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Preface

I have long been fascinated by the interplay of variables in multivariate data and by
the challenge of unraveling the effect of each variable. My continuing objective in
the second edition has been to present the power and utility of multivariate analysis
in a highly readable format.

Practitioners and researchers in all applied disciplines often measure several vari-
ables on each subject or experimental unit. In some cases, it may be productive to
isolate each variable in a system and study it separately. Typically, however, the vari-
ables are not only correlated with each other, but each variable is influenced by the
other variables as it affects a test statistic or descriptive statistic. Thus, in many
instances, the variables are intertwined in such a way that when analyzed individ-
ually they yield little information about the system. Using multivariate analysis, the
variables can be examined simultaneously in order to access the key features of the
process that produced them. The multivariate approach enables us to (1) explore
the joint performance of the variables and (2) determine the effect of each variable
in the presence of the others.

Multivariate analysis provides both descriptive and inferential procedures—we
can search for patterns in the data or test hypotheses about patterns of a priori inter-
est. With multivariate descriptive techniques, we can peer beneath the tangled web of
variables on the surface and extract the essence of the system. Multivariate inferential
procedures include hypothesis tests that (1) process any number of variables without
inflating the Type I error rate and (2) allow for whatever intercorrelations the vari-
ables possess. A wide variety of multivariate descriptive and inferential procedures
is readily accessible in statistical software packages.

My selection of topics for this volume reflects many years of consulting with
researchers in many fields of inquiry. A brief overview of multivariate analysis is
given in Chapter 1. Chapter 2 reviews the fundamentals of matrix algebra. Chapters
3 and 4 give an introduction to sampling from multivariate populations. Chapters 5,
6, 7, 10, and 11 extend univariate procedures with one dependent variable (including
t-tests, analysis of variance, tests on variances, multiple regression, and multiple cor-
relation) to analogous multivariate techniques involving several dependent variables.
A review of each univariate procedure is presented before covering the multivariate
counterpart. These reviews may provide key insights the student missed in previous
courses.

Chapters 8, 9, 12, 13, 14, and 15 describe multivariate techniques that are not
extensions of univariate procedures. In Chapters 8 and 9, we find functions of the
variables that discriminate among groups in the data. In Chapters 12 and 13, we

xv
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find functions of the variables that reveal the basic dimensionality and characteristic
patterns of the data, and we discuss procedures for finding the underlying latent
variables of a system. In Chapters 14 and 15 (new in the second edition), we give
methods for searching for groups in the data, and we provide plotting techniques that
show relationships in a reduced dimensionality for various kinds of data.

In Appendix A, tables are provided for many multivariate distributions and tests.
These enable the reader to conduct an exact test in many cases for which software
packages provide only approximate tests. Appendix B gives answers and hints for
most of the problems in the book.

Appendix C describes an ftp site that contains (1) all data sets and (2) SAS com-
mand files for all examples in the text. These command files can be adapted for use
in working problems or in analyzing data sets encountered in applications.

To illustrate multivariate applications, I have provided many examples and exer-
cises based on 59 real data sets from a wide variety of disciplines. A practitioner
or consultant in multivariate analysis gains insights and acumen from long experi-
ence in working with data. It is not expected that a student can achieve this kind of
seasoning in a one-semester class. However, the examples provide a good start, and
further development is gained by working problems with the data sets. For example,
in Chapters 12 and 13, the exercises cover several typical patterns in the covariance
or correlation matrix. The student’s intuition is expanded by associating these covari-
ance patterns with the resulting configuration of the principal components or factors.

Although this is a methods book, I have included a few derivations. For some
readers, an occasional proof provides insights obtainable in no other way. I hope that
instructors who do not wish to use proofs will not be deterred by their presence. The
proofs can be disregarded easily when reading the book.

My objective has been to make the book accessible to readers who have taken as
few as two statistical methods courses. The students in my classes in multivariate
analysis include majors in statistics and majors from other departments. With the
applied researcher in mind, I have provided careful intuitive explanations of the con-
cepts and have included many insights typically available only in journal articles or
in the minds of practitioners.

My overriding goal in preparation of this book has been clarity of exposition. I
hope that students and instructors alike will find this multivariate text more com-
fortable than most. In the final stages of development of both the first and second
editions, I asked my students for written reports on their initial reaction as they read
each day’s assignment. They made many comments that led to improvements in the
manuscript. I will be very grateful if readers will take the time to notify me of errors
or of other suggestions they might have for improvements.

I have tried to use standard mathematical and statistical notation as far as pos-
sible and to maintain consistency of notation throughout the book. I have refrained
from the use of abbreviations and mnemonic devices. These save space when one
is reading a book page by page, but they are annoying to those using a book as a
reference.

Equations are numbered sequentially throughout a chapter; for example, (3.75)
indicates the 75th numbered equation in Chapter 3. Tables and figures are also num-



PREFACE xvii

bered sequentially throughout a chapter in the form “Table 3.8” or “Figure 3.1.”
Examples are not numbered sequentially; each example is identified by the same
number as the section in which it appears and is placed at the end of the section.

When citing references in the text, I have used the standard format involving the
year of publication. For a journal article, the year alone suffices, for example, Fisher
(1936). But for books, I have usually included a page number, as in Seber (1984,
p. 216).

This is the first volume of a two-volume set on multivariate analysis. The second
volume is entitled Multivariate Statistical Inference and Applications (Wiley, 1998).
The two volumes are not necessarily sequential; they can be read independently. I
adopted the two-volume format in order to (1) provide broader coverage than would
be possible in a single volume and (2) offer the reader a choice of approach.

The second volume includes proofs of many techniques covered in the first 13
chapters of the present volume and also introduces additional topics. The present
volume includes many examples and problems using actual data sets, and there are
fewer algebraic problems. The second volume emphasizes derivations of the results
and contains fewer examples and problems with real data. The present volume has
fewer references to the literature than the other volume, which includes a careful
review of the latest developments and a more comprehensive bibliography. In this
second edition, I have occasionally referred the reader to Rencher (1998) to note that
added coverage of a certain subject is available in the second volume.

I am indebted to many individuals in the preparation of the first edition. My ini-
tial exposure to multivariate analysis came in courses taught by Rolf Bargmann at
the University of Georgia and D. R. Jensen at Virginia Tech. Additional impetus to
probe the subtleties of this field came from research conducted with Bruce Brown
at BYU. I wish to thank Bruce Brown, Deane Branstetter, Del Scott, Robert Smidt,
and Ingram Olkin for reading various versions of the manuscript and making valu-
able suggestions. I am grateful to the following students at BYU who helped with
computations and typing: Mitchell Tolland, Tawnia Newton, Marianne Matis Mohr,
Gregg Littlefield, Suzanne Kimball, Wendy Nielsen, Tiffany Nordgren, David Whit-
ing, Karla Wasden, and Rachel Jones.

SECOND EDITION

For the second edition, I have added Chapters 14 and 15, covering cluster analysis,
multidimensional scaling, correspondence analysis, and biplots. I also made numer-
ous corrections and revisions (almost every page) in the first 13 chapters, in an effort
to improve composition, readability, and clarity. Many of the first 13 chapters now
have additional problems.

I have listed the data sets and SAS files on the Wiley ftp site rather than on a
diskette, as in the first edition. I have made improvements in labeling of these files.

I am grateful to the many readers who have pointed out errors or made suggestions
for improvements. The book is better for their caring and their efforts.
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I thank Lonette Stoddard and Candace B. McNaughton for typing and J. D.
Williams for computer support. As with my other books, I dedicate this volume to
my wife, LaRue, who has supplied much needed support and encouragement.

ALVIN C. RENCHER
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Introduction

1.1 WHY MULTIVARIATE ANALYSIS?

Multivariate analysis consists of a collection of methods that can be used when sev-
eral measurements are made on each individual or object in one or more samples. We
will refer to the measurements as variables and to the individuals or objects as units
(research units, sampling units, or experimental units) or observations. In practice,
multivariate data sets are common, although they are not always analyzed as such.
But the exclusive use of univariate procedures with such data is no longer excusable,
given the availability of multivariate techniques and inexpensive computing power
to carry them out.

Historically, the bulk of applications of multivariate techniques have been in the
behavioral and biological sciences. However, interest in multivariate methods has
now spread to numerous other fields of investigation. For example, I have collab-
orated on multivariate problems with researchers in education, chemistry, physics,
geology, engineering, law, business, literature, religion, public broadcasting, nurs-
ing, mining, linguistics, biology, psychology, and many other fields. Table 1.1 shows
some examples of multivariate observations.

The reader will notice that in some cases all the variables are measured in the same
scale (see 1 and 2 in Table 1.1). In other cases, measurements are in different scales
(see 3 in Table 1.1). In a few techniques, such as profile analysis (Sections 5.9 and
6.8), the variables must be commensurate, that is, similar in scale of measurement;
however, most multivariate methods do not require this.

Ordinarily the variables are measured simultaneously on each sampling unit. Typ-
ically, these variables are correlated. If this were not so, there would be little use for
many of the techniques of multivariate analysis. We need to untangle the overlapping
information provided by correlated variables and peer beneath the surface to see the
underlying structure. Thus the goal of many multivariate approaches is simplifica-
tion. We seek to express what is going on in terms of a reduced set of dimensions.
Such multivariate techniques are exploratory; they essentially generate hypotheses
rather than test them.

On the other hand, if our goal is a formal hypothesis test, we need a technique that
will (1) allow several variables to be tested and still preserve the significance level

1
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Table 1.1. Examples of Multivariate Data

Units Variables

1. Students Several exam scores in a single course
2. Students Grades in mathematics, history, music, art, physics
3. People Height, weight, percentage of body fat, resting heart

rate
4. Skulls Length, width, cranial capacity
5. Companies Expenditures for advertising, labor, raw materials
6. Manufactured items Various measurements to check on compliance with

specifications
7. Applicants for bank loans Income, education level, length of residence, savings

account, current debt load
8. Segments of literature Sentence length, frequency of usage of certain words

and of style characteristics
9. Human hairs Composition of various elements

10. Birds Lengths of various bones

and (2) do this for any intercorrelation structure of the variables. Many such tests are
available.

As the two preceding paragraphs imply, multivariate analysis is concerned gener-
ally with two areas, descriptive and inferential statistics. In the descriptive realm, we
often obtain optimal linear combinations of variables. The optimality criterion varies
from one technique to another, depending on the goal in each case. Although linear
combinations may seem too simple to reveal the underlying structure, we use them
for two obvious reasons: (1) they have mathematical tractability (linear approxima-
tions are used throughout all science for the same reason) and (2) they often perform
well in practice. These linear functions may also be useful as a follow-up to infer-
ential procedures. When we have a statistically significant test result that compares
several groups, for example, we can find the linear combination (or combinations)
of variables that led to rejection of the hypothesis. Then the contribution of each
variable to these linear combinations is of interest.

In the inferential area, many multivariate techniques are extensions of univariate
procedures. In such cases, we review the univariate procedure before presenting the
analogous multivariate approach.

Multivariate inference is especially useful in curbing the researcher’s natural ten-
dency to read too much into the data. Total control is provided for experimentwise
error rate; that is, no matter how many variables are tested simultaneously, the value
of α (the significance level) remains at the level set by the researcher.

Some authors warn against applying the common multivariate techniques to data
for which the measurement scale is not interval or ratio. It has been found, however,
that many multivariate techniques give reliable results when applied to ordinal data.

For many years the applications lagged behind the theory because the compu-
tations were beyond the power of the available desktop calculators. However, with
modern computers, virtually any analysis one desires, no matter how many variables
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or observations are involved, can be quickly and easily carried out. Perhaps it is not
premature to say that multivariate analysis has come of age.

1.2 PREREQUISITES

The mathematical prerequisite for reading this book is matrix algebra. Calculus is not
used [with a brief exception in equation (4.29)]. But the basic tools of matrix algebra
are essential, and the presentation in Chapter 2 is intended to be sufficiently complete
so that the reader with no previous experience can master matrix manipulation up to
the level required in this book.

The statistical prerequisites are basic familiarity with the normal distribution,
t-tests, confidence intervals, multiple regression, and analysis of variance. These
techniques are reviewed as each is extended to the analogous multivariate procedure.

This is a multivariate methods text. Most of the results are given without proof. In
a few cases proofs are provided, but the major emphasis is on heuristic explanations.
Our goal is an intuitive grasp of multivariate analysis, in the same mode as other
statistical methods courses. Some problems are algebraic in nature, but the majority
involve data sets to be analyzed.

1.3 OBJECTIVES

I have formulated three objectives that I hope this book will achieve for the reader.
These objectives are based on long experience teaching a course in multivariate
methods, consulting on multivariate problems with researchers in many fields, and
guiding statistics graduate students as they consulted with similar clients.

The first objective is to gain a thorough understanding of the details of various
multivariate techniques, their purposes, their assumptions, their limitations, and so
on. Many of these techniques are related; yet they differ in some essential ways. We
emphasize these similarities and differences.

The second objective is to be able to select one or more appropriate techniques for
a given multivariate data set. Recognizing the essential nature of a multivariate data
set is the first step in a meaningful analysis. We introduce basic types of multivariate
data in Section 1.4.

The third objective is to be able to interpret the results of a computer analysis
of a multivariate data set. Reading the manual for a particular program package is
not enough to make an intelligent appraisal of the output. Achievement of the first
objective and practice on data sets in the text should help achieve the third objective.

1.4 BASIC TYPES OF DATA AND ANALYSIS

We will list four basic types of (continuous) multivariate data and then briefly
describe some possible analyses. Some writers would consider this an oversimpli-
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fication and might prefer elaborate tree diagrams of data structure. However, many
data sets can fit into one of these categories, and the simplicity of this structure
makes it easier to remember. The four basic data types are as follows:

1. A single sample with several variables measured on each sampling unit (sub-
ject or object);

2. A single sample with two sets of variables measured on each unit;
3. Two samples with several variables measured on each unit;
4. Three or more samples with several variables measured on each unit.

Each data type has extensions, and various combinations of the four are possible.
A few examples of analyses for each case are as follows:

1. A single sample with several variables measured on each sampling unit:

(a) Test the hypothesis that the means of the variables have specified values.
(b) Test the hypothesis that the variables are uncorrelated and have a common

variance.
(c) Find a small set of linear combinations of the original variables that sum-

marizes most of the variation in the data (principal components).
(d) Express the original variables as linear functions of a smaller set of under-

lying variables that account for the original variables and their intercorre-
lations (factor analysis).

2. A single sample with two sets of variables measured on each unit:

(a) Determine the number, the size, and the nature of relationships between
the two sets of variables (canonical correlation). For example, you may
wish to relate a set of interest variables to a set of achievement variables.
How much overall correlation is there between these two sets?

(b) Find a model to predict one set of variables from the other set (multivariate
multiple regression).

3. Two samples with several variables measured on each unit:

(a) Compare the means of the variables across the two samples (Hotelling’s
T 2-test).

(b) Find a linear combination of the variables that best separates the two sam-
ples (discriminant analysis).

(c) Find a function of the variables that accurately allocates the units into the
two groups (classification analysis).

4. Three or more samples with several variables measured on each unit:

(a) Compare the means of the variables across the groups (multivariate anal-
ysis of variance).

(b) Extension of 3(b) to more than two groups.
(c) Extension of 3(c) to more than two groups.
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Matrix Algebra

2.1 INTRODUCTION

This chapter introduces the basic elements of matrix algebra used in the remainder
of this book. It is essentially a review of the requisite matrix tools and is not intended
to be a complete development. However, it is sufficiently self-contained so that those
with no previous exposure to the subject should need no other reference. Anyone
unfamiliar with matrix algebra should plan to work most of the problems entailing
numerical illustrations. It would also be helpful to explore some of the problems
involving general matrix manipulation.

With the exception of a few derivations that seemed instructive, most of the results
are given without proof. Some additional proofs are requested in the problems. For
the remaining proofs, see any general text on matrix theory or one of the specialized
matrix texts oriented to statistics, such as Graybill (1969), Searle (1982), or Harville
(1997).

2.2 NOTATION AND BASIC DEFINITIONS

2.2.1 Matrices, Vectors, and Scalars

A matrix is a rectangular or square array of numbers or variables arranged in rows
and columns. We use uppercase boldface letters to represent matrices. All entries in
matrices will be real numbers or variables representing real numbers. The elements
of a matrix are displayed in brackets. For example, the ACT score and GPA for three
students can be conveniently listed in the following matrix:

A =

 23 3.54

29 3.81
18 2.75


 . (2.1)

The elements of A can also be variables, representing possible values of ACT and
GPA for three students:

5
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A =

 a11 a12

a21 a22
a31 a32


 . (2.2)

In this double-subscript notation for the elements of a matrix, the first subscript indi-
cates the row; the second identifies the column. The matrix A in (2.2) can also be
expressed as

A = (ai j ), (2.3)

where ai j is a general element.
With three rows and two columns, the matrix A in (2.1) or (2.2) is said to be

3 × 2. In general, if a matrix A has n rows and p columns, it is said to be n × p.
Alternatively, we say the size of A is n × p.

A vector is a matrix with a single column or row. The following could be the test
scores of a student in a course in multivariate analysis:

x =




98
86
93
97


 . (2.4)

Variable elements in a vector can be identified by a single subscript:

x =




x1
x2
x3
x4


 . (2.5)

We use lowercase boldface letters for column vectors. Row vectors are expressed as

x′ = (x1, x2, x3, x4) or as x′ = (x1 x2 x3 x4),

where x′ indicates the transpose of x. The transpose operation is defined in Sec-
tion 2.2.3.

Geometrically, a vector with p elements identifies a point in a p-dimensional
space. The elements in the vector are the coordinates of the point. In (2.35) in Sec-
tion 2.3.3, we define the distance from the origin to the point. In Section 3.12, we
define the distance between two vectors. In some cases, we will be interested in a
directed line segment or arrow from the origin to the point.

A single real number is called a scalar, to distinguish it from a vector or matrix.
Thus 2, −4, and 125 are scalars. A variable representing a scalar is usually denoted
by a lowercase nonbolded letter, such as a = 5. A product involving vectors and
matrices may reduce to a matrix of size 1 × 1, which then becomes a scalar.
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2.2.2 Equality of Vectors and Matrices

Two matrices are equal if they are the same size and the elements in corresponding
positions are equal. Thus if A = (ai j ) and B = (bi j ), then A = B if ai j = bi j for all
i and j . For example, let

A =
(

3 −2 4
1 3 7

)
, B =


 3 1

−2 3
4 7


 ,

C =
(

3 −2 4
1 3 7

)
, D =

(
3 −2 4
1 3 6

)
.

Then A = C. But even though A and B have the same elements, A �= B because the
two matrices are not the same size. Likewise, A �= D because a23 �= d23. Thus two
matrices of the same size are unequal if they differ in a single position.

2.2.3 Transpose and Symmetric Matrices

The transpose of a matrix A, denoted by A′, is obtained from A by interchanging
rows and columns. Thus the columns of A′ are the rows of A, and the rows of A′
are the columns of A. The following examples illustrate the transpose of a matrix or
vector:

A =
( −5 2 4

3 6 −2

)
, A′ =


 −5 3

2 6
4 −2


 ,

B =
(

2 −3
4 1

)
, B′ =

(
2 4

−3 1

)
,

a =

 2

−3
1


 , a′ = (2, −3, 1).

The transpose operation does not change a scalar, since it has only one row and
one column.

If the transpose operator is applied twice to any matrix, the result is the original
matrix:

(A′)′ = A. (2.6)

If the transpose of a matrix is the same as the original matrix, the matrix is said to
be symmetric; that is, A is symmetric if A = A′. For example,

A =

 3 −2 4

−2 10 −7
4 −7 9


 , A′ =


 3 −2 4

−2 10 −7
4 −7 9


 .

Clearly, all symmetric matrices are square.
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2.2.4 Special Matrices

The diagonal of a p × p square matrix A consists of the elements a11, a22, . . . , app .
For example, in the matrix

A =

 5 −2 4

7 9 3
−6 8 1


 ,

the elements 5, 9, and 1 lie on the diagonal. If a matrix contains zeros in all off-
diagonal positions, it is said to be a diagonal matrix. An example of a diagonal
matrix is

D =




10 0 0 0
0 −3 0 0
0 0 0 0
0 0 0 7


 .

This matrix can also be denoted as

D = diag(10,−3, 0, 7). (2.7)

A diagonal matrix can be formed from any square matrix by replacing off-
diagonal elements by 0’s. This is denoted by diag(A). Thus for the preceding matrix
A, we have

diag(A) = diag


 5 −2 4

7 9 3
−6 8 1


 =


 5 0 0

0 9 0
0 0 1


 . (2.8)

A diagonal matrix with a 1 in each diagonal position is called an identity matrix
and is denoted by I. For example, a 3 × 3 identity matrix is given by

I =

 1 0 0

0 1 0
0 0 1


 . (2.9)

An upper triangular matrix is a square matrix with zeros below the diagonal, such
as

T =




8 3 4 7
0 0 −2 3
0 0 5 1
0 0 0 6


 . (2.10)

A lower triangular matrix is defined similarly.
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A vector of 1’s is denoted by j:

j =




1
1
...

1


 . (2.11)

A square matrix of 1’s is denoted by J. For example, a 3 × 3 matrix J is given by

J =

 1 1 1

1 1 1
1 1 1


 . (2.12)

Finally, we denote a vector of zeros by 0 and a matrix of zeros by O. For example,

0 =

 0

0
0


 , O =


 0 0 0 0

0 0 0 0
0 0 0 0


 . (2.13)

2.3 OPERATIONS

2.3.1 Summation and Product Notation

For completeness, we review the standard mathematical notation for sums and prod-
ucts. The sum of a sequence of numbers a1, a2, . . . , an is indicated by

n∑
i=1

ai = a1 + a2 + · · · + an .

If the n numbers are all the same, then
∑n

i=1 a = a + a + · · · + a = na. The sum of
all the numbers in an array with double subscripts, such as

a11 a12 a13
a21 a22 a23,

is indicated by

2∑
i=1

3∑
j=1

ai j = a11 + a12 + a13 + a21 + a22 + a23.

This is sometimes abbreviated to

2∑
i=1

3∑
j=1

ai j =
∑

i j

ai j .
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The product of a sequence of numbers a1, a2, . . . , an is indicated by

n∏
i=1

ai = (a1)(a2) · · · (an).

If the n numbers are all equal, the product becomes
∏n

i=1 a = (a)(a) · · · (a) = an .

2.3.2 Addition of Matrices and Vectors

If two matrices (or two vectors) are the same size, their sum is found by adding
corresponding elements; that is, if A is n × p and B is n × p, then C = A + B is also
n × p and is found as (ci j ) = (ai j + bi j ). For example,


 −2 5

3 1
7 −6


+


 3 −2

4 5
10 −3


 =


 1 3

7 6
17 −9


 ,


 1

3
7


+


 5

−1
3


 =


 6

2
10


 .

Similarly, the difference between two matrices or two vectors of the same size is
found by subtracting corresponding elements. Thus C = A − B is found as (ci j ) =
(ai j − bi j ). For example,

(3 9 − 4)− (5 − 4 2) = (−2 13 − 6).

If two matrices are identical, their difference is a zero matrix; that is, A = B implies
A − B = O. For example,

(
3 −2 4
6 7 5

)
−
(

3 −2 4
6 7 5

)
=
(

0 0 0
0 0 0

)
.

Matrix addition is commutative:

A + B = B + A. (2.14)

The transpose of the sum (difference) of two matrices is the sum (difference) of
the transposes:

(A + B)′ = A′ + B′, (2.15)

(A − B)′ = A′ − B′, (2.16)

(x + y)′ = x′ + y′, (2.17)

(x − y)′ = x′ − y′. (2.18)



OPERATIONS 11

2.3.3 Multiplication of Matrices and Vectors

In order for the product AB to be defined, the number of columns in A must be the
same as the number of rows in B, in which case A and B are said to be conformable.
Then the (i j)th element of C = AB is

ci j =
∑

k

aikbk j . (2.19)

Thus ci j is the sum of products of the i th row of A and the j th column of B. We
therefore multiply each row of A by each column of B, and the size of AB consists
of the number of rows of A and the number of columns of B. Thus, if A is n × m and
B is m × p, then C = AB is n × p. For example, if

A =




2 1 3
4 6 5
7 2 3
1 3 2


 and B =


 1 4

2 6
3 8


 ,

then

C = AB =




2 · 1 + 1 · 2 + 3 · 3 2 · 4 + 1 · 6 + 3 · 8
4 · 1 + 6 · 2 + 5 · 3 4 · 4 + 6 · 6 + 5 · 8
7 · 1 + 2 · 2 + 3 · 3 7 · 4 + 2 · 6 + 3 · 8
1 · 1 + 3 · 2 + 2 · 3 1 · 4 + 3 · 6 + 2 · 8




=




13 38
31 92
20 64
13 38


 .

Note that A is 4 × 3, B is 3 × 2, and AB is 4 × 2. In this case, AB is of a different
size than either A or B.

If A and B are both n × n, then AB is also n × n. Clearly, A2 is defined only if A
is a square matrix.

In some cases AB is defined, but BA is not defined. In the preceding example, BA
cannot be found because B is 3×2 and A is 4×3 and a row of B cannot be multiplied
by a column of A. Sometimes AB and BA are both defined but are different in size.
For example, if A is 2 × 4 and B is 4 × 2, then AB is 2 × 2 and BA is 4 × 4. If A and
B are square and the same size, then AB and BA are both defined. However,

AB �= BA, (2.20)

except for a few special cases. For example, let

A =
(

1 3
2 4

)
, B =

(
1 −2
3 5

)
.
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Then

AB =
(

10 13
14 16

)
, BA =

( −3 −5
13 29

)
.

Thus we must be careful to specify the order of multiplication. If we wish to multiply
both sides of a matrix equation by a matrix, we must multiply on the left or on the
right and be consistent on both sides of the equation.

Multiplication is distributive over addition or subtraction:

A(B + C) = AB + AC, (2.21)

A(B − C) = AB − AC, (2.22)

(A + B)C = AC + BC, (2.23)

(A − B)C = AC − BC. (2.24)

Note that, in general, because of (2.20),

A(B + C) �= BA + CA. (2.25)

Using the distributive law, we can expand products such as (A − B)(C − D) to
obtain

(A − B)(C − D) = (A − B)C − (A − B)D [by (2.22)]

= AC − BC − AD + BD [by (2.24)]. (2.26)

The transpose of a product is the product of the transposes in reverse order:

(AB)′ = B′A′. (2.27)

Note that (2.27) holds as long as A and B are conformable. They need not be square.
Multiplication involving vectors follows the same rules as for matrices. Suppose

A is n × p, a is p × 1, b is p × 1, and c is n × 1. Then some possible products are
Ab, c′A, a′b, b′a, and ab′. For example, let

A =
(

3 −2 4
1 3 5

)
, a =


 1

−2
3


 , b =


 2

3
4


 , c =

(
2

−5

)
.

Then

Ab =
(

3 −2 4
1 3 5

) 2
3
4


 =

(
16
31

)
,
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c′A = (2 −5)
(

3 −2 4
1 3 5

)
= (1 −19 −17),

c′Ab = (2 −5)

(
3 −2 4
1 3 5

) 2
3
4


 = (2 −5)

(
16
31

)
= −123,

a′b = (1 −2 3)


 2

3
4


 = 8,

b′a = (2 3 4)


 1

−2
3


 = 8,

ab′ =

 1

−2
3


(2 3 4) =


 2 3 4

−4 −6 −8
6 9 12


 ,

ac′ =

 1

−2
3


(2 −5) =


 2 −5

−4 10
6 −15


 .

Note that Ab is a column vector, c′A is a row vector, c′Ab is a scalar, and a′b = b′a.
The triple product c′Ab was obtained as c′(Ab). The same result would be obtained
if we multiplied in the order (c′A)b:

(c′A)b = (1 −19 −17)


 2

3
4


 = −123.

This is true in general for a triple product:

ABC = A(BC) = (AB)C. (2.28)

Thus multiplication of three matrices can be defined in terms of the product of two
matrices, since (fortunately) it does not matter which two are multiplied first. Note
that A and B must be conformable for multiplication, and B and C must be con-
formable. For example, if A is n × p, B is p × q, and C is q × m, then both multi-
plications are possible and the product ABC is n × m.

We can sometimes factor a sum of triple products on both the right and left sides.
For example,

ABC + ADC = A(B + D)C. (2.29)

As another illustration, let X be n × p and A be n × n. Then

X′X − X′AX = X′(X − AX) = X′(I − A)X. (2.30)
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If a and b are both n × 1, then

a′b = a1b1 + a2b2 + · · · + anbn (2.31)

is a sum of products and is a scalar. On the other hand, ab′ is defined for any size a
and b and is a matrix, either rectangular or square:

ab′ =




a1
a2
...

an


(b1 b2 · · · bp) =




a1b1 a1b2 · · · a1bp

a2b1 a2b2 · · · a2bp
...

...
...

anb1 anb2 · · · anbp


 . (2.32)

Similarly,

a′a = a2
1 + a2

2 + · · · + a2
n , (2.33)

aa′ =




a2
1 a1a2 · · · a1an

a2a1 a2
2 · · · a2an

...
...

...

ana1 ana2 · · · a2
n


 . (2.34)

Thus a′a is a sum of squares, and aa′ is a square (symmetric) matrix. The products a′a
and aa′ are sometimes referred to as the dot product and matrix product, respectively.
The square root of the sum of squares of the elements of a is the distance from the
origin to the point a and is also referred to as the length of a:

Length of a = √
a′a =

√∑n
i=1 a2

i . (2.35)

As special cases of (2.33) and (2.34), note that if j is n × 1, then

j′j = n, jj′ =




1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1


 = J, (2.36)

where j and J were defined in (2.11) and (2.12). If a is n × 1 and A is n × p, then

a′j = j′a =
n∑

i=1

ai , (2.37)
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j′A =
(∑

i

ai1,
∑

i

ai2, . . . ,
∑

i

aip

)
, Aj =



∑

j a1 j∑
j a2 j
...∑
j anj


 . (2.38)

Thus a′j is the sum of the elements in a, j′A contains the column sums of A, and Aj
contains the row sums of A. In a′j, the vector j is n × 1; in j′A, the vector j is n × 1;
and in Aj, the vector j is p × 1.

Since a′b is a scalar, it is equal to its transpose:

a′b = (a′b)′ = b′(a′)′ = b′a. (2.39)

This allows us to write (a′b)2 in the form

(a′b)2 = (a′b)(a′b) = (a′b)(b′a) = a′(bb′)a. (2.40)

From (2.18), (2.26), and (2.39) we obtain

(x − y)′(x − y) = x′x − 2x′y + y′y. (2.41)

Note that in analogous expressions with matrices, however, the two middle terms
cannot be combined:

(A − B)′(A − B) = A′A − A′B − B′A + B′B,

(A − B)2 = (A − B)(A − B) = A2 − AB − BA + B2.

If a and x1, x2, . . . , xn are all p×1 and A is p× p, we obtain the following factoring
results as extensions of (2.21) and (2.29):

n∑
i=1

a′xi = a′
n∑

i=1

xi , (2.42)

n∑
i=1

Axi = A
n∑

i=1

xi , (2.43)

n∑
i=1

(a′xi )
2 = a′

(
n∑

i=1

xi x′
i

)
a [by (2.40)], (2.44)

n∑
i=1

Axi (Axi )
′ = A

(
n∑

i=1

xi x′
i

)
A′. (2.45)

We can express matrix multiplication in terms of row vectors and column vectors.
If a′

i is the i th row of A and b j is the j th column of B, then the (i j)th element of AB
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is a′
i b j . For example, if A has three rows and B has two columns,

A =

 a′

1
a′

2
a′

3


 , B = (b1,b2),

then the product AB can be written as

AB =

 a′

1b1 a′
1b2

a′
2b1 a′

2b2
a′

3b1 a′
3b2


 . (2.46)

This can be expressed in terms of the rows of A:

AB =

 a′

1(b1,b2)

a′
2(b1,b2)

a′
3(b1,b2)


 =


 a′

1B
a′

2B
a′

3B


 =


 a′

1
a′

2
a′

3


B. (2.47)

Note that the first column of AB in (2.46) is


 a′

1b1
a′

2b1
a′

3b1


 =


 a′

1
a′

2
a′

3


b1 = Ab1,

and likewise the second column is Ab2. Thus AB can be written in the form

AB = A(b1,b2) = (Ab1,Ab2).

This result holds in general:

AB = A(b1,b2, . . . ,bp) = (Ab1,Ab2, . . . ,Abp). (2.48)

To further illustrate matrix multiplication in terms of rows and columns, let A =(a′
1

a′
2

)
be a 2 × p matrix, x be a p × 1 vector, and S be a p × p matrix. Then

Ax =
(

a′
1

a′
2

)
x =

(
a′

1x
a′

2x

)
, (2.49)

ASA′ =
(

a′
1Sa1 a′

1Sa2
a′

2Sa1 a′
2Sa2

)
. (2.50)

Any matrix can be multiplied by its transpose. If A is n × p, then

AA′ is n × n and is obtained as products of rows of A [see (2.52)].
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Similarly,

A′A is p × p and is obtained as products of columns of A [see (2.54)].

From (2.6) and (2.27), it is clear that both AA′ and A′A are symmetric.
In the preceding illustration for AB in terms of row and column vectors, the rows

of A were denoted by a′
i and the columns of B, by b j . If both rows and columns of

a matrix A are under discussion, as in AA′ and A′A, we will use the notation a′
i for

rows and a( j) for columns. To illustrate, if A is 3 × 4, we have

A =

 a11 a12 a13 a14

a21 a22 a23 a24
a31 a32 a33 a34


 =


 a′

1
a′

2
a′

3


 = (a(1), a(2), a(3), a(4)),

where, for example,

a′
2 = (a21 a22 a23 a24),

a(3) =

 a13

a23
a33


 .

With this notation for rows and columns of A, we can express the elements of
A′A or of AA′ as products of the rows of A or of the columns of A. Thus if we write
A in terms of its rows as

A =




a′
1

a′
2
...

a′
n


 ,

then we have

A′A = (a1, a2, . . . , an)




a′
1

a′
2
...

a′
n


 =

n∑
i=1

ai a′
i , (2.51)

AA′ =




a′
1

a′
2
...

a′
n


(a1, a2, . . . , an) =




a′
1a1 a′

1a2 · · · a′
1an

a′
2a1 a′

2a2 · · · a′
2an

...
...

...

a′
na1 a′

na2 · · · a′
nan


 . (2.52)

Similarly, if we express A in terms of its columns as

A = (a(1), a(2), . . . , a(p)),
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then

AA′ = (a(1), a(2), . . . , a(p))




a′
(1)

a′
(2)
...

a′
(p)


 =

p∑
j=1

a( j)a′
( j), (2.53)

A′A =




a′
(1)

a′
(2)
...

a′
(p)


(a(1), a(2), . . . , a(p))

=




a′
(1)a(1) a′

(1)a(2) · · · a′
(1)a(p)

a′
(2)a(1) a′

(2)a(2) · · · a′
(2)a(p)

...
...

...

a′
(p)a(1) a′

(p)a(2) . . . a′
(p)a(p)


 . (2.54)

Let A = (ai j ) be an n×n matrix and D be a diagonal matrix, D = diag(d1, d2, . . . , dn).
Then, in the product DA, the i th row of A is multiplied by di , and in AD, the j th
column of A is multiplied by d j . For example, if n = 3, we have

DA =

 d1 0 0

0 d2 0
0 0 d3




 a11 a12 a13

a21 a22 a23
a31 a32 a33




=

 d1a11 d1a12 d1a13

d2a21 d2a22 d2a23
d3a31 d3a32 d3a33


 , (2.55)

AD =

 a11 a12 a13

a21 a22 a23
a31 a32 a33




 d1 0 0

0 d2 0
0 0 d3




=

 d1a11 d2a12 d3a13

d1a21 d2a22 d3a23
d1a31 d2a32 d3a33


 , (2.56)

DAD =

 d2

1 a11 d1d2a12 d1d3a13

d2d1a21 d2
2 a22 d2d3a23

d3d1a31 d3d2a32 d2
3 a33


 . (2.57)

In the special case where the diagonal matrix is the identity, we have

IA = AI = A. (2.58)

If A is rectangular, (2.58) still holds, but the two identities are of different sizes.
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The product of a scalar and a matrix is obtained by multiplying each element of
the matrix by the scalar:

cA = (cai j ) =




ca11 ca12 · · · ca1m

ca21 ca22 · · · ca2m
...

...
...

can1 can2 · · · canm


 . (2.59)

For example,

cI =




c 0 · · · 0
0 c · · · 0
...

...
...

0 0 · · · c


 , (2.60)

cx =




cx1
cx2
...

cxn


 . (2.61)

Since cai j = ai j c, the product of a scalar and a matrix is commutative:

cA = Ac. (2.62)

Multiplication of vectors or matrices by scalars permits the use of linear combi-
nations, such as

k∑
i=1

ai xi = a1x1 + a2x2 + · · · + akxk,

k∑
i=1

ai Bi = a1B1 + a2B2 + · · · + akBk .

If A is a symmetric matrix and x and y are vectors, the product

y′Ay =
∑

i

aii y2
i +

∑
i �= j

ai j yi y j (2.63)

is called a quadratic form, whereas

x′Ay =
∑

i j

ai j xi y j (2.64)
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is called a bilinear form. Either of these is, of course, a scalar and can be treated
as such. Expressions such as x′Ay/

√
x′Ax are permissible (assuming A is positive

definite; see Section 2.7).

2.4 PARTITIONED MATRICES

It is sometimes convenient to partition a matrix into submatrices. For example, a
partitioning of a matrix A into four submatrices could be indicated symbolically as
follows:

A =
(

A11 A12
A21 A22

)
.

For example, a 4 × 5 matrix A can be partitioned as

A =




2 1 3 8 4
−3 4 0 2 7

9 3 6 5 −2

4 8 3 1 6


 =

(
A11 A12
A21 A22

)
,

where

A11 =

 2 1 3

−3 4 0
9 3 6


 , A12 =


 8 4

2 7
5 −2


 ,

A21 = (4 8 3), A22 = (1 6).

If two matrices A and B are conformable and A and B are partitioned so that the
submatrices are appropriately conformable, then the product AB can be found by
following the usual row-by-column pattern of multiplication on the submatrices as if
they were single elements; for example,

AB =
(

A11 A12
A21 A22

)(
B11 B12
B21 B22

)

=
(

A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

)
. (2.65)

It can be seen that this formulation is equivalent to the usual row-by-column defi-
nition of matrix multiplication. For example, the (1, 1) element of AB is the product
of the first row of A and the first column of B. In the (1, 1) element of A11B11 we
have the sum of products of part of the first row of A and part of the first column of
B. In the (1, 1) element of A12B21 we have the sum of products of the rest of the first
row of A and the remainder of the first column of B.
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Multiplication of a matrix and a vector can also be carried out in partitioned form.
For example,

Ab = (A1,A2)

(
b1
b2

)
= A1b1 + A2b2, (2.66)

where the partitioning of the columns of A corresponds to the partitioning of the
elements of b. Note that the partitioning of A into two sets of columns is indicated
by a comma, A = (A1,A2).

The partitioned multiplication in (2.66) can be extended to individual columns of
A and individual elements of b:

Ab = (a1, a2, . . . , ap)




b1
b2
...

bp




= b1a1 + b2a2 + · · · + bpap. (2.67)

Thus Ab is expressible as a linear combination of the columns of A, the coefficients
being elements of b. For example, let

A =

 3 −2 1

2 1 0
4 3 2


 and b =


 4

2
3


 .

Then

Ab =

 11

10
28


 .

Using a linear combination of columns of A as in (2.67), we obtain

Ab = b1a1 + b2a2 + b3a3

= 4


 3

2
4


+ 2


 −2

1
3


+ 3


 1

0
2




=

 12

8
16


+


 −4

2
6


+


 3

0
6


 =


 11

10
28


 .
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We note that if A is partitioned as in (2.66), A = (A2,A2), the transpose is not equal
to (A′

1,A′
2), but rather

A′ = (A1,A2)
′ =

(
A′

1
A′

2

)
. (2.68)

2.5 RANK

Before defining the rank of a matrix, we first introduce the notion of linear inde-
pendence and dependence. A set of vectors a1, a2, . . . , an is said to be linearly
dependent if constants c1, c2, . . . , cn (not all zero) can be found such that

c1a1 + c2a2 + · · · + cnan = 0. (2.69)

If no constants c1, c2, . . . , cn can be found satisfying (2.69), the set of vectors is said
to be linearly independent.

If (2.69) holds, then at least one of the vectors ai can be expressed as a linear
combination of the other vectors in the set. Thus linear dependence of a set of vec-
tors implies redundancy in the set. Among linearly independent vectors there is no
redundancy of this type.

The rank of any square or rectangular matrix A is defined as

rank(A) = number of linearly independent rows of A

= number of linearly independent columns of A.

It can be shown that the number of linearly independent rows of a matrix is always
equal to the number of linearly independent columns.

If A is n × p, the maximum possible rank of A is the smaller of n and p, in which
case A is said to be of full rank (sometimes said full row rank or full column rank).
For example,

A =
(

1 −2 3
5 2 4

)

has rank 2 because the two rows are linearly independent (neither row is a multiple of
the other). However, even though A is full rank, the columns are linearly dependent
because rank 2 implies there are only two linearly independent columns. Thus, by
(2.69), there exist constants c1, c2, and c3 such that

c1

(
1
5

)
+ c2

( −2
2

)
+ c3

(
3
4

)
=
(

0
0

)
. (2.70)
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By (2.67), we can write (2.70) in the form

(
1 −2 3
5 2 4

) c1
c2
c3


 =

(
0
0

)

or
Ac = 0. (2.71)

A solution vector to (2.70) or (2.71) is given by any multiple of c = (14,−11,−12)′.
Hence we have the interesting result that a product of a matrix A and a vector c is
equal to 0, even though A �= O and c �= 0. This is a direct consequence of the linear
dependence of the column vectors of A.

Another consequence of the linear dependence of rows or columns of a matrix is
the possibility of expressions such as AB = CB, where A �= C. For example, let

A =
(

1 3 2
2 0 −1

)
, B =


 1 2

0 1
1 0


 , C =

(
2 1 1
5 −6 −4

)
.

Then

AB = CB =
(

3 5
1 4

)
.

All three matrices A, B, and C are full rank; but being rectangular, they have a rank
deficiency in either rows or columns, which permits us to construct AB = CB with
A �= C. Thus in a matrix equation, we cannot, in general, cancel matrices from both
sides of the equation.

There are two exceptions to this rule. One exception involves a nonsingular matrix
to be defined in Section 2.6. The other special case occurs when the expression holds
for all possible values of the matrix common to both sides of the equation. For exam-
ple,

If Ax = Bx for all possible values of x, then A = B. (2.72)

To see this, let x = (1, 0, . . . , 0)′. Then the first column of A equals the first column
of B. Now let x = (0, 1, 0, . . . , 0)′, and the second column of A equals the second
column of B. Continuing in this fashion, we obtain A = B.

Suppose a rectangular matrix A is n × p of rank p, where p < n. We typically
shorten this statement to “A is n × p of rank p < n.”

2.6 INVERSE

If a matrix A is square and of full rank, then A is said to be nonsingular, and A has
a unique inverse, denoted by A−1, with the property that

AA−1 = A−1A = I. (2.73)
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For example, let

A =
(

3 4
2 6

)
.

Then

A−1 =
(

.6 −.4
−.2 .3

)
,

AA−1 =
(

3 4
2 6

)(
.6 −.4

−.2 .3

)
=
(

1 0
0 1

)
.

If A is square and of less than full rank, then an inverse does not exist, and A is
said to be singular. Note that rectangular matrices do not have inverses as in (2.73),
even if they are full rank.

If A and B are the same size and nonsingular, then the inverse of their product is
the product of their inverses in reverse order,

(AB)−1 = B−1A−1. (2.74)

Note that (2.74) holds only for nonsingular matrices. Thus, for example, if A is n × p
of rank p < n, then A′A has an inverse, but (A′A)−1 is not equal to A−1(A′)−1

because A is rectangular and does not have an inverse.
If a matrix is nonsingular, it can be canceled from both sides of an equation, pro-

vided it appears on the left (or right) on both sides. For example, if B is nonsingular,
then

AB = CB implies A = C,

since we can multiply on the right by B−1 to obtain

ABB−1 = CBB−1,

AI = CI,

A = C.

Otherwise, if A, B, and C are rectangular or square and singular, it is easy to construct
AB = CB, with A �= C, as illustrated near the end of Section 2.5.

