig 7.

From Fig 7, we can notice that the used lairs are converging towards the global optimum.
The figure also shows that the lairs are distributed at different local optima. This feature dem-
onstrates the ability of RSS to deal with multi-objective problems and escape local optima
traps. Escaping from local optima is particularly related to the optimal balance between exploi-
tation and exploration, which is realized via the sensitive search model. As a result, we can con-
clude that modeling of the external noise via a uniform distributed pseudorandom integer is
efficient for the imitation of the switch between normal state and urgent state.

In order to confirm the efficiency of the sensitive search model to deal with uni-objective
and multi-objective problems, a series of simulations were tested with a varied number of lairs:
l = 5 until l = 200. The results show that an efficient result for the majority of the optimization
problems is achieved when l = 10. The results also show that the convergence is not affected by
changing the parameters values. The following section introduces the performance of the
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proposed algorithm to other meta-heuristic algorithms based on the standard problems (test
functions).

Performance Comparison with Other Meta-Heuristic Approaches
We have applied the RSS algorithm to fifteen test function whose results have been compared
to those obtained by the GA, the PSO and the CS. These algorithms are considered as the most
popular baseline approaches in many optimization applications [10,11,18,20,23,76]. In order
to make the comparison more valuable CS was selected. CS is considered as a hill climbing var-
iant that comprises the brood parasitic behaviour of cuckoo birds, and it uses Levy flights to
enhance the balance between exploitation and exploration of the search space [10]. The overall
comparison, and the parameters of each algorithm were set to be compatible with their original
setting. The maximum number of iterations for the test functions in Table 2 and Table 3 was

Table 1. List of benchmark test functions.

Test function F_id S f* n

fðxÞ ¼
Xn
i¼1

x2i
F1 [−5.12,5.12] 0 30

f(x,y) = −cos(x)cos(y)exp[−(x−π)2−(y−π)2] F2 [−100,100] −1 30

fðxÞ ¼
Xn
i¼1

½�xisinð
ffiffiffiffiffiffi
jxij

p
Þ	 F3 [−500,500] −418.98n 30

fðxÞ ¼ �20:exp
ffiffi
1
n

pXn
i¼1

x2i

 !
� exp

ffiffi
1
n

pXn
i¼1

cosð2pxiÞ þ ð20þ eÞ
 !

F4 [−32.76,32.76] 0 30

fðx; yÞ ¼ �sinðxÞsin2m x2

p

� �� sinðyÞsin2m 2y2

p

� �
F5 [0,5] −1.8013 30

fðxÞ ¼ 10nþ
Xn
i¼1

½x2i � 10cosð2pxiÞ	
F6 [−5.12,5.12] 0 30

fðxÞ ¼
Xn
i¼1

sinðxiÞ sin
ix2i
p

� �	 
2m F7 [0,π] −4.6877 30

fðx; yÞ ¼
X5
i¼1

icos½ði þ 1Þx þ 1	
X5
i¼1

cos½ði þ 1Þy þ 1	
F8 [−10,10] −186.730 30

fðx; yÞ ¼
Xn�1

i¼1

½ð1� xiÞ2 þ 100ðxiþ1 � x2
i Þ2	

F9 [−10,10] 0 30

fðxÞ ¼ 1
4000

Xn
i¼1

x2
i �

Yn
i¼1

cos
xiffiffi
i

p
� �

þ 1
F10 [−600,600] 0 30

fðxÞ ¼ ðx1 � 1Þ2 þ
Xd
i¼2

ið2x2i � xi�1Þ2
F11 [−10,10] 0 30

fðxÞ ¼ sin2ðpo1Þ þ
Xd�1

i¼1

ðoi � 1Þ
2

1þ 10sin2ðpoi þ 1Þ� �þ
ðwd � 1Þ2 1þ sin2ð2podÞ� �

F12 [−10,10] 0 30

fðxÞ ¼
Xd
i¼1

Xd
j¼1

ðji þ bÞ xi
j

� �i

� 1

 ! !2 F13 [−d,d] 0 30

fðxÞ ¼
X5
i¼1

icos i þ 1ð Þx1 þ i
� � ! X5

i¼1

icos i þ 1ð Þx2 þ i
� � !

F14 [−10,10] −186.730 30

fðxÞ ¼
Xn
i¼1

x2i
F15 [−5.12,5.12] 0 30

doi:10.1371/journal.pone.0144371.t001
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set to 100. These criterion also have been selected to fulfil the requirements of similar works
highlighted in the literature.

Parameters Setting. The parameters setting for each algorithm during this comparison is
described as below:

1. Genetic Algorithm: the parameters of GA are set to Gi = 100 and the population size α = 20;
where the total number of iterations is set to 100 for all the test functions.

Fig 7. Searching for a new solutions by using Ringed Seal Search, final achieved solutions are
highlighted with a diamond.

doi:10.1371/journal.pone.0144371.g007

Fig 6. F5 function in 2D form = 10, n = 5.

doi:10.1371/journal.pone.0144371.g006
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2. Particle Swarm Optimization: the velocity, social and cognitive parameters are set to 2.

3. Cuckoo Search: The parameters consist of the number of the nest, which is set to 15 nests,
and the rate of detection pα = 0.25.

4. Ringed Seal Search: Two parameters have been tuned up in RSS: the mortality rate of the
seal pups: rate = 15%, and the initial number of the birthing lairs: l = 10.