The inverse of the transpose of a nonsingular matrix is given by the transpose of
the inverse:

(A′)−1 = (A−1)′. (2.75)

If the symmetric nonsingular matrix A is partitioned in the form

A =
(

A11 a12
a′

12 a22

)
,
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then the inverse is given by

A−1 = 1

b

(
bA−1

11 + A−1
11 a12a′

12A−1
11 −A−1

11 a12

−a′
12A−1

11 1

)
, (2.76)

where b = a22 − a′
12A−1

11 a12. A nonsingular matrix of the form B + cc′, where B is
nonsingular, has as its inverse

(B + cc′)−1 = B−1 − B−1cc′B−1

1 + c′B−1c
. (2.77)

2.7 POSITIVE DEFINITE MATRICES

The symmetric matrix A is said to be positive definite if x′Ax > 0 for all possible
vectors x (except x = 0). Similarly, A is positive semidefinite if x′Ax ≥ 0 for all
x �= 0. [A quadratic form x′Ax was defined in (2.63).] The diagonal elements aii of a
positive definite matrix are positive. To see this, let x′ = (0, . . . , 0, 1, 0, . . . , 0)with
a 1 in the i th position. Then x′Ax = aii > 0. Similarly, for a positive semidefinite
matrix A, aii ≥ 0 for all i .

One way to obtain a positive definite matrix is as follows:

If A = B′B, where B is n × p of rank p < n, then B′B is positive definite. (2.78)

This is easily shown:

x′Ax = x′B′Bx = (Bx)′(Bx) = z′z,

where z = Bx. Thus x′Ax = ∑n
i=1 z2

i , which is positive (Bx cannot be 0 unless
x = 0, because B is full rank). If B is less than full rank, then by a similar argument,
B′B is positive semidefinite.

Note that A = B′B is analogous to a = b2 in real numbers, where the square of
any number (including negative numbers) is positive.

In another analogy to positive real numbers, a positive definite matrix can be
factored into a “square root” in two ways. We give one method in (2.79) and the
other in Section 2.11.8.

A positive definite matrix A can be factored into

A = T′T, (2.79)

where T is a nonsingular upper triangular matrix. One way to obtain T is the
Cholesky decomposition, which can be carried out in the following steps.

Let A = (ai j ) and T = (ti j ) be n × n. Then the elements of T are found as
follows:
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t11 = √
a11, t1 j = a1 j

t11
2 ≤ j ≤ n,

tii =
√√√√aii −

i−1∑
k=1

t2
ki 2 ≤ i ≤ n,

ti j = ai j −∑i−1
k=1 tki tk j

tii
2 ≤ i < j ≤ n,

ti j = 0 1 ≤ j < i ≤ n.

For example, let

A =

 3 0 −3

0 6 3
−3 3 6


 .

Then by the Cholesky method, we obtain

T =



√
3 0 −√

3
0

√
6

√
1.5

0 0
√

1.5


 ,

T′T =



√
3 0 0

0
√

6 0
−√

3
√

1.5
√

1.5






√
3 0 −√

3
0

√
6

√
1.5

0 0
√

1.5




=

 3 0 −3

0 6 3
−3 3 6


 = A.

2.8 DETERMINANTS

The determinant of an n×n matrix A is defined as the sum of all n! possible products
of n elements such that

1. each product contains one element from every row and every column, and
2. the factors in each product are written so that the column subscripts appear in

order of magnitude and each product is then preceded by a plus or minus sign
according to whether the number of inversions in the row subscripts is even or
odd.

An inversion occurs whenever a larger number precedes a smaller one. The symbol
n! is defined as

n! = n(n − 1)(n − 2) · · · 2 · 1. (2.80)
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The determinant of A is a scalar denoted by |A| or by det(A). The preceding def-
inition is not useful in evaluating determinants, except in the case of 2 × 2 or 3 × 3
matrices. For larger matrices, other methods are available for manual computation,
but determinants are typically evaluated by computer. For a 2 × 2 matrix, the deter-
minant is found by

|A| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12. (2.81)

For a 3 × 3 matrix, the determinant is given by

|A| = a11a22a33 + a12a23a31 + a13a32a21 − a31a22a13 − a32a23a11 − a33a12a21.

(2.82)

This can be found by the following scheme. The three positive terms are obtained by

and the three negative terms, by

The determinant of a diagonal matrix is the product of the diagonal elements; that
is, if D = diag(d1, d2, . . . , dn), then

|D| =
n∏

i=1

di . (2.83)

As a special case of (2.83), suppose all diagonal elements are equal, say,

D = diag(c, c, . . . , c) = cI.
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Then

|D| = |cI| =
n∏

i=1

c = cn. (2.84)

The extension of (2.84) to any square matrix A is

|cA| = cn|A|. (2.85)

Since the determinant is a scalar, we can carry out operations such as

|A|2, |A|1/2, 1

|A| ,

provided that |A| > 0 for |A|1/2 and that |A| �= 0 for 1/|A|.
If the square matrix A is singular, its determinant is 0:

|A| = 0 if A is singular. (2.86)

If A is near singular, then there exists a linear combination of the columns that is
close to 0, and |A| is also close to 0. If A is nonsingular, its determinant is nonzero:

|A| �= 0 if A is nonsingular. (2.87)

If A is positive definite, its determinant is positive:

|A| > 0 if A is positive definite. (2.88)

If A and B are square and the same size, the determinant of the product is the
product of the determinants:

|AB| = |A||B|. (2.89)

For example, let

A =
(

1 2
−3 5

)
and B =

(
4 2
1 3

)
.

Then

AB =
(

6 8
−7 9

)
, |AB| = 110,

|A| = 11, |B| = 10, |A||B| = 110.

The determinant of the transpose of a matrix is the same as the determinant of the
matrix, and the determinant of the the inverse of a matrix is the reciprocal of the
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determinant:

|A′| = |A|, (2.90)

|A−1| = 1

|A| = |A|−1. (2.91)

If a partitioned matrix has the form

A =
(

A11 O
O A22

)
,

where A11 and A22 are square but not necessarily the same size, then

|A| =
∣∣∣∣ A11 O

O A22

∣∣∣∣ = |A11||A22|. (2.92)

For a general partitioned matrix,

A =
(

A11 A12
A21 A22

)
,

where A11 and A22 are square and nonsingular (not necessarily the same size), the
determinant is given by either of the following two expressions:

∣∣∣∣ A11 A12
A21 A22

∣∣∣∣ = |A11||A22 − A21A−1
11 A12| (2.93)

= |A22||A11 − A12A−1
22 A21|. (2.94)

Note the analogy of (2.93) and (2.94) to the case of the determinant of a 2 × 2
matrix as given by (2.81):

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a21a12

= a11

(
a22 − a21a12

a11

)

= a22

(
a11 − a12a21

a22

)
.

If B is nonsingular and c is a vector, then

|B + cc′| = |B|(1 + c′B−1c). (2.95)
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2.9 TRACE

A simple function of an n × n matrix A is the trace, denoted by tr(A) and defined
as the sum of the diagonal elements of A; that is, tr(A) = ∑n

i=1 aii . The trace is, of
course, a scalar. For example, suppose

A =

 5 4 4

2 −3 1
3 7 9


 .

Then

tr(A) = 5 + (−3)+ 9 = 11.

The trace of the sum of two square matrices is the sum of the traces of the two
matrices:

tr(A + B) = tr(A)+ tr(B). (2.96)

An important result for the product of two matrices is

tr(AB) = tr(BA). (2.97)

This result holds for any matrices A and B where AB and BA are both defined. It is
not necessary that A and B be square or that AB equal BA. For example, let

A =

 1 3

2 −1
4 6


 , B =

(
3 −2 1
2 4 5

)
.

Then

AB =

 9 10 16

4 −8 −3
24 16 34


 , BA =

(
3 17

30 32

)
,

tr(AB) = 9 − 8 + 34 = 35, tr(BA) = 3 + 32 = 35.

From (2.52) and (2.54), we obtain

tr(A′A) = tr(AA′) =
n∑

i=1

p∑
j=1

a2
i j , (2.98)

where the ai j ’s are elements of the n × p matrix A.



ORTHOGONAL VECTORS AND MATRICES 31

2.10 ORTHOGONAL VECTORS AND MATRICES

Two vectors a and b of the same size are said to be orthogonal if

a′b = a1b1 + a2b2 + · · · + anbn = 0. (2.99)

Geometrically, orthogonal vectors are perpendicular [see (3.14) and the comments
following (3.14)]. If a′a = 1, the vector a is said to be normalized. The vector a can
always be normalized by dividing by its length,

√
a′a. Thus

c = a√
a′a

(2.100)

is normalized so that c′c = 1.
A matrix C = (c1, c2, . . . , cp) whose columns are normalized and mutually

orthogonal is called an orthogonal matrix. Since the elements of C′C are products of
columns of C [see (2.54)], which have the properties c′

i ci = 1 for all i and c′
i c j = 0

for all i �= j , we have

C′C = I. (2.101)

If C satisfies (2.101), it necessarily follows that

CC′ = I, (2.102)

from which we see that the rows of C are also normalized and mutually orthogonal.
It is clear from (2.101) and (2.102) that C−1 = C′ for an orthogonal matrix C.

We illustrate the creation of an orthogonal matrix by starting with

A =

 1 1 1

1 1 −1
1 −2 0


 ,

whose columns are mutually orthogonal. To normalize the three columns, we divide
by the respective lengths,

√
3,

√
6, and

√
2, to obtain

C =

 1/

√
3 1/

√
6 1/

√
2

1/
√

3 1/
√

6 −1/
√

2
1/

√
3 −2/

√
6 0


 .

Note that the rows also became normalized and mutually orthogonal so that C satis-
fies both (2.101) and (2.102).

Multiplication by an orthogonal matrix has the effect of rotating axes; that is, if a
point x is transformed to z = Cx, where C is orthogonal, then
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z′z = (Cx)′(Cx) = x′C′Cx = x′Ix = x′x, (2.103)

and the distance from the origin to z is the same as the distance to x.

2.11 EIGENVALUES AND EIGENVECTORS

2.11.1 Definition

For every square matrix A, a scalar λ and a nonzero vector x can be found such that

Ax = λx. (2.104)

In (2.104), λ is called an eigenvalue of A, and x is an eigenvector of A corresponding
to λ. To find λ and x, we write (2.104) as

(A − λI)x = 0. (2.105)

If |A − λI| �= 0, then (A − λI) has an inverse and x = 0 is the only solution. Hence,
in order to obtain nontrivial solutions, we set |A − λI| = 0 to find values of λ
that can be substituted into (2.105) to find corresponding values of x. Alternatively,
(2.69) and (2.71) require that the columns of A − λI be linearly dependent. Thus in
(A − λI)x = 0, the matrix A − λI must be singular in order to find a solution vector
x that is not 0.

The equation |A − λI| = 0 is called the characteristic equation. If A is n × n,
the characteristic equation will have n roots; that is, A will have n eigenvalues λ1,
λ2, . . . , λn . The λ’s will not necessarily all be distinct or all nonzero. However, if A
arises from computations on real (continuous) data and is nonsingular, the λ’s will
all be distinct (with probability 1). After finding λ1, λ2, . . . , λn , the accompanying
eigenvectors x1, x2, . . . , xn can be found using (2.105).

If we multiply both sides of (2.105) by a scalar k and note by (2.62) that k and
A − λI commute, we obtain

(A − λI)kx = k0 = 0. (2.106)

Thus if x is an eigenvector of A, kx is also an eigenvector, and eigenvectors are
unique only up to multiplication by a scalar. Hence we can adjust the length of x,
but the direction from the origin is unique; that is, the relative values of (ratios of)
the components of x = (x1, x2, . . . , xn)

′ are unique. Typically, the eigenvector x is
scaled so that x′x = 1.

To illustrate, we will find the eigenvalues and eigenvectors for the matrix

A =
(

1 2
−1 4

)
.
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The characteristic equation is

|A − λI| =
∣∣∣∣ 1 − λ 2

−1 4 − λ

∣∣∣∣ = (1 − λ)(4 − λ)+ 2 = 0,

λ2 − 5λ+ 6 = (λ− 3)(λ− 2) = 0,

from which λ1 = 3 and λ2 = 2. To find the eigenvector corresponding to λ1 = 3, we
use (2.105),

(A − λI)x = 0,(
1 − 3 2
−1 4 − 3

)(
x1
x2

)
=
(

0
0

)
,

−2x1 + 2x2 = 0

−x1 + x2 = 0.

As expected, either equation is redundant in the presence of the other, and there
remains a single equation with two unknowns, x1 = x2. The solution vector can be
written with an arbitrary constant,

(
x1
x2

)
= x1

(
1
1

)
= c

(
1
1

)
.

If c is set equal to 1/
√

2 to normalize the eigenvector, we obtain

x1 =
(

1/
√

2
1/

√
2

)
.

Similarly, corresponding to λ2 = 2, we have

x2 =
(

2/
√

5
1/

√
5

)
.

2.11.2 I + A and I − A

If λ is an eigenvalue of A and x is the corresponding eigenvector, then 1 + λ is an
eigenvalue of I + A and 1 − λ is an eigenvalue of I − A. In either case, x is the
corresponding eigenvector.

We demonstrate this for I + A:

Ax = λx,

x + Ax = x + λx,

(I + A)x = (1 + λ)x.



34 MATRIX ALGEBRA

2.11.3 tr(A) and |A|
For any square matrix A with eigenvalues λ1, λ2, . . . , λn , we have

tr(A) =
n∑

i=1

λi , (2.107)

|A| =
n∏

i=1

λi . (2.108)

Note that by the definition in Section 2.9, tr(A) is also equal to
∑n

i=1 aii , but
aii �= λi .

We illustrate (2.107) and (2.108) using the matrix

A =
(

1 2
−1 4

)

from the illustration in Section 2.11.1, for which λ1 = 3 and λ2 = 2. Using (2.107),
we obtain

tr(A) = λ1 + λ2 = 3 + 2 = 5,

and from (2.108), we have

|A| = λ1λ2 = 3(2) = 6.

By definition, we obtain

tr(A) = 1 + 4 = 5 and |A| = (1)(4)− (−1)(2) = 6.

2.11.4 Positive Definite and Semidefinite Matrices

The eigenvalues and eigenvectors of positive definite and positive semidefinite matri-
ces have the following properties:

1. The eigenvalues of a positive definite matrix are all positive.
2. The eigenvalues of a positive semidefinite matrix are positive or zero, with the

number of positive eigenvalues equal to the rank of the matrix.

It is customary to list the eigenvalues of a positive definite matrix in descending
order: λ1 > λ2 > · · · > λp. The eigenvectors x1, x2, . . . , xn are listed in the same
order; x1 corresponds to λ1, x2 corresponds to λ2, and so on.

The following result, known as the Perron–Frobenius theorem, is of interest in
Chapter 12: If all elements of the positive definite matrix A are positive, then all ele-
ments of the first eigenvector are positive. (The first eigenvector is the one associated
with the first eigenvalue, λ1.)
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2.11.5 The Product AB

If A and B are square and the same size, the eigenvalues of AB are the same as those
of BA, although the eigenvectors are usually different. This result also holds if AB
and BA are both square but of different sizes, as when A is n × p and B is p × n. (In
this case, the nonzero eigenvalues of AB and BA will be the same.)

2.11.6 Symmetric Matrix

The eigenvectors of an n ×n symmetric matrix A are mutually orthogonal. It follows
that if the n eigenvectors of A are normalized and inserted as columns of a matrix
C = (x1, x2, . . . , xn), then C is orthogonal.

2.11.7 Spectral Decomposition

It was noted in Section 2.11.6 that if the matrix C = (x1, x2, . . . , xn) contains the
normalized eigenvectors of an n × n symmetric matrix A, then C is orthogonal.
Therefore, by (2.102), I = CC′, which we can multiply by A to obtain

A = ACC′.

We now substitute C = (x1, x2, . . . , xn):

A = A(x1, x2, . . . , xn)C′

= (Ax1,Ax2, . . . ,Axn)C′ [by (2.48)]

= (λ1x1, λ2x2, . . . , λnxn)C′ [by (2.104)]

= CDC′ [by (2.56)], (2.109)

where

D =



λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn


 . (2.110)

The expression A = CDC′ in (2.109) for a symmetric matrix A in terms of its
eigenvalues and eigenvectors is known as the spectral decomposition of A.

Since C is orthogonal and C′C = CC′ = I, we can multiply (2.109) on the left
by C′ and on the right by C to obtain

C′AC = D. (2.111)

Thus a symmetric matrix A can be diagonalized by an orthogonal matrix containing
normalized eigenvectors of A, and by (2.110) the resulting diagonal matrix contains
eigenvalues of A.
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2.11.8 Square Root Matrix

If A is positive definite, the spectral decomposition of A in (2.109) can be modified
by taking the square roots of the eigenvalues to produce a square root matrix,

A1/2 = CD1/2C′, (2.112)

where

D1/2 =




√
λ1 0 · · · 0
0

√
λ2 · · · 0

...
...

...

0 0 · · · √
λn


 . (2.113)

The square root matrix A1/2 is symmetric and serves as the square root of A:

A1/2A1/2 = (A1/2)2 = A. (2.114)

2.11.9 Square Matrices and Inverse Matrices

Other functions of A have spectral decompositions analogous to (2.112). Two of
these are the square and inverse of A. If the square matrix A has eigenvalues λ1,
λ2, . . . , λn and accompanying eigenvectors x1, x2, . . . , xn , then A2 has eigenval-
ues λ2

1, λ2
2, . . . , λ

2
n and eigenvectors x1, x2, . . . , xn . If A is nonsingular, then A−1

has eigenvalues 1/λ1, 1/λ2, . . . , 1/λn and eigenvectors x1, x2, . . . , xn . If A is also
symmetric, then

A2 = CD2C′, (2.115)

A−1 = CD−1C′, (2.116)

where C = (x1, x2, . . . , xn) has as columns the normalized eigenvectors of A (and of
A2 and A−1), D2 = diag(λ2

1, λ
2
2, . . . , λ

2
n), and D−1 = diag(1/λ1, 1/λ2, . . . , 1/λn).

2.11.10 Singular Value Decomposition

In (2.109) in Section 2.11.7, we expressed a symmetric matrix A in terms of its
eigenvalues and eigenvectors in the spectral decomposition A = CDC′. In a similar
manner, we can express any (real) matrix A in terms of eigenvalues and eigenvectors
of A′A and AA′. Let A be an n × p matrix of rank k. Then the singular value
decomposition of A can be expressed as

A = UDV′, (2.117)

where U is n × k, D is k × k, and V is p × k. The diagonal elements of the non-
singular diagonal matrix D = diag(λ1, λ2, . . . , λk) are the positive square roots of
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λ2
1, λ2

2, . . . , λ
2
k , which are the nonzero eigenvalues of A′A or of AA′. The values

λ1, λ2, . . . , λk are called the singular values of A. The k columns of U are the nor-
malized eigenvectors of AA′ corresponding to the eigenvalues λ2

1, λ2
2, . . . , λ

2
k . The k

columns of V are the normalized eigenvectors of A′A corresponding to the eigenval-
ues λ2

1, λ2
2, . . . , λ

2
k . Since the columns of U and of V are (normalized) eigenvectors

of symmetric matrices, they are mutually orthogonal (see Section 2.11.6), and we
have U′U = V′V = I.

PROBLEMS

2.1 Let

A =
(

4 2 3
7 5 8

)
, B =

(
3 −2 4
6 9 −5

)
.

(a) Find A + B and A − B.
(b) Find A′A and AA′.

2.2 Use the matrices A and B in Problem 2.1:

(a) Find (A + B)′ and A′ + B′ and compare them, thus illustrating (2.15).
(b) Show that (A′)′ = A, thus illustrating (2.6).

2.3 Let

A =
(

1 3
2 −1

)
, B =

(
2 0
1 5

)
.

(a) Find AB and BA.
(b) Find |AB|, |A|, and |B| and verify that (2.89) holds in this case.

2.4 Use the matrices A and B in Problem 2.3:

(a) Find A + B and tr(A + B).
(b) Find tr(A) and tr(B) and show that (2.96) holds for these matrices.

2.5 Let

A =
(

1 2 3
2 −1 1

)
, B =


 3 −2

2 0
−1 1


 .

(a) Find AB and BA.
(b) Compare tr(AB) and tr(BA) and confirm that (2.97) holds here.

2.6 Let

A =

 1 2 3

2 4 6
5 10 15


 , B =


 −1 1 −2

−1 1 −2
1 −1 2


 .



38 MATRIX ALGEBRA

(a) Show that AB = O.

(b) Find a vector x such that Ax = 0.

(c) Show that |A| = 0.

2.7 Let

A =

 1 −1 4

−1 1 3
4 3 2


 , B =


 3 −2 4

7 1 0
2 3 5


 ,

x =

 1

−1
2


 , y =


 3

2
1


 .

Find the following:

(a) Bx (d) x′Ay (g) xx′
(b) y′B (e) x′x (h) xy′
(c) x′Ax (f) x′y (i) B′B

2.8 Use x, y, and A as defined in Problem 2.7:

(a) Find x + y and x − y.

(b) Find (x − y)′A(x − y).

2.9 Using B and x in Problem 2.7, find Bx as a linear combination of columns of
B as in (2.67) and compare with Bx found in Problem 2.7(a).

2.10 Let

A =
(

2 1
1 3

)
, B =

(
1 4 2
5 0 3

)
, I =

(
1 0
0 1

)
.

(a) Show that (AB)′ = B′A′ as in (2.27).

(b) Show that AI = A and that IB = B.

(c) Find |A|.
2.11 Let

a =

 1

−3
2


 , b =


 2

1
3


 .

(a) Find a′b and (a′b)2.

(b) Find bb′ and a′(bb′)a.

(c) Compare (a′b)2 with a′(bb′)a and thus illustrate (2.40).
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2.12 Let

A =

 1 2 3

4 5 6
7 8 9


 , D =


 a 0 0

0 b 0
0 0 c


 .

Find DA, AD, and DAD.

2.13 Let the matrices A and B be partitioned as follows:

A =



2 1 2
3 2 0

1 0 1


 , B =




1 1 1 0
2 1 1 2

2 3 1 2


 .

(a) Find AB as in (2.65) using the indicated partitioning.

(b) Check by finding AB in the usual way, ignoring the partitioning.

2.14 Let

A =
(

1 3 2
2 0 −1

)
, B =


 1 2

0 1
1 0


 , C =

(
2 1 1
5 −6 −4

)
.

Find AB and CB. Are they equal? What is the rank of A, B, and C?

2.15 Let

A =

 5 4 4

2 −3 1
3 7 2


 , B =


 1 0 1

0 1 0
1 2 3


 .

(a) Find tr(A) and tr(B).
(b) Find A + B and tr(A + B). Is tr(A + B) = tr(A)+ tr(B)?
(c) Find |A| and |B|.
(d) Find AB and |AB|. Is |AB| = |A||B|?

2.16 Let

A =

 3 4 3

4 8 6
3 6 9


 .

(a) Show that |A| > 0.

(b) Using the Cholesky decomposition in Section 2.7, find an upper triangular
matrix T such that A = T′T.
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2.17 Let

A =

 3 −5 −1

−5 13 0
−1 0 1


 .

(a) Show that |A| > 0.
(b) Using the Cholesky decomposition in Section 2.7, find an upper triangular

matrix T such that A = T′T.

2.18 The columns of the following matrix are mutually orthogonal:

A =

 1 −1 1

2 1 0
1 −1 −1


 .

(a) Normalize the columns of A by dividing each column by its length; denote
the resulting matrix by C.

(b) Show that C is an orthogonal matrix, that is, C′C = CC′ = I.

2.19 Let

A =

 1 1 −2

−1 2 1
0 1 −1


 .

(a) Find the eigenvalues and associated normalized eigenvectors.
(b) Find tr(A) and |A| and show that tr(A) = ∑3

i=1 λi and |A| = ∏3
i=1 λi .

2.20 Let

A =

 3 1 1

1 0 2
1 2 0


 .

(a) The eigenvalues of A are 1, 4, −2. Find the normalized eigenvectors and
use them as columns in an orthogonal matrix C.

(b) Show that C′AC = D as in (2.111), where D is diagonal with the eigenval-
ues of A on the diagonal.

(c) Show that A = CDC′ as in (2.109).

2.21 For the positive definite matrix

A =
(

2 −1
−1 2

)
,

calculate the eigenvalues and eigenvectors and find the square root matrix A1/2

as in (2.112). Check by showing that (A1/2)2 = A.



PROBLEMS 41

2.22 Let

A =

 3 6 −1

6 9 4
−1 4 3


 .

(a) Find the spectral decomposition of A as in (2.109).

(b) Find the spectral decomposition of A2 and show that the diagonal matrix
of eigenvalues is equal to the square of the matrix D found in part (a), thus
illustrating (2.115).

(c) Find the spectral decomposition of A−1 and show that the diagonal matrix
of eigenvalues is equal to the inverse of the matrix D found in part (a), thus
illustrating (2.116).

2.23 Find the singular value decomposition of A as in (2.117), where

A =




4 −5 −1
7 −2 3

−1 4 −3
8 2 6


 .

2.24 If j is a vector of 1’s, as defined in (2.11), show that the following hold:

(a) j′a = a′j = ∑
i ai as in (2.37).

(b) j′A is a row vector whose elements are the column sums of A as in (2.38).

(c) Aj is a column vector whose elements are the row sums of A as in (2.38).

2.25 Verify (2.41); that is, show that (x − y)′(x − y) = x′x − 2x′y + y′y.

2.26 Show that A′A is symmetric, where A is n × p.

2.27 If a and x1, x2, . . . , xn are all p × 1 and A is p × p, show that (2.42)–(2.45)
hold:

(a)
∑n

i=1 a′xi = a′∑n
i=1 xi .

(b)
∑n

i=1 Axi = A
∑n

i=1 xi .

(c)
∑n

i=1(a
′xi )

2 = a′(
∑n

i=1 xi x′
i )a.

(d)
∑n

i=1 Axi (Axi )
′ = A(

∑n
i=1 xi x′

i )A
′.

2.28 Assume that A = (a′
1

a′
2

)
is 2 × p, x is p × 1, and S is p × p.

(a) Show that

Ax =
(

a′
1x

a′
2x

)
,

as in (2.49).
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(b) Show that

ASA′ =
(

a′
1Sa1 a′

1Sa2
a′

2Sa1 a′
2Sa2

)
,

as in (2.50).

2.29 (a) If the rows of A are denoted by a′
i , show that A′A = ∑n

i=1 ai a′
i as in

(2.51).
(b) If the columns of A are denoted by a( j), show that AA′ = ∑p

j=1 a( j)a′
( j)

as in (2.53).

2.30 Show that (A′)−1 = (A−1)′ as in (2.75).

2.31 Show that the inverse of the partitioned matrix given in (2.76) is correct by
multiplying by

(
A11 a12
a′

12 a22

)

to obtain an identity.

2.32 Show that the inverse of B + cc′ given in (2.77) is correct by multiplying by
B + cc′ to obtain an identity.

2.33 Show that |cA| = cn|A| as in (2.85).

2.34 Show that |A−1| = 1/|A| as in (2.91).

2.35 If B is nonsingular and c is a vector, show that |B + cc′| = |B|(1 + c′B−1c) as
in (2.95).

2.36 Show that tr(A′A) = tr(AA′) = ∑
i j a2

i j as in (2.98).

2.37 Show that CC′ = I in (2.102) follows from C′C = I in (2.101).

2.38 Show that the eigenvalues of AB are the same as those of BA, as noted in
Section 2.11.5.

2.39 If A1/2 is the square root matrix defined in (2.112), show that

(a) (A1/2)2 = A as in (2.114),
(b) |A1/2|2 = |A|,
(c) |A1/2| = |A|1/2.
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Characterizing and Displaying
Multivariate Data

We review some univariate and bivariate procedures in Sections 3.1, 3.2, and 3.3 and
then extend them to vectors of higher dimension in the remainder of the chapter.

3.1 MEAN AND VARIANCE OF A UNIVARIATE RANDOM VARIABLE

Informally, a random variable may be defined as a variable whose value depends on
the outcome of a chance experiment. Generally, we will consider only continuous
random variables. Some types of multivariate data are only approximations to this
ideal, such as test scores or a seven-point semantic differential (Likert) scale consist-
ing of ordered responses ranging from strongly disagree to strongly agree. Special
techniques have been developed for such data, but in many cases, the usual methods
designed for continuous data work almost as well.

The density function f (y) indicates the relative frequency of occurrence of the
random variable y. (We do not use Y to denote the random variable for reasons
given at the beginning of Section 3.5.) Thus, if f (y1) > f (y2), then points in the
neighborhood of y1 are more likely to occur than points in the neighborhood of y2.

The population mean of a random variable y is defined (informally) as the mean
of all possible values of y and is denoted by µ. The mean is also referred to as the
expected value of y, or E(y). If the density f (y) is known, the mean can sometimes
be found using methods of calculus, but we will not use these techniques in this text.

If f (y) is unknown, the population meanµwill ordinarily remain unknown unless
it has been established from extensive past experience with a stable population. If
a large random sample from the population represented by f (y) is available, it is
highly probable that the mean of the sample is close to µ.

The sample mean of a random sample of n observations y1, y2, . . . , yn is given
by the ordinary arithmetic average

y = 1

n

n∑
i=1

yi . (3.1)

43
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Generally, y will never be equal toµ; by this we mean that the probability is zero that
a sample will ever arise in which y is exactly equal to µ. However, y is considered a
good estimator for µ because E(y) = µ and var(y) = σ 2/n, where σ 2 is the vari-
ance of y. In other words, y is an unbiased estimator of µ and has a smaller variance
than a single observation y. The variance σ 2 is defined shortly. The notation E(y)
indicates the mean of all possible values of y; that is, conceptually, every possible
sample is obtained from the population, the mean of each is found, and the average
of all these sample means is calculated.

If every y in the population is multiplied by a constant a, the expected value is
also multiplied by a:

E(ay) = aE(y) = aµ. (3.2)

The sample mean has a similar property. If zi = ayi for i = 1, 2, . . . , n, then

z = ay. (3.3)

The variance of the population is defined as var(y) = σ 2 = E(y − µ)2.
This is the average squared deviation from the mean and is thus an indication of
the extent to which the values of y are spread or scattered. It can be shown that
σ 2 = E(y2)− µ2.

The sample variance is defined as

s2 =
∑n

i=1(yi − y)2

n − 1
, (3.4)

which can be shown to be equal to

s2 =
∑n

i=1 y2
i − ny2

n − 1
. (3.5)

The sample variance s2 is generally never equal to the population variance σ 2 (the
probability of such an occurrence is zero), but it is an unbiased estimator for σ 2; that
is, E(s2) = σ 2. Again the notation E(s2) indicates the mean of all possible sample
variances. The square root of either the population variance or sample variance is
called the standard deviation.

If each y is multiplied by a constant a, the population variance is multiplied by
a2, that is, var(ay) = a2σ 2. Similarly, if zi = ayi , i = 1, 2, . . . , n, then the sample
variance of z is given by

s2
z = a2s2. (3.6)
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3.2 COVARIANCE AND CORRELATION OF BIVARIATE
RANDOM VARIABLES

3.2.1 Covariance

If two variables x and y are measured on each research unit (object or subject), we
have a bivariate random variable (x, y). Often x and y will tend to covary; if one
is above its mean, the other is more likely to be above its mean, and vice versa. For
example, height and weight were observed for a sample of 20 college-age males. The
data are given in Table 3.1.

The values of height x and weight y from Table 3.1 are both plotted in the vertical
direction in Figure 3.1. The tendency for x and y to stay on the same side of the mean

Table 3.1. Height and Weight for a Sample of 20 College-age Males

Height Weight Height Weight
Person x y Person x y

1 69 153 11 72 140
2 74 175 12 79 265
3 68 155 13 74 185
4 70 135 14 67 112
5 72 172 15 66 140
6 67 150 16 71 150
7 66 115 17 74 165
8 70 137 18 75 185
9 76 200 19 75 210

10 68 130 20 76 220

Figure 3.1. Two variables with a tendency to covary.
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is clear in Figure 3.1. This illustrates positive covariance. With negative covariance
the points would tend to deviate simultaneously to opposite sides of the mean.

The population covariance is defined as cov(x, y) = σxy = E[(x − µx)(y −
µy)], where µx and µy are the means of x and y, respectively. Thus if x and y are
usually both above their means or both below their means, the product (x −µx )(y −
µy) will typically be positive, and the average value of the product will be positive.
Conversely, if x and y tend to fall on opposite sides of their respective means, the
product will usually be negative and the average product will be negative. It can be
shown that σxy = E(xy)− µxµy .

If the two random variables x and y in a bivariate random variable are added or
multiplied, a new random variable is obtained. The mean of x + y or of xy is as
follows:

E(x + y) = E(x)+ E(y) (3.7)

E(xy) = E(x)E(y) if x and y are independent. (3.8)

Formally, x and y are independent if their joint density factors into the product of
their individual densities: f (x, y) = g(x)h(y). Informally, x and y are independent
if the random behavior of either of the variables is not affected by the behavior of the
other. Note that (3.7) is true whether or not x and y are independent, but (3.8) holds
only for x and y independently distributed.

The notion of independence of x and y is more general than that of zero covari-
ance. The covariance σxy measures linear relationship only, whereas if two random
variables are independent, they are not related either linearly or nonlinearly. Inde-
pendence implies σxy = 0, but σxy = 0 does not imply independence. It is easy to
show that if x and y are independent, then σxy = 0:

σxy = E(xy)− µxµy

= E(x)E(y)− µxµy [by (3.8)]

= µxµy − µxµy = 0.

One way to demonstrate that the converse is not true is to construct examples of
bivariate x and y that have zero covariance and yet are related in a nonlinear way
(the relationship will have zero slope). This is illustrated in Figure 3.2.

If x and y have a bivariate normal distribution (see Chapter 4), then zero covari-
ance implies independence. This is because (1) the covariance measures only linear
relationships and (2) in the bivariate normal case, the mean of y given x (or x given
y) is a straight line.

The sample covariance is defined as

sxy =
∑n

i=1(xi − x)(yi − y)

n − 1
. (3.9)
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Figure 3.2. A sample from a population where x and y have zero covariance and yet are
dependent.

It can be shown that

sxy =
∑n

i=1 xi yi − nx y

n − 1
. (3.10)

Note that sxy is essentially never equal to σxy (for continuous data); that is, the prob-
ability is zero that sxy will equal σxy . It is true, however, that sxy is an unbiased
estimator for σxy , that is, E(sxy) = σxy .

Since sxy �= σxy in any given sample, this is also true when σxy = 0. Thus when
the population covariance is zero, no random sample from the population will have
zero covariance. The only way a sample from a continuous bivariate distribution will
have zero covariance is for the experimenter to choose the values of x and y so that
sxy = 0. (Such a sample would not be a random sample.) One way to achieve this is
to place the values in the form of a grid. This is illustrated in Figure 3.3.

The sample covariance measures only linear relationships. If the points in a bivari-
ate sample follow a curved trend, as, for example, in Figure 3.2, the sample covari-
ance will not measure the strength of the relationship. To see that sxy measures only
linear relationships, note that the slope of a simple linear regression line is

β̂1 =
∑n

i=1(xi − x)(yi − y)∑n
i=1(xi − x)2

= sxy

s2
x
. (3.11)

Thus sxy is proportional to the slope, which shows only the linear relationship
between y and x .

Variables with zero sample covariance can be said to be orthogonal. By (2.99),
two sets of numbers a1, a2, . . . , an and b1, b2, . . . , bn are orthogonal if

∑n
i=1 ai bi =
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Figure 3.3. A sample of (x, y) values with zero covariance.

0. This is true for the centered variables xi −x and yi −y when the sample covariance
is zero, that is,

∑n
i=1(xi − x)(yi − y) = 0.

Example 3.2.1. To obtain the sample covariance for the height and weight data in
Table 3.1, we first calculate x , y, and

∑
i xi yi , where x is height and y is weight:

x = 69 + 74 + · · · + 76

20
= 71.45,

y = 153 + 175 + · · · + 220

20
= 164.7,

20∑
i=1

xi yi = (69)(153)+ (74)(175)+ · · · + (76)(220) = 237,805.

Now, by (3.10), we have

sxy =
∑n

i=1 xi yi − nx y

n − 1

= 237,805 − (20)(71.45)(164.7)

19
= 128.88.

By itself, the sample covariance 128.88 is not very meaningful. We are not sure if
this represents a small, moderate, or large amount of relationship between y and x .
A method of standardizing the covariance is given in the next section.
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3.2.2 Correlation

Since the covariance depends on the scale of measurement of x and y, it is difficult to
compare covariances between different pairs of variables. For example, if we change
a measurement from inches to centimeters, the covariance will change. To find a
measure of linear relationship that is invariant to changes of scale, we can standard-
ize the covariance by dividing by the standard deviations of the two variables. This
standardized covariance is called a correlation. The population correlation of two
random variables x and y is

ρxy = corr(x, y) = σxy

σxσy
= E[(x − µx)(y − µy)]√

E(x − µx)2
√

E(y − µy)2
, (3.12)

and the sample correlation is

rxy = sxy

sx sy
=

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
. (3.13)

Either of these correlations will range between −1 and 1.
The sample correlation rxy is related to the cosine of the angle between two vec-

tors. Let θ be the angle between vectors a and b in Figure 3.4. The vector from the
terminal point of a to the terminal point of b can be represented as c = b − a. Then
the law of cosines can be stated in vector form as

cos θ = a′a + b′b − (b − a)′(b − a)

2
√
(a′a)(b′b)

Figure 3.4. Vectors a and b in 3-space.
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= a′a + b′b − (b′b + a′a − 2a′b)
2
√
(a′a)(b′b)

= a′b√
(a′a)(b′b)

. (3.14)

Since cos(90◦) = 0, we see from (3.14) that a′b = 0 when θ = 90◦. Thus a
and b are perpendicular when a′b = 0. By (2.99), two vectors a and b, such that
a′b = 0, are also said to be orthogonal. Hence orthogonal vectors are perpendicular
in a geometric sense.

To express the correlation in the form given in (3.14), let the n observation vec-
tors (x1, y1), (x2, y2), . . . , (xn, yn) in two dimensions be represented as two vectors
x′ = (x1, x2, . . . , xn) and y′ = (y1, y2, . . . , yn) in n dimensions, and let x and y
be centered as x − xj and y − yj. Then the cosine of the angle θ between them [see
(3.14)] is equal to the sample correlation between x and y:

cos θ = (x − xj)′(y − yj)√[(x − xj)′(x − xj)][(y − yj)′(y − yj)]

=
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2

∑n
i=1(yi − y)2

(3.15)

= rxy.

Thus if the angle θ between the two centered vectors x − xj and y − yj is small so
that cos θ is near 1, rxy will be close to 1. If the two vectors are perpendicular, cos θ
and rxy will be zero. If the two vectors have nearly opposite directions, rxy will be
close to −1.

Example 3.2.2. To obtain the correlation for the height and weight data of Table 3.1,
we first calculate the sample variance of x :

s2
x =

∑n
i=1 x2

i − nx2

n − 1
= 102,379 − (20)(71.45)2

19
= 14.576.

Then sx = √
14.576 = 3.8179 and, similarly, sy = 37.964. By (3.13), we have

rxy = sxy

sx sy
= 128.88

(3.8179)(37.964)
= .889.

3.3 SCATTER PLOTS OF BIVARIATE SAMPLES

Figures 3.2 and 3.3 are examples of scatter plots of bivariate samples. In Figure 3.1,
the two variables x and y were plotted separately for the data in Table 3.1. Figure 3.5
shows a bivariate scatter plot of the same data.
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Figure 3.5. Bivariate scatter plot of the data in Figure 3.1.

If the origin is shifted to (x, y), as indicated by the dashed lines, then the first and
third quadrants contain most of the points. Scatter plots for correlated data typically
show a substantial positive or negative slope.

A hypothetical sample of the uncorrelated variables height and IQ is shown in
Figure 3.6. We could change the shape of the swarm of points by altering the scale
on either axis. But because of the independence assumed for these variables, each
quadrant is likely to have as many points as any other quadrant. A tall person is as
likely to have a high IQ as a low IQ. A person of low IQ is as likely to be short as to
be tall.

Figure 3.6. A sample of data from a population where x and y are uncorrelated.
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3.4 GRAPHICAL DISPLAYS FOR MULTIVARIATE SAMPLES

It is a relatively simple procedure to plot bivariate samples as in Section 3.3. The
position of a point shows at once the value of both variables. However, for three or
more variables it is a challenge to show graphically the values of all the variables
in an observation vector y. On a two-dimensional plot, the value of a third variable
could be indicated by color or intensity or size of the plotted point. Four dimensions
might be represented by starting with a two-dimensional scatter plot and adding two
additional dimensions as line segments at right angles, as in Figure 3.7. The “corner
point” represents y1 and y2, whereas y3 and y4 are given by the lengths of the two
line segments.

We will now describe various methods proposed for representing p dimensions in
a plot of an observation vector, where p > 2.

Profiles represent each point by p vertical bars, with the heights of the bars depicting
the values of the variables. Sometimes the profile is outlined by a polygonal
line rather than bars.

Stars portray the value of each (normalized) variable as a point along a ray from the
center to the outside of a circle. The points on the rays are usually joined to
form a polygon.

Glyphs (Anderson 1960) are circles of fixed size with rays whose lengths represent
the values of the variables. Anderson suggested using only three lengths of
rays, thus rounding the variable values to three levels.

Faces (Chernoff 1973) depict each variable as a feature on a face, such as length
of nose, size of eyes, shape of eyes, and so on. Flury and Riedwyl (1981)
suggested using asymmetric faces, thus increasing the number of representable
variables.

Figure 3.7. Four-dimensional plot.
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Boxes (Hartigan 1975) show each variable as the length of a dimension of a box.
For more than three variables, the dimensions are partitioned into segments.

Among these five methods, Chambers and Kleiner (1982) prefer the star plots
because they “combine a reasonably distinctive appearance with computational sim-
plicity and ease of interpretation.” Commenting on the other methods, they state,
“Profiles are not so easy to compare as a general shape. Faces are memorable, but
they are more complex to draw, and one must be careful in assigning variables to
parameters and in choosing parameter ranges. Faces to some extent disguise the data
in the sense that individual data values may not be directly comparable from the
plot.”

Table 3.2. Percentage of Republican Votes in Residential Elections in Six Southern States
for Selected Years

State 1932 1936 1940 1960 1964 1968

Missouri 35 38 48 50 36 45
Maryland 36 37 41 46 35 42
Kentucky 40 40 42 54 36 44
Louisiana 7 11 14 29 57 23
Mississippi 4 3 4 25 87 14
South Carolina 2 1 4 49 59 39

Example 3.4. The data in Table 3.2 are from Kleiner and Hartigan (1981). For these
data, the preceding five graphical devices are illustrated in Figure 3.8. The relative
magnitudes of the variables can be compared more readily using stars or profiles than
faces.

3.5 MEAN VECTORS

It is a common practice in many texts to use an uppercase letter for a variable name
and the corresponding lowercase letter for a particular value or observed value of
the random variable, for example, P(Y > y). This notation is convenient in some
univariate contexts, but it is often confusing in multivariate analysis, where we use
uppercase letters for matrices. In the belief that it is easier to distinguish between a
random vector and an observed value than between a vector and a matrix, throughout
this text we follow the notation established in Chapter 2. Uppercase boldface letters
are used for matrices of random variables or constants, lowercase boldface letters
represent vectors of random variables or constants, and univariate random variables
or constants are usually represented by lowercase nonbolded letters.

Let y represent a random vector of p variables measured on a sampling unit (sub-
ject or object). If there are n individuals in the sample, the n observation vectors are
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Figure 3.8. Profiles, stars, glyphs, faces, and boxes of percentage of Republican votes in
six presidential elections in six southern states. The radius of the circles in the stars is 50%.
Assignments of variables to facial features are 1932, shape of face; 1936, length of nose; 1940,
curvature of mouth; 1960, width of mouth; 1964, slant of eyes; and 1968, length of eyebrows.
(From the Journal of the American Statistical Association, 1981, p. 262.)

denoted by y1, y2, . . . , yn , where

yi =




yi1
yi2
...

yip


 .

The sample mean vector y can be found either as the average of the n observation
vectors or by calculating the average of each of the p variables separately:

y = 1

n

n∑
i=1

yi =




y1
y2
...

y p


 , (3.16)
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where, for example, y2 = ∑n
i=1 yi2/n. Thus y1 is the mean of the n observations on

the first variable, y2 is the mean of the second variable, and so on.
All n observation vectors y1, y2, . . . , yn can be transposed to row vectors and

listed in the data matrix Y as follows:

(variables)
1 2 j p

Y =




y′
1

y′
2
...

y′
i
...

y′
n




= (units)

1
2

i

n




y11 y12 · · · y1 j · · · y1p

y21 y22 · · · y2 j · · · y2p
...