The experimental comparisons between these meta-heuristic algorithms with the proposed
RSS were developed according to the type of the test function: uni-objective such as F1 and F2,
or multi-objective such as: F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14 and F15. The reason
behind choosing only two uni-objective functions is that uni-objective problems are easy to
solve (the landscape is not complex). In some literatures it is called smooth problem containing
only one global optimum. In contrast, the multi-objective problems were tested with 8 test
functions representing variant complex problems. The test consists of comparing the RSS to
other algorithms such as GA, PSO and CS. The reported results in the next sections are fea-
tured with the following performance indexes during 100 iterations: the Average Best-so-far
(AB) solution, the Median Best so-far (MB), the Standard Deviation (SD) of the best-so-far
solution, the Variance (Var) of the best-so-far solution and the Solution Quality (SQ) for each
function. During each run the best value ofM is saved; thus during 100 times run, 100 best val-
ues are produced. The Average best is computed from the mean of 100 best values. The Median
best is the midpoint of 100 best values. The SD is the standard deviation of 100 best values and
the Var is just the square of the SD. The mathematical formulations are defined as below:

AB ¼
Xn

i¼1
fbest i

n
ð8Þ

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðfbest i � ABÞ2
n� 1

s
ð9Þ

Table 3. Var and SQ results using uni-Objective functions.

Function ID GA PSO CS RSS

F1 Var 0.0012 0.0012 0.0345 0.0342

SQ 0.0257 0.0001 0 0

F2 Var 0.0043 0.0043 0.1516 0.1514

SQ -0.0377 -0.9724 -0.7039 -0.9962

doi:10.1371/journal.pone.0144371.t003

Table 2. AB, MB and SD results using uni-Objective functions.

Function ID GA PSO CS RSS

F1 AB 0.2096 0.2096 0.1584 0.1516

MB 0.0537 0.0537 0.9852 0.9472

SD 0.0360 0.0360 0.1858 0.1850

F2 AB -0.9934 -0.9934 -0.6262 -0.6299

MB -1.0000 -1.0000 -0.8049 -0.8141

SD 0.0660 0.0660 0.3894 0.3892

doi:10.1371/journal.pone.0144371.t002
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MB ¼ fbest k; where k ¼
nþ 1

2

� �
ð10Þ

where fbest i is the best value of each run and n is the number of run.
Uni-objective test functions. This experiment was applied on uni-objective test functions

F1 and F2. The obtained results are presented in the following table.
From Table 2, the proposed algorithm RSS performs better than CS, PSO and GA for both

F1 and F2. For RSS, this can be interpreted as a fast convergence to the optimum better than
other algorithms. Moreover, this difference in performance is related to the trade-off between
exploration and exploitation during the search for the optimum. This trade-off can be seen in
the reported values of AB, MB and SD. For more performance tests, we calculate the variance
to measure the dispersion of the achieved solutions and the solution quality to measure the
capability to find global optimum values.

From Table 3, the variance and the solution quality results confirm the trade-off between
exploitation and explorations during the search for solutions. The variance values of RSS indi-
cate that there is a dispersion in terms of the achieved solutions with a value Var = 0.0342 for
F1 and a value Var = 0.1514 for F2. Furthermore, the quality solution values for RSS were equal
to the global optimum values of the corresponding functions which demonstrate that RSS is
able to search and find global optimum values.

The experimental results obtained from uni-objective test functions show that RSS achieved
the global optimum easily. On the other hand the comparison shows that there is no significant
difference with other approaches. This is related to the nature of the problems which are con-
sidered as smooth problems which are easy to solve compared to multi-objective problems
which are more complex.

Multi-objective test functions. These functions represent a complex benchmark test as
they contain various local optima. In such multi-objective problems, the results reflect the abil-
ity of the proposed algorithm to escape local optima traps. The results are averaged over 100
iterations, reporting the performance index for each function as shown in Table 4.

From Table 4, AB, MB and SD results show that RSS outperforms other algorithms in most
of the functions. The superiority of RSS over CS, PSO and GA can be seen in F3, F4, F6, F8, F10,
F11, F13 and F14 where RSS was able to reach the global optimum during 100 iterations better
than other algorithms. For example, in F6 RSS could reach an AB of 0.0159, by contrast CS
only achieved 0.1493, PSO achieved 9.8941 and GA achieved 1.3062. In the following table the
variance and the solution quality were measured for this category of functions in order to get
more evidences about the outperformance of RSS.

From Table 5, the variance and solution quality values demonstrate the superiority of RSS
compared to other algorithms. This can be justified by the diversification and the optimal bal-
ance between exploration and exploitation by RSS during the search for the global optimum.
As a consequence, the RSS shows an outstanding capability to search and find new positions
with quality solution equal to the expected global optimums.

The balance between exploitation and exploration during the search is achieved through the
sensitive search model, where the seal pup can take two different states: urgent or normal. It is
very important to highlight the importance of the obtained results in term of measuring the
ability of RSS to escape poor local optima traps and its ability to locate a near-global optimum.
For the multi-objective functions F3 to F15 are quite pertinent as the number of their local min-
ima increases once their dimensions n increase.
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From Tables 2, 3, 4 and 5, we can conclude that RSS, CS, PSO and GA were able to find the
global optimum during 100 iterations. However, RSS shows an outperformance in terms of the
average best solutions and also the solution quality in most of the test functions. Furthermore,
the measurement of the standard deviation, median best and variance clarified how RSS search
is diversified. This diversification is the fruit of the optimal balance between exploration and
exploitation. Another advantage for RSS can be seen in the high quality solutions which are

Table 4. AB, MB and SD results usingmulti-objective functions.

Function ID GA PSO CS RSS

F3 AB -820.7881 -718.5607 -827.2707 -831.1258

MB -831.4344 -719.5274 -837.6642 -837.9523

SD 24.5092 117.2421 29.5045 26.0190

F4 AB 3.8122 0.4933 0.0270 0.0105

MB 3.7101 0.0279 0.0123 0.0028

SD 2.0933 1.5303 0.0360 0.0259

F5 AB -1.5819 -1.5933 -1.6026 -1.6026

MB -1.5906 -1.6026 -1.6026 -1.6026

SD 0.0228 0.0526 0 0

F6 AB 1.3062 9.8941 0.1493 0.0159

MB 1.1959 3.6502 0.0135 0.0052

SD 0.9546 11.1731 0.3092 0.0216

F7 AB -1.7725 -1.7847 -1.8013 -1.8013

MB -1.7878 -1.8013 -1.8013 -1.8013

SD 0.0443 0.0928 0 0

F8 AB -181.0069 -79.1157 -209.2064 -210.1891

MB -185.0235 -27.8028 -210.3642 -210.4089

SD 26.0941 109.9932 3.7531 0.8273

F9 AB 0.1736 16.9143 0.0208 0.0033

MB 0.0964 0.3611 0.0009 0.0001

SD 0.1782 72.6749 0.0452 0.0093

F10 AB 0.6182 1.3113 0.0223 0.0173

MB 0.6226 1.0656 0.0215 0.0149

SD 0.3043 1.4230 0.0140 0.0123

F11 AB 0.3577 6.2987 0.0001 0

MB 0.1872 0.0001 0 0

SD 0.5382 31.7590 0.0004 0

F12 AB 0.0467 0.0035 0 0

MB 0.0248 0 0 0

SD 0.0527 0.0214 0 0

F13 AB 0.7116 10.1861 0.0002 0

MB 0.3604 0.0341 0 0

SD 0.8461 39.4115 0.0007 0.0001

F14 AB -7.0474 -8.5533 -11.0052 -11.0289

MB -5.2529 -11.0297 -11.0288 -11.0309

SD 2.9045 4.3184 0.0616 0.0052

F15 AB -177.8809 -95.2011 -186.6910 -186.6111

MB -180.4464 -137.1709 -186.7237 -186.6907

SD 9.3851 92.5425 0.0987 0.1759

doi:10.1371/journal.pone.0144371.t004
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equal or approximately near the global optimum. In the following figures we explain how RSS
algorithm consumed less number of iterations to achieve the global optimum.

Figs 8 and 9 show a sample convergence rate plot of F9 function using RSS, CS, PSO and GA
during 30 iterations. As we can see in Fig 8 (A), RSS has reached a global minimum at the 17th

iteration and the obtained AB value is 0.7119. On the other hand, with a same landscape prob-
lem, in Fig 8 (B), CS algorithm approximately reached a global minimum at the 30th iteration
with a value AB equal to 0.1619.

The Convergence rate of F9 function using PSO achieved a global minimum at 25th iteration
and the AB value is 0.3016 as shown in Fig 9 (A). On the other hand, Fig 9 (B) shows GA
reached a global minimum at 30th iteration and the AB value is 0.1619. In conclusion, the F9
test function shows how the RSS converged quickly to the global optimum compared to PSO,
GA and CS. For more test results, we applied GA, PSO, CS and RSS on all the test functions
mentioned in Table 1 to compare the average best for each algorithm.

Figs 10–17 present the convergence rates based on the average best outputs for GA, PSO, CS
and RSS algorithms considering the functions F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,
F14 and F15. Thus, the smaller the number of required steps, the higher the convergence speed.
The results show that RSS consumes less time to reach the global optimum. This is a proof that
RSS outperforms GS, PSO and CS in terms of convergence to the global optima. The evidence
shows how RSS quickly converged to the global optimum compared to other algorithms.

Table 5. Var and SQ results usingmulti-objective functions.

Function ID GA PSO CS RSS

F3 Var 600.7000 13745.71 870.5155 676.9883

SQ -812.2354 -765.3373 -831.8597 -832.6857

F4 Var 4.3819 2.3418 0.0012 0.0006

SQ 3.9664 0.7778 0.0171 0.0072

F5 Var 0.0005 0.0028 0 0

SQ -1.5317 -1.5209 -1.6026 -1.6026

F6 Var 0.9112 124.8382 0.0956 0.0005

SQ 1.1525 4.3005 0.1450 0.0174

F7 Var 0.0020 0.0086 0 0

SQ -1.7737 -1.7181 -1.8013 -1.8013

F8 Var 0.0681 1.2099 0.0014 0.0001

SQ -167.0768 -88.2854 -210.2348 -209.8650

F9 Var 0 5.2816 0 0

SQ 0.1694 106.0209 0.0218 0.0052

F10 Var 0.0926 2.0248 0.0002 0.0002

SQ 0.6132 0.7230 0.0185 0.0169

F11 Var 0.0003 1.0086 0 0

SQ 0.3733 0.2911 0.0002 0

F12 Var 0.0028 0.0005 0 0

SQ 0.0591 0 0 0

F13 Var 0.0007 1.5533 0 0

SQ 0.2663 5.0913 0.0001 0

F14 Var 8.4359 18.6484 0.0038 0

SQ -7.5363 -8.2977 -10.3955 -11.0303

F15 Var 0.0881 8.5641 0 0

SQ -176.5184 -117.7560 -186.6132 -186.6440

doi:10.1371/journal.pone.0144371.t005
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During little iteration RSS can have the ability to reach the global optimum. This can be justi-
fied by the optimal exploitation-exploration based on the sensitive search model inspired from
seal movement. It is worth noting that, faster convergence does not necessarily mean an opti-
mal output. In fact, too fast convergence may lead to the problem of prematureness, which
leads the search to be trapped at local optima positions. As shown in Table 3 and Table 5, the
SQ values demonstrate that the final achieved positions are equal or quite near the optimal val-
ues. This is a proof that the RSS mechanism escaped local optima traps.

To uncover the underlying mechanism of our algorithm, we examined the optimization
process in terms of variance point of view. For the sake of simplicity, in the following we will
present the results for the function F15. The results for other functions are alike and not shown
here.

From Fig 18, the variance values of RSS confirm the AB convergence results found previ-
ously. This finding is related to the fact that the search dispersion is in harmony with the

Fig 8. Average Best convergence of F9 test function using RSS (a) and CS (b).

doi:10.1371/journal.pone.0144371.g008

Fig 9. Average Best convergence of F9 test function using PSO (a) and GA (b).

doi:10.1371/journal.pone.0144371.g009
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convergence which can be seen in the smaller values of variance at certain level of iterations.
For example, starting from iteration = 24 the RSS achieves a variance Var = 0. This can be justi-
fied by the reason that RSS search has already reached or quite near the global optimum. Tak-
ing into account the variance values during the first 20 iterations, we can conclude that the
variance has been influenced by the search findings and the focus on the positions with high
fitness values reduces the dispersion of the search positions gradually until the best optimal
position is found.