...
...

...

yi1 yi2 · · · yi j · · · yip
...

...
...

...

yn1 yn2 · · · ynj · · · ynp



.

(3.17)

Since n is usually greater than p, the data can be more conveniently tabulated by
entering the observation vectors as rows rather than columns. Note that the first sub-
script i corresponds to units (subjects or objects) and the second subscript j refers to
variables. This convention will be followed whenever possible.

In addition to the two ways of calculating y given in (3.16), we can obtain y
from Y. We sum the n entries in each column of Y and divide by n, which gives y′.
This can be indicated in matrix notation using (2.38),

y′ = 1

n
j′Y, (3.18)

where j′ is a vector of 1’s, as defined in (2.11). For example, the second element of
j′Y is

(1, 1, . . . , 1)




y12
y22
...

yn2


 =

n∑
i=1

yi2.

We can transpose (3.18) to obtain

y = 1

n
Y′j. (3.19)

We now turn to populations. The mean of y over all possible values in the popu-
lation is called the population mean vector or expected value of y. It is defined as a
vector of expected values of each variable,
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E(y) = E




y1
y2
...

yp


 =




E(y1)

E(y2)
...

E(yp)


 =



µ1
µ2
...

µp


 = �, (3.20)

where µ j is the population mean of the j th variable.
It can be shown that the expected value of each y j in y is µ j , that is, E(y j ) = µ j .

Thus the expected value of y (over all possible samples) is

E(y) = E




y1
y2
...

y p


 =




E(y1)

E(y2)
...

E(y p)


 =



µ1
µ2
...

µp


 = �. (3.21)

Therefore, y is an unbiased estimator of �. We emphasize again that y is never equal
to �.

Example 3.5. Table 3.3 gives partial data from Kramer and Jensen (1969a). Three
variables were measured (in milliequivalents per 100 g) at 10 different locations in
the South. The variables are

y1 = available soil calcium,

y2 = exchangeable soil calcium,

y3 = turnip green calcium.

To find the mean vector y, we simply calculate the average of each column and obtain

y′ = (28.1, 7.18, 3.089).

Table 3.3. Calcium in Soil and Turnip Greens

Location
Number y1 y2 y3

1 35 3.5 2.80
2 35 4.9 2.70
3 40 30.0 4.38
4 10 2.8 3.21
5 6 2.7 2.73
6 20 2.8 2.81
7 35 4.6 2.88
8 35 10.9 2.90
9 35 8.0 3.28

10 30 1.6 3.20
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3.6 COVARIANCE MATRICES

The sample covariance matrix S = (s jk) is the matrix of sample variances and
covariances of the p variables:

S = (s jk) =




s11 s12 . . . s1p

s21 s22 . . . s2p
...

...
...

sp1 sp2 . . . spp


 . (3.22)

In S the sample variances of the p variables are on the diagonal, and all possible
pairwise sample covariances appear off the diagonal. The j th row (column) contains
the covariances of y j with the other p − 1 variables.

We give three approaches to obtaining S. The first of these is to simply calculate
the individual elements s jk . The sample variance of the j th variable, s j j = s2

j , is
calculated as in (3.4) or (3.5), using the j th column of Y:

s j j = s2
j = 1

n − 1

n∑
i=1

(yi j − y j )
2 (3.23)

= 1

n − 1

(∑
i

y2
i j − ny2

j

)
, (3.24)

where y j is the mean of the j th variable, as in (3.16). The sample covariance of the
j th and kth variables, s jk , is calculated as in (3.9) or (3.10), using the j th and kth
columns of Y:

s jk = 1

n − 1

n∑
i=1

(yi j − y j )(yik − yk) (3.25)

= 1

n − 1

(∑
i

yi j yik − ny j yk

)
. (3.26)

Note that in (3.23) the variance s j j is expressed as s2
j , the square of the standard

deviation s j , and that S is symmetric because s jk = sk j in (3.25). Other names
used for the covariance matrix are variance matrix, variance-covariance matrix, and
dispersion matrix.

By way of notational clarification, we note that in the univariate case, the sam-
ple variance is denoted by s2. But in the multivariate case, we denote the sample
covariance matrix as S, not as S2.

The sample covariance matrix S can also be expressed in terms of the observation
vectors:
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S = 1

n − 1

n∑
i=1

(yi − y)(yi − y)′ (3.27)

= 1

n − 1

(
n∑

i=1

yi y′
i − ny y′

)
. (3.28)

Since (yi − y)′ = (yi1 − y1, yi2 − y2, . . . , yip − y p), the element in the (1, 1)
position of (yi − y)(yi − y)′ is (yi1 − y1)

2, and when this is summed over i as in
(3.27), the result is the numerator of s11 in (3.23). Similarly, the (1, 2) element of
(yi − y)(yi − y)′ is (yi1 − y1)(yi2 − y2), which sums to the numerator of s12 in
(3.25). Thus (3.27) is equivalent to (3.23) and (3.25), and likewise (3.28) produces
(3.24) and (3.26).

We can also obtain S directly from the data matrix Y in (3.17), which provides
a third approach. The first term in the right side of (3.26),

∑
i yi j yik , is the product

of the j th and kth columns of Y, whereas the second term, ny j yk , is the ( jk)th
element of ny y′. It was noted in (2.54) that Y′Y is obtained as products of columns
of Y. By (3.18) and (3.19), y = Y′j/n and y′ = j′Y/n; and using (2.36), we have
ny y′ = Y′(J/n)Y. Thus S can be written as

S = 1

n − 1

[
Y′Y − Y′

(
1

n
J
)

Y
]

= 1

n − 1
Y′
(

I − 1

n
J
)

Y [by (2.30)]. (3.29)

Expression (3.29) is a convenient representation of S, since it makes direct use of
the data matrix Y. However, the matrix I − J/n is n × n and may be unwieldy in
computation if n is large.

If y is a random vector taking on any possible value in a multivariate population,
the population covariance matrix is defined as

� = cov(y) =



σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p
...

...
...

σp1 σp2 · · · σpp


 . (3.30)

The diagonal elements σ j j = σ 2
j are the population variances of the y’s, and the

off-diagonal elements σ jk are the population covariances of all possible pairs of y’s.
The notation � for the covariance matrix is widely used and seems natural because

� is the uppercase version of σ . It should not be confused with the same symbol
used for summation of a series. The difference should always be apparent from the
context. To help further distinguish the two uses, the covariance matrix � will differ
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in typeface and in size from the summation symbol
∑

. Also, whenever they appear
together, the summation symbol will have an index of summation, such as

∑n
i=1.

The population covariance matrix in (3.30) can also be found as

� = E[(y − �)(y − �)′], (3.31)

which is analogous to (3.27) for the sample covariance matrix. The p × p matrix
(y − �)(y − �)′ is a random matrix. The expected value of a random matrix is
defined as the matrix of expected values of the corresponding elements. To see that
(3.31) produces population variances and covariances of the p variables as in (3.30),
note that

� = E[(y − �)(y − �)′] = E




y1 − µ1
y2 − µ2

...

yp − µp


(y1 − µ1, y2 − µ2, . . . , yp − µp)

= E




(y1 − µ1)
2 (y1 − µ1)(y2 − µ2) · · · (y1 − µ1)(yp − µp)

(y2 − µ2)(y1 − µ1) (y2 − µ2)
2 · · · (y2 − µ2)(yp − µp)

...
...

...

(yp − µp)(y1 − µ1) (yp − µp)(y2 − µ2) · · · (yp − µp)
2




=




E(y1 − µ1)
2 E(y1 − µ1)(y2 − µ2) · · · E(y1 − µ1)(yp − µp)

E(y2 − µ2)(y1 − µ1) E(y2 − µ2)
2 · · · E(y2 − µ2)(yp − µp)

...
...

...

E(yp − µp)(y1 − µ1) E(yp − µp)(y2 − µ2) · · · E(yp − µp)
2




=



σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p
...

...
...

σp1 σp2 · · · σpp


 .

It can be easily shown that � can be expressed in a form analogous to (3.28):

� = E(yy′)− ��′. (3.32)

Since E(s jk) = σ jk for all j, k, the sample covariance matrix S is an unbiased
estimator for �:

E(S) = �. (3.33)

As in the univariate case, we note that it is the average of all possible values of S that
is equal to �. Generally, S will never be equal to �.
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Example 3.6. To calculate the sample covariance matrix for the calcium data of
Table 3.3 using the computational forms (3.24) and (3.26), we need the sum of
squares of each column and the sum of products of each pair of columns. We illus-
trate the computation of s13.

10∑
i=1

yi1yi3 = (35)(2.80)+ (35)(2.70)+ · · · + (30)(3.20) = 885.48.

From Example 3.5 we have y1 = 28.1 and y3 = 3.089. By (3.26), we obtain

s13 = 1

10 − 1
[885.48 − 10(28.1)(3.089)] = 17.471

9
= 1.9412.

Continuing in this fashion, we obtain

S =

 140.54 49.68 1.94

49.68 72.25 3.68
1.94 3.68 .25


 .

3.7 CORRELATION MATRICES

The sample correlation between the j th and kth variables is defined in (3.13) as

r jk = s jk√
s j j skk

= s jk

s j sk
. (3.34)

The sample correlation matrix is analogous to the covariance matrix with correla-
tions in place of covariances:

R = (r jk) =




1 r12 · · · r1p

r21 1 · · · r2p
...

...
...

rp1 rp2 · · · 1


 . (3.35)

The second row, for example, contains the correlation of y2 with each of the y’s
(including the correlation of y2 with itself, which is 1). Of course, the matrix R is
symmetric, since r jk = rk j .

The correlation matrix can be obtained from the covariance matrix, and vice versa.
Define

Ds = diag(
√

s11,
√

s22, . . . ,
√

spp)

= diag(s1, s2, . . . , sp)
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=




s1 0 · · · 0
0 s2 · · · 0
...

...
...

0 0 · · · sp


 . (3.36)

Then by (2.57)

R = D−1
s SD−1

s , (3.37)

S = DsRDs . (3.38)

The population correlation matrix analogous to (3.35) is defined as

Pρ = (ρ jk) =




1 ρ12 · · · ρ1p

ρ21 1 · · · ρ2p
...

...
...

ρp1 ρp2 · · · 1


 , (3.39)

where

ρ jk = σ jk

σ jσk
,

as in (3.12).

Example 3.7. In Example 3.6, we obtained the sample covariance matrix S for the
calcium data in Table 3.3. To obtain the sample correlation matrix for the same data,
we can calculate the individual elements using (3.34) or use the direct matrix opera-
tion in (3.37). The diagonal matrix Ds can be found by taking the square roots of the
diagonal elements of S,

Ds =

 11.8551 0 0

0 8.4999 0
0 0 .5001




(note that we have used the unrounded version of S for computation). Then by (3.37),

R = D−1
s SD−1

s =

 1.000 .493 .327

.493 1.000 .865

.327 .865 1.000


 .

Note that .865 > .493 > .327, which is a different order than that of the covariances
in S in Example 3.6. Thus we cannot compare covariances, even within the same
matrix S.



62 CHARACTERIZING AND DISPLAYING MULTIVARIATE DATA

3.8 MEAN VECTORS AND COVARIANCE MATRICES
FOR SUBSETS OF VARIABLES

3.8.1 Two Subsets

Sometimes a researcher is interested in two different kinds of variables, both mea-
sured on the same sampling unit. This corresponds to type 2 data in Section 1.4. For
example, several classroom behaviors are observed for students, and during the same
time period (the basic experimental unit) several teacher behaviors are also observed.
The researcher wishes to study the relationships between the pupil variables and the
teacher variables.

We will denote the two subvectors by y and x, with p variables in y and q variables
in x. Thus each observation vector in a sample is partitioned as

(
yi

xi

)
=




yi1
...

yip

xi1
...

xiq



, i = 1, 2, . . . , n. (3.40)

Hence there are p + q variables in each of n observation vectors. In Chapter 10
we will discuss regression of the y’s on the x’s, and in Chapter 11 we will define a
measure of correlation between the y’s and the x’s.

For the sample of n observation vectors, the mean vector and covariance matrix
have the form

(
y
x

)
=




y1
...

y p
x1
...

xq



, (3.41)

S =
(

Syy Syx

Sxy Sxx

)
, (3.42)

where Syy is p × p, Syx is p × q, Sxy is q × p, and Sxx is q × q. Note that because
of the symmetry of S,

Sxy = S′
yx . (3.43)

Thus (3.42) could be written
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S =
(

Syy Syx

S′
yx Sxx

)
. (3.44)

To illustrate (3.41) and (3.42), let p = 2 and q = 3. Then

(
y
x

)
=




y1
y2

x1
x2
x3


 ,

S =
(

Syy Syx

Sxy Sxx

)
=




s2
y1

sy1 y2 sy1x1 sy1x2 sy1x3

sy2 y1 s2
y2

sy2x1 sy2x2 sy2x3

sx1 y1 sx1 y2 s2
x1

sx1x2 sx1x3

sx2 y1 sx2 y2 sx2x1 s2
x2

sx2x3

sx3 y1 sx3 y2 sx3x1 sx3x2 s2
x3


 .

The pattern in each of Syy , Syx , Sxy , and Sxx is clearly seen in this illustration. For
example, the first row of Syx has the covariance of y1 with each of x1, x2, x3; the
second row exhibits covariances of y2 with the three x’s. On the other hand, Sxy has
as its first row the covariances of x1 with y1 and y2, and so on. Thus Sxy = S′

yx , as
noted in (3.43).

The analogous population results for a partitioned random vector are

E

(
y
x

)
=
(

E(y)
E(x)

)
=
(

�y
�x

)
, (3.45)

cov

(
y
x

)
= � =

(
�yy �yx

�xy �xx

)
, (3.46)

where �xy = �′
yx . The submatrix �yy is a p × p covariance matrix containing the

variances of y1, y2, . . . , yp on the diagonal and the covariance of each y j with each
yk off the diagonal. Similarly, �xx is the q × q covariance matrix of x1, x2, . . . , xq .
The matrix �yx is p × q and contains the covariance of each y j with each xk . The
covariance matrix �yx is also denoted by cov(y, x), that is,

cov(y, x) = �yx . (3.47)

Note the difference in meaning between cov
(y

x

) = � in (3.46) and cov(y, x) = �yx

in (3.47); cov
(y

x

)
involves a single vector containing p + q variables, and cov(y, x)

involves two vectors.
If x and y are independent, then �yx = O. This means that each y j is uncorrelated

with each xk so that σy j xk = 0 for j = 1, 2, . . . , p; k = 1, 2, . . . , q.
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Example 3.8.1. Reaven and Miller (1979; see also Andrews and Herzberg 1985,
pp. 215–219) measured five variables in a comparison of normal patients and diabet-
ics. In Table 3.4 we give partial data for normal patients only. The three variables of
major interest were

x1 = glucose intolerance,

x2 = insulin response to oral glucose,

x3 = insulin resistance.

The two additional variables of minor interest were

y1 = relative weight,

y2 = fasting plasma glucose.

The mean vector, partitioned as in (3.41), is

(
y
x

)
=




y1
y2

x1
x2
x3


 =




.918

90.41
340.83
171.37
97.78


 .

The covariance matrix, partitioned as in the illustration following (3.44), is

S =
(

Syy Syx

Sxy Sxx

)
=




.0162 .2160 .7872 −.2138 2.189

.2160 70.56 26.23 −23.96 −20.84

.7872 26.23 1106 396.7 108.4
−.2138 −23.96 396.7 2382 1143

2.189 −20.84 108.4 1143 2136


 .

Notice that Syy and Sxx are symmetric and that Sxy is the transpose of Syx .

3.8.2 Three or More Subsets

In some cases, three or more subsets of variables are of interest. If the observation
vector y is partitioned as

y =




y1
y2
...

yk


 ,



Table 3.4. Relative Weight, Blood Glucose, and Insulin Levels

Patient
Number y1 y2 x1 x2 x3

1 .81 80 356 124 55
2 .95 97 289 117 76
3 .94 105 319 143 105
4 1.04 90 356 199 108
5 1.00 90 323 240 143
6 .76 86 381 157 165
7 .91 100 350 221 119
8 1.10 85 301 186 105
9 .99 97 379 142 98

10 .78 97 296 131 94
11 .90 91 353 221 53
12 .73 87 306 178 66
13 .96 78 290 136 142
14 .84 90 371 200 93
15 .74 86 312 208 68
16 .98 80 393 202 102
17 1.10 90 364 152 76
18 .85 99 359 185 37
19 .83 85 296 116 60
20 .93 90 345 123 50
21 .95 90 378 136 47
22 .74 88 304 134 50
23 .95 95 347 184 91
24 .97 90 327 192 124
25 .72 92 386 279 74
26 1.11 74 365 228 235
27 1.20 98 365 145 158
28 1.13 100 352 172 140
29 1.00 86 325 179 145
30 .78 98 321 222 99
31 1.00 70 360 134 90
32 1.00 99 336 143 105
33 .71 75 352 169 32
34 .76 90 353 263 165
35 .89 85 373 174 78
36 .88 99 376 134 80
37 1.17 100 367 182 54
38 .85 78 335 241 175
39 .97 106 396 128 80
40 1.00 98 277 222 186
41 1.00 102 378 165 117
42 .89 90 360 282 160
43 .98 94 291 94 71
44 .78 80 269 121 29
45 .74 93 318 73 42
46 .91 86 328 106 56

65
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where y1 has p1 variables, y2 has p2, . . . , yk has pk , with p = p1 + p2 + · · · + pk ,
then the sample mean vector and covariance matrix are given by

y =




y1
y2
...

yk


 , (3.48)

S =




S11 S12 · · · S1k

S21 S22 · · · S2k
...

...
...

Sk1 Sk2 · · · Skk


 . (3.49)

The p2 × pk submatrix S2k , for example, contains the covariances of the variables in
y2 with the variables in yk .

The corresponding population results are

� =




�1
�2
...

�k


 , (3.50)

� =




�11 �12 · · · �1k

�21 �22 · · · �2k
...

...
...

�k1 �k2 · · · �kk


 . (3.51)

3.9 LINEAR COMBINATIONS OF VARIABLES

3.9.1 Sample Properties

We are frequently interested in linear combinations of the variables y1, y2, . . . , yp.
For example, two of the types of linear functions we use in later chapters are (1) linear
combinations that maximize some function and (2) linear combinations that compare
variables, for example, y1 − y3. In this section, we investigate the means, variances,
and covariances of linear combinations.

Let a1, a2, . . . , ap be constants and consider the linear combination of the ele-
ments of the vector y,

z = a1 y1 + a2 y2 + · · · + ap yp = a′y, (3.52)

where a′ = (a1, a2, . . . , ap). If the same coefficient vector a is applied to each yi in
a sample, we have
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zi = a1 yi1 + a2 yi2 + · · · + ap yip

= a′yi , i = 1, 2, . . . , n. (3.53)

The sample mean of z can be found either by averaging the n values z1 = a′y1, z2 =
a′y2, . . . , zn = a′yn or as a linear combination of y, the sample mean vector of y1,
y2, . . . , yn :

z = 1

n

n∑
i=1

zi = a′y. (3.54)

The result in (3.54) is analogous to the univariate result (3.3), z = ay, where zi =
ayi , i = 1, 2, . . . , n.

Similarly, the sample variance of zi = a′yi , i = 1, 2, . . . , n, can be found as the
sample variance of z1, z2, . . . , zn or directly from a and S, where S is the sample
covariance matrix of y1, y2, . . . , yn :

s2
z =

∑n
i=1(zi − z)2

n − 1
= a′Sa. (3.55)

Note that s2
z = a′Sa is the multivariate analogue of the univariate result in (3.6),

s2
z = a2s2, where zi = ayi , i = 1, 2, . . . , n, and s2 is the variance of y1, y2, . . . , yn .

Since a variance is always nonnegative, we have s2
z ≥ 0, and therefore a′Sa ≥ 0,

for every a. Hence S is at least positive semidefinite (see Section 2.7) . If the variables
are continuous and are not linearly related, and if n − 1 > p (so that S is full rank),
then S is positive definite (with probability 1).

If we define another linear combination w = b′y = b1 y1 + b2 y2 + · · · + bp yp,
where b′ = (b1, b2, . . . , bp) is a vector of constants different from a′, then the
sample covariance of z and w is given by

szw =
∑n

i=1(zi − z)(wi −w)

n − 1
= a′Sb. (3.56)

The sample correlation between z and w is readily obtained as

rzw = szw√
s2

z s2
w

= a′Sb√
(a′Sa)(b′Sb)

. (3.57)

We now denote the two constant vectors a and b as a1 and a2 to facilitate later
expansion to more than two such vectors. Let

A =
(

a′
1

a′
2

)
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and define

z =
(

a′
1y

a′
2y

)
=
(

z1
z2

)
.

Then we can factor y from this expression by (2.49):

z =
(

a′
1

a′
2

)
y = Ay.

If we evaluate the bivariate zi for each p-variate yi in the sample, we obtain
zi = Ayi , i = 1, 2, . . . , n, and the average of z over the sample can be found from y:

z =
(

z1
z2

)
=
(

a′
1y

a′
2y

)
[by (3.54)] (3.58)

=
(

a′
1

a′
2

)
y = Ay [by (2.49)]. (3.59)

We can use (3.55) and (3.56) to construct the sample covariance matrix for z:

Sz =
(

s2
z1

sz1z2

sz2z1 s2
z2

)

=
(

a′
1Sa1 a′

1Sa2
a′

2Sa1 a′
2Sa2

)
. (3.60)

By (2.50), this factors into

Sz =
(

a′
1

a′
2

)
S(a1, a2) = ASA′. (3.61)

The bivariate results in (3.59) and (3.61) can be readily extended to more than two
linear combinations. (See principal components in Chapter 12, for instance, where
we attempt to transform the y’s to a few dimensions that capture most of the infor-
mation in the y’s.) If we have k linear transformations, they can be expressed as

z1 = a11 y1 + a12 y2 + · · · + a1p yp = a′
1y

z2 = a21 y1 + a22 y2 + · · · + a2p yp = a′
2y

...
...

zk = ak1 y1 + ak2 y2 + · · · + akp yp = a′
ky
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or in matrix notation,

z =




z1
z2
...

zk


 =




a′
1y

a′
2y
...

a′
ky


 =




a′
1

a′
2
...

a′
k


 y = Ay [by (2.47)],

where z is k × 1, A is k × p, and y is p × 1 (we typically have k ≤ p). If zi = Ayi
is evaluated for all yi , i = 1, 2, . . . , n, then by (3.54) and (2.49), the sample mean
vector of the z’s is

z =




a′
1y

a′
2y
...

a′
ky


 =




a′
1

a′
2
...

a′
k


 y = Ay. (3.62)

By an extension of (3.60), the sample covariance matrix of the z’s becomes

Sz =




a′
1Sa1 a′

1Sa2 · · · a′
1Sak

a′
2Sa1 a′

2Sa2 · · · a′
2Sak

...
...

...

a′
kSa1 a′

kSa2 · · · a′
kSak


 (3.63)

=




a′
1(Sa1, Sa2, · · · , Sak)

a′
2(Sa1, Sa2, · · · , Sak)
...

...
...

a′
k(Sa1, Sa2, · · · , Sak)




=




a′
1

a′
2
...

a′
k


(Sa1,Sa2, . . . ,Sak) [by (2.47)]

=




a′
1

a′
2
...

a′
k


S(a1, a2, . . . , ak) [by (2.48)]

= ASA′. (3.64)

Note that by (3.63) and (3.64), we have

tr(ASA′) =
k∑

i=1

a′
i Sai . (3.65)



70 CHARACTERIZING AND DISPLAYING MULTIVARIATE DATA

A slightly more general linear transformation is

zi = Ayi + b, i = 1, 2, . . . , n. (3.66)

The sample mean vector and covariance matrix of z are given by

z = Ay + b, (3.67)

Sz = ASA′. (3.68)

Example 3.9.1. Timm (1975, p. 233; 1980, p. 47) reported the results of an experi-
ment where subjects responded to “probe words” at five positions in a sentence. The
variables are response times for the j th probe word, y j , j = 1, 2, . . . , 5. The data
are given in Table 3.5.

Table 3.5. Response Times for Five Probe Word Positions

Subject
Number y1 y2 y3 y4 y5

1 51 36 50 35 42
2 27 20 26 17 27
3 37 22 41 37 30
4 42 36 32 34 27
5 27 18 33 14 29
6 43 32 43 35 40
7 41 22 36 25 38
8 38 21 31 20 16
9 36 23 27 25 28

10 26 31 31 32 36
11 29 20 25 26 25

These variables are commensurate (same measurement units and similar means
and variances), and the researcher may wish to examine some simple linear combi-
nations. Consider the following linear combination for illustrative purposes:

z = 3y1 − 2y2 + 4y3 − y4 + y5

= (3,−2, 4,−1, 1)y = a′y.

If z is calculated for each of the 11 observations, we obtain z1 = 288, z2 =
155, . . . , z11 = 146 with mean z = 197.0 and variance s2

z = 2084.0. These
same results can be obtained using (3.54) and (3.55). The sample mean vector and
covariance matrix for the data are
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y =




36.09
25.55
34.09
27.27
30.73


 , S =




65.09 33.65 47.59 36.77 25.43
33.65 46.07 28.95 40.34 28.36
47.59 28.95 60.69 37.37 41.13
36.77 40.34 37.37 62.82 31.68
25.43 28.36 41.13 31.68 58.22


 .

Then, by (3.54),

z = a′y = (3,−2, 4,−1, 1)




36.09
25.55
34.09
27.27
30.73


 = 197.0,

and by (3.55), s2
z = a′Sa = 2084.0.

We now define a second linear combination:

w = y1 + 3y2 − y3 + y4 − 2y5

= (1, 3,−1, 1,−2)y = b′y.

The sample mean and variance of w are w = b′y = 44.45 and s2
w = b′Sb = 605.67.

The sample covariance of z and w is, by (3.56), szw = a′Sb = 40.2.
Using (3.57), we find the sample correlation between z and w to be

rzw = szw√
s2

z s2
w

= 40.2√
(2084)(605.67)

= .0358.

We now define the three linear functions

z1 = y1 + y2 + y3 + y4 + y5

z2 = 2y1 − 3y2 + y3 − 2y4 − y5

z3 = −y1 − 2y2 + y3 − 2y4 + 3y5,

which can be written in matrix form as


 z1

z2
z3


 =


 1 1 1 1 1

2 −3 1 −2 −1
−1 −2 1 −2 3






y1
y2
y3
y4
y5


 ,

or

z = Ay.
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The sample mean vector for z is given by (3.62) as

z = Ay =

 153.73

−55.64
−15.45


 ,

and the sample covariance matrix of z is given by (3.64) as

Sz = ASA′ =

 995.42 −502.09 −211.04

−502.09 811.45 268.08
−211.04 268.08 702.87


 .

The covariance matrix Sz can be converted to a correlation matrix by use of (3.37):

Rz = D−1
z SzD−1

z =

 1.00 −.56 −.25

−.56 1.00 .35
−.25 .35 1.00


 ,

where

Dz =

 31.55 0 0

0 28.49 0
0 0 26.51




is obtained from the square roots of the diagonal elements of Sz .

3.9.2 Population Properties

The sample results in Section 3.9.1 for linear combinations have population coun-
terparts. Let z = a′y, where a is a vector of constants. Then the population mean of
z is

E(z) = E(a′y) = a′E(y) = a′�, (3.69)

and the population variance is

σ 2
z = var(a′y) = a′�a. (3.70)

Let w = b′y, where b is a vector of constants different from a. The population
covariance of z = a′y and w = b′y is

cov(z, w) = σzw = a′�b. (3.71)

By (3.12) the population correlation of z and w is
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ρzw = corr(a′y,b′y) = σzw

σzσw

= a′�b√
(a′�a)(b′�b)

. (3.72)

If Ay represents several linear combinations, the population mean vector and
covariance matrix are given by

E(Ay) = AE(y) = A�, (3.73)

cov(Ay) = A�A′. (3.74)

The more general linear transformation z = Ay + b has population mean vector and
covariance matrix

E(Ay + b) = AE(y)+ b = A� + b, (3.75)

cov(Ay + b) = A�A′. (3.76)

3.10 MEASURES OF OVERALL VARIABILITY

The covariance matrix contains the variances of the p variables and the covariances
between all pairs of variables and is thus a multifaceted picture of the overall vari-
ation in the data. Sometimes it is desirable to have a single numerical value for the
overall multivariate scatter. One such measure is the generalized sample variance,
defined as the determinant of the covariance matrix:

Generalized sample variance = |S|. (3.77)

The generalized sample variance has a geometric interpretation. The extension of
an ellipse to more than two dimensions is called a hyperellipsoid. A p-dimensional
hyperellipsoid (y−y)′S−1(y−y) = a2, centered at y and based on S−1 to standardize
the distance to the center, contains a proportion of the observations y1, y2, . . . , yn

in the sample (if S were replaced by �, the value of a2 could be determined by
tables of the chi-square distribution; see property 3 in Section 4.2). The ellipsoid
(y − y)′S−1(y − y) = a2 has axes proportional to the square roots of the eigenvalues
of S. It can be shown that the volume of the ellipsoid is proportional to |S|1/2. If the
smallest eigenvalue λp is zero, there is no axis in that direction, and the ellipsoid
lies wholly in a (p −1)-dimensional subspace of p-space. Consequently, the volume
in p-space is zero. This can also be seen by (2.108), |S| = λ1λ2 · · · λp. Hence, if
λp = 0, |S| = 0. A zero eigenvalue indicates a redundancy in the form of a linear
relationship among the variables. (As will be seen in Section 12.7, the eigenvector
corresponding to the zero eigenvalue reveals the form of the linear dependency.) One
solution to the dilemma when λp = 0 is to remove one or more variables.
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Another measure of overall variability, the total sample variance, is simply the
trace of S:

Total sample variance = s11 + s22 + · · · + spp = tr(S). (3.78)

This measure of overall variation ignores covariance structure altogether but is found
useful for comparison purposes in techniques such as principal components (Chap-
ter 12).

In general, for both |S| and tr(S), relatively large values reflect a broad scatter
of y1, y2, . . . , yp about y, whereas lower values indicate closer concentration about
y. In the case of |S|, however, as noted previously, an extremely small value of |S|
or |R| may indicate either small scatter or multicollinearity, a term indicating near
linear relationships in a set of variables. Multicollinearity may be due to high pair-
wise correlations or to a high multiple correlation between one variable and several
of the other variables. For other measures of intercorrelation, see Rencher (1998,
Section 1.7).

3.11 ESTIMATION OF MISSING VALUES

It is not uncommon to find missing measurements in an observation vector, that is,
missing values for one or more variables. A small number of rows with missing
entries in the data matrix Y [see (3.17)] does not constitute a serious problem; we
can simply discard each row that has a missing value. However, with this procedure,
a small portion of missing data, if widely distributed, would lead to a substantial loss
of data. For example, in a large data set with n = 550 and p = 85, only about 1.5%
of the 550 × 85 = 46,750 measurements were missing. However, nearly half of the
observation vectors (rows of Y) turned out to be incomplete.

The distribution of missing values in a data set is an important consideration.
Randomly missing variable values scattered throughout a data matrix are less serious
than a pattern of missing values that depends to some extent on the values of the
missing variables.

We discuss two methods of estimating the missing values, or “filling the holes,”
in the data matrix, also called imputation. Both procedures presume that the missing
values occur at random. If the occurrence or nonoccurrence of missing values is
related to the values of some of the variables, then the techniques may not estimate
the missing responses very well.

The first method is very simple: substitute a mean for each missing value, specif-
ically the average of the available data in the column of the data matrix in which
the unknown value lies. Replacing an observation by its mean reduces the variance
and the absolute value of the covariance. Therefore, the sample covariance matrix S
computed from the data matrix Y in (3.17) with means imputed for missing values
is biased. However, it is positive definite.

The second technique is a regression approach. The data matrix Y is partitioned
into two parts, one containing all rows with missing entries and the other comprising
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all the complete rows. Suppose yi j is the only missing entry in the i th row of Y.
Then using the data in the submatrix with complete rows, y j is regressed on the
other variables to obtain a prediction equation ŷ j = b0 + b1 y1 + · · · + b j−1 y j−1 +
b j+1y j+1 + · · · + bp yp. Then the nonmissing entries in the i th row are entered as
independent variables in the regression equation to obtain the predicted value, ŷi j .
The regression method was first proposed by Buck (1960) and is a special case of
the EM algorithm (Dempster, Laird, and Rubin 1977).

The regression method can be improved by iteration, carried out, for example, in
the following way. Estimate all missing entries in the data matrix using regression.
After filling in the missing entries, use the full data matrix to obtain new prediction
equations. Use these prediction equations to calculate new predicted values ŷi j for
missing entries. Use the new data matrix to obtain revised prediction equations and
new predicted values ŷi j . Continue this process until the predicted values stabilize.

A modification may be needed if the missing entries are so pervasive that it is
difficult to find data to estimate the initial regression equations. In this case, the
process could be started by using means as in the first method and then beginning
the iteration.

The regression approach will ordinarily yield better results than the method of
inserting means. However, if the other variables are not very highly correlated with
the one to be predicted, the regression technique is essentially equivalent to imputing
means. The regression method underestimates the variances and covariances, though
to a lesser extent than the method based on means.

Example 3.11. We illustrate the iterated regression method of estimating missing
values. Consider the calcium data of Table 3.3 as reproduced here and suppose the
entries in parentheses are missing:

Location
Number y1 y2 y3

1 35 (3.5) 2.80
2 35 4.9 (2.70)
3 40 30.0 4.38
4 10 2.8 3.21
5 6 2.7 2.73
6 20 2.8 2.81
7 35 4.6 2.88
8 35 10.9 2.90
9 35 8.0 3.28

10 30 1.6 3.20

We first regress y2 on y1 and y3 for observations 3–10 and obtain ŷ2 = b0 +
b1y1 + b3 y3. When this is evaluated for the two nonmissing entries in the first row
(y1 = 35 and y3 = 2.80), we obtain ŷ2 = 4.097. Similarly, we regress y3 on y1 and
y2 for observations 3–10 to obtain ŷ3 = c0 + c1y1 + c2 y2. Evaluating this for the
two nonmissing entries in the second row yields ŷ3 = 3.011. We now insert these
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estimates for the missing values and calculate the regression equations based on all
10 observations. Using the revised equation ŷ2 = b0 + b1y1 + b3 y3, we obtain a new
predicted value, ŷ2 = 3.698. Similarly, we obtain a revised regression equation for y3
that gives a new predicted value, ŷ3 = 2.981. With these values inserted, we calculate
new equations and obtain new predicted values, ŷ2 = 3.672 and ŷ3 = 2.976. At the
third iteration we obtain ŷ2 = 3.679 and ŷ3 = 2.975. There is very little change
in subsequent iterations. These values are closer to the actual values, y2 = 3.5 and
y3 = 2.70, than the initial regression estimates, ŷ2 = 4.097 and ŷ3 = 3.011. They
are also much better estimates than the means of the second and third columns, y2 =
7.589 and y3 = 3.132.

3.12 DISTANCE BETWEEN VECTORS

In a univariate setting, the distance between two points is simply the difference (or
absolute difference) between their values. For statistical purposes, this difference
may not be very informative. For example, we do not want to know how many cen-
timeters apart two means are, but rather how many standard deviations apart they
are. Thus we examine the standardized or statistical distances, such as

|µ1 − µ2|
σ

or
|y − µ|
σy

.

To obtain a useful distance measure in a multivariate setting, we must consider
not only the variances of the variables but also their covariances or correlations. The
simple (squared) Euclidean distance between two vectors, (y1 − y2)

′(y1 − y2), is
not useful in some situations because there is no adjustment for the variances or the
covariances. For a statistical distance, we standardize by inserting the inverse of the
covariance matrix:

d2 = (y1 − y2)
′S−1(y1 − y2). (3.79)

Other examples are

D2 = (y − �)′S−1(y − �) (3.80)

�2 = (y − �)′�−1(y − �) (3.81)

�2 = (�1 − �2)
′�−1(�1 − �2). (3.82)

These (squared) distances between two vectors were first proposed by Maha-
lanobis (1936) and are often referred to as Mahalanobis distances. If a random vari-
able has a larger variance than another, it receives relatively less weight in a Maha-
lanobis distance. Similarly, two highly correlated variables do not contribute as much
as two variables that are less correlated. In essence, then, the use of the inverse of
the covariance matrix in a Mahalanobis distance has the effect of (1) standardizing
all variables to the same variance and (2) eliminating correlations. To illustrate this,
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we use the square root matrix defined in (2.112) to rewrite (3.81) as

�2 = (y − �)′�−1(y − �) = (y − �)′(�1/2�1/2)−1(y − �)

= [(�1/2)−1(y − �)]′[(�1/2)−1(y − �)] = z′z,

where z = (�1/2)−1(y − �) = (�1/2)−1y − (�1/2)−1�. Now, by (3.76) it can be
shown that

cov(z) = 1

n
I. (3.83)

Hence the transformed variables z1, z2, . . . , z p are uncorrelated, and each has vari-
ance equal to 1/n. If the appropriate covariance matrix for the random vector were
used in a Mahalanobis distance, the variances would reduce to 1. For example, if
cov(y) = �/n were used above in place of �, we would obtain cov(z) = I.

PROBLEMS

3.1 If zi = ayi for i = 1, 2, . . . , n, show that z = ay as in (3.3).

3.2 If zi = ayi for i = 1, 2, . . . , n, show that s2
z = a2s2 as in (3.6).

3.3 For the data in Figure 3.3, show that
∑

i (xi − x)(yi − y) = 0.

3.4 Show that (x − xj)′(y − yj) = ∑
i (xi − x)(yi − y), thus verifying (3.15).

3.5 For p = 3 show that

1

n − 1

n∑
i=1

(yi − y)(yi − y)′ =

 s11 s12 s13

s21 s22 s23
s31 s32 s33


 ,

which illustrates (3.27).

3.6 Show that z = a′y as in (3.54), where zi = a′yi , i = 1, 2, . . . , n.

3.7 Show that s2
z = a′Sa as in (3.55), where zi = a′yi , i = 1, 2, . . . , n.

3.8 Show that tr(ASA′) = ∑k
i=1 a′

i Sai as in (3.65).

3.9 Use (3.76) to verify (3.83), cov(z) = I/n, where z = (�1/2)−1(y − �).

3.10 Use the calcium data in Table 3.3:

(a) Calculate S using the data matrix Y as in (3.29).
(b) Obtain R by calculating r12, r13, and r23, as in (3.34) and (3.35).
(c) Find R using (3.37).

3.11 Use the calcium data in Table 3.3:

(a) Find the generalized sample variance |S| as in (3.77).
(b) Find the total sample variance tr(S), as in (3.78).
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3.12 Use the probe word data of Table 3.5:

(a) Find the generalized sample variance |S| as in (3.77).
(b) Find the total sample variance tr(S) as in (3.78).

3.13 For the probe word data in Table 3.5, find R using (3.37).

3.14 For the variables in Table 3.3, define z = 3y1 − y2 + 2y3 = (3,−1, 2)y. Find
z and s2

z in two ways:

(a) Evaluate z for each row of Table 3.3 and find z and s2
z directly from z1,

z2, . . . , z10 using (3.1) and (3.5).
(b) Use z = a′y and s2

z = a′Sa, as in (3.54) and (3.55).

3.15 For the variables in Table 3.3, define w = −2y1 + 3y2 + y3 and define z as in
Problem 3.14. Find rzw in two ways:

(a) Evaluate z and w for each row of Table 3.3 and find rzw from the 10 pairs
(zi , wi ), i = 1, 2, . . . , 10, using (3.10) and (3.13).

(b) Find rzw using (3.57).

3.16 For the variables in Table 3.3, find the correlation between y1 and 1
2 (y2 + y3)

using (3.57).

Table 3.6. Ramus Bone Length at Four Ages for 20 Boys

Age

8 yr 8 1
2 yr 9 yr 9 1

2 yr
Individual (y1) (y2) (y3) (y4)

1 47.8 48.8 49.0 49.7
2 46.4 47.3 47.7 48.4
3 46.3 46.8 47.8 48.5
4 45.1 45.3 46.1 47.2
5 47.6 48.5 48.9 49.3
6 52.5 53.2 53.3 53.7
7 51.2 53.0 54.3 54.5
8 49.8 50.0 50.3 52.7
9 48.1 50.8 52.3 54.4

10 45.0 47.0 47.3 48.3
11 51.2 51.4 51.6 51.9
12 48.5 49.2 53.0 55.5
13 52.1 52.8 53.7 55.0
14 48.2 48.9 49.3 49.8
15 49.6 50.4 51.2 51.8
16 50.7 51.7 52.7 53.3
17 47.2 47.7 48.4 49.5
18 53.3 54.6 55.1 55.3
19 46.2 47.5 48.1 48.4
20 46.3 47.6 51.3 51.8
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3.17 Define the following linear combinations for the variables in Table 3.3:

z1 = y1 + y2 + y3,

z2 = 2y1 − 3y2 + 2y3,

z3 = −y1 − 2y2 − 3y3.

(a) Find z and Sz using (3.62) and (3.64).
(b) Find Rz from Sz using (3.37).

3.18 The data in Table 3.6 (Elston and Grizzle 1962) consist of measurements y1,
y2, y3, and y4 of the ramus bone at four different ages on each of 20 boys.

(a) Find y, S, and R
(b) Find |S| and tr(S).

Table 3.7. Measurements on the First and Second Adult
Sons in a Sample of 25 Families

First Son Second Son

Head Head Head Head
Length Breadth Length Breadth

y1 y2 x1 x2

191 155 179 145
195 149 201 152
181 148 185 149
183 153 188 149
176 144 171 142
208 157 192 152
189 150 190 149
197 159 189 152
188 152 197 159
192 150 187 151
179 158 186 148
183 147 174 147
174 150 185 152
190 159 195 157
188 151 187 158
163 137 161 130
195 155 183 158
186 153 173 148
181 145 182 146
175 140 165 137
192 154 185 152
174 143 178 147
176 139 176 143
197 167 200 158
190 163 187 150
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3.19 For the data in Table 3.6, define z = y1 + 2y2 + y3 − 3y4 and w = −2y1 +
3y2 − y3 + 2y4.

(a) Find z, w, s2
z , and s2

w using (3.54) and (3.55).
(b) Find szw and rzw using (3.56) and (3.57).

3.20 For the data in Table 3.6 define

z1 = 2y1 + 3y2 − y3 + 4y4,

z2 = −2y1 − y2 + 4y3 − 2y4,

z3 = 3y1 − 2y2 − y3 + 3y4.

Find z, Sz , and Rz using (3.62), (3.64), and (3.37), respectively.

3.21 The data in Table 3.7 consist of head measurements on first and second sons
(Frets 1921). Define y1 and y2 as the measurements on the first son and x1 and
x2 for the second son.

(a) Find the mean vector for all four variables and partition it into
(y

x

)
as in

(3.41).
(b) Find the covariance matrix for all four variables and partition it into

S =
(

Syy Syx

Sxy Sxx

)
,

as in (3.42).

3.22 Table 3.8 contains data from O’Sullivan and Mahan (1966; see also Andrews
and Herzberg 1985, p. 214) with measurements of blood glucose levels on three
occasions for 50 women. The y’s represent fasting glucose measurements on
the three occasions; the x’s are glucose measurements 1 hour after sugar intake.
Find the mean vector and covariance matrix for all six variables and partition
them into

(y
x

)
, as in (3.41), and

S =
(

Syy Syx

Sxy Sxx

)
,

as in (3.42).