In the following section, a case study based on FPGA platform is implemented in order to
show the significance of using RSS algorithm.

FPGA Implementation
In this section, we present the implementation of RSS on FPGA. Therefore, the results are com-
pared with those obtained by Simulated Annealing (SA) [77,78]. FPGAs are semiconductor
devices based on a matrix of configurable logic blocks (CLBs), which are connected to each

Fig 10. AB convergence of CS, RSS, PSO and GA for minimization of (a) F1 and (b) F2.

doi:10.1371/journal.pone.0144371.g010

Fig 11. AB convergence of CS, RSS, PSO and GA for minimization of (a) F3 and (b) F4.

doi:10.1371/journal.pone.0144371.g011
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other via programmable interconnects. The main feature of FPGAs is the capability to be
reprogrammed to specific application or functionality requirements after manufacturing.
FPGAs are used for a vast range of applications in science and technology, such as therapy
applications in medicine, aerospace applications, wired communications applications, multi-
media and safety systems. It has also been shown that FPGAs are suitable for the implementa-
tion of soft computing applications [79–81]. At high level, the mapping of the RSS algorithm
into the corresponding FPGA design is straightforward as shown in Fig 19. It consists of two
main modules: RSS module and detection module.

RSSModule
A block diagram of the hardware implementation of the RSS algorithm can be seen in Fig 20.
The design is divided into four main blocks: an evaluator block, comparator block, RAM block
and an update block.

Fig 12. AB convergence of CS, RSS, PSO and GA for minimization of (a) F5 and (b) F6.

doi:10.1371/journal.pone.0144371.g012

Fig 13. AB convergence of CS, RSS, PSO and GA for minimization of (a) F7 and (b) F8.

doi:10.1371/journal.pone.0144371.g013
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In this system, we used 10 lairs (initial candidate solutions). These lairs work in parallel to
achieve the targets of the objective function.

The Evaluator. The evaluator calculates the fitness value. In this paper, we chose the Ras-
trigin function as a fitness function. It is described as below:

f ðxÞ ¼ 16þ
X2
i¼1

x2i � 8 1� 4x2i þ
1

4
x4i �

1

128
x6i þ

1

8192
x8i

� �� �
ð11Þ

This test function is assumed with an optimal value of 0 and 8th order. The RSS searcher is
required to find the optimal point (0.0 0.0) in the range [-5.5, 5.5]. A zero is set as the optimal
value of this multi-objective objective problem. Fig C in Appendix A shows the shape of this
function.

Fig 14. AB convergence of CS, RSS, PSO and GA for minimization of (a) F9 and (b) F10.

doi:10.1371/journal.pone.0144371.g014

Fig 15. AB convergence of CS, RSS, PSO and GA for minimization of (a) F11 and (b) F12.

doi:10.1371/journal.pone.0144371.g015
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The Comparator. The comparator block consists of comparing the current fitness value
with the best fitness value. In case where the current fitness value is better than the global fit-
ness value, the global fitness value is updated to be equal to the current. Then, the comparator
block provides a signal to the Lbest RAM and stores the current position in Lairs RAM.

The Memory Block. The memory block constitutes three RAMS: Lairs RAM, Lbest RAM
and State RAM. The Lairs RAM is used to store the position of the lairs, the Lbest RAM stores
the best lairs values and the State RAM stores the current state of the RSS searcher.

The Updater Block. The lairs position and states are updated periodically until the best
solution is achieved. The initial values of the update block come from the RAM block. After
computation, the position and the state values are then delivered back to the RAM.

Fig 16. AB convergence of CS, RSS, PSO and GA for minimization of (a) F13 and (b) F14.

doi:10.1371/journal.pone.0144371.g016

Fig 17. AB convergence of CS, RSS, PSO and GA for minimization of F15.

doi:10.1371/journal.pone.0144371.g017
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The Detection Module
The role of the detection module consists of finding and storing the best estimated value for
each lair. The module searches the best lair ever found, called group best in this paper. Then,
the lairs’ best values and the group best value are stored in the RAMmodule.

Simulation Results
The simulation results in this paper are obtained using the Rastrigin test function. In this simu-
lation, 10 lairs were used as candidate solutions. These lairs work in parallel to achieve the opti-
mal value of the objective function. The obtained results are compared with those obtained by
SA. Both RSS and SA were tested based on the objective function to see which one performs
better in terms of achieving the optimal value 0.

The parameters setting of RSS and SA algorithm during this simulation are described as
below:

1. Simulated Annealing: Hard LimitHL = 20, Soft Limit SL = 30, maximum temperature
Tmax = 100, minimum temperature Tmin = 0.01.

2. Ringed Seal Search: Only one parameter has been tuned up in RSS: The initial number of
the birthing lairs: l = 10. However, the mortality rate of the seal pups is set by default:
rate = 15%.

Fig 18. The variance values during different iterations of CS, RSS, PSO and GA for F15.

doi:10.1371/journal.pone.0144371.g018

Fig 19. Configuration of the RSS system.

doi:10.1371/journal.pone.0144371.g019
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Fig 21 shows the evaluation function of RSS compared to SA. Both of the algorithms were
able to reach the optimum value 0. However, RSS outperformed SA in terms of fast conver-
gence to the global optimum. The convergence of RSS started almost from the 50th iteration. In
contrast, SA consumed more time, almost 300 iterations to start the convergence. The outper-
formance of RSS can be interpreted by the optimal balance used by RSS during search.

This result also shows that the FPGA system based on RSS can easily find the optimum with
10 lairs as candidate solutions. After almost 50 iterations, the found lairs were very close to the
global optimum. As a consequence, this comparison demonstrates the significance of using
RSS to solve optimization problems for FPGA platforms.