Table 3.8. Blood Glucose Measurements on Three Occasions

Fasting One Hour after Sugar Intake

y1 y2 y3 x1 x2 x3

60 69 62 97 69 98
56 53 84 103 78 107
80 69 76 66 99 130
55 80 90 80 85 114

(continued)



Table 3.8. (Continued)

Fasting One Hour after Sugar Intake

y1 y2 y3 x1 x2 x3

62 75 68 116 130 91
74 64 70 109 101 103
64 71 66 77 102 130
73 70 64 115 110 109
68 67 75 76 85 119
69 82 74 72 133 127
60 67 61 130 134 121
70 74 78 150 158 100
66 74 78 150 131 142
83 70 74 99 98 105
68 66 90 119 85 109
78 63 75 164 98 138

103 77 77 160 117 121
77 68 74 144 71 153
66 77 68 77 82 89
70 70 72 114 93 122
75 65 71 77 70 109
91 74 93 118 115 150
66 75 73 170 147 121
75 82 76 153 132 115
74 71 66 143 105 100
76 70 64 114 113 129
74 90 86 73 106 116
74 77 80 116 81 77
67 71 69 63 87 70
78 75 80 105 132 80
64 66 71 83 94 133
71 80 76 81 87 86
63 75 73 120 89 59
90 103 74 107 109 101
60 76 61 99 111 98
48 77 75 113 124 97
66 93 97 136 112 122
74 70 76 109 88 105
60 74 71 72 90 71
63 75 66 130 101 90
66 80 86 130 117 144
77 67 74 83 92 107
70 67 100 150 142 146
73 76 81 119 120 119
78 90 77 122 155 149
73 68 80 102 90 122
72 83 68 104 69 96
65 60 70 119 94 89
52 70 76 92 94 100

Note: Measurements are in mg/100 ml.
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The Multivariate Normal Distribution

4.1 MULTIVARIATE NORMAL DENSITY FUNCTION

Many univariate tests and confidence intervals are based on the univariate normal
distribution. Similarly, the majority of multivariate procedures have the multivariate
normal distribution as their underpinning.

The following are some of the useful features of the multivariate normal distri-
bution (see Section 4.2): (1) the distribution can be completely described using only
means, variances, and covariances; (2) bivariate plots of multivariate data show lin-
ear trends; (3) if the variables are uncorrelated, they are independent; (4) linear func-
tions of multivariate normal variables are also normal; (5) as in the univariate case,
the convenient form of the density function lends itself to derivation of many prop-
erties and test statistics; and (6) even when the data are not multivariate normal, the
multivariate normal may serve as a useful approximation, especially in inferences
involving sample mean vectors, which are approximately multivariate normal by the
central limit theorem (see Section 4.3.2).

Since the multivariate normal density is an extension of the univariate normal den-
sity and shares many of its features, we review the univariate normal density function
in Section 4.1.1. We then describe the multivariate normal density in Sections 4.1.2–
4.1.4.

4.1.1 Univariate Normal Density

If a random variable y, with mean µ and variance σ 2, is normally distributed, its
density is given by

f (y) = 1√
2π

√
σ 2

e−(y−µ)2/2σ 2
, −∞ < y < ∞. (4.1)

When y has the density (4.1), we say that y is distributed as N (µ, σ 2), or simply y is
N (µ, σ 2). This function is represented by the familiar bell-shaped curve illustrated
in Figure 4.1 for µ = 10 and σ = 2.5.
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Figure 4.1. The normal density curve.

4.1.2 Multivariate Normal Density

If y has a multivariate normal distribution with mean vector � and covariance matrix
�, the density is given by

g(y) = 1

(
√

2π)p|�|1/2 e−(y−�)′�−1(y−�)/2, (4.2)

where p is the number of variables. When y has the density (4.2), we say that y is
distributed as Np(�,�), or simply y is Np(�,�).

The term (y −µ)2/σ 2 = (y −µ)(σ 2)−1(y −µ) in the exponent of the univariate
normal density (4.1) measures the squared distance from y to µ in standard deviation
units. Similarly, the term (y−�)′�−1(y−�) in the exponent of the multivariate nor-
mal density (4.2) is the squared generalized distance from y to �, or the Mahalanobis
distance,


2 = (y − �)′�−1(y − �). (4.3)

The characteristics of this distance between y and � were discussed in Section 3.12.
Note that
, the square root of (4.3), is not in standard deviation units as is (y−µ)/σ .
The distance 
 increases with p, the number of variables (see Problem 4.4).

In the coefficient of the exponential function in (4.2), |�|1/2 appears as the ana-
logue of

√
σ 2 in (4.1). In the next section, we discuss the effect of |�| on the density.

4.1.3 Generalized Population Variance

In Section 3.10, we referred to |S| as a generalized sample variance. Analogously,
|�| is a generalized population variance. If σ 2 is small in the univariate normal,
the y values are concentrated near the mean. Similarly, a small value of |�| in the
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Figure 4.2. Bivariate normal densities.

multivariate case indicates that the y’s are concentrated close to � in p-space or that
there is multicollinearity among the variables. The term multicollinearity indicates
that the variables are highly intercorrelated, in which case the effective dimensional-
ity is less than p. (See Chapter 12 for a method of finding a reduced number of new
dimensions that represent the data.) In the presence of multicollinearity, one or more
eigenvalues of � will be near zero and |�| will be small, since |�| is the product of
the eigenvalues [see (2.108)].

Figure 4.2 shows, for the bivariate case, a comparison of a distribution with small
|�| and a distribution with larger |�|. An alternative way to portray the concentration
of points in the bivariate normal distribution is with contour plots. Figure 4.3 shows
contour plots for the two distributions in Figure 4.2. Each ellipse contains a different
proportion of observation vectors y. The contours in Figure 4.3 can be found by
setting the density function equal to a constant and solving for y, as illustrated in
Figure 4.4. The bivariate normal density surface sliced at a constant height traces
an ellipse, which contains a given proportion of the observations (Rencher 1998,
Section 2.1.3).

In both Figures 4.2 and 4.3, small |�| appears on the left and large |�| appears
on the right. In Figure 4.3a, there is a larger correlation between y1 and y2. In Fig-
ure 4.3b, the variances are larger (in the natural directions). In general, for any num-

Figure 4.3. Contour plots for the distributions in Figure 4.2.
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Figure 4.4. Constant density contour for bivariate normal.

ber of variables p, a decrease in intercorrelations among the variables or an increase
in the variances will lead to a larger |�|.

4.1.4 Diversity of Applications of the Multivariate Normal

Nearly all the inferential procedures we discuss in this book are based on the mul-
tivariate normal distribution. We acknowledge that a major motivation for the
widespread use of the multivariate normal is its mathematical tractability. From
the multivariate normal assumption, a host of useful procedures can be derived,
and many of these are available in software packages. Practical alternatives to the
multivariate normal are fewer than in the univariate case. Because it is not as simple
to order (or rank) multivariate observation vectors as it is for univariate observations,
there are not as many nonparametric procedures available for multivariate data.

Although real data may not often be exactly multivariate normal, the multivariate
normal will frequently serve as a useful approximation to the true distribution. Tests
and graphical procedures are available for assessing normality (see Sections 4.4 and
4.5). Fortunately, many of the procedures based on multivariate normality are robust
to departures from normality.

4.2 PROPERTIES OF MULTIVARIATE NORMAL
RANDOM VARIABLES

We list some of the properties of a random p ×1 vector y from a multivariate normal
distribution Np(�,�):
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1. Normality of linear combinations of the variables in y:

(a) If a is a vector of constants, the linear function a′y = a1 y1 + a2 y2 + · · ·
+ ap yp is univariate normal:

If y is Np(�,�), then a′y is N (a′�, a′�a).

The mean and variance of a′y were given in (3.69) and (3.70) as E(a′y) =
a′� and var(a′y) = a′�a for any random vector y. We now have the
additional attribute that a′y has a (univariate) normal distribution if y is
Np(�,�).

(b) If A is a constant q × p matrix of rank q, where q ≤ p, the q linear
combinations in Ay have a multivariate normal distribution:

If y is Np(�,�), then Ay is Nq(A�,A�A′).

Here, again, E(Ay) = A� and cov(Ay) = A�A′, in general, as given
in (3.73) and (3.74). But we now have the additional feature that the q
variables in Ay have a multivariate normal distribution.

2. Standardized variables:
A standardized vector z can be obtained in two ways:

z = (T′)−1(y − �), (4.4)

where � = T′T is factored using the Cholesky procedure in Section 2.7, or

z = (�1/2)−1(y − �), (4.5)

where �1/2 is the symmetric square root matrix of � defined in (2.112) such
that � = �1/2�1/2. In either (4.4) or (4.5), the standardized vector of random
variables has all means equal to 0, all variances equal to 1, and all correlations
equal to 0. In either case, it follows from property 1b that z is multivariate
normal:

If y is Np(�,�), then z is Np(0, I).

3. Chi-square distribution:
A chi-square random variable with p degrees of freedom is defined as the
sum of squares of p independent standard normal random variables. Thus, if
z is the standardized vector defined in (4.4) or (4.5), then

∑p
j=1 z2

j = z′z has

the χ2-distribution with p degrees of freedom, denoted as χ2
p or χ2(p). From

either (4.4) or (4.5) we obtain z′z = (y − �)′�−1(y − �). Hence,

If y is Np(�,�), then (y − �)′�−1(y − �) is χ2
p. (4.6)
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4. Normality of marginal distributions:

(a) Any subset of the y’s in y has a multivariate normal distribution, with
mean vector consisting of the corresponding subvector of � and covari-
ance matrix composed of the corresponding submatrix of �. To illustrate,
let y1 = (y1, y2, . . . , yr )

′ denote the subvector containing the first r ele-
ments of y and y2 = (yr+1, . . . , yp)

′ consist of the remaining p − r
elements. Thus y, �, and � are partitioned as

y =
(

y1
y2

)
, � =

(
�1
�2

)
, � =

(
�11 �12
�21 �22

)
,

where y1 and �1 are r ×1 and �11 is r ×r . Then y1 is multivariate normal:

If y is Np(�,�), then y1 is Nr (�1,�11).

Here, again, E(y1) = �1 and cov(y1) = �11 hold for any random vector
partitioned in this way. But if y is p-variate normal, then y1 is r-variate
normal.

(b) As a special case of the preceding result, each y j in y has the univariate
normal distribution:

If y is Np(�,�), then y j is N (µ j , σ j j ), j = 1, 2, . . . , p.

The converse of this is not true. If the density of each y j in y is normal, it
does not necessarily follow that y is multivariate normal.

In the next three properties, let the observation vector be partitioned into two
subvectors denoted by y and x, where y is p × 1 and x is q × 1. Or, alternatively, let
x represent some additional variables to be considered along with those in y. Then,
as in (3.45) and (3.46),

E

(
y
x

)
=
(

�y

�x

)
, cov

(
y
x

)
=
(

�yy �yx

�xy �xx

)
.

In properties 5, 6, and 7, we assume that

(
y
x

)
is Np+q

[(
�x

�y

)
,

(
�yy �yx

�xy �xx

)]
.

5. Independence:

(a) The subvectors y and x are independent if �yx = O.
(b) Two individual variables y j and yk are independent if σ jk = 0. Note that

this is not true for many nonnormal random variables, as illustrated in
Section 3.2.1.
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6. Conditional distribution:
If y and x are not independent, then �yx �= O, and the conditional distribution
of y given x, f (y|x), is multivariate normal with

E(y|x) = �y + �yx�−1
xx (x − �x ), (4.7)

cov(y|x) = �yy − �yx�−1
xx �xy. (4.8)

Note that E(y|x) is a vector of linear functions of x, whereas cov(y|x) is a
matrix that does not depend on x. The linear trend in (4.7) holds for any pair of
variables. Thus to use (4.7) as a check on normality, one can examine bivariate
scatter plots of all pairs of variables and look for any nonlinear trends. In (4.7),
we have the justification for using the covariance or correlation to measure
the relationship between two bivariate normal random variables. As noted in
Section 3.2.1, the covariance and correlation are good measures of relationship
only for variables with linear trends and are generally unsuitable for nonnormal
random variables with a curvilinear relationship. The matrix �yx�−1

xx in (4.7)
is called the matrix of regression coefficients because it relates E(y|x) to x.
The sample counterpart of this matrix appears in (10.52).

7. Distribution of the sum of two subvectors:
If y and x are the same size (both p × 1) and independent, then

y + x is Np(�y + �x ,�yy + �xx), (4.9)

y − x is Np(�y − �x ,�yy + �xx). (4.10)

In the remainder of this section, we illustrate property 6 for the special case of the
bivariate normal. Let

u =
(

y
x

)

have a bivariate normal distribution with

E(u) =
(
µy
µx

)
, cov(u) = � =

(
σ 2

y σyx

σyx σ 2
x

)
.

By definition f (y|x) = g(y, x)/h(x), where h(x) is the density of x and g(y, x) is
the joint density of y and x . Hence

g(y, x) = f (y|x)h(x),

and because the right side is a product, we seek a function of y and x that is inde-
pendent of x and whose density can serve as f (y|x). Since linear functions of y and
x are normal by property 1a, we consider y − βx and seek the value of β so that
y − βx and x are independent.
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Since z = y − βx and x are normal and independent, cov(x, z) = 0. To find
cov(x, z), we express x and z as functions of u,

x = (0, 1)
(

y
x

)
= (0, 1)u = a′u,

z = y − βx = (1,−β)u = b′u.

Now

cov(x, z) = cov(a′u,b′u)

= a′�b [by (3.71)]

= (0, 1)
(
σ 2

y σyx

σyx σ 2
x

)(
1

−β
)

= (σyx, σ
2
x )

(
1

−β
)

= σyx − βσ 2
x .

Since cov(x, z) = 0, we obtain β = σyx/σ
2
x , and z = y − βx becomes

z = y − σyx

σ 2
x

x .

By property 1a, the density of y − (σyx/σ
2
x )x is normal with

E

(
y − σyx

σ 2
x

x

)
= µy − σyx

σ 2
x
µx ,

var

(
y − σyx

σ 2
x

x

)
= var(b′u) = b′�b

=
(

1,−σyx

σ 2
x

)(
σ 2

y σyx

σyx σ 2
x

)(
1

−σyx

σ 2
x

)

= σ 2
y − σyx

σ 2
x
.

For a given value of x , we can express y as y = βx + (y − βx), where βx
is a fixed quantity corresponding to the given value of x and y − βx is a random
deviation. Then f (y|x) is normal, with

E(y|x) = βx + E(y − βx) = βx + µy − βµx

= µy + β(x − µx) = µy + σyx

σ 2
x
(x − µx),

var(y|x) = σ 2
y − σ 2

yx

σ 2
x
.
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4.3 ESTIMATION IN THE MULTIVARIATE NORMAL

4.3.1 Maximum Likelihood Estimation

When a distribution such as the multivariate normal is assumed to hold for a popula-
tion, estimates of the parameters are often found by the method of maximum likeli-
hood. This technique is conceptually simple: The observation vectors y1, y2, . . . , yn

are considered to be known and values of � and � are sought that maximize the
joint density of the y’s, called the likelihood function. For the multivariate normal,
the maximum likelihood estimates of � and � are

�̂ = y, (4.11)

�̂ = 1

n

n∑
i=1

(yi − y)(yi − y)′

= 1

n
W

= n − 1

n
S, (4.12)

where W = ∑n
i=1(yi − y)(yi − y)′ and S is the sample covariance matrix defined

in (3.22) and (3.27). Since �̂ has divisor n instead of n − 1, it is biased [see (3.33)],
and we usually use S in place of �̂.

We now give a justification of y as the maximum likelihood estimator of �.
Because the yi ’s constitute a random sample, they are independent, and the joint
density is the product of the densities of the y’s. The likelihood function is, there-
fore,

L(y1, y2, . . . , yn,�,�) =
n∏

i=1

f (yi ,�,�)

=
n∏

i=1

1

(
√

2π)p|�|1/2 e−(yi −�)′�−1(yi −�)/2

= 1

(
√

2π)np|�|n/2 e−∑n
i=1(yi −�)′�−1(yi −�)/2. (4.13)

To see that �̂ = y maximizes the likelihood function, we begin by adding and sub-
tracting y in the exponent in (4.13),

−1

2

n∑
i=1

(yi − y + y − �)′�−1(yi − y + y − �).

When this is expanded in terms of yi − y and y − �, two of the four resulting terms
vanish because

∑
i (yi − y) = 0, and (4.13) becomes
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L = 1

(
√

2π)np|�|n/2 e−∑n
i=1(yi −y)′�−1(yi −y)/2−n(y−�)′�−1(y−�)/2. (4.14)

Since �−1 is positive definite, we have −n(y − �)′�−1(y − �)/2 ≤ 0 and 0 <

e−n(y−�)′�−1(y−�)/2 ≤ 1, with the maximum occurring when the exponent is 0.
Therefore, L is maximized when �̂ = y.

The maximum likelihood estimator of the population correlation matrix Pρ [see
(3.39)] is the sample correlation matrix, that is,

P̂ρ = R.

Relationships among multinormal variables are linear, as can be seen in (4.7).
Thus the estimators S and R serve well for the multivariate normal because they
measure only linear relationships (see Sections 3.2.1 and 4.2). These estimators are
not as useful for some nonnormal distributions.

4.3.2 Distribution of y and S

For the distribution of y =∑n
i=1 yi/n, we can distinguish two cases:

1. When y is based on a random sample y1, y2, . . . , yn from a multivariate nor-
mal distribution Np(�,�), then y is Np(�,�/n).

2. When y is based on a random sample y1, y2, . . . , yn from a nonnormal multi-
variate population with mean vector � and covariance matrix �, then for large
n, y is approximately Np(�,�/n). More formally, this result is known as the
multivariate central limit theorem: If y is the mean vector of a random sample
y1, y2, . . . , yn from a population with mean vector � and covariance matrix
�, then as n → ∞, the distribution of

√
n(y − �) approaches Np(0,�).

There are p variances in S and
(p

2

)
covariances, for a total of

p +
(

p
2

)
= p + p(p − 1)

2
= p(p + 1)

2

distinct entries. The joint distribution of these p(p + 1)/2 distinct variables in W =
(n −1)S =∑i (yi −y)(yi −y)′ is the Wishart distribution, denoted by Wp(n −1,�),
where n − 1 is the degrees of freedom.

The Wishart distribution is the multivariate analogue of the χ2-distribution, and
it has similar uses. As noted in property 3 of Section 4.2, a χ2 random variable is
defined formally as the sum of squares of independent standard normal (univariate)
random variables:

n∑
i=1

z2
i =

n∑
i=1

(yi − µ)2

σ 2
is χ2(n).
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If y is substituted forµ, then
∑

i (yi −y)2/σ 2 = (n−1)s2/σ 2 is χ2(n−1). Similarly,
the formal definition of a Wishart random variable is

n∑
i=1

(yi − �)(yi − �)′ is Wp(n,�), (4.15)

where y1, y2, . . . , yn are independently distributed as Np(�,�). When y is substi-
tuted for �, the distribution remains Wishart with one less degree of freedom:

(n − 1)S =
n∑

i=1

(yi − y)(yi − y)′ is Wp(n − 1,�). (4.16)

Finally, we note that when sampling from a multivariate normal distribution, y
and S are independent.

4.4 ASSESSING MULTIVARIATE NORMALITY

Many tests and graphical procedures have been suggested for evaluating whether
a data set likely originated from a multivariate normal population. One possibility
is to check each variable separately for univariate normality. Excellent reviews for
both the univariate and multivariate cases have been given by Gnanadesikan (1997,
pp. 178–220) and Seber (1984, pp. 141–155). We give a representative sample of
univariate and multivariate methods in Sections 4.4.1 and 4.4.2, respectively.

4.4.1 Investigating Univariate Normality

When we have several variables, checking each for univariate normality should not
be the sole approach, because (1) the variables are correlated and (2) normality of
the individual variables does not guarantee joint normality. On the other hand, mul-
tivariate normality implies individual normality. Hence, if even one of the separate
variables is not normal, the vector is not multivariate normal. An initial check on the
individual variables may therefore be useful.

A basic graphical approach for checking normality is the Q–Q plot comparing
quantiles of a sample against the population quantiles of the univariate normal. If the
points are close to a straight line, there is no indication of departure from normality.
Deviation from a straight line indicates nonnormality (at least for a large sample). In
fact, the type of nonlinear pattern may reveal the type of departure from normality.
Some possibilities are illustrated in Figure 4.5.

Quantiles are similar to the more familiar percentiles, which are expressed in
terms of percent; a test score at the 90th percentile, for example, is above 90% of
the test scores and below 10% of them. Quantiles are expressed in terms of fractions
or proportions. Thus the 90th percentile score becomes the .9 quantile score.

The sample quantiles for the Q–Q plot are obtained as follows. First we rank the
observations y1, y2, . . . , yn and denote the ordered values by y(1), y(2), . . . , y(n);
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Figure 4.5. Typical Q–Q plots for nonnormal data.

thus y(1) ≤ y(2) ≤ · · · ≤ y(n). Then the point y(i) is the i/n sample quantile. For
example, if n = 20, y(7) is the 7

20 = .35 quantile, because .35 of the sample is less
than or equal to y(7). The fraction i/n is often changed to (i − 1

2 )/n as a continuity
correction. If n = 20, (i − 1

2 )/n ranges from .025 to .975 and more evenly covers the
interval from 0 to 1. With this convention, y(i) is designated as the (i − 1

2 )/n sample
quantile.

The population quantiles for the Q–Q plot are similarly defined corresponding to
(i − 1

2 )/n. If we denote these by q1, q2, . . . , qn , then qi is the value below which a
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proportion (i − 1
2 )/n of the observations in the population lie; that is, (i − 1

2 )/n is
the probability of getting an observation less than or equal to qi . Formally, qi can be
found for the standard normal random variable y with distribution N (0, 1) by solving

�(qi ) = P(y < qi ) = i − 1
2

n
, (4.17)

which would require numerical integration or tables of the cumulative standard nor-
mal distribution, �(x). Another benefit of using (i − 1

2 )/n instead of i/n is that
n/n = 1 would make qn = ∞.

The population need not have the same mean and variance as the sample, since
changes in mean and variance merely change the slope and intercept of the plotted
line in the Q–Q plot. Therefore, we use the standard normal distribution, and the qi

values can easily be found from a table of cumulative standard normal probabilities.
We then plot the pairs (qi , y(i)) and examine the resulting Q–Q plot for linearity.

Special graph paper, called normal probability paper, is available that eliminates
the need to look up the qi values. We need only plot (i − 1

2 )/n in place of qi , that
is, plot the pairs [(i − 1

2 )/n, y(i)] and look for linearity as before. As an even eas-
ier alternative, most general-purpose statistical software programs provide normal
probability plots of the pairs (qi , y(i)).

The Q–Q plots provide a good visual check on normality and are considered
to be adequate for this purpose by many researchers. For those who desire a more
objective procedure, several hypothesis tests are available. We give three of these that
have good properties and are computationally tractable.

We discuss first a classical approach based on the following measures of skewness
and kurtosis:

√
b1 =

√
n
∑n

i=1(yi − y)3[∑n
i=1(yi − y)2

]3/2 , (4.18)

b2 = n
∑n

i=1(yi − y)4[∑n
i=1(yi − y)2

]2 . (4.19)

These are sample estimates of the population skewness and kurtosis parameters
√
β1

and β2, respectively. When the population is normal,
√
β1 = 0 and β2 = 3. If√

β1 < 0, we have negative skewness; if
√
β1 > 0, the skewness is positive. Positive

skewness is illustrated in Figure 4.6. If β2 < 3, we have negative kurtosis, and if β2 >

3, there is positive kurtosis. A distribution with negative kurtosis is characterized by
being flatter than the normal distribution, that is, less peaked, with heavier flanks
and thinner tails. A distribution with positive kurtosis has a higher peak than the
normal, with an excess of values near the mean and in the tails but with thinner
flanks. Positive and negative kurtosis are illustrated in Figure 4.7.

The test of normality can be carried out using the exact percentage points for
√

b1
in Table A.1 for 4 ≤ n ≤ 25, as given by Mulholland (1977). Alternatively, for n ≥ 8
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Figure 4.6. A distribution with positive skewness.

the function g, as defined by

g(
√

b1) = δ sinh−1
(√

b1

λ

)
, (4.20)

is approximately N (0, 1), where

sinh−1(x) = ln(x +
√

x2 + 1). (4.21)

Table A.2, from D’Agostino and Pearson (1973), gives values for δ and 1/λ. To use
b2 as a test of normality, we can use Table A.3, from D’Agostino and Tietjen (1971),
which gives simulated percentiles of b2 for selected values of n in the range 7 ≤ n ≤
50. Charts of percentiles of b2 for 20 ≤ n ≤ 200 can be found in D’Agostino and
Pearson (1973).

Figure 4.7. Distributions with positive and negative kurtosis compared to the normal.
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Our second test for normality was given by D’Agostino (1971). The observations
y1, y2, . . . , yn are ordered as y(1) ≤ y(2) ≤ · · · ≤ y(n), and we calculate

D =
∑n

i=1

[
i − 1

2 (n + 1)
]

y(i)√
n3
∑n

i=1(yi − y)2
, (4.22)

Y =
√

n[D − (2
√
π)−1]

.02998598
. (4.23)

A table of percentiles for Y , given by D’Agostino (1972) for 10 ≤ n ≤ 250, is
provided in Table A.4.

The final test we report is by Lin and Mudholkar (1980). The test statistic is

z = tanh−1(r) = 1

2
ln

(
1 + r

1 − r

)
, (4.24)

where r is the sample correlation of the n pairs (yi , xi ), i = 1, 2, . . . , n, with xi

defined as

xi = 1

n


∑

j �=i

y2
j −

(∑
j �=i y j

)2

n − 1




1/3

. (4.25)

If the y’s are normal, z is approximately N (0, 3/n). A more accurate upper 100α
percentile is given by

zα = σn
[
uα + 1

24 (u
3
α − 3uα)γ2n

]
, (4.26)

with

σ 2
n = 3

n
− 7.324

n2
+ 53.005

n3
, uα = �−1(α), γ2n = −11.70

n
+ 55.06

n2
,

where � is the distribution function of the N (0, 1) distribution; that is, �(x) is the
probability of an observation less than or equal to x , as in (4.17). The inverse function
�−1 is essentially a quantile. For example, u.05 = −1.645 and u.95 = 1.645.

4.4.2 Investigating Multivariate Normality

Checking for multivariate normality is conceptually not as straightforward as as-
sessing univariate normality, and consequently the state of the art is not as well
developed. The complexity of this issue can be illustrated in the context of a
goodness-of-fit test for normality. For a goodness-of-fit test in the univariate case,
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the range covered by a sample y1, y2, . . . , yn is divided into several intervals, and
we count how many y’s fall into each interval. These observed frequencies (counts)
are compared to the expected frequencies under the assumption that the sample
came from a normal distribution with the same mean and variance as the sample.
If the n observations y1, y2, . . . , yn are multivariate, however, the procedure is not
so simple. We now have a p-dimensional region that would have to be divided into
many more subregions than in the univariate case, and the expected frequencies for
these subregions would be less easily obtained. With so many subregions, relatively
few would contain observations.

Thus because of the inherent “sparseness” of multivariate data, a goodness-of-fit
test would be impractical. The points y1, y2, . . . , yn are more distant from each other
in p-space than in any one of the p individual dimensions. Unless n is very large, a
multivariate sample may not provide a very complete picture of the distribution from
which it was taken.

As a consequence of the sparseness of the data in p-space, the tests for multivari-
ate normality may not be very powerful. However, some check on the distribution is
often desirable. Numerous procedures have been proposed for assessing multivariate
normality. We now discuss three of these.

The first procedure is based on the standardized distance from each yi to y,

D2
i = (yi − y)′S−1(yi − y), i = 1, 2, . . . , n. (4.27)

Gnanadesikan and Kettenring (1972) showed that if the yi ’s are multivariate normal,
then

ui = nD2
i

(n − 1)2
(4.28)

has a beta distribution, which is related to the F distribution. To obtain a Q–Q plot,
the values u1, u2, . . . , un are ranked to give u(1) ≤ u(2) ≤ · · · ≤ u(n), and we plot
(u(i), υi ), where the quantiles υi of the beta are given by the solution to

∫ υi

0

�(a + b)

�(a)�(b)
xa−1(1 − x)b−1 dx = i − α

n − α − β + 1
, (4.29)

where a = 1
2 p, b = 1

2 (n − p − 1),

α = p − 2

2p
, (4.30)

β = n − p − 3

2(n − p − 1)
. (4.31)

A nonlinear pattern in the plot would indicate a departure from normality. The quan-
tiles of the beta as defined in (4.29) are easily obtained in many software packages.
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A formal significance test is also available for D2
(n) = maxi D2

i . Table A.6 gives the
upper 5% and 1% critical values for p = 2, 3, 4, 5 from Barnett and Lewis (1978).

Some writers have suggested that the distribution of D2
i in (4.27) can be ade-

quately approximated by a χ2
p since (y − �)′�−1(y − �) is χ2

p [see (4.6)]. However,
in Section 5.3.2, it is shown that this approximation is very poor for even moderate
values of p. Small (1978) showed that plots of D2

i vs. χ2 quantiles are misleading.
The second procedure involves scatter plots in two dimensions. If p is not too

high, the bivariate plots of each pair of variables are often reduced in size and
shown on one page, arranged to correspond to the entries in a correlation matrix.
In this visual matrix, the eye readily picks out those pairs of variables that show
a curved trend, outliers, or other nonnormal appearance. This plot is illustrated in
Example 4.5.2 in Section 4.5.2. The procedure is based on properties 4 and 6 of Sec-
tion 4.2, from which we infer that (1) each pair of variables has a bivariate normal
distribution and (2) bivariate normal variables follow a straight-line trend.

A popular option in many graphical programs is the ability to dynamically
rotate a plot of three variables. While the points are rotating on the screen, a three-
dimensional effect is created. The shape of the three-dimensional cloud of points is
readily perceived, and we can detect various features of the data. The only drawbacks
to this technique are that (1) it is a dynamic display and cannot be printed and (2) if
p is very large, the number of subsets of three variables becomes unwieldy, although
the number of pairs may still be tractable for plotting. These numbers are compared
in Table 4.1, where

(p
2

)
and

(p
3

)
represent the number of subsets of sizes 2 and 3,

respectively. Thus in many cases, the scatter plots for pairs of variables will continue
to be used, even though three-dimensional plotting techniques are available.

The third procedure for assessing multivariate normality is a generalization of the
univariate test based on the skewness and kurtosis measures

√
b1 and b2 as given by

(4.18) and (4.19). The test is due to Mardia (1970). Let y and x be independent and
identically distributed with mean vector � and covariance matrix �. Then skewness
and kurtosis for multivariate populations are defined by Mardia as

β1,p = E[(y − �)′�−1(x − �)]3, (4.32)

β2,p = E[(y − �)′�−1(y − �)]2. (4.33)

Table 4.1. Comparison of Number of Subsets of Sizes
2 and 3

p
(p

2

) (p
3

)
6 15 20
8 28 56

10 45 120
12 66 220
15 105 455
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Since third-order central moments for the multivariate normal distribution are zero,
β1,p = 0 when y is Np(�,�). It can also be shown that if y is Np(�,�), then

β2,p = p(p + 2). (4.34)

To estimate β1,p and β2,p using a sample y1, y2, . . . , yp, we first define

gi j = (yi − y)′�̂−1(y j − y), (4.35)

where �̂ = ∑n
i=1(yi − y)(yi − y)′/n is the maximum likelihood estimator (4.12).

Then estimates of β1,p and β2,p are given by

b1,p = 1

n2

n∑
i=1

n∑
j=1

g3
i j , (4.36)

b2,p = 1

n

n∑
i=1

g2
i i . (4.37)

Table A.5 (Mardia 1970, 1974) gives percentage points of b1,p and b2,p for p =
2, 3, 4, which can be used in testing for multivariate normality. For other values of p
or when n ≥ 50, the following approximate tests are available. For b1,p, the statistic

z1 = (p + 1)(n + 1)(n + 3)

6[(n + 1)(p + 1)− 6] b1,p (4.38)

is approximately χ2 with 1
6 p(p+1)(p+2) degrees of freedom. We reject the hypoth-

esis of multivariate normality if z1 ≥ χ2
.05. With b2,p, on the other hand, we wish to

reject for large values (distribution too peaked) or small values (distribution too flat).
For the upper 2.5% points of b2,p use

z2 = b2,p − p(p + 2)√
8p(p + 2)/n

, (4.39)

which is approximately N (0, 1). For the lower 2.5% points we have two cases:
(1) when 50 ≤ n ≤ 400, use

z3 = b2,p − p(p + 2)(n + p + 1)/n√
8p(p + 2)/(n − 1)

, (4.40)

which is approximately N (0, 1); (2) when n ≥ 400, use z2 as given by (4.39).

4.5 OUTLIERS

The detection of outliers has been of concern to statisticians and other scientists for
over a century. Some authors have claimed that the researcher can typically expect
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up to 10% of the observations to have errors in measurement or recording. Occa-
sional stray observations from a different population than the target population are
also fairly common. We review some major concepts and suggested procedures for
univariate outliers in Section 4.5.1 before moving to the multivariate case in Sec-
tion 4.5.2. An alternative to detection of outliers is to use robust estimators of � and
� (see Rencher 1998, Section 1.10) that are less sensitive to extreme observations
than are the standard estimators y and S.

4.5.1 Outliers in Univariate Samples

Excellent treatments of outliers have been given by Beckman and Cook (1983),
Hawkins (1980), and Barnett and Lewis (1978). We abstract a few highlights from
Beckman and Cook. Many techniques have been proposed for detecting outliers in
the residuals from regression or designed experiments, but we will be concerned only
with simple random samples from the normal distribution.

There are two principal approaches for dealing with outliers. The first is identifica-
tion, which usually involves deletion of the outlier(s) but may also provide important
information about the model or the data. The second method is accommodation, in
which the method of analysis or the model is modified. Robust methods, in which the
influence of outliers is reduced, provide an example of modification of the analysis.
An example of a correction to the model is a mixture model that combines two nor-
mals with different variances. For example, Marks and Rao (1978) accommodated a
particular type of outlier by a mixture of two normal distributions.

In small or moderate-sized univariate samples, visual methods of identifying
outliers are the most frequently used. Tests are also available if a less subjective
approach is desired.

Two types of slippage models have been proposed to account for outliers. Under
the mean slippage model, all observations have the same variance, but one or more of
the observations arise from a distribution with a different (population) mean. In the
variance slippage model, one or more of the observations arise from a model with
larger (population) variance but the same mean. Thus in the mean slippage model,
the bulk of the observations arise from N (µ, σ 2), whereas the outliers originate from
N (µ + θ, σ 2). For the variance slippage model, the main distribution would again
be N (µ, σ 2), with the outliers coming from N (µ, aσ 2) where a > 1. These models
have led to the development of tests for rejection of outliers. We now briefly discuss
some of these tests.

For a single outlier in a sample y1, y2, . . . , yn , most tests are based on the maxi-
mum studentized residual,

max
i
τi = max

i

∣∣∣∣ yi − y

s

∣∣∣∣ . (4.41)

If the largest or smallest observation is rejected, one could then examine the n − 1
remaining observations for another possible outlier, and so on. This procedure is
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called a consecutive test. However, if there are two or more outliers, the less extreme
ones will often make it difficult to detect the most extreme one, due to inflation of
both mean and variance. This effect is called masking.

Ferguson (1961) showed that the maximum studentized residual (4.41) is more
powerful than most other techniques for detecting intermediate or large shifts in the
mean and gave the following guidelines for small shifts:

1. For outliers with small positive shifts in the mean, tests based on sample skew-
ness are best.

2. For outliers with small shifts in the mean in either direction, tests based on the
sample kurtosis are best.

3. For outliers with small positive shifts in the variance, tests based on the sample
kurtosis are best.

Because of the masking problem in consecutive tests, block tests have been pro-
posed for simultaneous rejection of k > 1 outliers. These tests work well if k is
known, but in practice, k is usually not known. If the value we conjecture for k is too
small, we incur the risk of failing to detect any outliers because of masking. If we
set k too large, there is a high risk of rejecting more outliers than there really are, an
effect known as swamping.

4.5.2 Outliers in Multivariate Samples

In the case of multivariate data, the problems in detecting outliers are intensified for
several reasons:

1. For p > 2 the data cannot be readily plotted to pinpoint the outliers.
2. Multivariate data cannot be ordered as can a univariate sample, where extremes

show up readily on either end.
3. An observation vector may have a large recording error in one of its compo-

nents or smaller errors in several components.
4. A multivariate outlier may reflect slippage in mean, variance, or correlation.

This is illustrated in Figure 4.8. Observation 1 causes a small shift in means
and variances of both y1 and y2 but has little effect on the correlation. Obser-
vation 2 has little effect on means and variances, but it reduces the correlation
somewhat. Observation 3 has a major effect on means, variances, and correla-
tion.

One approach to multivariate outlier identification or accommodation is to use
robust methods of estimation. Such methods minimize the influence of outliers in
estimation or model fitting. However, an outlier sometimes furnishes valuable infor-
mation, and the specific pursuit of outliers can be very worthwhile.

We present two methods of multivariate outlier identification, both of which are
related to methods of assessing multivariate normality. (A third approach based
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Figure 4.8. Bivariate sample showing three types of outliers.

on principal components is given in Section 12.4.) The first method, due to Wilks
(1963), is designed for detection of a single outlier. Wilks’ statistic is

w = max
i

|(n − 2)S−i |
|(n − 1)S| , (4.42)

where S is the usual sample covariance matrix and S−i is obtained from the same
sample with the i th observation deleted. The statistic w can also be expressed in
terms of D2

(n) = maxi (yi − y)′S−1(yi − y) as

w = 1 − nD2
(n)

(n − 1)2
, (4.43)

thus basing a test for an outlier on the distances D2
i used in Section 4.4.2 in a graphi-

cal procedure for checking multivariate normality. Table A.6 gives the upper 5% and
1% critical values for D2

(n) from Barnett and Lewis (1978).
Yang and Lee (1987) provide an F-test of w as given by (4.43). Define

Fi = n − p − 1

p

[
1

1 − nD2
i /(n − 1)2

− 1

]
, i = 1, 2, . . . , n. (4.44)

Then the Fi ’s are independently and identically distributed as Fp,n−p−1, and a test
can be constructed in terms of maxi Fi :

P(max
i

Fi > f ) = 1 − P(all Fi ≤ f ) = 1 − [P(F ≤ f )]n.
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Therefore, the test can be carried out using an F-table. Note that

max
i

Fi = F(n) = n − p − 1

p

(
1

w
− 1

)
, (4.45)

where w is given in (4.43).
The second test we discuss is designed for detection of several outliers. Schwager

and Margolin (1982) showed that the locally best invariant test for mean slippage
is based on Mardia’s (1970) sample kurtosis b2,p as defined by (4.35) and (4.37).
To be more specific, among all tests invariant to a class of transformations of the
type z = Ay + b, where A is nonsingular (see Problem 4.8), the test using b2,p is
most powerful for small shifts in the mean vector. This result holds if the proportion
of outliers is no more than 21.13%. With some restrictions on the pattern of the
outliers, the permissible fraction of outliers can go as high as 33 1

3 %. The hypothesis
is H0: no outliers are present. This hypothesis is rejected for large values of b2,p.

A table of critical values of b2,p and some approximate tests were described in
Section 4.4.2 following (4.37). Thus the test doubles as a check for multivariate
normality and for the presence of outliers. One advantage of this test for outliers is
that we do not have to specify the number of outliers and run the attendant risk of
masking or swamping. Schwager and Margolin (1982) pointed out that this feature
“increases the importance of performing an overall test that is sensitive to a broad
range of outlier configurations. There is also empirical evidence that the kurtosis test
performs well in situations of practical interest when compared with other inferential
outlier procedures.”

Sinha (1984) extended the result of Schwager and Margolin to cover the general
case of elliptically symmetric distributions. An elliptically symmetric distribution is
one in which f (y) = |�|−1/2g[(y − �)′�−1(y − �)]. By varying the function g,
distributions with shorter or longer tails than the normal can be obtained. The critical
value of b2,p must be adjusted to correspond to the distribution, but rejection for
large values would be a locally best invariant test.

Example 4.5.2. We use the ramus bone data set of Table 3.6 to illustrate a search
for multivariate outliers, while at the same time checking for multivariate normality.
An examination of each column of Table 3.6 does not reveal any apparent univariate
outliers. To check for multivariate outliers, we first calculate D2

i in (4.27) for each
observation vector. The results are given in Table 4.2. We see that D2

9, D2
12, and D2

20
seem to stand out as possible outliers. In Table A.6, the upper 5% critical value for the
maximum value, D2

(20), is given as 11.63. In our case, the largest D2
i is D2

9 = 11.03,
which does not exceed the critical value. This does not surprise us, since the test was
designed to detect a single outlier, and we may have as many as three.

We compute ui and υi in (4.28) and (4.29) and plot them in Figure 4.9. The figure
shows a departure from linearity due to three values and possibly a fourth.
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Table 4.2. Values of D2
i for the Ramus Bone Data in Table 3.6

Observation Observation
Number D2

i Number D2
i

1 .7588 11 2.8301
2 1.2980 12 10.5718
3 1.7591 13 2.5941
4 3.8539 14 .6594
5 .8706 15 .3246
6 2.8106 16 .8321
7 4.2915 17 1.1083
8 7.9897 18 4.3633
9 11.0301 19 2.1088

10 5.3519 20 10.0931

We next calculate b1,p and b2,p, as given by (4.36) and (4.37):

b1,p = 11.338, b2,p = 28.884.

In Table A.5, the upper .01 critical value for b1,p is 9.9; the upper .005 critical value
for b2,p is 27.1. Thus both b1,p and b2,p exceed their critical values, and we have
significant skewness and kurtosis, apparently caused by the three observations with
large values of D2

i .

Figure 4.9. Q–Q plot of ui and υi for the ramus bone data of Table 3.6.
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Figure 4.10. Scatter plots for the ramus bone data in Table 3.6.

The bivariate scatter plots are given in Figure 4.10. Three values are clearly sep-
arate from the other observations in the plot of y1 versus y4. In Table 3.6, the 9th,
12th, and 20th values of y4 are not unusual, nor are the 9th, 12th, and 20th values of
y1. However, the increase from y1 to y4 is exceptional in each case. If these values
are not due to errors in recording the data and if this sample is representative, then
we appear to have a mixture of two populations. This should be taken into account
in making inferences.

PROBLEMS

4.1 Consider the two covariance matrices

�1 =

 14 8 3

8 5 2
3 2 1


 , �2 =


 6 6 1

6 8 2
1 2 1


 .

Show that |�2| > |�1| and that tr(�2) < tr(�1). Thus the generalized variance
of population 2 is greater than the generalized variance of population 1, even
though the total variance is less. Comment on why this is true in terms of the
variances and correlations.
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4.2 For z = (T′)−1(y − �) in (4.4), show that E(z) = 0 and cov(z) = I.

4.3 Show that the form of the likelihood function in (4.13) follows from the previ-
ous expression.

4.4 For (y−�)′�−1(y−�) in (4.3) and (4.6), show that E[(y−�)′�−1(y−�)] =
p. Assume E(y) = � and cov(y) = �. Normality is not required.

4.5 Show that by adding and subtracting y, the exponent of (4.13) has the form
given in (4.14), that is,

1

2

n∑
i=1

(yi − y + y − �)′�−1(yi − y + y − �) = 1

2

n∑
i=1

(yi − y)′�−1(yi − y)

+ n

2
(y − �)′�−1(y − �).

4.6 Show that
√

b1 and b2, as given in (4.18) and (4.19), are invariant to the trans-
formation zi = ayi + b.

4.7 Show that if y is Np(�,�), then β2,p = p(p + 2) as in (4.34).

4.8 Show that b1,p and b2,p, as given by (4.36) and (4.37), are invariant under the
transformation zi = Ayi + b, where A is nonsingular. Thus b1,p and b2,p do
not depend on the units of measurement.

4.9 Show that F(n) = [(n − p − 1)/p](1/w − 1) as in (4.45).

4.10 Suppose y is N3(�,�), where

� =

 3

1
4


 , � =


 6 1 −2

1 13 4
−2 4 4


 .

(a) Find the distribution of z = 2y1 − y2 + 3y3.
(b) Find the joint distribution of z1 = y1 + y2 + y3 and z2 = y1 − y2 + 2y3.
(c) Find the distribution of y2.
(d) Find the joint distribution of y1 and y3.
(e) Find the joint distribution of y1, y3, and 1

2 (y1 + y2).

4.11 Suppose y is N3(�,�), with � and � given in the previous problem.

(a) Find a vector z such that z = (T′)−1(y − �) is N3(0, I) as in (4.4).
(b) Find a vector z such that z = (�1/2)−1(y − �) is N3(0, I) as in (4.5).
(c) What is the distribution of (y − �)′�−1(y − �)?

4.12 Suppose y is N4(�,�), where

� =




−2
3

−1
5


 , � =




11 −8 3 9
−8 9 −3 6

3 −3 2 3
9 6 3 9


 .



PROBLEMS 107

(a) Find the distribution of z = 4y1 − 2y2 + y3 − 3y4.

(b) Find the joint distribution of z1 = y1 + y2 + y3 + y4 and z2 = −2y1 +
3y2 + y3 − 2y4.

(c) Find the joint distribution of z1 = 3y1 + y2 − 4y3 − y4, z2 = −y1 − 3y2 +
y3 − 2y4, and z3 = 2y1 + 2y2 + 4y3 − 5y4.

(d) What is the distribution of y3?

(e) What is the joint distribution of y2 and y4?

(f) Find the joint distribution of y1, 1
2 (y1 + y2), 1

3 (y1 + y2 + y3), and 1
4 (y1 +

y2 + y3 + y4).

4.13 Suppose y is N4(�,�) with � and � given in the previous problem.

(a) Find a vector z such that z = (T′)−1(y − �) is N4(0, I) as in (4.4).

(b) Find a vector z such that z = (�1/2)−1(y − �) is N4(0, I) as in (4.5).

(c) What is the distribution of (y − �)′�−1(y − �)?

4.14 Suppose y is N3(�,�), with

� =

 2

−3
4


 , � =


 4 −3 0

−3 6 0
0 0 5


 .

Which of the following random variables are independent?

(a) y1 and y2

(b) y1 and y3

(c) y2 and y3

(d) (y1, y2) and y3

(e) (y1, y3) and y2

4.15 Suppose y is N4(�,�), with

� =




−4
2
5

−1


 , � =




8 0 −1 0
0 3 0 2

−1 0 5 0
0 2 0 7


 .

Which of the following random variables are independent?
(a) y1 and y2 (f) y3 and y4 (k) y1 and y2 and y3
(b) y1 and y3 (g) (y1, y2) and y3 (l) y1 and y2 and y4
(c) y1 and y4 (h) (y1, y2) and y4 (m) (y2, y2) and (y3, y4)

(d) y2 and y3 (i) (y1, y3) and y4 (n) (y1, y3) and (y2, y4)

(e) y2 and y4 (j) y1 and (y2, y4)



108 THE MULTIVARIATE NORMAL DISTRIBUTION

4.16 Assume y and x are subvectors, each 2 × 1, where
(y

x

)
is N4(�,�) with

� =




2
−1

3
1


 , � =




7 3 −3 2
3 6 0 4

−3 0 5 −2
2 4 −2 4


 .

(a) Find E(y|x) by (4.7).
(b) Find cov(y|x) by (4.8).

4.17 Suppose y and x are subvectors, such that y is 2 × 1 and x is 3 × 1, with � and
� partitioned accordingly:

� =




3
−2

4
−3

5


 , � =




14 −8 15 0 3
−8 18 8 6 −2

15 8 50 8 5
0 6 8 4 0
3 −2 5 0 1


 .

Assume that
(y

x

)
is distributed as N5(�,�).

(a) Find E(y|x) by (4.7).
(b) Find cov(y|x) by (4.8).

4.18 Suppose that y1, y2, . . . , yn is a random sample from a nonnormal multivariate
population with mean � and covariance matrix �. If n is large, what is the
approximate distribution of each of the following?

(a)
√

n(y − �)

(b) y

4.19 For the ramus bone data treated in Example 4.5.2, check each of the four vari-
ables for univariate normality using the following techniques:

(a) Q–Q plots;
(b)

√
b1 and b2 as given by (4.18) and (4.19);

(c) D’Agostino’s test using D and Y given in (4.22) and (4.23);
(d) The test by Lin and Mudholkar using z defined in (4.24).

4.20 For the calcium data in Table 3.3, check for multivariate normality and outliers
using the following tests:

(a) Calculate D2
i as in (4.27) for each observation.

(b) Compare the largest value of D2
i with the critical value in Table A.6.

(c) Compute ui and υi in (4.28) and (4.29) and plot them. Is there an indication
of nonlinearity or outliers?

(d) Calculate b1,p and b2,p in (4.36) and (4.37) and compare them with critical
values in Table A.5.
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4.21 For the probe word data in Table 3.5, check each of the five variables for uni-
variate normality and outliers using the following tests:

(a) Q–Q plots;
(b)

√
b1 and b2 as given by (4.18) and (4.19);

(c) D’Agostino’s test using D and Y given in (4.22) and (4.23);
(d) The test by Lin and Mudholkar using z defined in (4.24).

4.22 For the probe word data in Table 3.5, check for multivariate normality and
outliers using the following tests:

(a) Calculate D2
i as in (4.27) for each observation.

(b) Compare the largest value of D2
i with the critical value in Table A.6.

(c) Compute ui and υi in (4.28) and (4.29) and plot them. Is there an indication
of nonlinearity or outliers?

(d) Calculate b1,p and b2,p in (4.36) and (4.37) and compare them with critical
values in Table A.5.

4.23 Six hematology variables were measured on 51 workers (Royston 1983):

y1 = hemoglobin concentration y4 = lymphocyte count
y2 = packed cell volume y5 = neutrophil count
y3 = white blood cell count y6 = serum lead concentration

The data are given in Table 4.3. Check each of the six variables for univariate
normality using the following tests:

(a) Q–Q plots;
(b)

√
b1 and b2 as given by (4.18) and (4.19);

(c) D’Agostino’s test using D and Y given in (4.22) and (4.23);
(d) The test by Lin and Mudholkar using z defined in (4.24).

Table 4.3. Hematology Data

Observation
Number y1 y2 y3 y4 y5 y6

1 13.4 39 4100 14 25 17
2 14.6 46 5000 15 30 20
3 13.5 42 4500 19 21 18
4 15.0 46 4600 23 16 18
5 14.6 44 5100 17 31 19
6 14.0 44 4900 20 24 19
7 16.4 49 4300 21 17 18
8 14.8 44 4400 16 26 29
9 15.2 46 4100 27 13 27

10 15.5 48 8400 34 42 36

(continued)
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Table 4.3. (Continued)

Observation
Number y1 y2 y3 y4 y5 y6

11 15.2 47 5600 26 27 22
12 16.9 50 5100 28 17 23
13 14.8 44 4700 24 20 23
14 16.2 45 5600 26 25 19
15 14.7 43 4000 23 13 17
16 14.7 42 3400 9 22 13
17 16.5 45 5400 18 32 17
18 15.4 45 6900 28 36 24
19 15.1 45 4600 17 29 17
20 14.2 46 4200 14 25 28
21 15.9 46 5200 8 34 16
22 16.0 47 4700 25 14 18
23 17.4 50 8600 37 39 17
24 14.3 43 5500 20 31 19
25 14.8 44 4200 15 24 29
26 14.9 43 4300 9 32 17
27 15.5 45 5200 16 30 20
28 14.5 43 3900 18 18 25
29 14.4 45 6000 17 37 23
30 14.6 44 4700 23 21 27
31 15.3 45 7900 43 23 23
32 14.9 45 3400 17 15 24
33 15.8 47 6000 23 32 21
34 14.4 44 7700 31 39 23
35 14.7 46 3700 11 23 23
36 14.8 43 5200 25 19 22
37 15.4 45 6000 30 25 18
38 16.2 50 8100 32 38 18
39 15.0 45 4900 17 26 24
40 15.1 47 6000 22 33 16
41 16.0 46 4600 20 22 22
42 15.3 48 5500 20 23 23
43 14.5 41 6200 20 36 21
44 14.2 41 4900 26 20 20
45 15.0 45 7200 40 25 25
46 14.2 46 5800 22 31 22
47 14.9 45 8400 61 17 17
48 16.2 48 3100 12 15 18
49 14.5 45 4000 20 18 20
50 16.4 49 6900 35 22 24
51 14.7 44 7800 38 34 16
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4.24 For the hematology data in Table 4.3, check for multivariate normality using
the following techniques:

(a) Calculate D2
i as in (4.27) for each observation.

(b) Compare the largest value of D2
i with the critical value in Table A.6

(extrapolate).
(c) Compute ui and υi in (4.28) and (4.29) and plot them. Is there an indication

of nonlinearity or outliers?
(d) Calculate b1,p and b2,p in (4.36) and (4.37) and compare them with critical

values in Table A.5.
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Tests on One or Two Mean Vectors

5.1 MULTIVARIATE VERSUS UNIVARIATE TESTS

Hypothesis testing in a multivariate context is more complex than in a univariate
setting. The number of parameters may be staggering. The p-variate normal distri-
bution, for example, has p means, p variances, and

(p
2

)
covariances, where

(p
2

)
rep-

resents the number of pairs among the p variables. The total number of parameters
is

p + p +
(

p

2

)
= 1

2
p(p + 3).

For p = 10, for example, the number of parameters is 65, for each of which,
a hypothesis could be formulated. Additionally, we might be interested in testing
hypotheses about subsets of these parameters or about functions of them. In some
cases, we have the added dilemma of choosing among competing test statistics (see
Chapter 6).

We first discuss the motivation for testing p variables multivariately rather than
(or in addition to) univariately, as, for example, in hypotheses about µ1, µ2, . . . , µp

in �. There are at least four arguments for a multivariate approach to hypothesis
testing:

1. The use of p univariate tests inflates the Type I error rate, α, whereas the
multivariate test preserves the exact α level. For example, if we do p = 10
separate univariate tests at the .05 level, the probability of at least one false
rejection is greater than .05. If the variables were independent (they rarely
are), we would have (under H0)

P(at least one rejection) = 1 − P(all 10 tests accept H0)

= 1 − (.95)10 = .40.

112
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The resulting overall α of .40 is not an acceptable error rate. Typically, the 10
variables are correlated, and the overall α would lie somewhere between .05
and .40.

2. The univariate tests completely ignore the correlations among the variables,
whereas the multivariate tests make direct use of the correlations.

3. The multivariate test is more powerful in many cases. The power of a test is
the probability of rejecting H0 when it is false. In some cases, all p of the
univariate tests fail to reach significance, but the multivariate test is significant
because small effects on some of the variables combine to jointly indicate sig-
nificance. However, for a given sample size, there is a limit to the number of
variables a multivariate test can handle without losing power. This is discussed
further in Section 5.3.2.

4. Many multivariate tests involving means have as a byproduct the construction
of a linear combination of variables that reveals more about how the variables
unite to reject the hypothesis.

5.2 TESTS ON � WITH � KNOWN

The test on a mean vector assuming a known � is introduced to illustrate the issues
involved in multivariate testing and to serve as a foundation for the unknown � case.
We first review the univariate case, in which we work with a single variable y that is
distributed as N (µ, σ 2).

5.2.1 Review of Univariate Test for H0: µ = µ0 with σ Known

The hypothesis of interest is that the mean of y is equal to a given value, µ0, versus
the alternative that it is not equal to µ0:

H0 : µ = µ0 vs. H1 : µ �= µ0.

We do not consider one-sided alternative hypotheses because they do not readily
generalize to multivariate tests. We assume a random sample of n observations y1,
y2, . . . , yn from N (µ, σ 2) with σ 2 known. We calculate y = ∑n

i=1 yi/n and com-
pare it to µ0 using the test statistic

z = y − µ0

σy
= y − µ0

σ/
√

n
, (5.1)

which is distributed as N (0, 1) if H0 is true. For α = .05, we reject H0 if |z| ≥ 1.96.
Equivalently, we can use z2, which is distributed as χ2 with one degree of freedom,
and reject H0 if z2 ≥ (1.96)2 = 3.84. If n is large, we are assured by the central
limit theorem that z is approximately normal, even if the observations are not from a
normal distribution.
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5.2.2 Multivariate Test for H0: � = �0 with � Known

In the multivariate case we have several variables measured on each sampling unit,
and we wish to hypothesize a value for the mean of each variable, H0 : � = �0 vs.
H1 : � �= �0. More explicitly, we have

H0 :



µ1
µ2
...

µp


 =



µ01
µ02
...

µ0p


 , H1 :



µ1
µ2
...

µp


 �=



µ01
µ02
...

µ0p


 ,

where each µ0 j is specified from previous experience or is a target value. The vector
equality in H0 implies µ j = µ0 j for all j = 1, 2, . . . , p. The vector inequality in
H1 implies at least one µ j �= µ0 j . Thus, for example, if µ j = µ0 j for all j except
2, for which µ2 �= µ02, then we wish to reject H0.

To test H0, we use a random sample of n observation vectors y1, y2, . . . , yn from
Np(�,�), with � known, and calculate y = ∑n

i=1 yi/n. The test statistic is

Z2 = n(y − �0)
′�−1(y − �0). (5.2)

If H0 is true, Z2 is distributed as χ2
p by (4.6), and we therefore reject H0 if Z2 >

χ2
α,p . Note that for one variable, z2 [the square of (5.1)] has a chi-square distribution

with 1 degree of freedom, whereas, for p variables, Z2 in (5.2) is distributed as a
chi-square with p degrees of freedom.

If � is unknown, we could use S in its place in (5.2), and Z2 would have an
approximate χ2-distribution. But n would have to be larger than in the analogous
univariate situation, in which t = (y − µ0)/(s/

√
n) is approximately N (0, 1) for

n > 30. The value of n needed for n(y − �0)
′S−1(y − �0) to have an approximate

χ2-distribution depends on p. This is clarified further in Section 5.3.2.

Example 5.2.2. In Table 3.1, height and weight were given for a sample of 20
college-age males. Let us assume that this sample originated from the bivariate nor-
mal N2(�,�), where

� =
(

20 100
100 1000

)
.

Suppose we wish to test H0 : � = (70, 170)′. From Example 3.2.1, y1 = 71.45 and
y2 = 164.7. We thus have

Z2 = n(y − �0)
′�−1(y − �0)

= (20)
(

71.45 − 70
164.7 − 170

)′ ( 20 100
100 1000

)−1 ( 71.45 − 70
164.7 − 170

)

= (20)(1.45,−5.3)

(
.1 −.01

−.01 .002

)(
1.45
−5.3

)
= 8.4026.
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Using α = .05, χ2
.05,2 = 5.99, and we therefore reject H0 : � = (70, 170)′ because

Z2 = 8.4026 > 5.99.
The rejection region for y = (y1, y2)

′ is on or outside the ellipse in Figure 5.1;
that is, the test statistic Z2 is greater than 5.99 if and only if y is outside the ellipse. If
y falls inside the ellipse, H0 is accepted. Thus, distance from �0 as well as direction
must be taken into account. When the distance is standardized by �−1, all points on
the curve are “statistically equidistant” from the center.

Note that the test is sensitive to the covariance structure. If cov(y1, y2) were neg-
ative, y2 would tend to decrease as y1 increases, and the ellipse would be tilted in the
other direction. In this case, y would be in the acceptance region.

Let us now investigate the consequence of testing each variable separately. Using
zα/2 = 1.96 for α = .05, we have

z1 = y1 − µ01

σ1/
√

n
= 1.450 < 1.96,

z2 = y2 − µ02

σ2/
√

n
= −.7495 > −1.96.

Thus both tests accept the hypothesis. In this case neither of the y’s is far enough
from the hypothesized value to cause rejection. But when the positive correlation
between y1 and y2 is taken into account in the multivariate test, the two evidences

Figure 5.1. Elliptical acceptance region.
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Figure 5.2. Acceptance and rejection regions for univariate and multivariate tests.

against �0 combine to cause rejection. This illustrates the third advantage of multi-
variate tests given in Section 5.1.

Figure 5.2 shows the rectangular acceptance region for the univariate tests super-
imposed on the elliptical multivariate acceptance region. The rectangle was obtained
by calculating the two acceptance regions

µ01 − 1.96
σ1√

n
< y1 < µ01 + 1.96

σ1√
n
,

µ02 − 1.96
σ2√

n
< y2 < µ02 + 1.96

σ2√
n
.

Points inside the ellipse but outside the rectangle will be rejected in at least one uni-
variate dimension but will be accepted multivariately. This illustrates the inflation
of α resulting from univariate tests, as discussed in the first motive for multivariate
testing in Section 5.1. This phenomenon has been referred to as Rao’s paradox. For
further discussion see Rao (1966), Healy (1969), and Morrison (1990, p. 174). Points
outside the ellipse but inside the rectangle will be rejected multivariately but accepted
univariately in both dimensions. This illustrates the third motive for multivariate test-
ing given in Section 5.1, namely, that the multivariate test is more powerful in some
situations.

Thus in either case represented by the shaded areas, we should use the multivari-
ate test result, not the univariate results. In the one case, the multivariate test is more
powerful than the univariate tests; in the other case, the multivariate test preserves α
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whereas the univariate tests inflate α. Consequently, when the multivariate and uni-
variate results disagree, our tendency is to trust the multivariate result. In Section 5.5,
we discuss various procedures for ascertaining the contribution of the individual vari-
ables after the multivariate test has rejected the hypothesis.

5.3 TESTS ON � WHEN � IS UNKNOWN

In Section 5.2, we said little about properties of the tests, because the tests discussed
were of slight practical consequence due to the assumption that � is known. We will
be more concerned with test properties in Sections 5.3 and 5.4, first in the one-sample
case and then in the two-sample case. The reader may wonder why we include one-
sample tests, since we seldom, if ever, have need of a test for H0 : � = �0. However,
we will cover this case for two reasons:

1. Many general principles are more easily illustrated in the one-sample frame-
work than in the two-sample case.

2. Some very useful tests can be cast in the one-sample framework. Two examples
are (1) H0 : �d = 0 used in the paired comparison test covered in Section 5.7
and (2) H0 : C� = 0 used in profile analysis in Section 5.9, in analysis of
repeated measures in Section 6.9, and in growth curves in Section 6.10.

5.3.1 Review of Univariate t-Test for H0: µ = µ0 with σ Unknown

We first review the familiar one-sample t-test in the univariate case, with only one
variable measured on each sampling unit. We assume that a random sample y1,
y2, . . . , yn is available from N (µ, σ 2). We estimate µ by y and σ 2 by s2, where
y and s2 are given by (3.1) and (3.4). To test H0 : µ = µ0 vs. H1 : µ �= µ0, we use

t = y − µ0

s/
√

n
=

√
n(y − µ0)

s
. (5.3)

If H0 is true, t is distributed as tn−1, where n −1 is the degrees of freedom. We reject
H0 if |√n(y − µ0)/s| ≥ tα/2,n−1, where tα/2,n−1 is a critical value from the t-table.

The first expression in (5.3), t = (y − µ0)/(s/
√

n), is the characteristic form of
the t-statistic, which represents a sample standardized distance between y and µ0. In
this form, the hypothesized mean is subtracted from y and the difference is divided
by sy = s/

√
n. Since y1, y2, . . . , yn is a random sample from N (µ, σ 2), the random

variables y and s are independent. We will see an analogous characteristic form for
the T 2-statistic in the multivariate case in Section 5.3.2.

5.3.2 Hotelling’s T2-Test for H0: µ = µ0 with Σ Unknown

We now move to the multivariate case in which p variables are measured on each
sampling unit. We assume that a random sample y1, y2, . . . , yn is available from
Np(�,�), where yi contains the p measurements on the i th sampling unit (subject
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or object). We estimate � by y and � by S, where y and S are given by (3.16), (3.19),
(3.22), (3.27), and (3.29). In order to test H0 : � = �0 versus H1 : � �= �0, we use
an extension of the univariate t-statistic in (5.3). In squared form, the univariate t can
be rewritten as

t2 = n(y − µ0)
2

s2
= n(y − µ0)(s

2)−1(y − µ0). (5.4)

When y − µ0 and s2 are replaced by y − �0 and S, we obtain the test statistic

T 2 = n(y − �0)
′S−1(y − �0). (5.5)

Alternatively, T 2 can be obtained from Z2 in (5.2) by replacing � with S.
The distribution of T 2 was obtained by Hotelling (1931), assuming H0 is true

and sampling is from Np(�,�). The distribution is indexed by two parameters,
the dimension p and the degrees of freedom ν = n − 1. We reject H0 if T 2 >

T 2
α,p,n−1 and accept H0 otherwise. Critical values of the T 2-distribution are found in

Table A.7, taken from Kramer and Jensen (1969a).
Note that the terminology “accept H0” is used for expositional convenience to

describe our decision when we do not reject the hypothesis. Strictly speaking, we do
not accept H0 in the sense of actually believing it is true. If the sample size were
extremely large and we accepted H0, we could be reasonably certain that the true �
is close to the hypothesized value �0. Otherwise, accepting H0 means only that we
have failed to reject H0.

The T 2-statistic can be viewed as the sample standardized distance between the
observed sample mean vector and the hypothetical mean vector. If the sample mean
vector is notably distant from the hypothetical mean vector, we become suspicious
of the hypothetical mean vector and wish to reject H0.

The test statistic is a scalar quantity, since T 2 = n(y − �0)
′S−1(y − �0) is

a quadratic form. As with the χ2-distribution of Z2, the density of T 2 is skewed
because the lower limit is zero and there is no upper limit.

The characteristic form of the T 2-statistic (5.5) is

T 2 = (y − �0)
′
(

S
n

)−1

(y − �0). (5.6)

The characteristic form has two features:

1. S/n is the sample covariance matrix of y and serves as a standardizing matrix
in the distance function.

2. Since y1, y2, . . . , yn are distributed as Np(�,�), it follows that y is Np(�,
1
n �), (n −1)S is W (n −1,�), and y and S are independent (see Section 4.3.2).
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In (5.3), the univariate t-statistic represents the number of standard deviations y
is separated from µ0. In appearance, the T 2-statistic (5.6) is similar, but no such
simple interpretation is possible. If we add a variable, the distance in (5.6) increases.
(By analogy, the hypotenuse of a right triangle is longer than either of the legs.)
Thus we need a test statistic that indicates the significance of the distance from y
to �0, while allowing for the number of dimensions (see comment 3 at the end of
this section about the T 2-table). Since the resulting T 2-statistic cannot be readily
interpreted in terms of the number of standard deviations y is from �0, we do not
have an intuitive feel for its significance as we do with the univariate t . We must
compare the calculated value of T 2 with the table value. In addition, the T 2-table
provides some insights into the behavior of the T 2-distribution. Four of these insights
are noted at the end of this section.

If a test leads to rejection of H0 : � = �0, the question arises as to which variable
or variables contributed most to the rejection. This issue is discussed in Section 5.5
for the two-sample T 2-test of H0 : �1 = �2, and the results there can be easily
adapted to the one-sample test of H0 : � = �0. For confidence intervals on the
individual µ j ’s in �, see Rencher (1998, Section 3.4).

The following are some key properties of the T 2-test:

1. We must have n−1 > p. Otherwise, S is singular and T 2 cannot be computed.

2. In both the one-sample and two-sample cases, the degrees of freedom for the
T 2-statistic will be the same as for the analogous univariate t-test; that is, ν =
n − 1 for one sample and ν = n1 + n2 − 2 for two samples (see Section 5.4.2).

3. The alternative hypothesis is two-sided. Because the space is multidimen-
sional, we do not consider one-sided alternative hypotheses, such as � > �0.
However, even though the alternative hypothesis H1 : � �= �0 is essentially
two-sided, the critical region is one-tailed (we reject H0 for large values of
T 2). This is typical of many multivariate tests.

4. In the univariate case, t2
n−1 = F1,n−1. The statistic T 2 can also be converted to

an F-statistic as follows:

ν − p + 1

νp
T 2

p,ν = Fp,ν−p+1. (5.7)

Note that the dimension p (number of variables) of the T 2-statistic becomes
the first of the two degrees-of-freedom parameters of the F . The number of
degrees of freedom for T 2 is denoted by ν, and the F transformation is given
in terms of a general ν, since other applications of T 2 will have ν different
from n − 1 (see, for example, Sections 5.4.2 and 6.3.2).

Equation (5.7) gives an easy way to find critical values for the T 2-test. However, we
have provided critical values of T 2 in Table A.7 because of the insights they provide
into the behavior of the T 2-distribution in particular and multivariate tests in general.
The following are some insights that can readily be gleaned from the T 2-tables:
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1. The first column of Table A.7 contains squares of t-table values; that is,
T 2
α,1,ν = t2

α/2,ν . (We use t2
α/2 because the univariate test of H0 : µ = µ0 vs.

H1 : µ �= µ0 is two-tailed.) Thus for p = 1, T 2 reduces to t2. This can easily
be seen by comparing (5.5) with (5.4).

2. The last row of each page of Table A.7 contains χ2 critical values, that is,
T 2

p,∞ = χ2
p. Thus as n increases, S approaches �, and

T 2 = n(y − �0)
′S−1(y − �0)

approaches Z2 = n(y − �0)
′�−1(y − �0) in (5.2), which is distributed as χ2

p.

3. The values increase along each row of Table A.7; that is, for a fixed ν, the
critical value T 2

α,p,ν increases with p. It was noted above that in any given
sample, the calculated value of T 2 increases if a variable is added. However,
since the critical value also increases, a variable should not be added unless it
adds a significant amount to T 2.

4. As p increases, larger values of ν are required for the distribution of T 2 to
approach χ2. In the univariate case, t in (5.3) is considered a good approxima-
tion to the standard normal z in (5.1) when ν = n − 1 is at least 30. In the first
column (p = 1) of Table A.7, we see T 2

.05,1,30 = 4.171 and T 2
.05,1,∞ = 3.841,

with a ratio of 4.171/3.841 = 1.086. For p = 5, ν must be 100 to obtain
the same ratio: T 2

.05,5,100/T 2
.05,5,∞ = 1.086. For p = 10, we need ν = 200

to obtain a similar value of the ratio: T 2
.05,10,200/T 2

.05,10,∞ = 1.076. Thus one

must be very cautious in stating that T 2 has an approximate χ2-distribution
for large n. The α level (Type I error rate) could be substantially inflated. For
example, suppose p = 10 and we assume that n = 30 is sufficiently large for
a χ2-approximation to hold. Then we would reject H0 for T 2 ≥ 18.307 with
a target α-level of .05. However, the correct critical value is 34.044, and the
misuse of 18.307 would yield an actual α of P(T 2

10,29 ≥ 18.307) = .314.

Example 5.3.2. In Table 3.3 we have n = 10 observations on p = 3 variables.
Desirable levels for y1 and y2 are 15.0 and 6.0, respectively, and the expected level
of y3 is 2.85. We can, therefore, test the hypothesis

H0 : � =

 15.0

6.0
2.85


 .

In Examples 3.5 and 3.6, y and S were obtained as

y =

 28.1

7.18
3.09


 , S =


 140.54 49.68 1.94

49.68 72.25 3.68
1.94 3.68 .25


 .
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To test H0, we use (5.5):

T 2 = n(y − �0)
′S−1(y − �0)

= 10


 28.1 − 15.0

7.18 − 6.0
3.09 − 2.85




′
 140.54 49.68 1.94

49.68 72.25 3.68
1.94 3.68 .25




−1
 28.1 − 15.0

7.18 − 6.0
3.09 − 2.85




= 24.559.

From Table A.7, we obtain the critical value T 2
.05,3,9 = 16.766. Since the observed

value of T 2 exceeds the critical value, we reject the hypothesis.

5.4 COMPARING TWO MEAN VECTORS

We first review the univariate two-sample t-test and then proceed with the analogous
multivariate test.

5.4.1 Review of Univariate Two-Sample t-Test

In the one-variable case we obtain a random sample y11, y12, . . . , y1n1 from
N (µ1, σ

2
1 ) and a second random sample y21, y22, . . . , y2n2 from N (µ2, σ

2
2 ).

We assume that the two samples are independent and that σ 2
1 = σ 2

2 = σ 2,
say, with σ 2 unknown. [The assumptions of independence and equal variances
are necessary in order for the t-statistic in (5.8) to have a t-distribution.] From
the two samples we calculate y1, y2, SS1 = ∑n1

i=1(y1i − y1)
2 = (n1 − 1)s2

1 ,
SS2 = ∑n2

i=1(y2i − y2)
2 = (n2 − 1)s2

2 , and the pooled variance

s2
pl = SS1 + SS2

n1 + n2 − 2
= (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
,

where n1 +n2 −2 is the sum of the weights n1 −1 and n2 −1 in the numerator. With
this denominator, s2

pl is an unbiased estimator for the common variance, σ 2, that is,

E(s2
pl) = σ 2.

To test

H0 : µ1 = µ2 vs. H1 : µ1 �= µ2,

we use

t = y1 − y2

spl

√
1

n1
+ 1

n2

, (5.8)
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which has a t-distribution with n1 + n2 − 2 degrees of freedom when H0 is true. We
therefore reject H0 if |t | ≥ tα/2,n1+n2−2.

Note that (5.8) exhibits the characteristic form of a t-statistic. In this form, the
denominator is the sample standard deviation of the numerator; that is,

spl
√

1/n1 + 1/n2

is an estimate of

σy1−y2 = √
var(y1 − y2) =

√
σ 2

1

n1
+ σ 2

2

n2

=
√
σ 2

n1
+ σ 2

n2
= σ

√
1

n1
+ 1

n2
.

5.4.2 Multivariate Two-Sample T2-Test

We now consider the case where p variables are measured on each sampling unit in
two samples. We wish to test

H0 : �1 = �2 vs. H1 : �1 �= �2.

We obtain a random sample y11, y12, . . . , y1n1 from Np(�1,�1) and a second ran-
dom sample y21, y22, . . . , y2n2 from Np(�2,�2). We assume that the two samples
are independent and that �1 = �2 = �, say, with � unknown. These assumptions
are necessary in order for the T 2-statistic in (5.9) to have a T 2-distribution. A test of
H0 : �1 = �2 is given in Section 7.3.2. For an approximate test of H0 : �1 = �2
that can be used when �1 �= �2, see Rencher (1998, Section 3.9).

The sample mean vectors are y1 = ∑n1
i=1 y1i/n1 and y2 = ∑n2

i=1 y2i/n2. Define
W1 and W2 to be the matrices of sums of squares and cross products for the two
samples:

W1 =
n1∑

i=1

(y1i − y1)(y1i − y1)
′ = (n1 − 1)S1,

W2 =
n2∑

i=1

(y2i − y2)(y2i − y2)
′ = (n2 − 1)S2.

Since (n1 −1)S1 is an unbiased estimator of (n1 −1)� and (n2 −1)S2 is an unbiased
estimator of (n2 − 1)�, we can pool them to obtain an unbiased estimator of the
common population covariance matrix, �:

Spl = 1

n1 + n2 − 2
(W1 + W2)
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= 1

n1 + n2 − 2
[(n1 − 1)S1 + (n2 − 1)S2].

Thus E(Spl) = �.
The square of the univariate t-statistic (5.8) can be expressed as

t2 = n1n2

n1 + n2
(y1 − y2)(s

2
pl)

−1(y1 − y2).

This can be generalized to p variables by substituting y1 −y2 for y1 − y2 and Spl for
s2

pl to obtain

T 2 = n1n2

n1 + n2
(y1 − y2)

′S−1
pl (y1 − y2), (5.9)

which is distributed as T 2
p,n1+n2−2 when H0 : �1 = �2 is true. To carry out the

test, we collect the two samples, calculate T 2 by (5.9), and reject H0 if T 2 ≥
T 2
α,p,n1+n2−2. Critical values of T 2 are found in Table A.7. For tables of the power

of the T 2-test (probability of rejecting H0 when it is false) and illustrations of their
use, see Rencher (1998, Section 3.10).

The T 2-statistic (5.9) can be expressed in characteristic form as the standardized
distance between y1 and y2:

T 2 = (y1 − y2)
′
[(

1

n1
+ 1

n2

)
Spl

]−1

(y1 − y2), (5.10)

where (1/n1 + 1/n2)Spl is the sample covariance matrix for y1 − y2 and Spl is
independent of y1 − y2 because of sampling from the multivariate normal. For a
discussion of robustness of T 2 to departures from the assumptions of multivariate
normality and homogeneity of covariance matrices (�1 = �2), see Rencher (1998,
Section 3.7).

Some key properties of the two-sample T 2-test are given in the following list:

1. It is necessary that n1 + n2 − 2 > p for Spl to be nonsingular.

2. The statistic T 2 is, of course, a scalar. The 3p + p(p − 1)/2 quantities in
y1, y2, and Spl have been reduced to a single scale on which T 2 is large if
the sample evidence favors H1 : �1 �= �2 and small if the evidence supports
H0 : �1 = �2; we reject H0 if the standardized distance between y1 and y2 is
large.

3. Since the lower limit of T 2 is zero and there is no upper limit, the density
is skewed. In fact, as noted in (5.11), T 2 is directly related to F , which is a
well-known skewed distribution.

4. For degrees of freedom of T 2 we have n1 + n2 − 2, which is the same as for
the corresponding univariate t-statistic (5.8).
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5. The alternative hypothesis H1 : �1 �= �2 is two sided. The critical region
T 2 > T 2

α is one-tailed, however, as is typical of many multivariate tests.

6. The T 2-statistic can be readily transformed to an F-statistic using (5.7):

n1 + n2 − p − 1

(n1 + n2 − 2)p
T 2 = Fp,n1+n2−p−1, (5.11)

where again the dimension p of the T 2-statistic becomes the first degree-of-
freedom parameter for the F-statistic.

Example 5.4.2. Four psychological tests were given to 32 men and 32 women. The
data are recorded in Table 5.1 (Beall 1945). The variables are

y1 = pictorial inconsistencies y3 = tool recognition

y2 = paper form board y4 = vocabulary

The mean vectors and covariance matrices of the two samples are

y1 =




15.97
15.91
27.19
22.75


 , y2 =




12.34
13.91
16.66
21.94


 ,

S1 =




5.192 4.545 6.522 5.250
4.545 13.18 6.760 6.266
6.522 6.760 28.67 14.47
5.250 6.266 14.47 16.65


 ,

S2 =




9.136 7.549 4.864 4.151
7.549 18.60 10.22 5.446
4.864 10.22 30.04 13.49
4.151 5.446 13.49 28.00


 .

The sample covariance matrices do not appear to indicate a disparity in the popu-
lation covariance matrices. (A significance test to check this assumption is carried
out in Example 7.3.2, and the hypothesis H0 : �1 = �2 is not rejected.) The pooled
covariance matrix is

Spl = 1

32 + 32 − 2
[(32 − 1)S1 + (32 − 1)S2]

=




7.164 6.047 5.693 4.701
6.047 15.89 8.492 5.856
5.693 8.492 29.36 13.98
4.701 5.856 13.98 22.32


 .
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Table 5.1. Four Psychological Test Scores on 32 Males and 32 Females

Males Females

y1 y2 y3 y4 y1 y2 y3 y4

15 17 24 14 13 14 12 21
17 15 32 26 14 12 14 26
15 14 29 23 12 19 21 21
13 12 10 16 12 13 10 16
20 17 26 28 11 20 16 16
15 21 26 21 12 9 14 18
15 13 26 22 10 13 18 24
13 5 22 22 10 8 13 23
14 7 30 17 12 20 19 23
17 15 30 27 11 10 11 27
17 17 26 20 12 18 25 25
17 20 28 24 14 18 13 26
15 15 29 24 14 10 25 28
18 19 32 28 13 16 8 14
18 18 31 27 14 8 13 25
15 14 26 21 13 16 23 28
18 17 33 26 16 21 26 26
10 14 19 17 14 17 14 14
18 21 30 29 16 16 15 23
18 21 34 26 13 16 23 24
13 17 30 24 2 6 16 21
16 16 16 16 14 16 22 26
11 15 25 23 17 17 22 28
16 13 26 16 16 13 16 14
16 13 23 21 15 14 20 26
18 18 34 24 12 10 12 9
16 15 28 27 14 17 24 23
15 16 29 24 13 15 18 20
18 19 32 23 11 16 18 28
18 16 33 23 7 7 19 18
17 20 21 21 12 15 7 28
19 19 30 28 6 5 6 13

By (5.9), we obtain

T 2 = n1n2

n1 + n2
(y1 − y2)

′S−1
pl (y1 − y2) = 97.6015.

From interpolation in Table A.7, we obtain T 2
.01,4,62 = 15.373, and we therefore

reject H0 : �1 = �2. See Example 5.5 for a discussion of which variables contribute
most to separation of the two groups.
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5.4.3 Likelihood Ratio Tests

The maximum likelihood approach to estimation was introduced in Section 4.3.1. As
noted there, the likelihood function is the joint density of y1, y2, . . . , yn . The values
of the parameters that maximize the likelihood function are the maximum likelihood
estimators.

The likelihood ratio method of test construction uses the ratio of the maximum
value of the likelihood function assuming H0 is true to the maximum under H1,
which is essentially unrestricted. Likelihood ratio tests usually have good power and
sometimes have optimum power over a wide class of alternatives.

When applied to multivariate normal samples and H0 : �1 = �2, the likelihood
ratio approach leads directly to Hotelling’s T 2-test in (5.9). Similarly, in the one-
sample case, the T 2-statistic in (5.5) is the likelihood ratio test. Thus the T 2-test,
which we introduced rather informally, is the best test according to certain criteria.

5.5 TESTS ON INDIVIDUAL VARIABLES CONDITIONAL ON
REJECTION OF H0 BY THE T2-TEST

If the hypothesis H0 : �1 = �2 is rejected, the implication is that µ1 j �= µ2 j for
at least one j = 1, 2, . . . , p. But there is no guarantee that H0 : µ1 j = µ2 j will be
rejected for some j by a univariate test. However, if we consider a linear combination
of the variables, z = a′y, then there is at least one coefficient vector a for which

t (a) = z1 − z2√
(1/n1 + 1/n2)s2

z

(5.12)

will reject the corresponding hypothesis H0 : µz1 = µz2 or H0 : a′�1 = a′�2. By
(3.54), z1 = a′y1 and z2 = a′y2, and from (3.55) the variance estimator s2

z is the
pooled estimator a′Spla. Thus (5.12) can be written as

t (a) = a′y1 − a′y2√[(n1 + n2)/n1n2]a′Spla
. (5.13)

Since t (a) can be negative, we work with t2(a). The linear function z = a′y
is a projection of y onto a line through the origin. We seek the line (direction) on
which the difference y1 − y2 is maximized when projected. The projected difference
a′(y1 − y2) [standardized by a′Spla as in (5.13)] will be less in any other direction
than that parallel to the line joining y1 and y2. The value of a that projects onto this
line, or, equivalently, maximizes t2(a) in (5.13), is (any multiple of)

a = S−1
pl (y1 − y2). (5.14)

Since a in (5.14) projects y1 − y2 onto a line parallel to the line joining y1 and y2,
we would expect that t2(a) = T 2, and this is indeed the case (see Problem 5.3).
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When a = S−1
pl (y1 − y2), then z = a′y is called the discriminant function. Some-

times the vector a itself in (5.14) is loosely referred to as the discriminant function.
If H0 : �1 = �2 is rejected by T 2 in (5.9), the discriminant function a′y will

lead to rejection of H0 : a′�1 = a′�2 using (5.13), with a = S−1
pl (y1 − y2). We can

then examine each a j in a for an indication of the contribution of the corresponding
y j to rejection of H0. This follow-up examination of each a j should be done only
if H0 : �1 = �2 is rejected by T 2. The discriminant function will appear again in
Section 5.6.2 and in Chapters 8 and 9.

We list these and other procedures that could be used to check each variable fol-
lowing rejection of H0 by a two-sample T 2-test:

1. Univariate t-tests, one for each variable,

t j = y1 j − y2 j√[(n1 + n2)/n1n2]s j j
, j = 1, 2, . . . , p, (5.15)

where s j j is the j th diagonal element of Spl. Reject H0 : µ1 j = µ2 j if |t j | >
tα/2,n1+n2−2. For confidence intervals on µ1 j − µ2 j , see Rencher (1998, Sec-
tion 3.6).

2. To adjust the α-level resulting from performing the p tests in (5.15), we could
use a Bonferroni critical value tα/2p,n1+n2−2 for (5.15) (Bonferroni 1936). A
critical value tα/2p is much greater than the corresponding tα/2, and the result-
ing overall α-level is conservative. Bonferroni critical values tα/2p,ν are given
in Table A.8, from Bailey (1977).

3. Another critical value that could be used with (5.15) is Tα,p,n1+n2−2, where Tα

is the square root of T 2
α from Table A.7; that is, Tα,p,n1+n2−2 =

√
T 2
α,p,n1+n2−2.

This allows for all p variables to be tested as well as all possible linear com-
binations, as in (5.13), even linear combinations chosen after seeing the data.
Consequently, the use of Tα is even more conservative than using tα/2p; that
is, Tα,p,n1+n2−2 > tα/2p,n1+n2−2.

4. Partial F- or t-tests [test of each variable adjusted for the other variables; see
(5.32) in Section 5.8]

5. Standardized discriminant function coefficients (see Section 8.5)

6. Correlations between the variables and the discriminant function (see Sec-
tion 8.7.3)

7. Stepwise discriminant analysis (see Section 8.9)

The first three methods are univariate approaches that do not use covariances or
correlations among the variables in the computation of the test statistic. The last four
methods are multivariate in the sense that the correlation structure is explicitly taken
into account in the computation.

Method 6, involving the correlation between each variable and the discriminant
function, is recommended in many texts and software packages. However, Rencher
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(1988) has shown that these correlations are proportional to individual t- or F-tests
(see Section 8.7.3). Thus this method is equivalent to method 1 and is a univariate
rather than a multivariate approach. Method 7 is often used to identify a subset of
important variables or even to rank the variables according to order of entry. But
Rencher and Larson (1980) have shown that stepwise methods have a high risk of
selecting spurious variables, unless the sample size is very large.

We now consider the univariate procedures 1, 2, and 3. The probability of rejecting
one or more of the p univariate tests when H0 is true is called the overall α or
experimentwise error rate. If we do univariate tests only, with no T 2-test, then the
tests based on tα/2p and Tα in procedures 2 and 3 are conservative (overall α too
low), and tests based on tα/2 in procedure 1 are liberal (overall α too high). However,
when these tests are carried out only after rejection by the T 2-test (such tests are
sometimes called protected tests), the experimentwise error rates change. Obviously
the tests will reject less often (under H0) if they are carried out only if T 2 rejects.
Thus the tests using tα/2p and Tα become even more conservative, and the test using
tα/2 becomes more acceptable.

Hummel and Sligo (1971) studied the experimentwise error rate for univariate t-
tests following rejection of H0 by the T 2-test (protected tests). Using α = .05, they
found that using tα/2 for a critical value yields an overall α acceptably close to the
nominal .05. In fact, it is slightly conservative, making this the preferred univariate
test (within the limits of their study). They also compared this procedure with that of
performing univariate tests without a prior T 2-test (unprotected tests). For this case,
the overall α is too high, as expected. Table 5.2 gives an excerpt of Hummel and
Sligo’s results. The sample size is for each of the two samples; the r2 in common is
for every pair of variables.

Hummel and Sligo therefore recommended performing the multivariate T 2-test
followed by univariate t-tests. This procedure appears to have the desired overall
α level and will clearly have better power than tests using Tα or tα/2p as a critical
value. Table 5.2 also highlights the importance of using univariate t-tests only if
the multivariate T 2-test is significant. The inflated α’s resulting if t-tests are used
without regard to the outcome of the T 2-test are clearly evident. Thus among the
three univariate procedures (procedures 1, 2, and 3), the first appears to be preferred.

Among the multivariate approaches (procedures 4, 5, and 7), we prefer the fifth
procedure, which compares the (absolute value of) coefficients in the discriminant
function to find the effect of each variable in separating the two groups of obser-
vations. These coefficients will often tell a different story from the univariate tests,
because the univariate tests do not take into account the correlations among the vari-
ables or the effect of each variable on T 2 in the presence of the other variables. A
variable will typically have a different effect in the presence of other variables than
it has by itself. In the discriminant function z = a′y = a1 y1 + a2 y2 + · · · + ap yp,
where a = S−1

pl (y1 − y2), the coefficients a1, a2, . . . , ap indicate the relative impor-
tance of the variables in a multivariate context, something the univariate t-tests can-
not do. If the variables are not commensurate (similar in scale and variance), the
coefficients should be standardized, as in Section 8.5; this allows for more valid
comparisons among the variables. Rencher and Scott (1990) provided a decomposi-
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Table 5.2. Comparison of Experimentwise Error Rates (Nominal α = .05)

Common r 2

Sample
Size

Number of
Variables .10 .30 .50 .70

Univariate Tests Onlya

10 3 .145 .112 .114 .077
10 6 .267 .190 .178 .111
10 9 .348 .247 .209 .129
30 3 .115 .119 .117 .085
30 6 .225 .200 .176 .115
30 9 .296 .263 .223 .140
50 3 .138 .124 .102 .083
50 6 .230 .190 .160 .115
50 9 .324 .258 .208 .146

Multivariate Test Followed by Univariate Testsb

10 3 .044 .029 .035 .022
10 6 .046 .029 .030 .017
10 9 .050 .026 .025 .018
30 3 .037 .044 .029 .025
30 6 .037 .037 .032 .021
30 9 .042 .042 .030 .021
50 3 .038 .041 .033 .028
50 6 .037 .039 .028 .027
50 9 .036 .038 .026 .020

aIgnoring multivariate tests.
bCarried out only if multivariate test rejects.

tion of the information in the standardized discriminant function coefficients. For a
detailed analysis of the effect of each variable in the presence of the other variables,
see Rencher (1993; 1998, Sections 3.3.5 and 3.5.3).