Contribution
The contributions of this work are underlined as below:

1. The main component in the proposed algorithm RSS is the Sensitive Search Model which is
inspired by the ringed seal behavior. This model is used by RSS to get an optimal balance
between exploitation and exploration of the search.

2. The search in RSS is inspired by the ringed seal search, which is able to solve uni-objective
and multi-objective problems with high performance compared to other popular algorithms
such as GA, PSO and CS.

3. The number of parameters to tune for the proposed algorithm RSS is only one parameter,
making RSS to be less sensitive to parameters settings compared to CS with two tuning
parameters.

Significance
The proposed RSS algorithm is able to solve uni and multi-objective optimization problems.
The significance of such algorithms can be summarized into two main points:

1. From a heuristic search point of view, RSS algorithm represents an innovative way on how
searchersmove in the search space to find global optimum values. Moreover, this paper con-
stitutes the second attempt in metaheuristic algorithms that addresses the problem of opti-
mal balance between exploration and exploitation after a first attempt presented by Yang
et al [16].

2. From optimization applications point of view, the results obtained in this paper show that
RSS has the potentials to be used in solving problems such as cancer classification applica-
tions[82], optimization of web service composition processes [83], vehicle routing system
applications [84], design of embedded systems [85], collective robotic search applications
[86], data clustering applications [87–90], digital games applications [91], medical images
applications [92], etc.

Fig 20. The block diagram of the RSSmodule.

doi:10.1371/journal.pone.0144371.g020
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Conclusions
In last recent years, several metaheuristic optimization algorithms have been introduced. The
main idea consists of imitating a natural phenomenon that has existed on the earth since mil-
lions of years. Typically, these phenomena strategy consists of two parameters: a population
parameter, and the movement inside the search area. In this paper, we presented a novel
nature-inspired algorithm for global optimization called Ringed Seal Search (RSS). It is
inspired by the amazing search behavior of seal’s pups. The search is characterized by an opti-
mal balance between exploitation-exploration of the search based on the sensitive behavior of
seals. A sensitive search is modeled, where the pup can be in normal state when there is no
external noise, or urgent state in case of external noise. In normal state the seal pup performs a
Brownian walk inside the local area. However, during urgent state the seal pup leaves the prox-
imity and performs Levy walk to find other solutions. This taxonomy expected to fulfill the
requirements of intensification (exploitation) and diversification (exploration).

RSS was experimentally tested considering a suite of fifteen benchmark test functions. The
performance of RSS was also evaluated in terms of convergence rate to the global optimum
compared to GA, PSO and CS. The results confirmed that RSS outperforms other algorithms
in terms of fast convergence rate to the global optimum.

The RSS outperformance of GA, PSO and CS is associated with two reasons:

1. The division of the search pattern into two states (normal and urgent) provided a strong
mechanism to model an optimal balance between exploitation and exploration.

Fig 21. Evaluation function of RSS compared with SA.

doi:10.1371/journal.pone.0144371.g021

Ringed Seal Search and Global Optimization

PLOS ONE | DOI:10.1371/journal.pone.0144371 January 20, 2016 26 / 31



2. The number of parameters to tune for RSS is less as compared with other algorithms such
as PSO and GA.

The RSS is able to be used to study multi-objective problems including NP-hard problems.
Seal sensitivity, point to point random trajectory for the seal are features that deserve further
focus in future research. Moreover, further studies will be conducted in the future to study
Pareto fronts for trade-off solutions generated by the RSS. We also believe that this work can
accept different modification based on the behavior of seals.

Supporting Information
S1 Appendix. The landscaped of the test benchmark functions.
(ZIP)

Acknowledgments
This work is supported by University of Malaya High Impact Research Grant no vote UM.C/
625/HIR/MOHE/SC/13/2 fromMinistry of Higher Education Malaysia. We are grateful to
Kirsten Durward for the valuable comments on an early draft of the manuscript.

Author Contributions
Conceived and designed the experiments: YS ITRY. Performed the experiments: YS ITRY.
Analyzed the data: YS. Contributed reagents/materials/analysis tools: YS ITRY. Wrote the
paper: YS TH VB HC AR. Contributed in editing the paper organization: TH VB.

References
1. Srinivas M, Patnaik LM (1994) Genetic algorithms: a survey. Computer 27: 17–26.

2. Kennedy J, Eberhart R. Particle swarm optimization; 1995. pp. 1942–1948 vol.1944.

3. Yang X-S, Deb S (2014) Cuckoo search: recent advances and applications. Neural Computing and
Applications 24: 169–174.

4. Knysh DS, Kureichik VM (2010) Parallel genetic algorithms: a survey and problem state of the art. Jour-
nal of Computer and Systems Sciences International 49: 579–589.

5. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems:
Oxford university press.

6. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: Overview and conceptual compari-
son. ACM Computing Surveys (CSUR) 35: 268–308.

7. Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: A
survey. Applied Soft Computing 11: 4135–4151.

8. Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ (2009) A survey on metaheuristics for stochastic
combinatorial optimization. Natural Computing: an international journal 8: 239–287.

9. Alba E, Dorronsoro B (2005) The exploration/exploitation tradeoff in dynamic cellular genetic algo-
rithms. Evolutionary Computation, IEEE Transactions on 9: 126–142.

10. Yang X-S, Deb S, Deb S. Cuckoo Search via Lévy flights 2009. IEEE. pp. 210–214.

11. Yang X-S (2010) Nature-inspired metaheuristic algorithms: IEEE.

12. Beyer H-G, Schwefel H-P (2002) Evolution strategies–A comprehensive introduction. Natural comput-
ing 1: 3–52.

13. Blackwell T (2007) Particle swarm optimization in dynamic environments. Evolutionary computation in
dynamic and uncertain environments: Springer. pp. 29–49.

14. Chelouah R, Siarry P (2000) Tabu search applied to global optimization. European Journal of Opera-
tional Research 123: 256–270.