Example 5.5. For the psychological data in Table 5.1, we obtained y1, y2, and Spl
in Example 5.4.2. The discriminant function coefficient vector is obtained from
(5.14) as

a = S−1
pl (y1 − y2) =




.5104
−.2033
.4660

−.3097


 .

Thus the linear combination that best separates the two groups is

a′y = .5104y1 − .2033y2 + .4660y3 − .3097y4,
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in which y1 and y3 appear to contribute most to separation of the two groups. (After
standardization, the relative contribution of the variables changes somewhat; see the
answer to Problem 8.7 in Appendix B.)

5.6 COMPUTATION OF T2

If one has a program available with matrix manipulation capability, it is a simple mat-
ter to compute T 2 using (5.9). However, this approach is somewhat cumbersome for
those not accustomed to the use of such a programming language, and many would
prefer a more automated procedure. But very few general-purpose statistical pro-
grams provide for direct calculation of the two-sample T 2-statistic, perhaps because
it is so easy to obtain from other procedures. We will discuss two types of widely
available procedures that can be used to compute T 2.

5.6.1 Obtaining T2 from a MANOVA Program

Multivariate analysis of variance (MANOVA) is discussed in Chapter 6, and the
reader may wish to return to the present section after becoming familiar with that
material. One-way MANOVA involves a comparison of mean vectors from several
samples. Typically, the number of samples is three or more, but the procedure will
also accommodate two samples. The two-sample T 2 test is thus a special case of
MANOVA.

Four common test statistics are defined in Section 6.1: Wilks’ , the Lawley–
Hotelling U (s), Pillai’s V (s), and Roy’s largest root θ . Without concerning ourselves
here with how these are defined or calculated, we show how to use each to obtain the
two-sample T 2:

T 2 = (n1 + n2 − 2)
1 −


, (5.16)

T 2 = (n1 + n2 − 2)U (s), (5.17)

T 2 = (n1 + n2 − 2)
V (s)

1 − V (s)
, (5.18)

T 2 = (n1 + n2 − 2)
θ

1 − θ
. (5.19)

(For the special case of two groups, V (s) = θ .) These relationships are demonstrated
in Section 6.1.7. If the MANOVA program gives eigenvectors of E−1H (E and H
are defined in Section 6.1.2), the eigenvector corresponding to the largest eigenvalue
will be equal to (a constant multiple of) the discriminant function S−1

pl (y1 − y2).

5.6.2 Obtaining T2 from Multiple Regression

In this section, the y’s become independent variables in a regression model. For each
observation vector y1i and y2i in a two-sample T 2, define a “dummy” group variable
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as

wi = n2

n1 + n2
for each of y11, y12, . . . , y1n1 in sample 1

= − n1

n1 + n2
for each of y21, y22, . . . , y2n2 in sample 2.

Then w = 0 for all n1 + n2 observations. The prediction equation for the regression
of w on the y’s can be written as

ŵi = b0 + b1 yi1 + b2 yi2 + · · · + bp yip,

where i ranges over all n1 + n2 observations and the least squares estimate b0 is [see
(10.15)]

b0 = w − b1y1 − b2 y2 − · · · − bp y p.

Substituting this into the regression equation, we obtain

ŵi = w + b1(yi1 − y1)+ b2(yi2 − y2)+ · · · + bp(yip − y p)

= b1(yi1 − y1)+ b2(yi2 − y2)+ · · · + bp(yip − y p) (since w = 0).

Let b′ = (b1, b2, . . . , bp) be the vector of regression coefficients and R2 be the
squared multiple correlation. Then we have the following relationships:

T 2 = (n1 + n2 − 2)
R2

1 − R2
, (5.20)

a = S−1
pl (y1 − y2) = n1 + n2

n1n2
(n1 + n2 − 2 + T 2)b. (5.21)

Thus with ordinary multiple regression, one can easily obtain T 2 and the discrimi-
nant function S−1

pl (y1 − y2). We simply define wi as above for each of the n1 + n2
observations, regress the w’s on the y’s, and use the resulting R2 in (5.20). For b,
delete the intercept from the regression coefficients for use in (5.21). Actually, since
only the relative values of the elements of a = S−1

pl (y1 − y2) are of interest, it is not
necessary to convert from b to a in (5.21). We can use b directly or standardize the
values b1, b2, . . . , bp as in Section 8.5.

Example 5.6.2. We illustrate the regression approach to computation of T 2 using
the psychological data in Table 5.1. We set w = n2/(n1 + n2) = 32

64 = 1
2 for each

observation in group 1 (males) and equal to −n1/(n1 + n2) = − 1
2 in the second

group (females). When w is regressed on the 64 y’s, we obtain
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b0
b1
b2
b3
b4


 =




−.751
.051

−.020
.047

−.031


 , R2 = .6115.

By (5.20),

T 2 = (n1 + n2 − 2)
R2

1 − R2
= 62(.6115)

1 − .6115
= 97.601,

as was obtained before in Example 5.4.2. Note that b′ = (b1, b2, b3, b4) =
(.051,−.020, .047,−.031), with the intercept deleted, is proportional to the dis-
criminant function coefficient vector a from Example 5.5, as we would expect from
(5.21).

5.7 PAIRED OBSERVATIONS TEST

As usual, we begin with the univariate case to set the stage for the multivariate pre-
sentation.

5.7.1 Univariate Case

Suppose two samples are not independent because there exists a natural pairing
between the i th observation yi in the first sample and the i th observation xi in the
second sample for all i , as, for example, when a treatment is applied twice to the
same individual or when subjects are matched according to some criterion, such as
IQ or family background. With such pairing, the samples are often referred to as
paired observations or matched pairs. The two samples thus obtained are correlated,
and the two-sample test statistic in (5.9) is not appropriate because the samples must
be independent in order for (5.9) to have a t-distribution. [The two-sample test in
(5.9) is somewhat robust to heterogeneity of variances and to lack of normality but
not to dependence.] We reduce the two samples to one by working with the differ-
ences between the paired observations, as in the following layout for two treatments
applied to the same subject:

Difference
Pair Number Treatment 1 Treatment 2 di = yi − xi

1 y1 x1 d1

2 y2 x2 d2

.

..
.
..

.

..
.
..

n yn xn dn

To obtain a t-test, it is not sufficient to assume individual normality for each of y
and x . To allow for the covariance between y and x , we need the additional assump-
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tion that y and x have a bivariate normal distribution with

� =
(
µy

µx

)
, � =

(
σ 2

y σyx

σyx σ 2
x

)
.

It then follows by property 1a in Section 4.2 that di = yi − xi is N (µy − µx , σ
2
d ),

where σ 2
d = σ 2

y − 2σyx + σ 2
x . From d1, d2, . . . , dn we calculate

d = 1

n

n∑
i=1

di and s2
d = 1

n − 1

n∑
i=1

(di − d)2.

To test H0 : µy = µx , that is, H0 : µd = 0, we use the one-sample statistic

t = d

sd/
√

n
, (5.22)

which is distributed as tn−1 if H0 is true. We reject H0 in favor of H1 : µd �= 0 if
|t | > tα/2,n−1. It is not necessary to assume σ 2

y = σ 2
x because there are no restrictions

on �.
This test has only n − 1 degrees of freedom compared with 2(n − 1) for the two-

independent-sample t-test (5.8). In general, the pairing reduces the within-sample
variation sd and thereby increases the power.

If we mistakenly treated the two samples as independent and used (5.8) with n1 =
n2 = n, we would have

t = y − x

spl
√

2/n
= y − x√

2s2
pl/n

.

However,

E

(
2s2

pl

n

)
= 2E

[
(n − 1)s2

y + (n − 1)s2
x

(n + n − 2)n

]
= σ 2

y + σ 2
x

n
,

whereas var(y − x) = (σ 2
y + σ 2

x − 2σyx)/n. Thus if the test statistic for independent
samples (5.8) is used for paired data, it does not have a t-distribution and, in fact,
underestimates the true average t-value (assuming H0 is false), since σ 2

y + σ 2
x >

σ 2
y + σ 2

x − 2σyx if σyx > 0, which would be typical in this situation. One could
therefore use

t = y − x√
(s2

y + s2
x − 2syx)/n

, (5.23)

but t = √
n d/sd in (5.22) is equal to it and somewhat simpler to use.
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5.7.2 Multivariate Case

Here we assume the same natural pairing of sampling units as in the univariate case,
but we measure p variables on each sampling unit. Thus yi from the first sample is
paired with xi from the second sample, i = 1, 2, . . . , n. In terms of two treatments
applied to each sampling unit, this situation is as follows:

Difference
Pair Number Treatment 1 Treatment 2 di = yi − xi

1 y1 x1 d1

2 y2 x2 d2

...
...

...
...

n yn xn dn

In Section 5.7.1, we made the assumption that y and x have a bivariate normal
distribution, in which y and x are correlated. Here we assume y and x are correlated
and have a multivariate normal distribution:(

y
x

)
is N2p

[(
�y

�x

)
,

(
�yy �yx

�xy �xx

)]
.

To test H0 : �d = 0, which is equivalent to H0 : �y = �x since �d = E(y − x) =
�y − �x , we calculate

d = 1

n

n∑
i=1

di and Sd = 1

n − 1

n∑
i=1

(di − d)(di − d)′.

We then have

T 2 = d
′
(

Sd

n

)−1

d = nd
′
S−1

d d. (5.24)

Under H0, this paired comparison T 2-statistic is distributed as T 2
p,n−1. We reject H0

if T 2 > T 2
α,p,n−1. Note that Sd estimates cov(y − x) = �yy − �yx − �xy + �xx , for

which an equivalent estimator would be Syy − Syx − Sxy + Sxx [see (3.42)].
The cautions expressed in Section 5.7.1 for univariate paired observation data also

apply here. If the two samples of multivariate observations are correlated because of
a natural pairing of sampling units, the test in (5.24) should be used rather than the
two-sample T 2-test in (5.9), which assumes two independent samples. Misuse of
(5.9) in place of (5.24) will lead to loss of power.

Since the assumption �yy = �xx is not needed for (5.24) to have a T 2-
distribution, this test can be used for independent samples when �1 �= �2 (as
long as n1 = n2). The observations in the two samples would be paired in the order
they were obtained or in an arbitrary order. However, in the case of independent
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samples, the pairing achieves no gain in power to offset the loss of n − 1 degrees of
freedom.

By analogy with (5.14), the discriminant function coefficient vector for paired
observation data becomes

a = S−1
d d. (5.25)

For tests on individual variables, we have

t j = d j√
sd, j j/n

, j = 1, 2, . . . , p. (5.26)

The critical value for t j is tα/2p,n−1 or tα/2,n−1 depending on whether a T 2-test is
carried out first (see Section 5.5).

Example 5.7.2. To compare two types of coating for resistance to corrosion, 15
pieces of pipe were coated with each type of coating (Kramer and Jensen 1969b).
Two pipes, one with each type of coating, were buried together and left for the same
length of time at 15 different locations, providing a natural pairing of the observa-
tions. Corrosion for the first type of coating was measured by two variables,

y1 = maximum depth of pit in thousandths of an inch,

y2 = number of pits,

Table 5.3. Depth of Maximum Pits and Number of Pits of Coated Pipes

Coating 1 Coating 2 Difference

Depth Number Depth Number Depth Number
Location y1 y2 x1 x2 d1 d2

1 73 31 51 35 22 −4
2 43 19 41 14 2 5
3 47 22 43 19 4 3
4 53 26 41 29 12 −3
5 58 36 47 34 11 2
6 47 30 32 26 15 4
7 52 29 24 19 28 10
8 38 36 43 37 −5 −1
9 61 34 53 24 8 10

10 56 33 52 27 4 6
11 56 19 57 14 −1 5
12 34 19 44 19 −10 0
13 55 26 57 30 −2 −4
14 65 15 40 7 25 8
15 75 18 68 13 7 5
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with x1 and x2 defined analogously for the second coating. The data and differences
are given in Table 5.3. Thus we have, for example, y′

1 = (73, 31), x′
1 = (51, 35), and

d′
1 = y′

1 − x′
1 = (22,−4). For the 15 difference vectors, we obtain

d =
(

8.000
3.067

)
, Sd =

(
121.571 17.071
17.071 21.781

)
.

By (5.24),

T 2 = (15)(8.000, 3.067)

(
121.571 17.071
17.071 21.781

)−1 ( 8.000
3.067

)
= 10.819.

Since T 2 = 10.819 > T 2
.05,2,14 = 8.197, we reject H0 : �d = 0 and conclude that

the two coatings differ in their effect on corrosion.

5.8 TEST FOR ADDITIONAL INFORMATION

In this section, we are again considering two independent samples, as in Sec-
tion 5.4.2. We start with a basic p × 1 vector y of measurements on each sampling
unit and ask whether a q × 1 subvector x measured in addition to y (on the same
unit) will significantly increase the separation of the two samples as shown by T 2.
It is not necessary that we add new variables. We may be interested in determining
whether some of the variables we already have are redundant in the presence of other
variables in terms of separating the groups. We have designated the subset of interest
by x for notational convenience.

It is assumed that the two samples are from multivariate normal populations with
a common covariance matrix; that is,(

y11
x11

)
,

(
y12
x12

)
, . . . ,

(
y1n1

x1n1

)
are from Np+q(�1,�),(

y21
x21

)
,

(
y22
x22

)
, . . . ,

(
y2n2

x2n2

)
are from Np+q(�2,�),

where

�1 = E

(
y1i

x1i

)
=
(

�1y

�1x

)
, �2 = E

(
y2i

x2i

)
=
(

�2y

�2x

)
,

� = cov
(

y1i

x1i

)
= cov

(
y2i

x2i

)
=
(

�yy �yx

�xy �xx

)
.

We partition the sample mean vectors and covariance matrix accordingly:(
y1
x1

)
,

(
y2
x2

)
, Spl =

(
Syy Syx

Sxy Sxx

)
,

where Spl is the pooled sample covariance matrix from the two samples.
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We wish to test the hypothesis that x1 and x2 are redundant for separating the
two groups, that is, that the extra q variables do not contribute anything significant
beyond the information already available in y1 and y2 for separating the groups.
This is in the spirit of a full and reduced model test in regression [see (5.31) and
Section 10.2.5b]. However, here we are working with a subset of dependent variables
as contrasted to the subset of independent variables in the regression setting. Thus
both y and x are subvectors of dependent variables. In this setting, the independent
variables would be grouping variables 1 and 2 corresponding to �1 and �2.

We are not asking if the x’s can significantly separate the two groups by them-
selves, but whether they provide additional separation beyond the separation already
achieved by the y’s. If the x’s were independent of the y’s, we would have T 2

p+q =
T 2

p + T 2
q , but this does not hold, because they are correlated. We must compare T 2

p+q

for the full set of variables (y1, . . . , yp, x1, . . . , xq) with T 2
p based on the reduced

set (y1, . . . , yp). We are inquiring if the increase from T 2
p to T 2

p+q is significant.

By definition, the T 2-statistic based on the full set of p + q variables is given by

T 2
p+q = n1n2

n1 + n2

[(
y1
x1

)
−
(

y2
x2

)]′
S−1

pl

[(
y1
x1

)
−
(

y2
x2

)]
, (5.27)

whereas T 2 for the reduced set of p variables is

T 2
p = n1n2

n1 + n2
(y1 − y2)

′S−1
yy (y1 − y2). (5.28)

Then the test statistic for the significance of the increase from T 2
p to T 2

p+q is given
by

T 2(x|y) = (ν − p)
T 2

p+q − T 2
p

ν + T 2
p

, (5.29)

which is distributed as T 2
q,ν−p . We reject the hypothesis of redundancy of x if

T 2(x|y) ≥ T 2
α,q,ν−p .

By (5.7), T 2(x|y) can be converted to an F-statistic:

F = ν − p − q + 1

q

T 2
p+q − T 2

p

ν + T 2
p

, (5.30)

which is distributed as Fq,ν−p−q+1, and we reject the hypothesis if F ≥ Fα,q,ν−p−q+1.
In both cases ν = n1 + n2 − 2. Note that the first degrees-of-freedom parameter

in both (5.29) and (5.30) is q, the number of x’s. The second parameter in (5.29) is
ν − p because the statistic is adjusted for the p variables in y.

To prove directly that the statistic defined in (5.30) has an F-distribution, we can
use a basic relationship from multiple regression [see (10.33)]:
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Fq,ν−p−q+1 = (R2
p+q − R2

p)(ν − p − q + 1)

(1 − R2
p+q )q

, (5.31)

where R2
p+q is the squared multiple correlation from the full model with p + q inde-

pendent variables and R2
p is from the reduced model with p independent variables. If

we solve for R2 in terms of T 2 from (5.20) and substitute this into (5.31), we readily
obtain the test statistic in (5.30).

If we are interested in the effect of adding a single x , then q = 1, and both (5.29)
and (5.30) reduce to

t2(x |y) = (ν − p)
T 2

p+1 − T 2
p

ν + T 2
p
, (5.32)

and we reject the hypothesis of redundancy of x if t2(x |y) ≥ t2
α/2,ν−p = Fα,1,ν−p .

Example 5.8. We use the psychological data of Table 5.1 to illustrate tests on sub-
vectors. We begin by testing the significance of y3 and y4 above and beyond y1 and
y2. (In the notation of the present section, y3 and y4 become x1 and x2.) For these
subvectors, p = 2 and q = 2. The value of T 2

p+q for all four variables as given
by (5.27) was obtained in Example 5.4.2 as 97.6015. For y1 and y2, we obtain, by
(5.28),

T 2
p = n1n2

n1 + n2
(y1 − y2)

′S−1
yy (y1 − y2)

= (32)2

32 + 32

(
15.97 − 12.34
15.91 − 13.91

)′ ( 7.16 6.05
6.05 15.89

)−1 ( 15.97 − 12.34
15.91 − 13.91

)
= 31.0126.

By (5.29), the test statistic is

T 2(y3, y4|y1, y2) = (ν − p)
T 2

p+q − T 2
p

ν + T 2
p

= (62 − 2)
97.6015 − 31.0126

62 + 31.0126
= 42.955.

We reject the hypothesis that x = (y3, y4)
′ is redundant, since 42.955 > T 2

.01,2,60 =
10.137. We conclude that x = (y3, y4)

′ adds a significant amount of separation to
y = (y1, y2)

′.
To test the effect of each variable adjusted for the other three, we use (5.32). In

this case, p = 3, ν = 62, and ν − p = 59. The results are given below, where
T 2

p+1 = 97.6015 and T 2
p in each case is based on the three variables, excluding the

variable in question. For example, T 2
p = 90.8348 for y2 is based on y1, y3, and y4,
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and t2(y2|y1, y2, y3) = 2.612:

Variable T 2
p (ν − p)

T 2
p+1 − T 2

p

ν + T 2
p

y1 78.8733 7.844
y2 90.8348 2.612
y3 32.6253 40.513
y4 74.5926 9.938

When we compare these four test statistic values with the critical value t2
.025,59 =

4.002, we see that each variable except y2 makes a significant contribution to T 2.
Note that y3 contributes most, followed by y4 and then y1. This order differs from
that given by the raw discriminant function in Example 5.5 but agrees with the order
for the standardized discriminant function given in the answer to Problem 8.7 in
Appendix B.

5.9 PROFILE ANALYSIS

If y is Np(�,�) and the variables in y are commensurate (measured in the same
units and with approximately equal variances as, for example, in the probe word
data in Table 3.5), we may wish to compare the means µ1, µ2, . . . , µp in �. This
might be of interest when a measurement is taken on the same research unit at p
successive times. Such situations are often referred to as repeated measures designs
or growth curves, which are discussed in some generality in Sections 6.9 and 6.10. In
the present section, we discuss one- and two-sample profile analysis. Profile analysis
for several samples is covered in Section 6.8.

The pattern obtained by plotting µ1, µ2, . . . , µp as ordinates and connecting the
points is called a profile; we usually draw straight lines connecting the points (1, µ1),
(2, µ2), . . . , (p, µp). Profile analysis is an analysis of the profile or a comparison of
two or more profiles. Profile analysis is often discussed in the context of administer-
ing a battery of p psychological or other tests.

In growth curve analysis, where the variables are measured at time intervals, the
responses have a natural order. In profile analysis where the variables arise from test
scores, there is ordinarily no natural order. A distinction is not always made between
repeated measures of the same variable through time and profile analysis of several
different commensurate variables on the same individual.

5.9.1 One-Sample Profile Analysis

We begin with a discussion of the profile of the mean vector � from a sin-
gle sample. A plot of � might appear as in Figure 5.3, where we plot (1, µ1),
(2, µ2), . . . , (p, µp) and connect the points.
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Figure 5.3. Profile of a mean vector.

In order to compare the means µ1, µ2, . . . , µp in �, the basic hypothesis is that
the profile is level or flat:

H0 : µ1 = µ2 = · · · = µp vs. H1 : µ j �= µk for some j �= k.

The data matrix Y is given in (3.17). We cannot use univariate analysis of variance to
test H0 because the columns in Y are not independent. For a multivariate approach
that allows for correlated variables, we first express H0 as p − 1 comparisons,

H0 :




µ1 − µ2
µ2 − µ3

...

µp−1 − µp


 =




0
0
...

0


 ,

or as

H0 :



µ1 − µ2
µ1 − µ3

...

µ1 − µp


 =




0
0
...

0


 .

These two expressions can be written in the form H0 : C1� = 0 and H0 : C2� = 0,
where C1 and C2 are the (p − 1)× p matrices:

C1 =




1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...

0 0 0 · · · −1


 , C2 =




1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

...

1 0 0 · · · −1


 .
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In fact, any (p − 1) × p matrix C of rank p − 1 such that Cj = 0 can be used in
H0 : C� = 0 to produce H0 : µ1 = µ2 = · · · = µp. If Cj = 0, each row c′

i of C
sums to zero by (2.38). A linear combination c′

i � = ci1µ1 + ci2µ2 + · · · + cipµp is
called a contrast in the µ’s if the coefficients sum to zero, that is, if

∑
j ci j = 0. The

p − 1 contrasts in C� must be linearly independent in order to express H0 : µ1 =
µ2 = · · · = µp as H0 : C� = 0. Thus rank(C) = p − 1.

From a sample y1, y2, . . . , yn , we obtain estimates y and S of population param-
eters � and �. To test H0 : C� = 0, we transform each yi , i = 1, 2, . . . , n, to zi =
Cyi , which is (p − 1)× 1. By (3.62) and (3.64), the sample mean vector and covari-
ance matrix of zi = Cyi , i = 1, 2, . . . , n, are z = Cy and Sz = CSC′, respectively.
If y is Np(�,�), then by property 1b in Section 4.2, z = Cy is Np−1(C�,C�C′).
Thus when H0 : C� = 0 is true, Cy is Np−1(0,C�C′/n), and

T 2 = (Cy)′
(

CSC′

n

)−1

(Cy) = n(Cy)′(CSC′)−1(Cy) (5.33)

is distributed as T 2
p−1,n−1. We reject H0 : C� = 0 if T 2 ≥ T 2

α,p−1,n−1. The dimen-
sion p − 1 corresponds to the number of rows of C. Thus z = Cy is (p − 1) × 1
and Sz = CSC′ is (p − 1) × (p − 1). Note that the C’s in (5.33) don’t “cancel”
because C is (p − 1) × p and does not have an inverse. In fact, T 2 in (5.33) is less
than T 2 = ny′S−1y [see Rencher (1998, p. 84)].

If the variables have a natural ordering, as, for example, in the ramus bone data in
Table 3.6, we could test for a linear trend or polynomial curve in the means by suit-
ably choosing the rows of C. This is discussed in connection with growth curves in
Section 6.10. Other comparisons of interest can be made as long as they are linearly
independent.

5.9.2 Two-Sample Profile Analysis

Suppose two independent groups or samples receive the same set of p tests or mea-
surements. If these tests are comparable, for example, all on a scale of 0 to 100, the
variables will often be commensurate.

Rather than testing the hypothesis that �1 = �2, we wish to be more specific in
comparing the profiles obtained by connecting the points ( j, µ1 j ), j = 1, 2, . . . , p,
and ( j, µ2 j), j = 1, 2, . . . , p. There are three hypotheses of interest in comparing
the profiles of two samples. The first of these hypotheses addresses the question,
Are the two profiles similar in appearance, or more precisely, are they parallel? We
illustrate this hypothesis in Figure 5.4. If the two profiles are parallel, then one group
scored uniformly better than the other group on all p tests.

The parallelism hypothesis can be defined in terms of the slopes. The two profiles
are parallel if the two slopes for each segment are the same. If the two profiles are
parallel, the two increments for each segment are the same, and it is not necessary to
use the actual slopes to express the hypothesis. We can simply compare the increase
from one point to the next. The hypothesis can thus be expressed as H01 : µ1 j −
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Figure 5.4. Comparison of two profiles under the hypothesis of parallelism.

µ1, j−1 = µ2 j − µ2, j−1 for j = 2, 3, . . . , p, or

H01 :




µ12 − µ11
µ13 − µ12

...

µ1p − µ1,p−1


 =




µ22 − µ21
µ23 − µ22

...

µ2p − µ2,p−1


 ,

which can be written as H01 : C�1 = C�2, using the contrast matrix

C =




−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

...

0 0 0 · · · 1


 .

From two samples, y11, y12, . . . , y1n1 and y21, y22, . . . , y2n2 , we obtain y1, y2,
and Spl as estimates of �1, �2, and �. As in the two-sample T 2-test, we assume
that each y1i in the first sample is Np(�1,�), and each y2i in the second sample is
Np(�2,�). If C is a (p − 1) × p contrast matrix, as before, then Cy1i and Cy2i
are distributed as Np−1(C�1,C�C′) and Np−1(C�2,C�C′), respectively. Under
H01 : C�1 − C�2 = 0, the random vector Cy1 − Cy2 is Np−1[0,C�C′(1/n1 +
1/n2)], and

T 2 = (Cy1 − Cy2)
′
[(

1

n1
+ 1

n2

)
CSplC′

]−1

(Cy1 − Cy2)

= n1n2

n1 + n2
(y1 − y2)

′C′[CSplC′]−1C(y1 − y2) (5.34)

is distributed as T 2
p−1,n1+n2−2. Note that the dimension p − 1 is the number of rows

of C.
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By analogy with the discussion in Section 5.5, if H01 is rejected, we can follow
up with univariate tests on the individual components of C(y1 − y2). Alternatively,
we can calculate the discriminant function

a = (CSplC′)−1C(y1 − y2) (5.35)

as an indication of which slope differences contributed most to rejection of H01 in
the presence of the other components of C(y1 − y2). There should be less need in
this case to standardize the components of a, as suggested in Section 5.5, because the
variables are assumed to be commensurate. The vector a is (p−1)×1, corresponding
to the p −1 segments of the profile. Thus if the second component of a, for example,
is largest in absolute value, the divergence in slopes between the two profiles on the
second segment contributes most to rejection of H01.

If the data are arranged as in Table 5.4, we see an analogy to a two-way ANOVA
model. A plot of the means is often made in a two-way ANOVA; a lack of paral-
lelism corresponds to interaction between the two factors. Thus the hypothesis H01
is analogous to the group by test (variable) interaction hypothesis.

However, the usual ANOVA assumption of independence of observations does
not hold here because the variables (tests) are correlated. The ANOVA assumption
of independence and homogeneity of variances would require cov(y) = � = σ 2I.
Hence the test of H01 cannot be carried out using a univariate ANOVA approach,
since � �= σ 2I. We therefore proceed with the multivariate approach using T 2.

The second hypothesis of interest in comparing two profiles is, Are the two pop-
ulations or groups at the same level? This hypothesis corresponds to a group (popu-
lation) main effect in the ANOVA analogy. We can express this hypothesis in terms
of the average level of group 1 compared to the average level of group 2:

H02 : µ11 + µ12 + · · · + µ1p

p
= µ21 + µ22 + · · · + µ2p

p
.

Table 5.4. Data Layout for Two-Sample Profile Analysis

Tests (variables)

1 2 · · · p

Group 1
y′

11 = (y111 y112 · · · y11p)
y′

12 = (y121 y122 · · · y12p)
...

...
...

...

y′
1n1

= (y1n11 y1n12 · · · y1n1 p)

Group 2
y′

21 = (y211 y212 · · · y21p)
y′

22 = (y221 y222 · · · y22p)
.
..

.

..
.
..

.

..

y′
2n2

= (y2n21 y2n22 · · · y2n2 p)
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Figure 5.5. Hypothesis H02 of equal group effect, assuming parallelism.

By (2.37), this can be expressed as

H02 : j′�1 = j′�2.

If H01 is true, H02 can be pictured as in Figure 5.5a. If H02 is false, then the two
profiles differ by a constant (given that H01 is true), as in Figure 5.5b.

The hypothesis H02 can be true when H01 does not hold. Thus the average level
of population 1 can equal the average level of population 2 without the two profiles
being parallel, as illustrated in Figure 5.6. In this case, the “group main effect” is
somewhat harder to interpret, as is the case in the analogous two-way ANOVA, where
main effects are more difficult to describe in the presence of significant interaction.
However, the test may still furnish useful information if a careful description of the
results is provided.

Figure 5.6. Hypothesis H02 of equal group effect without parallelism.
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To test H02 : j′(�1 − �2) = 0, we estimate j′(�1 − �2) by j′(y1 − y2), which is
N [0, j′�j(1/n1 + 1/n2)] when H02 is true. We can therefore use

t = j′(y1 − y2)√
j′Splj(1/n1 + 1/n2)

(5.36)

and reject H02 if |t | ≥ tα/2,n1+n2−2.
The third hypothesis of interest, corresponding to the test (or variable) main effect,

is, Are the profiles flat? Assuming parallelism (assuming H01 is true), the “flatness”
hypothesis can be pictured as in Figure 5.7. If H01 is not true, the test could be carried
out separately for each group using the test in Section 5.9.1. If H02 is true, the two
profiles in Figure 5.7a and Figure 5.7b will be coincident.

To express the third hypothesis in a form suitable for testing, we note from Fig-
ure 5.7a that the average of the two group means is the same for each test:

H03 : 1
2 (µ11 + µ21) = 1

2 (µ12 + µ22) = · · · = 1
2 (µ1p + µ2p) (5.37)

or

H03 : 1
2 C(�1 + �2) = 0, (5.38)

where C is a (p −1)× p matrix such that Cj = 0. From Figure 5.7a, we see that H03
could also be expressed as µ11 = µ12 = · · · = µ1p and µ21 = µ22 = · · · = µ2p, or

H03 : C�1 = 0 and C�2 = 0.

To estimate 1
2 (�1 + �2), we use the sample grand mean vector based on a

weighted average:

y = n1y1 + n2y2

n1 + n2
.

Figure 5.7. Hypothesis H03 of equal tests (variables) assuming parallelism.
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It can easily be shown that under H03 (and H01), E(Cy) = 0 and cov(y) = �/(n1 +
n2). Therefore, Cy is Np−1[0,C�C′/(n1 + n2)], and

T 2 = (Cy)′
(

CSplC′

n1 + n2

)−1

(Cy)

= (n1 + n2)(Cy)′(CSplC′)−1Cy (5.39)

is distributed as T 2
p−1,n1+n2−2 when both H01 and H03 are true. It can be readily

shown that H03 is unaffected by a difference in the profile levels (unaffected by the
status of H02).

Example 5.9.2. We use the psychological data in Table 5.1 to illustrate two-sample
profile analysis. The values of y1, y2, and Spl are given in Example 5.4.2. The profiles
of the two mean vectors y1 and y2 are plotted in Figure 5.8. There appears to be a
lack of parallelism.

To test for parallelism, H01 : C�1 = C�2, we use the matrix

C =

 −1 1 0 0

0 −1 1 0
0 0 −1 1




Figure 5.8. Profiles for the psychological data in Table 5.1.
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and obtain

C(y1 − y2) =

 −1.62

8.53
−9.72


 , CSplC′ =


 10.96 −7.05 −1.64

−7.05 27.26 −12.74
−1.64 −12.74 23.72


 .

Then, by (5.34),

T 2 = (32)(32)

32 + 32
(y1 − y2)

′C′(CSplC′)−1C(y1 − y2) = 74.240.

Upon comparison of this value with T 2
.01,3,62 = 12.796 (obtained by interpolation in

Table A.7), we reject the hypothesis of parallelism.
In Figure 5.8 the lack of parallelism is most notable in the second and third seg-

ments. This can also be seen in the relatively large values of the second and third
components of

C(y1 − y2) =

 −1.62

8.53
−9.72


 .

To see which of these made the greatest statistical contribution, we can examine the
discriminant function coefficient vector given in (5.35) as

a = (CSplC′)−1C(y1 − y2) =

 −.136

.104
−.363


 .

Thus the third segment contributed most to rejection in the presence of the other two
segments.

To test for equal levels, H02 : j′�1 = j′�2, we use (5.36),

t = j′(y1 − y2)√
j′Splj(1/n1 + 1/n2)

= 16.969√
(164.276)(1/32 + 1/32)

= 5.2957.

Comparing this with t.005,62 = 2.658, we reject the hypothesis of equal levels.
To test the flatness hypothesis, H03 : 1

2 C(�1 + �2) = 0, we first calculate

y = 32y1 + 32y2

32 + 32
= y1 + y2

2
=




14.16
14.91
21.92
22.34


 .
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Using

C =

 1 −1 0 0

0 1 −1 0
0 0 1 −1


 ,

we obtain, by (5.39),

T 2 = (32 + 32)(Cy)′(CSplC′)−1Cy = 254.004,

which exceeds T 2
.01,3,62 = 12.796, so we reject the hypothesis of flatness. However,

since the parallelism hypothesis was rejected, a more appropriate approach would be
to test each of the two groups separately for flatness using the test of Section 5.9.1.
By (5.33), we obtain

T 2 = n1(Cy1)
′(CS1C′)−1(Cy1) = 221.126,

T 2 = n2(Cy2)
′(CS2C′)−1(Cy2) = 103.483.

Both of these exceed T 2
.01,3.31 = 14.626, and we have significant lack of flatness.

PROBLEMS

5.1 Show that the characteristic form of T 2 in (5.6) is the same as the original form
in (5.5).

5.2 Show that the T 2-statistic in (5.9) can be expressed in the characteristic form
given in (5.10).

5.3 Show that t2(a) = T 2, where t (a) is given by (5.13), T 2 is given by (5.9), and
a = S−1

pl (y1 − y2) as in (5.14).

5.4 Show that the paired observation t-test in (5.22), t = d/(sd/
√

n), has the tn−1
distribution.

5.5 Show that s2
d = ∑n

i=1(di − d)2/(n − 1) = s2
y + s2

x − 2syx , as in a comparison
of (5.22) and (5.23).

5.6 Show that T 2 = nd
′
S−1

d d in (5.24) has the characteristic form T 2 = d
′
(Sd/n)−1d.

5.7 Use (5.7) to show that T 2(x|y) in (5.29) can be converted to F as in (5.30).

5.8 Show that the test statistic in (5.30) for additional information in x above and
beyond y has an F-distribution by solving for R2 in terms of T 2 from (5.20)
and substituting this into (5.31).

5.9 In Section 5.9.2, show that under H03 and H01, E(Cy) = 0 and cov(y) =
�/(n1 + n2), where y = (n1y1 + n2y2)/(n1 + n2) and � is the common
covariance matrix of the two populations from which y1 and y2 are sampled.
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5.10 Verify that T 2 = (n1 + n2)(Cy)′(CSplC′)−1Cy in (5.39) has the T 2
p−1,n1+n2−2

distribution.

5.11 Test H0 : �′ = (6, 11) using the data

Y =




3 10
6 12
5 14

10 9


 .

5.12 Use the probe word data in Table 3.5:

(a) Test H0 : � = (30, 25, 40, 25, 30)′.
(b) If H0 is rejected, test each variable separately, using (5.3).

5.13 For the probe word data in Table 3.5, test H0 : µ1 = µ2 = · · · = µ5, using T 2

in (5.33).

5.14 Use the ramus bone data in Table 3.6:

(a) Test H0 : � = (48, 49, 50, 51)′.
(b) If H0 is rejected, test each variable separately, using (5.3).

5.15 For the ramus bone data in Table 3.6, test H0 : µ1 = µ2 = µ3 = µ4, using T 2

in (5.33).

5.16 Four measurements were made on two species of flea beetles (Lubischew
1962). The variables were

y1 = distance of transverse groove from posterior border of prothorax (µm),

y2 = length of elytra (in .01 mm),

y3 = length of second antennal joint (µm),

y4 = length of third antennal joint (µm).

The data are given in Table 5.5.

(a) Test H0 : �1 = �2 using T 2.
(b) If the T 2-test in part (a) rejects H0, carry out a t-test on each variable, as

in (5.15).
(c) Calculate the discriminant function coefficient vector a = S−1

pl (y1 − y2).

(d) Show that if the vector a found in part (c) is substituted into t2(a) from
(5.13), the result is the same as the value of T 2 found in part (a).

(e) Obtain T 2 using the regression approach in Section 5.6.2.
(f) Test the significance of each variable adjusted for the other three.
(g) Test the significance of y3 and y4 adjusted for y1 and y2.

5.17 Carry out a profile analysis on the beetles data in Table 5.5.
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Table 5.5. Four Measurements on Two Species of Flea Beetles

Haltica oleracea Haltica carduorum

Experiment Experiment
Number y1 y2 y3 y4 Number y1 y2 y3 y4

1 189 245 137 163 1 181 305 184 209
2 192 260 132 217 2 158 237 133 188
3 217 276 141 192 3 184 300 166 231
4 221 299 142 213 4 171 273 162 213
5 171 239 128 158 5 181 297 163 224
6 192 262 147 173 6 181 308 160 223
7 213 278 136 201 7 177 301 166 221
8 192 255 128 185 8 198 308 141 197
9 170 244 128 192 9 180 286 146 214

10 201 276 146 186 10 177 299 171 192
11 195 242 128 192 11 176 317 166 213
12 205 263 147 192 12 192 312 166 209
13 180 252 121 167 13 176 285 141 200
14 192 283 138 183 14 169 287 162 214
15 200 294 138 188 15 164 265 147 192
16 192 277 150 177 16 181 308 157 204
17 200 287 136 173 17 192 276 154 209
18 181 255 146 183 18 181 278 149 235
19 192 287 141 198 19 175 271 140 192

20 197 303 170 205

5.18 Twenty engineer apprentices and 20 pilots were given six tests (Travers 1939).
The variables were

y1 = intelligence,

y2 = form relations,

y3 = dynamometer,

y4 = dotting,

y5 = sensory motor coordination,

y6 = perseveration.

The data are given in Table 5.6.

(a) Test H0 : �1 = �2.

(b) If the T 2-test in part (a) rejects H0, carry out a t-test for each variable, as
in (5.15).

(c) Test each variable adjusted for the other five.

(d) Test the significance of y4, y5, y6 adjusted for y1, y2, y3.
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Table 5.6. Comparison of Six Tests on Engineer Apprentices and Pilots

Engineer Apprentices Pilots

y1 y2 y3 y4 y5 y6 y1 y2 y3 y4 y5 y6

121 22 74 223 54 254 132 17 77 232 50 249
108 30 80 175 40 300 123 32 79 192 64 315
122 49 87 266 41 223 129 31 96 250 55 319
77 37 66 178 80 209 131 23 67 291 48 310

140 35 71 175 38 261 110 24 96 239 42 268
108 37 57 241 59 245 47 22 87 231 40 217
124 39 52 194 72 242 125 32 87 227 30 324
130 34 89 200 85 242 129 29 102 234 58 300
149 55 91 198 50 277 130 26 104 256 58 270
129 38 72 162 47 268 147 47 82 240 30 322
154 37 87 170 60 244 159 37 80 227 58 317
145 33 88 208 51 228 135 41 83 216 39 306
112 40 60 232 29 279 100 35 83 183 57 242
120 39 73 159 39 233 149 37 94 227 30 240
118 21 83 152 88 233 149 38 78 258 42 271
141 42 80 195 36 241 153 27 89 283 66 291
135 49 73 152 42 249 136 31 83 257 31 311
151 37 76 223 74 268 97 36 100 252 30 225
97 46 83 164 31 243 141 37 105 250 27 243

109 42 82 188 57 267 164 32 76 187 30 264

5.19 Data were collected in an attempt to find a screening procedure to detect carri-
ers of Duchenne muscular dystrophy, a disease transmitted from female carriers
to some of their male offspring (Andrews and Herzberg 1985, pp. 223–228).
The following variables were measured on a sample of noncarriers and a sam-
ple of carriers:

y1 = age,

y2 = month in which measurements are taken,

y3 = creatine kinase,

y4 = hemopexin,

y5 = lactate dehydrogenase,

y6 = pyruvate kinase.

The data are given in Table 5.7.

(a) Test H0 : �1 = �2 using y3, y4, y5, and y6.
(b) The variables y3 and y4 are relatively inexpensive to measure compared to

y5 and y6. Do y5 and y6 contribute an important amount to T 2 above and
beyond y3 and y4?
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Table 5.7. Comparison of Carriers and Noncarriers of Muscular Dystrophy
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(c) The levels of y3, y4, y5, and y6 may depend on age and season, y1 and y2.
Do y1 and y2 contribute a significant amount to T 2 when adjusted for y3,
y4, y5, and y6?

5.20 Various aspects of economic cycles were measured for consumers’ goods and
producers’ goods by Tintner (1946). The variables are

y1 = length of cycle,

y2 = percentage of rising prices,

y3 = cyclical amplitude,

y4 = rate of change.

The data for several items are given in Table 5.8.

Table 5.8. Cyclical Measurements of Consumer Goods and Producer Goods

Item y1 y2 y3 y4 Item y1 y2 y3 y4

Consumer Goods Producer Goods
1 72 50 8 .5 1 57 57 12.5 .9
2 66.5 48 15 1.0 2 100 54 17 .5
3 54 57 14 1.0 3 100 32 16.5 .7
4 67 60 15 .9 4 96.5 65 20.5 .9
5 44 57 14 .3 5 79 51 18 .9
6 41 52 18 1.9 6 78.5 53 18 1.2
7 34.5 50 4 .5 7 48 50 21 1.6
8 34.5 46 8.5 1.0 8 155 44 20.5 1.4
9 24 54 3 1.2 9 84 64 13 .8

10 105 35 17 1.8

(a) Test H0 : �1 = �2 using T 2.
(b) Calculate the discriminant function coefficient vector.
(c) Test for significance of each variable adjusted for the other three.

5.21 Each of 15 students wrote an informal and a formal essay (Kramer 1972,
p. 100). The variables recorded were the number of words and the number
of verbs:

y1 = number of words in the informal essay,

y2 = number of verbs in the informal essay,

x1 = number of words in the formal essay,

x2 = number of verbs in the formal essay.
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Table 5.9. Number of Words and Number of Verbs

Informal Formal

Words Verbs Words Verbs
Student y1 y2 x1 x2 d1 = y1 − x1 d2 = y2 − x2

1 148 20 137 15 +11 +5
2 159 24 164 25 −5 −1
3 144 19 224 27 −80 −8
4 103 18 208 33 −105 −15
5 121 17 178 24 −57 −7
6 89 11 128 20 −39 −9
7 119 17 154 18 −35 −1
8 123 13 158 16 −35 −3
9 76 16 102 21 −26 −5

10 217 29 214 25 +3 +4
11 148 22 209 24 −61 −2
12 151 21 151 16 0 +5
13 83 7 123 13 −40 −6
14 135 20 161 22 −26 −2
15 178 15 175 23 +3 −8

Table 5.10. Survival Times for Bronchus Cancer Patients
and Matched Controls

Ascorbate Patients Matched Controls

y1 y2 x1 x2

81 74 72 33
461 423 134 18
20 16 84 20

450 450 98 58
246 87 48 13
166 115 142 49
63 50 113 38
64 50 90 24

155 113 30 18
151 38 260 34
166 156 116 20
37 27 87 27

223 218 69 32
138 138 100 27
72 39 315 39

245 231 188 65
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The data are given in Table 5.9. Since each student wrote both types of essays,
the observation vectors are paired, and we use the paired comparison test.

(a) Test H0 : �d = 0.
(b) Find the discriminant function coefficient vector.
(c) Do a univariate t-test on each d j .

5.22 A number of patients with bronchus cancer were treated with ascorbate and
compared with matched patients who received no ascorbate (Cameron and
Pauling 1978). The data are given in Table 5.10. The variables measured were

y1, x1 = survival time (days) from date of first hospital admission,

y2, x2 = survival time from date of untreatability.

Compare y1 and y2 with x1 and x2 using a paired comparison T 2-test.

5.23 Use the glucose data in Table 3.8:

(a) Test H0 : �y = �x using a paired comparison test.
(b) Test the significance of each variable adjusted for the other two.
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Multivariate Analysis of Variance

In this chapter we extend univariate analysis of variance to multivariate analysis of
variance, in which we measure more than one variable on each experimental unit.
For multivariate analysis of covariance, see Rencher (1998, Section 4.10).

6.1 ONE-WAY MODELS

We begin with a review of univariate analysis of variance (ANOVA) before covering
multivariate analysis of variance (MANOVA) with several dependent variables.

6.1.1 Univariate One-Way Analysis of Variance (ANOVA)

In the balanced one-way ANOVA, we have a random sample of n observations from
each of k normal populations with equal variances, as in the following layout:

Sample 1 Sample 2 Sample k
from N (µ1, σ

2) from N (µ2, σ
2) . . . from N (µk, σ

2)

y11 y21 · · · yk1

y12 y22 · · · yk2

.

..
.
..

.

..

y1n y2n · · · ykn

Total y1. y2. · · · yk.

Mean y1. y2. · · · yk.

Variance s2
1 s2

2 · · · s2
k

The k samples or the populations from which they arise are sometimes referred to
as groups. The groups may correspond to treatments applied by the researcher in an
experiment. We have used the “dot” notation for totals and means for each group:

yi. =
n∑

j=1

yi j , yi. =
n∑

j=1

yi j

n
. (6.1)

156
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The k samples are assumed to be independent. The assumptions of independence and
common variance are necessary to obtain an F-test.

The model for each observation is

yi j = µ+ αi + εi j

= µi + εi j , i = 1, 2, . . . , k; j = 1, 2, . . . , n; (6.2)

where µi = µ+αi is the mean of the i th population. We wish to compare the sample
means yi., i = 1, 2, . . . , k, to see if they are sufficiently different to lead us to believe
the population means differ. The hypothesis can be expressed as H0 : µ1 = µ2 =
· · · = µk . Note that the notation for subscripts differs from that of previous chapters,
in which the subscript i represented the observation. In this chapter, we use the last
subscript in a model such as (6.2) to represent the observation.

If the hypothesis is true, all yi j are from the same population, N (µ, σ 2), and we
can obtain two estimates of σ 2, one based on the sample variances s2

1 , s2
2 , . . . , s2

k
[see (3.4) and (3.5)] and the other based on the sample means y1., y2., . . . , yk.. The
pooled “within-sample” estimator of σ 2 is

s2
e = 1

k

k∑
i=1

s2
i =

∑k
i=1

∑n
j=1(yi j − yi.)

2

k(n − 1)
=
∑

i j y2
i j −∑

i y2
i./n

k(n − 1)
. (6.3)

Our second estimate of σ 2 (under H0) is based on the variance of the sample
means,

s2
y =

∑k
i=1(yi. − y..)

2

k − 1
, (6.4)

where y.. = ∑k
i=1 yi./k is the overall mean. If H0 is true, s2

y estimates σ 2
y = σ 2/n

[see remarks following (3.1) in Section 3.1], and therefore E(ns2
y) = n(σ 2/n) = σ 2,

from which the estimate of σ 2 is

ns2
y = n

∑k
i=1(yi. − y..)

2

k − 1
=
∑

i y2
i./n − y2

../kn

k − 1
, (6.5)

where y.. = ∑
i yi. = ∑

i j yi j is the overall total. If H0 is false, E(ns2
y) = σ 2 +

n
∑

i α
2
i /(k − 1), and ns2

y will tend to reflect a larger spread in y1., y2., . . . , yk..

Since s2
e is based on variability within each sample, it estimates σ 2 whether or not

H0 is true; thus E(s2
e ) = σ 2 in either case.

When sampling from normal distributions, s2
e , a pooled estimator based on the k

values of s2
i , is independent of s2

y , which is based on the yi.’s. We can justify this

assertion by noting that yi. and s2
i are independent in each sample (when sampling

from the normal distribution) and that the k samples are independent of each other.
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Since ns2
y and s2

e are independent and both estimate σ 2, their ratio forms an F-
statistic (see Section 7.3.1):

F = ns2
y

s2
e

=
(∑

i y2
i./n − y2

../kn
) /
(k − 1)(∑

i j y2
i j −∑

i y2
i./n

)/[k(n − 1)]

= SSH/(k − 1)

SSE/[k(n − 1)] (6.6)

= MSH

MSE
, (6.7)

where SSH = ∑
i y2

i./n − y2
../kn and SSE = ∑

i j y2
i j −∑i y2

i./n are the “between”-
sample sum of squares (due to the means) and “within”-sample sum of squares,
respectively, and MSH and MSE are the corresponding sample mean squares. The F-
statistic (6.6) is distributed as Fk−1,k(n−1) when H0 is true. We reject H0 if F > Fα .
The F-statistic (6.6) can be shown to be a simple function of the likelihood ratio.

6.1.2 Multivariate One-Way Analysis of Variance Model (MANOVA)

We often measure several dependent variables on each experimental unit instead of
just one variable. In the multivariate case, we assume that k independent random
samples of size n are obtained from p-variate normal populations with equal covari-
ance matrices, as in the following layout for balanced one-way multivariate analysis
of variance. (In practice, the observation vectors yi j would ordinarily be listed in
row form, and sample 2 would appear below sample 1, and so on. See, for example,
Table 6.2.)

Sample 1 Sample 2 Sample k
from Np(�1,�) from Np(�2,�) . . . from Np(�k ,�)

y11 y21 · · · yk1

y12 y22 · · · yk2

.

..
.
..

.

..

y1n y2n · · · ykn

Total y1. y2. · · · yk.

Mean y1. y2. · · · yk.

Totals and means are defined as follows:

Total of the i th sample: yi. = ∑n
j=1 yi j .

Overall total: y.. = ∑k
i=1

∑n
j=1 yi j .

Mean of the i th sample: yi. = yi./n.
Overall mean: y.. = y../kn.
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The model for each observation vector is

yi j = � + �i + �i j

= �i + �i j , i = 1, 2, . . . , k; j = 1, 2, . . . , n. (6.8)

In terms of the p variables in yi j , (6.8) becomes




yi j1
yi j2
...

yi jp


 =



µ1
µ2
...

µp


+



αi1
αi2
...

αi p


+



εi j1
εi j2
...

εi j p


 =



µi1
µi2
...

µi p


+



εi j1
εi j2
...

εi j p


 ,

so that the model for the r th variable (r = 1, 2, . . . , p) in each vector yi j is

yi jr = µr + αir + εi jr = µir + εi jr .

We wish to compare the mean vectors of the k samples for significant differences.
The hypothesis is, therefore,

H0 : �1 = �2 = · · · = �k vs. H1 : at least two �’s are unequal.

Equality of the mean vectors implies that the k means are equal for each variable;
that is, µ1r = µ2r = · · · = µkr for r = 1, 2, . . . , p. If two means differ for just one
variable, for example, µ23 	= µ43, then H0 is false and we wish to reject it. We can
see this by examining the elements of the population mean vectors:

H0 :



µ11
µ12
...

µ1p


 =



µ21
µ22
...

µ2p


 = · · · =



µk1
µk2
...

µkp


 .

Thus H0 implies p sets of equalities:

µ11 = µ21 = · · · = µk1,

µ12 = µ22 = · · · = µk2,
...

...
...

µ1p = µ2p = · · · = µkp.

All p(k − 1) equalities must hold for H0 to be true; failure of only one equality will
falsify the hypothesis.

In the univariate case, we have “between” and “within” sums of squares SSH and
SSE. By (6.3), (6.5), and (6.6), these are given by
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SSH = n
k∑

i=1

(yi. − y..)
2 =

k∑
i=1

y2
i.

n
− y2

..

kn
,

SSE =
k∑

i=1

n∑
j=1

(yi j − yi.)
2 =

∑
i j

y2
i j −

∑
i

y2
i.

n
.

By analogy, in the multivariate case, we have “between” and “within” matrices H
and E, defined as

H = n
k∑

i=1

(yi. − y..)(yi. − y..)
′ (6.9)

=
k∑

i=1

1

n
yi.y′

i. −
1

kn
y..y′

..,

E =
k∑

i=1

n∑
j=1

(yi j − yi.)(yi j − yi.)
′ (6.10)

=
∑

i j

yi j y′
i j −

∑
i

1

n
yi.y′

i..

The p × p “hypothesis” matrix H has a between sum of squares on the diagonal for
each of the p variables. Off-diagonal elements are analogous sums of products for
each pair of variables. Assuming there are no linear dependencies in the variables, the
rank of H is the smaller of p and νH , min(p, νH ), where νH represents the degrees
of freedom for hypothesis; in the one-way case νH = k − 1. Thus H can be singular.
The p × p “error” matrix E has a within sum of squares for each variable on the
diagonal, with analogous sums of products off-diagonal. The rank of E is p, unless
νE is less than p.

Thus H has the form

H =




SSH11 SPH12 · · · SPH1p
SPH12 SSH22 · · · SPH2p
...

...
...

SPH1p SPH2p · · · SSHpp


 , (6.11)

where, for example,

SSH22 = n
k∑

i=1

(yi.2 − y..2)
2 =

∑
i

y2
i.2

n
− y2

..2

kn
,

SPH12 = n
k∑

i=1

(yi.1 − y..1)(yi.2 − y..2) =
∑

i

yi.1yi.2

n
− y..1y..2

kn
.
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In these expressions, the subscript 1 or 2 indicates the first or second variable. Thus,
for example, yi.2 is the second element in yi.:

yi. =




yi.1
yi.2
...

yi.p


 .

The matrix E can be expressed in a form similar to (6.11):

E =




SSE11 SPE12 · · · SPE1p

SPE12 SSE22 · · · SPE2p
...

...
...

SPE1p SPE2p · · · SSEpp


 , (6.12)

where, for example,

SSE22 =
k∑

i=1

n∑
j=1

(yi j2 − yi.2)
2 =

∑
i j

y2
i j2 −

∑
i

y2
i.2

n
,

SPE12 =
k∑

i=1

n∑
j=1

(yi j1 − yi.1)(yi j2 − yi.2) =
∑

i j

yi j1yi j2 −
∑

i

yi.1yi.2

n
.

Note that the elements of E are sums of squares and products, not variances and
covariances. To estimate �, we use Sp1 = E/(nk − k), so that

E

(
E

nk − k

)
= �.

6.1.3 Wilks’ Test Statistic

The likelihood ratio test of H0 : �1 = �2 = · · · = �k is given by

� = |E|
|E + H| , (6.13)

which is known as Wilks’ �. (It has also been called Wilks’ U .) We reject H0 if
� ≤ �α,p,νH ,νE . Note that rejection is for small values of �. Exact critical val-
ues �α,p,νH ,νE for Wilks’ � are found in Table A.9, taken from Wall (1967). The
parameters in Wilks’ � distribution are

p = number of variables (dimension),

νH = degrees of freedom for hypothesis,

νE = degrees of freedom for error.
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Wilks’ � compares the within sum of squares and products matrix E to the total
sum of squares and products matrix E+H. This is similar to the univariate F-statistic
in (6.6) that compares the between sum of squares to the within sum of squares. By
using determinants, the test statistic � is reduced to a scalar. Thus the multivariate
information in E and H about separation of mean vectors y1., y2., . . . , yk. is chan-
neled into a single scale, on which we can determine if the separation of mean vectors
is significant. This is typical of multivariate tests in general.

The mean vectors occupy a space of dimension s = min(p, νH ), and within this
space various configurations of these mean vectors are possible. This suggests the
possibility that another test statistic may be more powerful than Wilks’�. Competing
test statistics are discussed in Sections 6.1.4 and 6.1.5.

Some of the properties and characteristics of Wilks’ � are as follows:

1. In order for the determinants in (6.13) to be positive, it is necessary that
νE ≥ p.

2. For any MANOVA model, the degrees of freedom νH and νE are always the
same as in the analogous univariate case. In the balanced one-way model, for
example, νH = k − 1 and νE = k(n − 1).

3. The parameters p and νH can be interchanged; the distribution of �p,νH ,νE is
the same as that of �νH ,p,νE +νH −p.

4. Wilks’� in (6.13) can be expressed in terms of the eigenvalues λ1, λ2, . . . , λs

of E−1H, as follows:

� =
s∏

i=1

1

1 + λi
. (6.14)

The number of nonzero eigenvalues of E−1H is s = min(p, νH ), which is
the rank of H. The matrix HE−1 has the same eigenvalues as E−1H (see Sec-
tion 2.11.5) and could be used in its place to obtain �. However, we prefer
E−1H because we will use its eigenvectors later.

5. The range of � is 0 ≤ � ≤ 1, and the test based on Wilks’ � is an inverse
test in the sense that we reject H0 for small values of �. If the sample mean
vectors were equal, we would have H = O and � = |E|/|E + O| = 1. On
the other hand, as the sample mean vectors become more widely spread apart
compared to the within-sample variation, H becomes much “larger” than E,
and � approaches zero.

6. In Table A.9, the critical values decrease for increasing p. Thus the addition of
variables will reduce the power unless the variables contribute to rejection of
the hypothesis by producing a significant reduction in �.

7. When νH = 1 or 2 or when p = 1 or 2, Wilks’ � transforms to an exact F-
statistic. The transformations from � to F for these special cases are given in
Table 6.1. The hypothesis is rejected when the transformed value of� exceeds
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Table 6.1. Transformations of Wilks’ Λ to Exact Upper Tail F-Tests

Parameters Statistic Having Degrees of
p, νH F-Distribution Freedom

Any p, νH = 1
1 −�

�

νE − p + 1

p
p, νE − p + 1

Any p, νH = 2
1 − √

�√
�

νE − p + 1

p
2p, 2(νE − p + 1)

p = 1, any νH
1 −�

�

νE

νH
νH , νE

p = 2, any νH
1 − √

�√
�

νE − 1

νH
2νH , 2(νE − 1)

the upper α-level percentage point of the F-distribution, with degrees of free-
dom as shown.

8. For values of p and νH other than those in Table 6.1, an approximate F-
statistic is given by

F = 1 −�1/t

�1/t

df2

df1
, (6.15)

with df1 and df2 degrees of freedom, where

df1 = pνH , df2 = wt − 1

2
(pνH − 2),

w = νE + νH − 1

2
(p + νH + 1), t =

√
p2ν2

H − 4

p2 + ν2
H − 5

.

When pνH = 2, t is set equal to 1. The approximate F in (6.15) reduces to the
exact F-values given in Table 6.1, when either νH or p is 1 or 2.

A (less accurate) approximate test is given by

χ2 = −[νE − 1
2 (p − νH + 1)] ln�, (6.16)

which has an approximate χ2-distribution with pνH degrees of freedom. We
reject H0 if χ2 > χ2

α . This approximation is accurate to three decimal places
when p2 + ν2

H ≤ 1
3 f , where f = νE − 1

2 (p − νH + 1).

9. If the multivariate test based on� rejects H0, it could be followed by an F-test
as in (6.6) on each of the p individual y’s. We can formulate a hypothesis com-
paring the means across the k groups for each variable, namely, H0r : µ1r =
µ2r = · · · = µkr , r = 1, 2, . . . , p. It does not necessarily follow that any
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of the F-tests on the p individual variables will reject the corresponding H0r .
Conversely, it is possible that one or more of the F’s will reject H0r when the
�-test accepts H0. In either case, where the multivariate test and the univari-
ate tests disagree, we use the multivariate test result rather than the univariate
results. This is similar to the relationship between Z2-tests and z-tests shown
in Figure 5.2.

In the three bivariate samples plotted in Figure 6.1, we illustrate the case
where � rejects H0 : �1 = �2 = �3, but the F’s accept both of H0r : µ1r =
µ2r = µ3r , r = 1, 2, that is, for y1 and y2. There is no significant separation
of the three samples in either the y1 or y2 direction alone. Other follow-up
procedures are given in Sections 6.1.4 and 6.4.

10. The Wilks’ �-test is the likelihood ratio test. Other approaches to test con-
struction lead to different tests. Three such tests are given in Sections 6.1.4
and 6.1.5.

6.1.4 Roy’s Test

In the union-intersection approach, we seek the linear combination zi j = a′yi j that
maximizes the spread of the transformed means zi. = a′yi. relative to the within-
sample spread of points. Thus we seek the vector a that maximizes

F = n
∑k

i=1(zi. − z..)2/(k − 1)∑k
i=1

∑n
j=1(zi j − zi.)2/(kn − k)

, (6.17)

Figure 6.1. Three samples with significant Wilks’� but nonsignificant F’s.
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which, by analogy to s2
z = a′Sa in (3.55), can be written as

F = a′Ha/(k − 1)

a′Ea/(kn − k)
. (6.18)

This is maximized by a1, the eigenvector corresponding to λ1, the largest eigenvalue
of E−1H (see Section 8.4.1), and we have

max
a

F = a′
1Ha1/(k − 1)

a′
1Ea1/(kn − k)

= k(n − 1)

k − 1
λ1. (6.19)

Since maxa F in (6.19) is maximized over all possible linear functions, it no
longer has an F-distribution. To test H0 : �1 = �2 = · · · = �k based on λ1, we
use Roy’s union-intersection test, also called Roy’s largest root test. The test statistic
is given by

θ = λ1

1 + λ1
. (6.20)

Critical values for θ are given in Table A.10 (Pearson and Hartley 1972, Pillai 1964,
1965). We reject H0 : �1 = �2 = · · · = �k if θ ≥ θα,s,m,N . The parameters s, m,
and N are defined as

s = min(νH , p), m = 1
2 (|νH − p| − 1), N = 1

2 (νE − p − 1).

For s = 1, use (6.34) and (6.37) in Section 6.1.7 to obtain an F-test.
The eigenvector a1 corresponding to λ1 is used in the discriminant function, z =

a′
1y. Since this is the function that best separates the transformed means zi. = a′yi.,

i = 1, 2, . . . , k [relative to the within-sample spread, see (6.17)], the coefficients a11,
a12, . . . , a1p in the linear combination z = a′

1y can be examined for an indication of
which variables contribute most to separating the means. The discriminant function
is discussed further in Sections 6.1.8 and 6.4 and in Chapter 8.

We do not have a satisfactory F-approximation for θ or λ1, but an “upper bound”
on F that is provided in some software programs is given by

F = (νE − d − 1)λ1

d
, (6.21)

with degrees of freedom d and νE − d − 1, where d = max(p, νH ). The term
upper bound indicates that the F in (6.21) is greater than the “true F”; that is, F >

Fd,νE −d−1. Therefore, we feel safe if H0 is accepted by (6.21); but if rejection of H0
is indicated, the information is virtually worthless.

Some computer programs do not provide eigenvalues of nonsymmetric matrices,
such as E−1H. However, the eigenvalues of E−1H are the same as the eigenvalues
of the symmetric matrices (E1/2)−1H(E1/2)−1 and (U′)−1HU−1, where E1/2 is the
square root matrix of E given in (2.112) and U′U = E is the Cholesky factorization
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of E (Section 2.7). We demonstrate this for the Cholesky approach. We first multiply
the defining relationship (E−1H − λI)a = 0 by E to obtain

(H − λE)a = 0. (6.22)

Then substituting E = U′U into (6.22), multiplying by (U′)−1, and inserting
U−1U = I, we have

(H − λU′U)a = 0,

(U′)−1(H − λU′U)a = (U′)−10 = 0,

[(U′)−1H − λU]U−1Ua = 0,

[(U′)−1HU−1 − λI]Ua = 0. (6.23)

Thus (U′)−1HU−1 has the same eigenvalues as E−1H and has eigenvectors of the
form Ua, where a is an eigenvector of E−1H. Note that (U′)−1HU−1 is positive
semidefinite, and thus λi ≥ 0 for all eigenvalues of E−1H.

6.1.5 Pillai and Lawley–Hotelling Tests

There are two additional test statistics for H0 : �1 = �2 = · · · = �k based on the
eigenvalues λ1, λ2, . . . , λs of E−1H. The Pillai statistic is given by

V (s) = tr[(E + H)−1H] =
s∑

i=1

λi

1 + λi
. (6.24)

We reject H0 for V (s) ≥ V (s)
α . The upper percentage points, V (s)

α , are given in Table
A.11 (Schuurmann, Krishnaiah, and Chattopadhyay 1975), indexed by s, m, and N ,
which are defined as in Section 6.1.4 for Roy’s test. For s = 1, use (6.34) and (6.37)
in Section 6.1.7 to obtain an F-test.

Pillai’s test statistic in (6.24) is an extension of Roy’s statistic θ = λ1/(1 +λ1). If
the mean vectors do not lie in one dimension, the information in the additional terms
λi/(1 + λi ), i = 2, 3, . . . , s, may be helpful in rejecting H0.

For parameter values not included in Table A.11, we can use an approximate F-
statistic:

F1 = (2N + s + 1)V (s)

(2m + s + 1)(s − V (s))
, (6.25)

which is approximately distributed as Fs(2m+s+1),s(2N+s+1). Two alternative F-
approximations are given by

F2 = s(νE − νH + s)V (s)

pνH (s − V (s))
, (6.26)
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with pνH and s(νE − νH + s) degrees of freedom, and

F3 = (νE − p + s)V (s)

d(s − V (s))
, (6.27)

with sd and s(νE − p + s) degrees of freedom, where d = max(p, νH ). It can be
shown that F3 in (6.27) is the same as F1 in (6.25).

The Lawley–Hotelling statistic (Lawley 1938, Hotelling 1951) is defined as

U (s) = tr(E−1H) =
s∑

i=1

λi (6.28)

and is also known as Hotelling’s generalized T 2-statistic (see a comment at the end
of Section 6.1.7). Table A.12 (Davis 1970a, b, 1980) gives upper percentage points
of the test statistic

νE

νH
U (s).

We reject H0 for large values of the test statistic. Note that in Table A.12, p ≤ νH

and p ≤ νE . If p > νH , use (νH , p, νE +νH − p) in place of (p, νH , νE ). (This same
pattern in the parameters is found in Wilks’ �; see property 3 in Section 6.1.3.) If
νH = 1 and p > 1, use the relationship U (1) = T 2/νE [see (6.39) in Section 6.1.7].
For other values of the parameters not included in Table A.12, we can use an approx-
imate F-statistic:

F1 = U (s)

c
, (6.29)

which is approximately distributed as Fa,b, where

a = pνH , b = 4 + a + 2

B − 1
, c = a(b − 2)

b(νE − p − 1)
,

B = (νE + νH − p − 1)(νE − 1)

(νE − p − 3)(νE − p)
.

Alternative F-approximations are given by

F2 = 2(s N + 1)U (s)

s2(2m + s + 1)
, (6.30)

with s(2m + s + 1) and 2(s N + 1) degrees of freedom, and

F3 = [s(νE − νH − 1)+ 2]U (s)

spνH
, (6.31)
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with pνH and s(νE − νH − 1) degrees of freedom. If p ≤ νH , then F3 in (6.31) is
the same as F2 in (6.30).

6.1.6 Unbalanced One-Way MANOVA

The balanced one-way model can easily be extended to the unbalanced case, in which
there are ni observation vectors in the i th group. The model in (6.8) becomes

yi j = � + �i + �i j = �i + �i j , i = 1, 2, . . . , k; j = 1, 2, . . . , ni .

The mean vectors become yi. = ∑ni
j=1 yi j/ni and y.. = ∑k

i=1
∑ni

j=1 yi j/N , where

N = ∑k
i=1 ni . Similarly, the total vectors are defined as yi. = ∑ni

j=1 yi j and y.. =∑
i j yi j . The H and E matrices are calculated as

H =
k∑

i=1

ni (yi. − y..)(yi. − y..)
′ =

k∑
i=1

1

ni
yi.y′

i. −
1

N
y..y′

.., (6.32)

E =
k∑

i=1

ni∑
j=1

(yi j − yi.)(yi j − yi.)
′ =

k∑
i=1

ni∑
j=1

yi j y′
i j −

k∑
i=1

1

ni
yi.y′

i.. (6.33)

Wilks’ � and the other tests have the same form as in Sections 6.1.3–6.1.5, using H
and E from (6.32) and (6.33). In each test we have

νH = k − 1, νE = N − k =
k∑

i=1

ni − k.

Note that N = ∑
i ni differs from N used as a parameter in Roy’s and Pillai’s tests

in Sections 6.1.4 and 6.1.5.

6.1.7 Summary of the Four Tests and Relationship to T2

We compare the four test statistics in terms of the eigenvalues λ1 > λ2 > . . . > λs

of E−1H, where s = min(νH , p):

Pillai: V (s) =
s∑

i=1

λi

1 + λi
,

Lawley-Hotelling: U (s) =
s∑

i=1

λi ,

Wilks’ lambda: � =
s∏

i=1

1

1 + λi
,

Roy’s largest root: θ = λ1

1 + λ1
.
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Note that for all four tests we must have νE ≥ p. As noted in Section 6.1.3 and else-
where, p is the number of variables, νH is the degrees of freedom for the hypothesis,
and νE is the degrees of freedom for error.

Why do we use four different tests? All four are exact tests; that is, when H0 is
true, each test has probability α of rejecting H0. However, the tests are not equivalent,
and in a given sample they may lead to different conclusions even when H0 is true;
some may reject H0 while others accept H0. This is due to the multidimensional
nature of the space in which the mean vectors �1, �2, . . . ,�k lie. A comparison of
power and other properties of the tests is given in Section 6.2.

When νH = 1, then s is also equal to 1, and there is only one nonzero eigen-
value λ1. In this case, all four test statistics are functions of each other and give
equivalent results. In terms of θ , for example, the other three become

U (1) = λ1 = θ

1 − θ
, (6.34)

V (1) = θ, (6.35)

� = 1 − θ. (6.36)

In the case of νH = 1, all four statistics can be transformed to an exact F using

F = νE − p + 1

p
U (1), (6.37)

which is distributed as Fp,νE −p+1.
The equivalence of all four test statistics to Hotelling’s T 2 when νH = 1 was

noted in Section 5.6.1. We now demonstrate the relationship T 2 = (n1 +n2 −2)U (1)

in (5.17). For H and E, we use (6.32) and (6.33), which allow unequal ni , since we
do not require n1 = n2 in T 2. In this case, with only two groups, H = ∑2

i=1 ni (yi.−
y..)(yi. − y..)

′ can be expressed as

H = n1n2

n1 + n2
(y1. − y2.)(y1. − y2.)

′ = c(y1. − y2.)(y1. − y2.)
′, (6.38)

where c = n1n2/(n1 + n2). Then by (6.34) and (6.28), U (1) becomes

U (1) = λ1 = tr(E−1H)

= tr[cE−1(y1. − y2.)(y1. − y2.)
′] [by (6.38)]

= c tr[(y1. − y2.)
′E−1(y1. − y2.)] [by (2.97)]

= c

n1 + n2 − 2
(y1. − y2.)

′
(

E
n1 + n2 − 2

)−1

(y1. − y2.)

= T 2

n1 + n2 − 2
, (6.39)
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since E/(n1 + n2 − 2) = Spl (see Section 5.4.2). Equations (5.16), (5.18), and (5.19)
follow immediately from this result using (6.34)–(6.36).

Because of the direct relationship in (6.39) between U (1) and T 2 for the case of
two groups, the Lawley–Hotelling statistic U (s) is often called the generalized T 2-
statistic.

Example 6.1.7. In a classical experiment carried out from 1918 to 1934, apple trees
of different rootstocks were compared (Andrews and Herzberg 1985, pp. 357–360).
The data for eight trees from each of six rootstocks are given in Table 6.2. The
variables are

y1 = trunk girth at 4 years (mm ×100),

y2 = extension growth at 4 years (m),

y3 = trunk girth at 15 years (mm ×100),

y4 = weight of tree above ground at 15 years (lb ×1000).

The matrices H, E, and E + H are given by

H =



.074 .537 .332 .208
.537 4.200 2.355 1.637
.332 2.355 6.114 3.781
.208 1.637 3.781 2.493


 ,

E =




.320 1.697 .554 .217
1.697 12.143 4.364 2.110
.554 4.364 4.291 2.482
.217 2.110 2.482 1.723


 ,

E + H =




.394 2.234 .886 .426
2.234 16.342 6.719 3.747
.886 6.719 10.405 6.263
.426 3.747 6.263 4.216


 .

In this case, the mean vectors represent six points in four-dimensional space. We
can compare the mean vectors for significant differences using Wilks’ � as given by
(6.13):

� = |E|
|E + H| = .6571

4.2667
= .154.

In this case, the parameters of the Wilks’� distribution are p = 4, νH = 6 − 1 = 5,
and νE = 6(8 − 1) = 42. We reject H0 : �1 = �2 = · · · = �6 because

� = .154 < �.05,4,5,40 = .455.
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Note the use of νE = 40 in place of νE = 42. This is a conservative approach that
allows a table value to be used without interpolation.

To obtain an approximate F , we first calculate

t =
√

p2ν2
H − 4

p2 + ν2
H − 5

=
√

4252 − 4

42 + 52 − 5
= 3.3166,

w = νE + νH − 1
2 (p + νH + 1) = 42 + 5 − 1

2 (4 + 5 + 1) = 42,

df1 = pνH = 4(5) = 20, df2 = wt − 1
2 (pνH − 2) = 130.3.

Then the approximate F is given by (6.15),

F = 1 −�1/t

�1/t

df2

df1
= 1 − (.154)1/3.3166

(.154)1/3.3166

130.3

20
= 4.937,

which exceeds F.001,20,120 = 2.53, and we reject H0.
The four eigenvalues of E−1H are 1.876, .791, .229, and .026. With these we can

calculate the other three test statistics. For Pillai’s statistic we have, by (6.24),

V (s) =
4∑

i=1

λi

1 + λi
= 1.305.

To find a critical value for V (s) in Table A.11, we need

s = min(νH , p) = 4, m = 1
2 (|νH − p| − 1) = 0,

N = 1
2 (νE − p − 1) = 18.5.

Then V (s)
.05 = .645 (by interpolation). Since 1.305 > .645, we reject H0.

For the Lawley–Hotelling statistic we obtain, by (6.28),

U (s) =
s∑

i=1

λi = 2.921.

To make the test, we calculate the test statistic

νE

νH
U (s) = 42

5
(2.921) = 24.539.

The .05 critical value for νEU (s)/νH is given in Table A.12 as 7.6188 (using νE =
40), and we therefore reject H0.
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Roy’s test statistic is given by (6.20) as

θ = λ1

1 + λ1
= 1.876

1 + 1.876
= .652,

which exceeds the .05 critical value .377 obtained (by interpolation) from Table A.10,
and we reject H0.

6.1.8 Measures of Multivariate Association

In multiple regression, a measure of association between the dependent variable y
and the independent variables x1, x2, . . . , xq is given by the squared multiple corre-
lation

R2 = regression sum of squares

total sum of squares
. (6.40)

Similarly, in one-way univariate ANOVA, Fisher’s correlation ratio η2 is defined as

η2 = between sum of squares

total sum of squares
.

This is a measure of model fit similar to R2 and gives the proportion of variation in
the dependent variable y attributable to differences among the means of the groups. It
answers the question, How well can we predict y by knowing what group it is from?
Thus η2 can be considered to be a measure of association between the dependent
variable y and the grouping variable i associated with µi or αi in the model (6.2).
In fact, if the grouping variable is represented by k − 1 dummy variables (also called
indicator, or categorical, variables), then we have a dependent variable related to
several independent variables as in multiple regression.

A dummy variable takes on the value 1 for sampling units in a group (sample) and
0 for all other sampling units. (Values other than 0 and 1 could be used.) Thus for k
samples (groups), the k − 1 dummy variables are

xi =
{

1 if sampling unit is in i th group,
0 otherwise,

i = 1, 2, . . . , k − 1.

Only k − 1 dummy variables are needed because if x1 = x2 = · · · = xk−1 = 0, the
sampling unit must be from the kth group (see Section 11.6.2 for an illustration). The
dependent variable y can be regressed on the k−1 dummy variables x1, x2, . . . , xk−1
to produce results equivalent to the usual ANOVA calculations.

In (one-way) MANOVA, we need to measure the strength of the association
between several dependent variables and several independent (grouping) variables.
Various measurements of multivariate association have been proposed. Wilks (1932)
suggested a “generalized η2”:

MANOVA η2 = η2
� = 1 −�, (6.41)
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based on the use of |E| and |E + H| as generalizations of sums of squares. We use
1 −� because � is small if the spread in the means is large.

We now consider an η2 based on Roy’s statistic, θ . We noted in Section 6.1.4
that the discriminant function is the linear function z = a′

1y that maximizes the
spread of the means zi . = a′

1yi., i = 1, 2, . . . , k, where a1 is the eigenvector of
E−1H corresponding to the largest eigenvalue λ1. We measure the spread among the
means by SSH = n

∑k
i=1(zi. − z..)2, divided by the within-sample spread SSE =∑

i j (zi j − zi.)
2. The maximum value of this ratio is given by λ1 [see (6.19)]. Thus

λ1 = SSH(z)

SSE(z)
,

and by (6.20),

θ = λ1

1 + λ1
= SSH(z)

SSE(z)+ SSH(z)
. (6.42)

Hence θ serves directly as a measure of multivariate association:

η2
θ = θ = λ1

1 + λ1
. (6.43)

It can be shown that the square root of this quantity,

ηθ =
√

λ1

1 + λ1
, (6.44)

is the maximum correlation between a linear combination of the p dependent vari-
ables and a linear combination of the k − 1 dummy group variables (see Sec-
tion 11.6.2). This type of correlation is often called a canonical correlation (see
Chapter 11) and is defined for each eigenvalue λ1, λ2, . . . , λs as ri = √

λi/(1 + λi ).
We now consider some measures of multivariate association suggested by Cramer

and Nicewander (1979) and Muller and Peterson (1984). It is easily shown (Sec-
tion 11.6.2) that � can be expressed as

� =
s∏

i=1

1

1 + λi
=

s∏
i=1

(1 − r2
i ), (6.45)

where r2
i = λi/(1 + λi ) is the i th squared canonical correlation described ear-

lier. The geometric mean of a set of positive numbers a1, a2, . . . , an is defined as
(a1a2 · · · an)

1/n . Thus �1/s is the geometric mean of the (1 − r2
i )’s, and another

measure of multivariate association based on �, in addition to that in (6.41), is

A� = 1 −�1/s . (6.46)
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In fact, as noted by Muller and Peterson, the F-approximation given in (6.15),

F = 1 −�1/t

�1/t

df2

df1
,

is very similar to the univariate F-statistic (10.31) for testing significance in multiple
regression,

F = R2/(df model)

(1 − R2)/(df error)
, (6.47)

based on R2 in (6.40).
Pillai’s statistic is easily expressible as the sum of the squared canonical correla-

tions:

V (s) =
s∑

i=1

λi

1 + λi
=

s∑
i=1

r2
i , (6.48)

and the average of the r2
i can be used as a measure of multivariate association:

AP =
∑s

i=1 r2
i

s
= V (s)

s
. (6.49)

In terms of AP the F-approximation given in (6.26) becomes

F2 = AP/pνH

(1 − AP)/s(νE − νH + s)
, (6.50)

which has an obvious parallel to (6.47).
For the Lawley–Hotelling statistic U (s), a multivariate measure of association can

be defined as

ALH = U (s)/s

1 + U (s)/s
. (6.51)

If s = 1, (6.51) reduces to (6.43). In fact, (6.43) is a special case of (6.51) because
U (s)/s = ∑s

i=1 λi/s is the arithmetic average of the λi ’s. It is easily seen that the F-
approximation F3 for the Lawley–Hotelling statistic given in (6.31) can be expressed
in terms of ALH as

F3 = ALH/pνH

(1 − ALH)/[s(νE − νH − 1)+ 1] , (6.52)

which resembles (6.47).
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Example 6.1.8. We illustrate some measures of association for the root-stock data
in Table 6.2:

η2
� = 1 −� = .846,

η2
θ = θ = .652,

A� = 1 −�1/4 = 1 − (.154)1/4 = .374,

AP = V (s)/s = 1.305/4 = .326,

ALH = U (s)/s

1 + U (s)/s
= 2.921/4

1 + 2.921/4
= .422.

There is a wide range of values among these measures of association.

6.2 COMPARISON OF THE FOUR MANOVA TEST STATISTICS

When H0 : �1 = �2 = · · · = �k is true, all the mean vectors are at the same
point. Therefore, all four MANOVA test statistics have the same Type I error rate,
α, as noted in Section 6.1.7; that is, all have the same probability of rejection when
H0 is true. However, when H0 is false, the four tests have different probabilities of
rejection. We noted in Section 6.1.7 that in a given sample the four tests need not
agree, even if H0 is true. One test could reject H0 and the others accept H0, for
example.

Historically, Wilks’ � has played the dominant role in significance tests in
MANOVA because it was the first to be derived and has well-known χ2- and F-
approximations. It can also be partitioned in certain ways we will find useful later.
However, it is not always the most powerful among the four tests. The probability of
rejecting H0 when it is false is known as the power of the test.

In univariate ANOVA with p = 1, the means µ1, µ2, . . . , µk can be uniquely
ordered along a line in one dimension, and the usual F-test is uniformly most pow-
erful. In the multivariate case, on the other hand, with p > 1, the mean vectors
are points in s = min(p, νH ) dimensions. We have four tests, not one of which is
uniformly most powerful. The relative powers of the four test statistics depend on
the configuration of the mean vectors �1, �2, . . . ,�k in the s-dimensional space. A
given test will be more powerful for one configuration of mean vectors than another.

If νH < p, then s = νH and the mean vectors lie in an s-dimensional subspace
of the p-dimensional space of the observations. The points may, in fact, occupy a
subspace of the s dimensions. For example, they may be confined to a line (one
dimension) or a plane (two dimensions). This is illustrated in Figure 6.2.

An indication of the pattern of the mean vectors is given by the eigenvalues of
E−1H. If there is one large eigenvalue and the others are small, the mean vectors lie
close to a line. If there are two large eigenvalues, the mean vectors lie mostly in two
dimensions, and so on.
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Figure 6.2. Two possible configurations for three mean vectors in 3-space.

Because Roy’s test uses only the largest eigenvalue of E−1H, it is more powerful
than the others if the mean vectors are collinear. The other three tests have greater
power than Roy’s when the mean vectors are diffuse (spread out in several dimen-
sions).

In terms of power, the tests are ordered θ ≥ U (s) ≥ � ≥ V (s) for the collinear
case. In the diffuse case and for intermediate structure between collinear and diffuse,
the ordering of power is reversed, V (s) ≥ � ≥ U (s) ≥ θ . The latter ordering also
holds for accuracy of the Type I error rate when the population covariance matri-
ces �1, �2, . . . ,�k are not equal. These orderings are comparisons of power. For
actual computation of power in a given experimental setting or to find the sample
size needed to yield a desired level of power, see Rencher (1998, Section 4.4).

Generally, if group sizes are equal, the tests are sufficiently robust with respect
to heterogeneity of covariance matrices so that we need not worry. If the ni ’s are
unequal and we have heterogeneity, then the α-level of the MANOVA test may be
affected as follows. If the larger variances and covariances are associated with the
larger samples, the true α-level is reduced and the tests become conservative. On the
other hand, if the larger variances and covariances come from the smaller samples,
α is inflated, and the tests become liberal. Box’s M-test in Section 7.3.2 can be used
to test for homogeneity of covariance matrices.

In conclusion, the use of Roy’s θ is not recommended in any situation except
the collinear case under standard assumptions. In the diffuse case its performance is
inferior to that of the other three, both when the assumptions hold and when they do
not. If the data come from nonnormal populations exhibiting skewness or positive
kurtosis, any of the other three tests perform acceptably well. Among these three,
V (s) is superior to the other two when there is heterogeneity of covariance matrices.
Indeed V (s) is first in all rankings except those for the collinear case. However, �
is not far behind, except when there is severe heterogeneity of covariance matrices.
It seems likely that Wilks’ � will continue its dominant role because of its flexi-
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bility and historical precedence. [For references for this section, see Rencher (1998,
Section 4.2).]

In practice, most MANOVA software programs routinely calculate all four test
statistics, and they usually reach the same conclusion. In those cases when they differ
as to acceptance or rejection of the hypothesis, one can examine the eigenvalues
and covariance matrices and evaluate the conflicting conclusions in light of the test
properties discussed previously.

Example 6.2. We inspect the eigenvalues of E−1H for the rootstock data of
Table 6.2 for an indication of the configuration of the six mean vectors in a four-
dimensional space. The eigenvalues are 1.876, .791, .229, .026. The first eigenvalue,
1.876, constitutes a proportion

1.876

1.876 + .791 + .229 + .026
= .642

of the sum of the eigenvalues. Therefore, the first eigenvalue does not dominate the
others, and the mean vectors are not collinear. The first two eigenvalues account for
a proportion

1.876 + .791

1.876 + · · · + .026
= .913

of the sum of the eigenvalues, and thus the six mean vectors lie largely in two dimen-
sions. Since the mean vectors are not collinear, the test statistics �, V (s), and U (s)

will be more appropriate than θ in this case.

6.3 CONTRASTS

As in Sections 6.1.1–6.1.5, we consider only the balanced model where n1 = n2 =
· · · = nk = n. We begin with a review of contrasts in the univariate setting before
moving to the multivariate case.

6.3.1 Univariate Contrasts

A contrast in the population means is defined as a linear combination

δ = c1µ1 + c2µ2 + · · · + ckµk, (6.53)

where the coefficients satisfy

k∑
i=1

ci = 0. (6.54)

An unbiased estimator of δ is given by

δ̂ = c1 y1. + c2y2. + · · · + ck yk.. (6.55)
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The sample means yi. were defined in (6.1). Since the yi.’s are independent with
variance σ 2/n, the variance of δ̂ is

var(δ̂) = σ 2

n

k∑
i=1

c2
i ,

which can be estimated by

s2
δ̂

= MSE

n

k∑
i=1

c2
i , (6.56)

where MSE was defined in (6.6) and (6.7) as SSE/k(n − 1).
The usual hypothesis to be tested by a contrast is

H0 : δ = c1µ1 + c2µ2 + · · · + ckµk = 0.

For example, suppose k = 4 and that a contrast of interest to the researcher is 3µ1 −
µ2 − µ3 − µ4. If this contrast is set equal to zero, we have

3µ1 = µ2 + µ3 + µ4 or µ1 = 1
3 (µ2 + µ3 + µ4),

and the experimenter is comparing the first mean with the average of the other three.
A contrast is often called a comparison among the treatment means.

Assuming normality, H0 : δ = 0 can be tested by

t = δ̂ − 0

s
δ̂

, (6.57)

which is distributed as tνE . Alternatively, since t2 = F , we can use

F = δ̂2

s2
δ̂

=
(∑k

i=1 ci yi.

)2

MSE
∑k

i=1 c2
i /n

= n(
∑

i ci yi.)
2
/∑

i c2
i

MSE
, (6.58)

which is distributed as F1,νE . The numerator of (6.58) is often referred to as the sum
of squares for the contrast.

If two contrasts δ = ∑
i aiµi and γ = ∑

i biµi are such that
∑

i ai bi = 0, the
contrasts are said to be orthogonal. The two estimated contrasts can be written in
the form

∑
i ai yi. = a′y and

∑
i bi yi. = b′y, where y = (y1., y2., . . . , yk.)

′. Then∑
i ai bi = a′b = 0, and by the discussion following (3.14), the coefficient vectors a

and b are perpendicular.
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When two contrasts are orthogonal, the two corresponding sums of squares are
independent. In fact, for k treatments, we can find k − 1 orthogonal contrasts that
partition the treatment sum of squares SSH into k − 1 independent sums of squares,
each with one degree of freedom. In the unbalanced case (Section 6.1.6), orthogonal
contrasts such that

∑
i ai bi = 0 do not partition SSH into k − 1 independent sums

of squares. For a discussion of contrasts in the unbalanced case, see Rencher (1998,
Sections 4.8.2 and 4.8.3; 2000, Section 14.2.2).

6.3.2 Multivariate Contrasts

There are two usages of contrasts in a multivariate setting. We have previously
encountered one use in Section 5.9.1, where we considered the hypothesis H0 : C� =
0 with Cj = 0. Each row of C sums to zero, and C� is therefore a set of contrasts
comparing the elements µ1, µ2, . . . , µp of � with each other. In this section, on the
other hand, we consider contrasts comparing several mean vectors, not the elements
within a vector.