15. Rochat Y, Taillard ÉD (1995) Probabilistic diversification and intensification in local search for vehicle
routing. Journal of Heuristics 1: 147–167.

Ringed Seal Search and Global Optimization

PLOS ONE | DOI:10.1371/journal.pone.0144371 January 20, 2016 27 / 31

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0144371.s001


16. Yang Xin-She, Deb S, Fong S (2014) Metaheuristic Algorithms: Optimal Balance of Intensification and
Diversification. Applied Mathematics & Information Sciences Journal Volume 8, No. 3: PP: 977–983.

17. Yang X-S (2012) Flower Pollination Algorithm for Global Optimization. In: Durand-Lose J, Jonoska N,
editors. Unconventional Computation and Natural Computation: Springer Berlin Heidelberg. pp. 240–
249.

18. Yang X-S (2009) Firefly Algorithms for Multimodal Optimization. In: Watanabe O, Zeugmann T, editors.
Stochastic Algorithms: Foundations and Applications: Springer Berlin Heidelberg. pp. 169–178.

19. Yang X-S, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimiza-
tion. Engineering Computations 29: 464–483.

20. Rajabioun R (2011) Cuckoo optimization algorithm. Applied soft computing 11: 5508–5518.

21. Yang X-S, Deb S (2010) Eagle Strategy Using LévyWalk and Firefly Algorithms for Stochastic Optimi-
zation. In: González J, Pelta D, Cruz C, Terrazas G, Krasnogor N, editors. Nature Inspired Cooperative
Strategies for Optimization (NICSO 2010): Springer Berlin Heidelberg. pp. 101–111.

22. Chen G, Low CP, Yang Z (2009) Preserving and Exploiting Genetic Diversity in Evolutionary Program-
ming Algorithms. IEEE Transactions on Evolutionary Computation 13: 661–673.

23. Cuevas E, Echavarría A, Ramírez-Ortegón M (2014) An optimization algorithm inspired by the States
of Matter that improves the balance between exploration and exploitation. Applied Intelligence 40:
256–272.

24. Ostadmohammadi Arani B, Mirzabeygi P, Shariat Panahi M (2013) An improved PSO algorithm with a
territorial diversity-preserving scheme and enhanced exploration–exploitation balance. Swarm and
Evolutionary Computation 11: 1–15.

25. Araujo L, Merelo JJ (2011) Diversity Through Multiculturality: Assessing Migrant Choice Policies in an
Island Model. Evolutionary Computation, IEEE Transactions on 15: 456–469.

26. Paenke I, Jin Y, Branke J (2009) Balancing Population- and Individual-Level Adaptation in Changing
Environments. Adaptive Behavior 17: 153–174.

27. Tan KC, Chiam SC, Mamun AA, Goh CK (2009) Balancing exploration and exploitation with adaptive
variation for evolutionary multi-objective optimization. European Journal of Operational Research 197:
701–713.

28. Fernandes CM, Laredo JLJ, Rosa AC, Merelo JJ (2013) The sandpile mutation Genetic Algorithm: an
investigation on the working mechanisms of a diversity-oriented and self-organized mutation operator
for non-stationary functions. Applied Intelligence 39: 279–306.

29. Adra SF, Fleming PJ (2011) Diversity Management in Evolutionary Many-Objective Optimization. Evo-
lutionary Computation, IEEE Transactions on 15: 183–195.

30. Črepinšek M, Liu S-H, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: A sur-
vey. ACMComputing Surveys (CSUR) 45: 1–33.

31. Gwak J, Sim K (2013) A novel method for coevolving PS-optimizing negotiation strategies using
improved diversity controlling EDAs. Applied Intelligence 38: 384–417.

32. Liu S-H, Mernik M, Bryant BR (2009) To explore or to exploit: An entropy-driven approach for evolution-
ary algorithms. International Journal of Knowledge-Based and Intelligent Engineering Systems 13:
185–206.

33. Liu S-H, Mernik M, Hrnčič D,Črepinšek M (2013) A parameter control method of evolutionary algo-
rithms using exploration and exploitation measures with a practical application for fitting Sovova's mass
transfer model. Applied Soft Computing 13: 3792–3805.

34. Liu S-H, Mernik M, Bryant BR (2007) A clustering entropy-driven approach for exploring and exploiting
noisy functions. Proceedings of the 2007 ACM symposium on Applied computing. Seoul, Korea:
ACM. pp. 738–742.

35. Bogon T, Endres M, Timm I (2012) Gaining a Better Quality Depending on More Exploration in PSO. In:
Timm I, Guttmann C, editors. Multiagent System Technologies: Springer Berlin Heidelberg. pp. 30–39.

36. Gandomi AH, Yang X-S, Talatahari S, Deb S (2012) Coupled eagle strategy and differential evolution
for unconstrained and constrained global optimization. Computers & Mathematics with Applications
63: 191–200.

37. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. New York U6
—Book: Wiley.

38. De Jong KA (1975) An analysis of the behavior of a class of genetic adaptive systems: ProQuest, UMI
Dissertations Publishing.

39. Koza JR (1990) Genetic programming: a paradigm for genetically breeding populations of computer
programs to solve problems. Stanford University.

Ringed Seal Search and Global Optimization

PLOS ONE | DOI:10.1371/journal.pone.0144371 January 20, 2016 28 / 31



40. Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine Learning: Addison-Wes-
ley Longman Publishing Co., Inc. 372 p.

41. Schulte T, Keller T. Balancing Exploration and Exploitation in Classical Planning; 2014.

42. Nurzaman SG, Matsumoto Y, Nakamura Y, Shirai K, Koizumi S, Ishiguro H (2011) From Lévy to Brown-
ian: a computational model based on biological fluctuation. PloS one 6: e16168. doi: 10.1371/journal.
pone.0016168 PMID: 21304911

43. Benhamou S (2007) Howmany animals really do the Levy walk? Ecology [HWWilson—GS] 88: 1962.

44. Plank MJ, James A (2008) Optimal foraging: Lévy pattern or process? Journal of The Royal Society
Interface 5: 1077–1086.

45. Reynolds A (2009) Adaptive Lévy walks can outperform composite Brownian walks in non-destructive
random searching scenarios. Physica A: Statistical Mechanics and its Applications 388: 561–564.

46. Gautestad AO (2012) Brownian motion or Lévy walk? Stepping towards an extended statistical
mechanics for animal locomotion. Journal of the Royal Society, Interface / the Royal Society 9: 2332–
2340. doi: 10.1098/rsif.2012.0059 PMID: 22456456

47. Bartumeus F, Catalan J, Fulco U, Lyra M, Viswanathan G (2002) Optimizing the encounter rate in bio-
logical interactions: Lévy versus Brownian strategies. Physical Review Letters 88: 097901. PMID:
11864054

48. Bénichou O, Loverdo C, Moreau M, Voituriez R (2006) Two-dimensional intermittent search processes:
An alternative to Lévy flight strategies. Physical Review E 74: 020102.

49. Bénichou O, Loverdo C, Moreau M, Voituriez R (2011) Intermittent search strategies. Reviews of Mod-
ern Physics 83: 81.

50. Le Boeuf BJ, Crocker D, Grayson J, Gedamke J, Webb PM, Blackwell SB (2000) Respiration and heart
rate at the surface between dives in northern elephant seals. Journal of Experimental Biology 203:
3265–3274. PMID: 11023846

51. Pilfold NW, Derocher AE, Stirling I, Richardson E, Andriashek D (2012) Age and sex composition of
seals killed by polar bears in the Eastern Beaufort Sea. PloS one 7: e41429. doi: 10.1371/journal.
pone.0041429 PMID: 22829949

52. Hammill M, Smith T (1991) The role of predation in the ecology of the ringed seal in Barrow Strait,
Northwest Territories, Canada. Marine Mammal Science 7: 123–135.

53. Williams MT, Nations CS, Smith TG, Moulton VD, Perham CJ (2006) Ringed seal (Phoca hispida) use
of subnivean structures in the Alaskan Beaufort Sea during development of an oil production facility.
Aquatic Mammals 32: 311–324.

54. Gjertz I, Lydersen C (1986) Polar bear predation on ringed seals in the fast‐ice of Hornsund, Svalbard.
Polar Research 4: 65–68.

55. Kovacs KM, Lydersen C, Gjertz I (1996) Birth-site characteristics and prenatal molting in bearded seals
(Erignathus barbatus). Journal of Mammalogy 77: 1085–1091.

56. Pilfold NW, Derocher AE, Stirling I, Richardson E (2014) Polar bear predatory behaviour reveals sea-
scape distribution of ringed seal lairs. Population Ecology 56: 129–138.

57. Lydersen C, Gjertz I (1986) Studies of the ringed seal (Phoca hispida Schreber 1775) in its breeding
habitat in Kongsfjorden, Svalbard. Polar Research 4: 57–63.

58. Kunnasranta M, Hyvärinen H, Sipilä T, Medvedev N (2001) Breeding habitat and lair structure of the
ringed seal (Phoca hispida ladogensis) in northern Lake Ladoga in Russia. Polar biology 24: 171–174.

59. Ito H, Uehara T, Morita S, Tainaka K-I, Yoshimura J (2013) Foraging behavior in stochastic environ-
ments. Journal of ethology 31: 23–28.

60. Bartumeus F, Raposo EP, Viswanathan GM, da Luz MG (2014) Stochastic Optimal Foraging: Tuning
Intensive and Extensive Dynamics in Random Searches. PloS one 9: e106373. doi: 10.1371/journal.
pone.0106373 PMID: 25216191

61. Dees ND (2009) The role of stochastic resonance and physical constraints in the evolution of foraging
strategy.

62. Viswanathan GM, Da Luz MG, Raposo EP, Stanley HE (2011) The physics of foraging: an introduction
to random searches and biological encounters: Cambridge University Press.

63. Humphries NE, Queiroz N, Dyer JR, Pade NG, Musyl MK, Schaefer KM (2010) Environmental context
explains Lévy and Brownian movement patterns of marine predators. Nature 465: 1066–1069. doi: 10.
1038/nature09116 PMID: 20531470

64. Sims DW, Humphries NE, Bradford RW, Bruce BD (2012) Lévy flight and Brownian search patterns of
a free-ranging predator reflect different prey field characteristics. The Journal of animal ecology 81:
432–442. doi: 10.1111/j.1365-2656.2011.01914.x PMID: 22004140

Ringed Seal Search and Global Optimization

PLOS ONE | DOI:10.1371/journal.pone.0144371 January 20, 2016 29 / 31

http://dx.doi.org/10.1371/journal.pone.0016168
http://dx.doi.org/10.1371/journal.pone.0016168
http://www.ncbi.nlm.nih.gov/pubmed/21304911
http://dx.doi.org/10.1098/rsif.2012.0059
http://www.ncbi.nlm.nih.gov/pubmed/22456456
http://www.ncbi.nlm.nih.gov/pubmed/11864054
http://www.ncbi.nlm.nih.gov/pubmed/11023846
http://dx.doi.org/10.1371/journal.pone.0041429
http://dx.doi.org/10.1371/journal.pone.0041429
http://www.ncbi.nlm.nih.gov/pubmed/22829949
http://dx.doi.org/10.1371/journal.pone.0106373
http://dx.doi.org/10.1371/journal.pone.0106373
http://www.ncbi.nlm.nih.gov/pubmed/25216191
http://dx.doi.org/10.1038/nature09116
http://dx.doi.org/10.1038/nature09116
http://www.ncbi.nlm.nih.gov/pubmed/20531470
http://dx.doi.org/10.1111/j.1365-2656.2011.01914.x
http://www.ncbi.nlm.nih.gov/pubmed/22004140


65. Viswanathan GM, Buldyrev SV, Havlin S, da Luz MGE, Stanley HE, Raposo EP (1999) Optimizing the
success of random searches. Nature 401: 911–914. PMID: 10553906

66. Yanagida T, Ueda M, Murata T, Esaki S, Ishii Y (2007) Brownian motion, fluctuation and life. Biosys-
tems 88: 228–242. PMID: 17187927

67. Kashiwagi A, Urabe I, Kaneko K, Yomo T (2006) Adaptive response of a gene network to environmental
changes by fitness-induced attractor selection. PloS one 1: e49. PMID: 17183678

68. Robert UG-A (2007) Robert Ringed seal pupping lair, with the pup in the lair and the female approach-
ing the haul-out hole from the water Barnes.

69. Freeman MP, Stanley HE, Watkins NW, Murphy EJ, Afanasyev V, Edwards AM, et al. (2007) Revisiting
Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449: 1044–1048.
PMID: 17960243

70. Viswanathan GM, Raposo EP, da Luz MGE (2008) Lévy flights and superdiffusion in the context of bio-
logical encounters and random searches. Physics of Life Reviews 5: 133–150.

71. Jamil M, Yang X-S (2013) A literature survey of benchmark functions for global optimisation problems.
International Journal of Mathematical Modelling and Numerical Optimisation 4: 150–194.

72. Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Communications in
Nonlinear Science and Numerical Simulation 18: 89.

73. Rardin R, Uzsoy R (2001) Experimental Evaluation of Heuristic Optimization Algorithms: A Tutorial.
Journal of Heuristics 7: 261–304.

74. Liang J, Qu B, Suganthan P, Hernández-Díaz AG (2013) Problem definitions and evaluation criteria for
the CEC 2013 special session on real-parameter optimization. Computational Intelligence Laboratory,
Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Techni-
cal Report 201212.

75. Li X, Tang K, Omidvar MN, Yang Z, Qin K (2013) Benchmark functions for the CEC 2013 special ses-
sion and competition on large-scale global optimization. gene 7: 8.

76. Yang X-S (2010) Firefly algorithm, Levy flights and global optimization. Research and development in
intelligent systems XXVI: Springer. pp. 209–218.

77. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. science 220: 671–
680. PMID: 17813860

78. Bandyopadhyay S, Saha S, Maulik U, Deb K (2008) A simulated annealing-based multiobjective optimi-
zation algorithm: AMOSA. Evolutionary Computation, IEEE Transactions on 12: 269–283.

79. Sati DC, Kumar P, Misra Y (2011) FPGA implementation of a fuzzy logic based handoff controller for
microcellular mobile networks. International Journal of Applied Engineering Research, Dindigul 2: 52–
62.

80. Ghauri SA, Humayun H, Sohail F. Implementation of Convolutional codes on FPGA; 2012. IEEE. pp.
175–178.

81. Duman E, Can H, Akın E (2008) Evaluating of a Fuzzy Chip by Hardware-in-the-loop (HIL) Simulation.
International Review on Computers and Software (I RE CO S).

82. Marisa L, de Reyniès A, Duval A, Selves J, Gaub MP, Vescovo L, et al. (2013) Gene expression classi-
fication of colon cancer into molecular subtypes: characterization, validation, and prognostic value.
PLoS medicine 10: e1001453. doi: 10.1371/journal.pmed.1001453 PMID: 23700391

83. Chifu VR, Pop CB, Salomie I, Suia DS, Niculici AN (2012) Optimizing the semantic web service compo-
sition process using cuckoo search. Intelligent distributed computing V: Springer. pp. 93–102.

84. Vidal T, Crainic TG, Gendreau M, Lahrichi N, Rei W (2012) A hybrid genetic algorithm for multidepot
and periodic vehicle routing problems. Operations Research 60: 611–624.

85. Kumar A, Chakarverty S. Design optimization for reliable embedded system using Cuckoo search;
2011. IEEE. pp. 264–268.

86. Doctor S, Venayagamoorthy GK, Gudise VG. Optimal PSO for collective robotic search applications;
2004. IEEE. pp. 1390–1395.

87. Senthilnath J, Das V, Omkar S, Mani V. Clustering using levy flight cuckoo search; 2013. Springer. pp.
65–75.

88. Alok AK, Saha S, Ekbal A (1701) Multi-objective semi-supervised clustering for automatic pixel classifi-
cation from remote sensing imagery. Soft Computing: 1–19.

89. Alok AK, Saha S, Ekbal A (2015) A new semi-supervised clustering technique using multi-objective
optimization. Applied Intelligence: 1–29.

90. Saha S, Alok A, Ekbal A (2015) Use of Semi-supervised Clustering and Feature Selection Techniques
for Gene-Expression Data.

Ringed Seal Search and Global Optimization

PLOS ONE | DOI:10.1371/journal.pone.0144371 January 20, 2016 30 / 31

http://www.ncbi.nlm.nih.gov/pubmed/10553906
http://www.ncbi.nlm.nih.gov/pubmed/17187927
http://www.ncbi.nlm.nih.gov/pubmed/17183678
http://www.ncbi.nlm.nih.gov/pubmed/17960243
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1371/journal.pmed.1001453
http://www.ncbi.nlm.nih.gov/pubmed/23700391


91. Singh G, Deep K. Role of Particle Swarm Optimization in Computer Games; 2015. Springer. pp. 255–
273.

92. Chuang L-Y, Lin Y-D, Chang H-W, Yang C-H (2012) An improved PSO algorithm for generating protec-
tive SNP barcodes in breast cancer. PLoS One 7: e37018. doi: 10.1371/journal.pone.0037018 PMID:
22623973

Ringed Seal Search and Global Optimization

PLOS ONE | DOI:10.1371/journal.pone.0144371 January 20, 2016 31 / 31

http://dx.doi.org/10.1371/journal.pone.0037018
http://www.ncbi.nlm.nih.gov/pubmed/22623973