A contrast among the population mean vectors is defined as

� = c1�1 + c2�2 + · · · + ck�k, (6.59)

where
∑k

i=1 ci = 0. An unbiased estimator of � is given by the corresponding con-
trast in the sample mean vectors:

�̂ = c1y1. + c2y2. + · · · + ckyk.. (6.60)

The sample mean vectors y1., y2., . . . , yk. as defined in Section 6.1.2 were assumed
to be independent and to have common covariance matrix, cov(yi.) = �/n. Thus the
covariance matrix for �̂ is given by

cov(�̂) = c2
1

�

n
+ c2

2
�

n
+ · · · + c2

k
�

n
= �

n

k∑
i=1

c2
i , (6.61)

which can be estimated by

Spl

n

k∑
i=1

c2
i =

(
E
νE

)(∑k
i=1 c2

i

n

)
,

where Spl = E/νE is an unbiased estimator of �.
The hypothesis H0 : � = 0 or H0 : c1�1 + c2�2 + · · · + ck�k = 0 makes com-

parisons among the population mean vectors. For example, �1 − 2�2 + �3 = 0 is
equivalent to

�2 = 1
2 (�1 + �3),
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and we are comparing �2 to the average of �1 and �3. Of course this implies that
every element of �2 must equal the corresponding element of 1

2 (�1 + �3):



µ21
µ22
...

µ2p


 =




1
2 (µ11 + µ31)
1
2 (µ12 + µ32)

...
1
2 (µ1p + µ3p)


 .

Under appropriate multivariate normality assumptions, H0 : c1�1 + c2�2 + · · ·+
ck�k = 0 or H0 : � = 0 can be tested with the one-sample T 2-statistic

T 2 = �̂ ′
(

Spl

n

k∑
i=1

c2
i

)−1

�̂

= n∑k
i=1 c2

i

(
k∑

i=1

ci yi.

)′ (
E
νE

)−1
(

k∑
i=1

ci yi.

)
, (6.62)

which is distributed as T 2
p,νE

. In the one-way model under discussion here, νE =
k(n − 1).

An equivalent test of H0 can be made with Wilks’�. By analogy with the numer-
ator of (6.58), the hypothesis matrix due to the contrast is given by

H1 = n∑k
i=1 c2

i

(
k∑

i=1

ci yi.

)(
k∑

i=1

ci yi.

)′
. (6.63)

The rank of H1 is 1, and the test statistic is

� = |E|
|E + H1| , (6.64)

which is distributed as �p,1,νE . The other three MANOVA test statistics can also
be applied here using the single nonzero eigenvalue of E−1H1. Because νH = 1
in this case, all four MANOVA statistics and T 2 give the same results; that is, all
five transform to the same F-value using the formulations in Section 6.1.7. If k − 1
orthogonal contrasts are used, they partition the H matrix into k − 1 independent
matrices H1, H2, . . . ,Hk−1. Each Hi matrix has one degree of freedom because
rank (Hi ) = 1.

Example 6.3.2. We consider the following two orthogonal contrasts for the root-
stock data in Table 6.2:
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2 −1 −1 −1 −1 2,
1 0 0 0 0 −1.

The first compares �1 and �6 with the other four mean vectors. The second compares
�1 vs. �6. Thus H01 : 2�1 − �2 − �3 − �4 − �5 + 2�6 = 0 can be written as

H01 : 2�1 + 2�6 = �2 + �3 + �4 + �5.

Dividing both sides by 4 to express this in terms of averages, we obtain

H01 : 1
2 (�1 + �6) = 1

4 (�2 + �3 + �4 + �5).

Similarly, the hypothesis for the second contrast can be expressed as

H02 : �1 = �6.

The mean vectors are given by

y1. y2. y3. y4. y5. y6.

1.14 1.16 1.11 1.10 1.08 1.04
2.98 3.11 2.82 2.88 2.56 2.21
3.74 4.52 4.46 3.91 4.31 3.60
.87 1.28 1.39 1.04 1.18 .74

For the first contrast, we obtain H1 from (6.63) as

H1 = n∑
i c2

i

(∑
i

ci yi.

)(∑
i

ci yi .

)′

= 8

12
(2y1. − y2. − · · · + 2y6.)(2y1. − y2. − · · · + 2y6.)

′

= 8

12




−.095
−.978
−2.519
−1.680


 (−.095,−.978,−2.519,−1.680)

=



.006 .062 .160 .106
.062 .638 1.642 1.095
.160 1.642 4.229 2.820
.106 1.095 2.820 1.881


 .

Then

� = |E|
|E + H1| = .6571

1.4824
= .443,

which is less than �.05,4,1,40 = .779 from Table A.9. We therefore reject H01.
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To test the significance of the second contrast, we have

H2 = 8

2
(y1. − y6.)(y1. − y6.)

′

= 8

2



.101
.762
.142
.136


 (.101, .762, .142, .136)

=



.041 .309 .058 .055
.309 2.326 .435 .415
.058 .435 .081 .078
.055 .415 .078 .074


 .

Then

� = |E|
|E + H2| = .6571

.8757
= .750,

which is less than �.05,4,1,40 = .779, and we reject H02.

6.4 TESTS ON INDIVIDUAL VARIABLES FOLLOWING REJECTION
OF H0 BY THE OVERALL MANOVA TEST

In Section 6.1, we considered tests of equality of mean vectors, H0 : �1 = �2 =
· · · = �k , which implies equality of means for each of the p variables:

H0r : µ1r = µ2r = · · · = µkr , r = 1, 2, . . . , p.

This hypothesis could be tested for each variable by itself with an ordinary univariate
ANOVA F-test, as noted in property 9 in Section 6.1.3. For example, if there are
three mean vectors,

�1 =



µ11
µ12
...

µ1p


 , �2 =



µ21
µ22
...

µ2p


 , �3 =



µ31
µ32
...

µ3p


 ,

we have H01 : µ11 = µ21 = µ31, H02 : µ12 = µ22 = µ32, . . . , H0p : µ1p = µ2p =
µ3p. Each of these p hypotheses can be tested with a simple ANOVA F-test.

If an F-test is made on each of the p variables regardless of whether the overall
MANOVA test of H0 : �1 = �2 = �3 rejects H0, then the overall α-level will
increase beyond the nominal value because we are making p tests. As in Section 5.5,
we define the overall α or experimentwise error rate as the probability of rejecting
one or more of the p univariate tests when H0 : �1 = �2 = �3 is true. We could
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“protect” against inflation of the experimentwise error rate by performing tests on
individual variables only if the overall MANOVA test of H0 : �1 = �2 = �3 rejects
H0. In this procedure, the probability of rejection for the tests on individual variables
is reduced, and these tests become more conservative.

Rencher and Scott (1990) compared these two procedures for testing the individ-
ual variables in a one-way MANOVA model. Since the focus was on α-levels, only
the case where H0 is true was considered. Specifically, the two procedures were as
follows:

1. A univariate F-test is made on each variable, testing H0r : µ1r = µ2r = · · · =
µkr , r = 1, 2, . . . , p. In this context, the p univariate tests constitute an exper-
iment and one or more rejections are counted as one experimentwise error. No
multivariate test is made.

2. The overall MANOVA hypothesis H0 : �1 = �2 = · · · = �k is tested with
Wilks’ �, and if H0 is rejected, p univariate F-tests on H01, H02, . . . , H0p

are carried out. Again, one or more rejections among the F-tests are counted
as one experimentwise error.

The amount of intercorrelation among the multivariate normal variables was indi-
cated by

∑p
i=1(1/λi )/p, where λ1, λ2, . . . , λp are the eigenvalues of the population

correlation matrix Pρ . Note that
∑

i (1/λi )/p = 1 for the uncorrelated case (Pρ = I)
and

∑
i (1/λi )/p > 1 for the correlated case (Pρ 	= I). When the variables are highly

intercorrelated, one or more of the eigenvalues will be near zero (see Section 4.1.3),
and

∑
i (1/λi )/p will be large.

The error rates of these two procedures were investigated for several values of
p, n, k, and

∑
i (1/λi )/p, where p is the number of variables, n is the number of

observation vectors in each group, k is the number of groups, and
∑

i (1/λi )/p is the
measure of intercorrelation defined above. In procedure 1, the probability of rejecting
one or more univariate tests when H0 is true varied from .09 to .31 (α was .05 in each
test). Such experimentwise error rates are clearly unacceptable when the nominal
value of α is .05. However, this approach is commonly used when the researcher
is not familiar with the MANOVA approach or does not have access to appropriate
software.

Table 6.3 contains the error rates for procedure 2, univariate F-tests following a
rejection by Wilks’ �. The values range from .022 to .057, comfortably close to the
target value of .05. No apparent trends or patterns are seen; the values do not seem
to depend on p, k, n, or the amount of intercorrelation as measured by

∑
i (1/λi )/p.

Thus when univariate tests are made only following a rejection of the overall test, the
experimentwise error rate is about right.

Based on these results, we recommend making an overall MANOVA test followed
by F-tests on the individual variables (at the same α-level as the MANOVA test) only
if the MANOVA test leads to rejection of H0.

Another procedure that can be used following rejection of the MANOVA test
is an examination of the discriminant function coefficients. The discriminant func-
tion was defined in Section 6.1.4 as z = a′

1y, where a1 is the eigenvector asso-
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Table 6.3. Experimentwise Error Rates for Procedure 2: Univariate F-Tests Following
Rejection by Wilks’ Λ ∑

i (1/λi )/p

1 10 100 1000

n p k = 3 k = 5 k = 3 k = 5 k = 3 k = 5 k = 3 k = 5

5 3 .043 .037 .022 .035 .046 .039 .022 .029
5 5 .041 .037 .039 .057 .038 .035 .027 .039
5 7 .030 .042 .035 .045 .039 .037 .026 .048

10 3 .047 .041 .030 .033 .043 .045 .026 .032
10 5 .047 .037 .026 .049 .041 .026 .027 .029
10 7 .034 .054 .037 .047 .047 .040 .040 .044
20 3 .050 .043 .032 .054 .048 .039 .040 .032
20 5 .045 .055 .042 .051 .037 .044 .050 .043
20 7 .055 .051 .029 .040 .033 .051 .039 .033

ciated with the largest eigenvalue λ1 of E−1H. Additionally, there are other dis-
criminant functions using eigenvectors corresponding to the other eigenvalues. Since
the first discriminant function maximally separates the groups, we can examine its
coefficients for the contribution of each variable to group separation. Thus in z =
a11 y1 + a12 y2 + · · · + a1p yp, if a12 is larger than the other a1r ’s, we believe y2 con-
tributes more than any of the other variables to separation of groups. A method of
standardization of the a1r ’s to adjust for differences in the scale among the variables
is given in Section 8.5.

The information in a1r (from z = a′
1y) about the contribution of yr to separation

of the groups is fundamentally different from the information provided in a univariate
F-test that considers yr alone (see property 9 in Section 6.1.3). The relative size of
a1r shows the contribution of yr in the presence of the other variables and takes
into account (1) the correlation of yr with the others y’s and (2) the contribution
of yr to Wilks’ � above and beyond the contribution of the other y’s. In contrast,
the individual F-test on yr ignores the presence of the other variables. Because we
are primarily interested in the collective behavior of the variables, the discriminant
function coefficients provide more pertinent information than the tests on individual
variables. For a detailed analysis of the effect of each variable in the presence of
other variables, see Rencher (1993; 1998, Section 4.1.6).

Huberty (1975) compared the standardized coefficients to some correlations that
can be shown to be related to individual variable tests (see Section 8.7.3). In a lim-
ited simulation, the discriminant coefficients were found to be more valid than the
univariate tests in identifying those variables that contribute least to separation of
groups. Considerable variation was found from sample to sample in ranking the rel-
ative potency of the variables.

Example 6.4. In Example 6.1.7, the hypothesis H0 : �1 = �2 = · · · = �6 was
rejected for the rootstock data of Table 6.2. We can therefore test the four individual
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variables using the .05 level of significance. For the first variable, y1 = 4-year trunk
girth, we obtain the following ANOVA table:

Source Sum of Squares df Mean Square F

Rootstocks .073560 5 .014712 1.93
Error .319988 42 .007619
Total .393548 47

For F = 1.93 the p-value is .1094, and we do not reject H0. For the other three
variables we have

Variable F p-Value

y2 = 4-year extension growth 2.91 .024
y3 = 15-year trunk girth 11.97 < .0001
y4 = 15-year weight 12.16 < .0001

Thus for three of the four variables, the six means differ significantly. We examine
the standardized discriminant function coefficients for this set of data in Chapter 8
(Problem 8.12).

6.5 TWO-WAY CLASSIFICATION

We consider only balanced models, where each cell in the model has the same num-
ber of observations, n. For the unbalanced case with unequal cell sizes, see Rencher
(1998, Section 4.8).

6.5.1 Review of Univariate Two-Way ANOVA

In the univariate two-way model, we measure one dependent variable y on each
experimental unit. The balanced two-way fixed-effects model with factors A and
B is

yi jk = µ+ αi + β j + γi j + εi jk (6.65)

= µi j + εi jk, (6.66)

i = 1, 2, . . . , a, j = 1, 2, . . . , b, k = 1, 2, . . . , n,

where αi is the effect (on yi jk) of the i th level of A, β j is the effect of the j th level of
B, γi j is the corresponding interaction effect, and µi j is the population mean for the
i th level of A and the j th level of B. In order to obtain F-tests, we further assume
that the εi jk’s are independently distributed as N (0, σ 2).

Let µi. = ∑
j µi j/b be the mean at the i th level of A and define µ. j and µ..

similarly. Then if we use side conditions
∑

i αi = ∑
j β j = ∑

i γi j = ∑
j γi j = 0,
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the effect of the i th level of A can be defined as αi = µi.−µ.., with similar definitions
of β j and γi j . We can show that

∑
i αi = 0 if αi = µi. − µ.. as follows:

a∑
i=1

αi =
a∑

i=1

(µi. − µ..) =
∑

i

µi. − aµ..

= aµ.. − aµ.. = 0.

Many texts recommend that the interaction AB be tested first, and that if it is
found to be significant, then the main effects should not be tested. However, with the
side conditions imposed earlier (side conditions are not necessary in order to obtain
tests), the effect of A is defined as the average effect over the levels of B, and the
effect of B is defined similarly. With this definition of main effects, the tests for A
and B make sense even if AB is significant. Admittedly, interpretation requires more
care, and the effect of a factor may vary if the number of levels of the other factor is
altered. But in many cases useful information can be gained about the main effects
in the presence of interaction.

We illustrate the preceding statement that αi = µi. − µ.. represents the effect of
the i th level of A averaged over the levels of B. Suppose A has two levels and B has
three. We represent the means of the six cells as follows:

B
1 2 3 Mean

1 µ11 µ12 µ13 µ1.

A
2 µ21 µ22 µ23 µ2.

Mean µ.1 µ.2 µ.3 µ..

The means of the rows (corresponding to levels of A) and columns (levels of B)
are also given. Then αi = µi. − µ.. can be expressed as the average of the effect of
the i th level of A at the three levels of B. For example,

α1 = 1
3 [(µ11 − µ.1)+ (µ12 − µ.2)+ (µ13 − µ.3)]

= 1
3 (µ11 + µ12 + µ13)− 1

3 (µ.1 + µ.2 + µ.3) = µ1. − µ...

To estimate αi , we can use α̂i = yi.. − y..., with similar estimates for β j and γi j .
The notation yi.. indicates that yi jk is averaged over the levels of j and k to obtain
the mean of all nb observations at the i th level of A, namely, yi.. = ∑

jk yi jk/nb.
The means y. j., yi j., and y... have analogous definitions.

To construct tests for the significance of factors A and B and the interaction AB,
we use the usual sums of squares and degrees of freedom as shown in Table 6.4.
Computational forms of the sums of squares can be found in many standard (univari-
ate) methods texts.
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Table 6.4. Univariate Two-Way Analysis of Variance

Source Sum of Squares df

A SSA = nb
∑

i (yi.. − y...)
2 a − 1

B SSB = na
∑

j (y. j. − y...)
2 b − 1

AB SSAB = n
∑

i j (yi j. − yi.. − y. j. + y...)
2 (a − 1)(b − 1)

Error SSE = ∑
i j k(yi jk − yi j.)

2 ab(n − 1)

Total SST = ∑
i j k(yi jk − y...)

2 abn − 1

The sums of squares in Table 6.4 (for the balanced model) have the relationship

SST = SSA + SSB + SSAB + SSE,

and the four sums of squares on the right are independent. The sums of squares
are divided by their corresponding degrees of freedom to obtain mean squares MSA,
MSB, MSAB, and MSE. For the fixed effects model, each of MSA, MSB, and MSAB
is divided by MSE to obtain an F-test. In the case of factor A, for example, the
hypothesis can be expressed as

H0A : α1 = α2 = · · · = αa = 0,

and the test statistic is F = MSA/MSE, which is distributed as Fa−1,ab(n−1).
In order to define contrasts among the levels of each main effect, we can conve-

niently use the model in the form given in (6.66),

yi jk = µi j + εi jk .

A contrast among the levels of A is defined as
∑a

i=1 ciµi., where
∑

i ci = 0. An esti-
mate of the contrast is given by

∑
i ci yi.., with variance σ 2∑

i c2
i /nb, since each yi..

is based on nb observations and the yi..’s are independent. To test H0 : ∑i ciµi. = 0,
we can use an F-statistic corresponding to (6.58),

F = nb(
∑a

i=1 ci yi..)
2
/∑a

i=1 c2
i

MSE
, (6.67)

with 1 and νE degrees of freedom. To preserve the experimentwise error rate, signifi-
cance tests for more than one contrast could be carried out in the spirit of Section 6.4;
that is, contrasts should be chosen prior to seeing the data, and tests should be made
only if the overall F-test for factor A rejects H0A.

Contrasts
∑

j c jµ. j among the levels of B are tested in an entirely analogous
manner.

6.5.2 Multivariate Two-Way MANOVA

A balanced two-way fixed-effects MANOVA model for p dependent variables can
be expressed in vector form analogous to (6.65) and (6.66):
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yi jk = � + �i + � j + �i j + �i jk = �i j + �i jk, (6.68)

i = 1, 2, . . . , a, j = 1, 2, . . . , b, k = 1, 2, . . . , n,

where �i is the effect of the i th level of A on each of the p variables in yi jk , � j

is the effect of the j th level of B, and �i j is the AB interaction effect. We use side
conditions

∑
i �i = ∑

j � j = ∑
i �i j = ∑

j �i j = 0 and assume the �i jk’s are
independently distributed as Np(0,�). Under the side condition

∑
i �i = 0, the

effect of A is averaged over the levels of B; that is, �i = �i. − �.., where �i. =∑
j �i j/b and �.. =

∑
i j �i j/ab. There are similar definitions for � j and �i j .

As in the univariate usage, the mean vector yi.. indicates an average over the sub-
scripts replaced by dots, that is, yi.. =

∑
jk yi jk/nb. The means y. j., yi j., and y... have

analogous definitions: y. j. = ∑
ik yi jk/na, yi j. = ∑

k yi jk/n, y... = ∑
i jk yi jk/nab.

The sum of squares and products matrices are given in Table 6.5. Note that the
degrees of freedom in Table 6.5 are the same as in the univariate case in Table 6.4.
For the two-way model with balanced data, the total sum of squares and products
matrix is partitioned as

T = HA + HB + HAB + E. (6.69)

The structure of any of the hypothesis matrices is similar to that of H in (6.11).
For example, HA has on the diagonal the sum of squares for factor A for each of the
p variables. The off-diagonal elements of HA are corresponding sums of products
for all pairs of variables. Thus the r th diagonal element of HA corresponding to the
r th variable, r = 1, 2, . . . , p, is given by

h Arr = nb
a∑

i=1

(yi..r − y...r )
2 =

a∑
i=1

y2
i..r

nb
− y2

...r

nab
, (6.70)

where yi..r and y...r represent the r th components of yi.. and y..., respectively, and
yi..r and y...r are totals corresponding to yi..r and y...r . The (rs)th off-diagonal ele-
ment of HA is

h Ars = nb
a∑

i=1

(yi..r − y...r )(yi..s − y...s) =
a∑

i=1

yi..r yi..s

nb
− y...r y...s

nab
. (6.71)

Table 6.5. Multivariate Two-Way Analysis of Variance

Source Sum of Squares and Products Matrix df

A HA = nb
∑

i (yi.. − y...)(yi.. − y...)
′ a − 1

B HB = na
∑

j (y. j. − y...)(y. j. − y...)
′ b − 1

AB HAB = n
∑

i j (yi j. − yi.. − y. j. + y...) (a − 1)(b − 1)
×(yi j. − yi.. − y. j. + y...)

′

Error E = ∑
i j k(yi j k − yi j.)(yi j k − yi j.)

′ ab(n − 1)
Total T = ∑

i j k(yi j k − y...)(yi j k − y...)
′ abn − 1
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From (6.69) and Table 6.5, we obtain

h ABrr =
∑

i j

y2
i j.r

n
− y2

...r

nab
− h Arr − hBrr ,

h ABrs =
∑

i j

yi j.r yi j.s

n
− y...r y...s

nab
− h Ars − hBrs .

(6.72)

For the E matrix, computational formulas are based on (6.69):

E = T − HA − HB − HAB .

Thus the elements of E have the form

err =
∑
i jk

y2
i jkr − y2

...r

nab
− h Arr − hBrr − h ABrr ,

ers =
∑
i jk

yi jkr yi jks − y...r y...s
nab

− h Ars − hBrs − h ABrs .

(6.73)

The hypotheses matrices for interaction and main effects in this fixed-effects
model can be compared to E to make a test. Thus for Wilks’ �, we use E to test
each of A, B, and AB:

�A = |E|
|E + HA| is �p,a−1,ab(n−1),

�B = |E|
|E + HB | is �p,b−1,ab(n−1),

�AB = |E|
|E + HAB | is �p,(a−1)(b−1),ab(n−1).

In each case, the indicated distribution holds when H0 is true. To calculate the other
three MANOVA test statistics for A, B, and AB, we use the eigenvalues of E−1HA,
E−1HB , and E−1HAB .

If the interaction is not significant, interpretation of the main effects is simpler.
However, the comments in Section 6.5.1 about testing main effects in the presence
of interaction apply to the multivariate model as well. If we define each main effect
as the average effect over the levels of the other factor, then main effects can be tested
even if the interaction is significant. One must be more careful with the interpretation
in case of a significant interaction, but there is information to be gained.

By analogy with the univariate two-way ANOVA in Section 6.5.1, a contrast
among the levels of factor A can be defined in terms of the mean vectors as fol-
lows:

∑a
i=1 ci �i., where

∑
i ci = 0 and �i. = ∑

j �i j/b. Similarly,
∑b

j=1 c j �. j
represents a contrast among the levels of B. The hypothesis that these contrasts are
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0 can be tested by T 2 or any of the four MANOVA test statistics, as in (6.62), (6.63),
and (6.64). To test H0 : ∑i ci �i. = 0, for example, we can use

T 2 = nb∑a
i=1 c2

i

(
a∑

i=1

ci yi..

)′ (
E
νE

)−1
(

a∑
i=1

ci yi..

)
, (6.74)

which is distributed as T 2
p,νE

when H0 is true. Alternatively, the hypothesis matrix

H1 = nb∑a
i=1 c2

i

(
a∑

i=1

ci yi..

)(
a∑

i=1

ci yi..

)′
(6.75)

can be used in

� = |E|
|E + H1| ,

which, under H0, is �p,1,νE , with νE = ab(n − 1) in the two-way model. The other
three MANOVA test statistics can also be constructed from E−1H1. All five test
statistics will give equivalent results because νH = 1.

If follow-up tests on individual variables are desired, we can infer from Rencher
and Scott (1990), as reported in Section 6.4, that if the MANOVA test on factor A
or B leads to rejection of H0, then we can proceed with the univariate F-tests on the
individual variables with assurance that the experimentwise error rate will be close
to α.

To determine the contribution of each variable in the presence of the others, we
can examine the first discriminant function obtained from eigenvectors of E−1HA

or E−1HB , as in Section 6.4 for one-way MANOVA. The first discriminant function
for E−1HA, for example, is z = a′y, where a is the eigenvector associated with the
largest eigenvalue of E−1HA. In z = a1 y1 + a2 y2 + · · · + ap yp, if ar is larger than
the other a’s, then yr contributes more than the other variables to the significance of
�A. (In many cases, the ar ’s should be standardized as in Section 8.5.) Note that the
first discriminant function obtained from E−1HA will not have the same pattern as
the first discriminant function from E−1HB . This is not surprising since we expect
that the relative contribution of the variables to separating the levels of factor A will
be different from the relative contribution to separating the levels of B.

A randomized block design or a two-way MANOVA without replication can eas-
ily be analyzed in a manner similar to that for the two-way model with replication
given here; therefore, no specific details will be given.

Example 6.5.2. Table 6.6 contains data reported by Posten (1962) and analyzed by
Kramer and Jensen (1970). The experiment involved a 2 × 4 design with 4 repli-
cations, for a total of 32 observation vectors. The factors were rotational velocity
[A1 (fast) and A2 (slow)] and lubricants (four types). The experimental units were
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Table 6.6. Two-Way Classification of Measurements on
Bar Steel

A1 A2

Lubricant y1 y2 y1 y2

B1 7.80 90.4 7.12 85.1
7.10 88.9 7.06 89.0
7.89 85.9 7.45 75.9
7.82 88.8 7.45 77.9

B2 9.00 82.5 8.19 66.0
8.43 92.4 8.25 74.5
7.65 82.4 7.45 83.1
7.70 87.4 7.45 86.4

B3 7.28 79.6 7.15 81.2
8.96 95.1 7.15 72.0
7.75 90.2 7.70 79.9
7.80 88.0 7.45 71.9

B4 7.60 94.1 7.06 81.2
7.00 86.6 7.04 79.9
7.82 85.9 7.52 86.4
7.80 88.8 7.70 76.4

32 homogeneous pieces of bar steel. Two variables were measured on each piece of
bar steel:

y1 = ultimate torque,

y2 = ultimate strain.

We display the totals for each variable for use in computations. The numbers inside
the box are cell totals (over the four replications), and the marginal totals are for each
level of A and B:

Totals for y1 Totals for y2

A1 A2 A1 A2

B1 30.61 29.08 59.69 B1 354.0 327.9 681.9
B2 32.61 31.34 64.12 B2 344.7 310.0 654.7
B3 31.79 29.45 61.24 B3 352.9 305.0 657.9
B4 30.22 29.32 59.54 B4 355.4 323.9 679.3

125.40 119.19 244.59 1407.0 1266.8 2673.8

Using computational forms for h Arr in (6.70), the (1, 1) element of HA (corre-
sponding to y1) is given by
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h A11 = (125.40)2 + (119.19)2

(4)(4)
− (244.59)2

(4)(4)(2)
= 1.205.

For the (2, 2) element of HA (corresponding to y2), we have

h A22 = (1407.0)2 + (1266.8)2

16
− (2673.8)2

32
= 614.25.

For the (1, 2) element of HA (corresponding to y1y2), we use (6.71) for h Ars to
obtain

h A12 = (125.40)(1407.0)+ (119.19)(1266.8)

16
− (244.59)(2673.8)

32
= 27.208.

Thus

HA =
(

1.205 27.208
27.208 614.251

)
.

We obtain HB similarly:

hB11 = (59.69)2 + · · · + (59.54)2

(4)(2)
− (244.59)2

32
= 1.694,

hB22 = (681.9)2 + · · · + (679.3)2

8
− (2673.8)2

32
= 74.874,

hB12 = (59.69)(681.9)+ · · · + (59.54)(679.3)

8
− (244.59)(2673.8)

32
= −9.862,

HB =
(

1.694 −9.862,
−9.862 74.874

)
.

For HAB we have, by (6.72),

h AB11 = (30.61)2 + · · · + (29.32)2

4
− (244.59)2

32
− 1.205 − 1.694 = .132,

h AB22 = (354.0)2 + · · · + (323.9)2

4
− (2673.8)2

32
− 614.25 − 74.874 = 32.244,

h AB12 = (30.61)(354.0)+ · · · + (29.32)(323.9)

4
− (244.59)(2673.8)

32
−27.208 − (−9.862) = 1.585,

HAB =
(

.132 1.585
1.585 32.244

)
.
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The error matrix E is obtained using the computational forms given for err and ers

in (6.73). For example, e11 and e12 are computed as

e11 = (7.80)2 + (7.10)2 + · · · + (7.70)2 − (244.59)2

32
− 1.205

−1.694 − .132 = 4.897,

e12 = (7.80)(90.4)+ · · · + (7.70)(76.4)− (244.59)(2673.8)

32
− 27.208

−(−9.862)− 1.585 = −1.890.

Proceeding in this fashion, we obtain

E =
(

4.897 −1.890
−1.890 736.390

)
,

with νE = ab(n − 1) = (2)(4)(4 − 1) = 24.
To test the main effect of A with Wilks’ �, we compute

�A = |E|
|E + HA| = 3602.2

7600.2
= .474 < �.05,2,1,24 = .771,

and we conclude that velocity has a significant effect on y1 or y2 or both.
For the B main effect, we have

�B = |E|
|E + HB | = 3602.2

5208.6
= .6916 > �.05,2,3,24 = .591.

We conclude that the effect of lubricants is not significant.
For the AB interaction, we obtain

�AB = |E|
|E + HAB | = 3602.2

3865.3
= .932 > �.05,2,3,24 = .591.

Hence we conclude that the interaction effect is not significant.
We now obtain the other three MANOVA test statistics for each test. For A, the

only nonzero eigenvalue of E−1HA is 1.110. Thus

V (s) = λ1

1 + λ1
= .526, U (s) = λ1 = 1.110,

θ = λ1

1 + λ1
= .526.

In this case, all three tests give results equivalent to that of�A because νH = s = 1.
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For B, νH = 3 and p = s = 2. The eigenvalues of E−1HB are .418 and .020, and
we obtain

V (s) =
s∑

i=1

λi

1 + λi
= .314,

U (s) =
s∑

i=1

λi = .438,
νE

νH
U (s) = 3.502,

θ = λi

1 + λ1
= .295.

With s = 2, m = 0, and N = 10.5, we have V (s) = .439 and θ.05 = .364. The .05
critical value of νEU (s)/νH is 5.1799. Thus V (s),U (s), and θ lead to acceptance of
H0, as does �. Of the four tests, θ appears to be closer to rejection. This is because
λ1/(λ1 + λ2) = .418/(.418 + .020) = .954, indicating that the mean vectors for
factor B are essentially collinear, in which case Roy’s test is more powerful. If the
mean vectors y.1., y.2., y.3., and y.4. for the four levels of B were a little further apart,
we would have a situation in which the four MANOVA tests do not lead to the same
conclusion.

For AB, the eigenvalues of E−1HAB are .0651 and .0075, from which

V (s) =
s∑

i=1

λi

1 + λi
= .0685, U (s) = .0726,

νE

νH
U (s) = .580,

θ = λ1

1 + λ1
= .0611.

The critical values remain the same as for factor B, and all three tests accept H0, as
does Wilks’ �. With a nonsignificant interaction, interpretation of the main effects
is simplified.

6.6 OTHER MODELS

6.6.1 Higher Order Fixed Effects

A higher order (balanced) fixed-effects model or factorial experiment presents no
new difficulties. As an illustration, consider a three-way classification with three
factors A, B, and C and all interactions AB, AC , BC , and ABC . The observation
vector y has p variables as usual. The MANOVA model allowing for main effects
and interactions can be written as

yi jkl = � + �i + � j + �k + �i j + �ik + 	 jk + 
i jk + �i jkl , (6.76)

where, for example, �i is the effect of the i th level of factor A on each of the p
variables in yi jkl and �i j is the AB interaction effect on each of the p variables.
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Similarly, �ik , 	 jk , and 
i jk represent the AC , BC , and ABC interactions on each
of the p variables.

The matrices of sums of squares and products for main effects, interactions, and
error are defined in a manner similar to that for the matrices detailed for the two-way
model in Section 6.5.2. The sum of squares (on the diagonal) for each variable is cal-
culated exactly the same as in a univariate ANOVA for a three-way model. The sums
of products (off-diagonal) are obtained analogously. Test construction parallels that
for the two-way model, using the matrix for error to test all factors and interactions.

Degrees of freedom for each factor are the same as in the corresponding three-
way univariate model. All four MANOVA test statistics can be computed for each
test. Contrasts can be defined and tested in a manner similar to that in Section 6.5.2.
Follow-up procedures on the individual variables (F-tests and discriminant func-
tions) can be used as discussed for the one-way or two-way models in Sections 6.4
and 6.5.2.

6.6.2 Mixed Models

There is a MANOVA counterpart for every univariate ANOVA design. This applies
to fixed, random, and mixed models and to experimental structures that are crossed,
nested, or a combination. Roebruck (1982) has provided a formal proof that univari-
ate mixed models can be generalized to multivariate mixed models. Schott and Saw
(1984) have shown that for the one-way multivariate random effects model, the like-
lihood ratio approach leads to the same test statistics involving the eigenvalues of
E−1H as in the fixed-effects model.

In the (balanced) MANOVA mixed model, the expected mean square matrices
have exactly the same pattern as expected mean squares for the corresponding uni-
variate ANOVA model. Thus a table of expected mean squares for the terms in the
corresponding univariate model provides direction for choosing the appropriate error
matrix to test each term in the MANOVA model. However, if the matrix indicated
for “error” has fewer degrees of freedom than p, it will not have an inverse and the
test cannot be made.

To illustrate, suppose we have a (balanced) two-way MANOVA model with A
fixed and B random. Then the (univariate) expected mean squares (EMS) and Wilks’
�-tests are as follows:

Source EMS �

A σ 2 + nσ 2
AB + nbσ ∗2

A |HAB |/|HAB + HA|
B σ 2 + naσ 2

B |E|/|E + HB |
AB σ 2 + nσ 2

AB |E|/|E + HAB |
Error σ 2

In the expected mean square for factor A, we have used the notation σ ∗2
A in place

of
∑a

i=1 α
2
i /(a −1). The test for A using HAB for error matrix will be indeterminate

(of the form 0/0) if νAB ≤ p, where νAB = (a − 1)(b − 1). In this case, νAB

will often fail to exceed p. For example, suppose A has two levels and B has three.
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Then νAB = 2, which will ordinarily be less than p. In such a case, we would
have little recourse except to compute univariate tests on the p individual variables.
However, we would not have the multivariate test to protect against carrying out too
many univariate tests and thereby inflating the experimentwise α (see Section 6.4).
To protect against inflation of α when making p tests, we could use a Bonferroni
correction, as in procedure 2 in Section 5.5. In the case of F-tests, we do not have
a table of Bonferroni critical values, as we do for t-tests (Table A.8), but we can
achieve an equivalent result by comparing the p-values for the F-tests against α/p
instead of against α.

As another illustration, consider the analysis for a (balanced) multivariate split-
plot design. For simplicity, we show the associated univariate model in place of the
multivariate model. We use the factor names A, B, AC, . . . to indicate parameters in
the model:

yi jkl = µ+ Ai + B(i) j + Ck + ACik + BC(i) jk + ε(i jk)l ,

where A and C are fixed and B is random. Nesting is indicated by bracketed sub-
scripts; for example, B and BC are nested in A. Table 6.7 shows the expected mean
squares and corresponding Wilks tests.

Table 6.7. Wilks’ Λ-Tests for a Typical Split-Plot Design

Source df Expected Mean Squares Wilks’ �

A a − 1 σ 2 + ceσ 2
B + bceσ ∗2

A |HB |/|HA + HB |
B a(b − 1) σ 2 + ceσ 2

B |E|/|HB + E|
C c − 1 σ 2 + eσ 2

BC + abeσ ∗2
C |HBC |/|HC + HBC |

AC (a − 1)(c − 1) σ 2 + eσ 2
BC + beσ ∗2

AC |HBC |/|HAC + HBC |
BC a(b − 1)(c − 1) σ 2 + eσ 2

BC |E|/|HBC + E|
Error abc(e − 1) σ 2

Since we use HB and HBC , as well as E, to make tests, the following must hold:

a(b − 1) ≥ p, a(b − 1)(c − 1) ≥ p, abc(e − 1) ≥ p.

To construct the other three MANOVA tests, we use eigenvalues of the following
matrices:

Source Matrix

A H−1
B HA

B E−1HB

C H−1
BC HC

AC H−1
BC HAC

BC E−1HBC

With a table of expected mean squares, such as those in Table 6.7, it is a sim-
ple matter to determine the error matrix in each case. For a given factor or interac-
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tion, such as A, B, or AC , the appropriate error matrix is ordinarily the one whose
expected mean square matches that of the given factor except for the last term. For
example, factor C , with expected mean square σ 2 + eσ 2

BC + abeσ ∗2
C , is tested by

BC , whose expected mean square is σ 2 + eσ 2
BC . If H0 : σ ∗2

C = 0 is true, then C and
BC have the same expected mean square.

In some mixed and random models, certain terms have no available error term.
When this happens in the univariate case, we can construct an approximate test
using Satterthwaites’ (1941) or other synthetic mean square approach. For a simi-
lar approach in the multivariate case, see Khuri, Mathew, and Nel (1994).

6.7 CHECKING ON THE ASSUMPTIONS

In Section 6.2 we discussed the robustness of the four MANOVA test statistics to
nonnormality and heterogeneity of covariance matrices. The MANOVA tests (except
for Roy’s) are rather robust to these departures from the assumptions, although, in
general, as dimensionality increases, robustness decreases.

Even though MANOVA procedures are fairly robust to departures from multivari-
ate normality, we may want to check for gross violations of this assumption. Any of
the tests or plots from Section 4.4 could be used. For a two-way design, for example,
the tests could be applied separately to the n observations in each individual cell (if n
is sufficiently large) or to all the residuals. The residual vectors after fitting the model
yi jk = �i j + �i jk would be

�̂i jk = yi jk − yi j., i = 1, 2, . . . , a, j = 1, 2, . . . , b k = 1, 2, . . . , n.

It is also advisable to check for outliers, which can lead to either a Type I or Type II
error. The tests of Section 4.5 can be run separately for each cell (for sufficiently large
n) or for all of the abn residuals, �̂i jk = yi jk − yi j..

A test of the equality of covariance matrices can be made using Box’s M-test
given in Section 7.3.2. Note the cautions expressed there about the sensitivity of this
test to nonnormality and unequal sample sizes.

The assumption of independence of the observation vectors yi jk is even more
important than the assumptions of normality and equality of covariance matrices.
We are referring, of course, to independence from one observation vector to another.
The variables within a vector are assumed to be correlated, as usual. In the univariate
case, Barcikowski (1981) showed that a moderate amount of dependence among the
observations produces an actual α much greater than the nominal α. This effect is
to be expected, since the dependence leads to an underestimate of the variance, so
that MSE is reduced and the F-statistic is inflated. We can assume that this effect on
error rates carries over to MANOVA.

In univariate ANOVA, a simple measure of dependence among the kn observa-
tions in a one-way model is the intraclass correlation:

rc = MSB − MSE

MSB + (n − 1)MSE
, (6.77)
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where MSB and MSE are the between and within mean squares for the variable and
n is the number of observations per group. This could be calculated for each variable
in a MANOVA to check for independence.

In many experimental settings, we do not anticipate a lack of independence. But
in certain cases the observations are dependent. For example, if the sampling units
are people, they may influence each other as they interact together. In some educa-
tional studies, researchers must use entire classrooms as sampling units rather than
use individual students. Another example of dependence is furnished by observa-
tions that are serially correlated, as in a time series, for example. Each observation
depends to a certain extent on the preceding one, and its random movement is some-
what dampened as a result.

6.8 PROFILE ANALYSIS

The two-sample profile analysis of Section 5.9.2 can be extended to k groups. Again
we assume that the variables are commensurate, as, for example, when each subject
is given a battery of tests. Other assumptions, cautions, and comments expressed in
Section 5.9.2 apply here as well.

The basic model is the balanced one-way MANOVA:

yi j = �i + �i j , i = 1, 2, . . . , k, j = 1, 2, . . . , n.

To test H0 : �1 = �2 = · · · = �k , we use the usual H and E matrices given in
(6.9) and (6.10). If the variables are commensurate, we can be more specific and
extend H0 to an examination of the k profiles obtained by plotting the p values
µi1, µi2, . . . , µi p in each �i , as was done with two �i ’s in Section 5.9.2 (see, for
example, Figure 5.8). We are interested in the same three hypotheses as before:

H01 : The k profiles are parallel.

H02 : The k profiles are all at the same level.

H03 : The k profiles are flat.

The hypothesis of parallelism for two groups was expressed in Section 5.9.2 as
H01 : C�1 = C�2, where C is any (p−1)× p matrix of rank p−1 such that Cj = 0,
for example,

C =




1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...

0 0 0 · · · −1


 .

For k groups, the analogous hypothesis of parallelism is

H01 : C�1 = C�2 = · · · = C�k . (6.78)
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The hypothesis (6.78) is equivalent to the hypothesis H0 : �z1 = �z2 = · · · = �zk

in a one-way MANOVA on the transformed variables zi j = Cyi j . Since C has p − 1
rows, Cyi j is (p − 1)× 1, C�i is (p − 1)× 1, and C�C′ is (p − 1)× (p − 1). By
property 1b in Section 4.2, zi j is distributed as Np−1(C�i , C�C′).

By analogy with (3.64), the hypothesis and error matrices for testing H01 in (6.78)
are

Hz = CHC′, Ez = CEC′.

We thus have

� = |CEC′|
|CEC′ + CHC′| = |CEC′|

|C(E + H)C′| , (6.79)

which is distributed as �p−1,νH ,νE , where νH = k − 1 and νE = k(n − 1).
The other three MANOVA test statistics can be obtained from the eigenvalues of
(CEC′)−1(CHC′). The test for H01 can easily be adjusted for unbalanced data,
as in Section 6.1.6. We would calculate H and E by (6.32) and (6.33) and use
νE = ∑

i ni − k.
The hypothesis that two profiles are at the same level is H02 : j′�1 = j′�2 (see

Section 5.9.2), which generalizes immediately to k profiles at the same level,

H02 : j′�1 = j′�2 = · · · = j′�k . (6.80)

For two groups we used a univariate t , as defined in (5.36), to test H02. Similarly, for
k groups we can employ an F-test for one-way ANOVA comparing k groups with
observations j′yi j . Alternatively, we can utilize (6.79) with C = j′,

� = j′Ej
j′Ej + j′Hj

, (6.81)

which is distributed as �1,νH ,νE (p = 1 because j′yi j is a scalar). This is, of course,
equivalent to the F-test on j′yi j , since by Table 6.1 in Section 6.1.3,

F = 1 −�

�

νE

νH
(6.82)

is distributed as FνH ,νE .
The third hypothesis, that of “flatness,” essentially states that the average of the k

group means is the same for each variable [see (5.37)]:

H03 : µ11 + µ21 + · · · + µk1

k
= µ12 + µ22 + · · · + µk2

k

= · · · = µ1p + µ2p + · · · + µkp

k
,
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or by analogy with (5.38),

H03 : C(�1 + �2 + · · · + �k)

k
= 0, (6.83)

where C is a (p − 1) × p matrix of rank p − 1 such that Cj = 0 [see (6.78)]. The
flatness hypothesis can also be stated as, the means of all p variables in each group
are the same, or µi1 = µi2 = · · · = µi p, i = 1, 2, . . . , k. This can be expressed as
H03 : C�1 = C�2 = · · · = C�k = 0.

To test H03 as given by (6.83), we can extend the T 2-test in (5.39). The grand
mean vector (�1 +�2 +· · ·+�k)/k in (6.83) can be estimated as in Section 6.1.2 by

y.. =
∑

i j

yi j

kn
.

Under H03 (and H01), Cy.. is Np−1(0,C�C′/kn), and H03 can be tested by

T 2 = kn(Cy..)
′(CEC′/νE )

−1Cy.., (6.84)

where E/νE is an estimate of �. As in the two-sample case, H03 is unaffected by
the status of H02. When both H01 and H03 are true, T 2 in (6.84) is distributed as
T 2

p−1,νE
.

Example 6.8. Three vitamin E diet supplements with levels zero, low, and high were
compared for their effect on growth of guinea pigs (Crowder and Hand 1990, pp. 21–
29). Five guinea pigs received each supplement level and their weights were recorded
at the end of weeks 1, 3, 4, 5, 6, and 7. These weights are given in Table 6.8.

Table 6.8. Weights of Guinea Pigs under Three Levels of Vitamin E Supplements

Group Animal Week 1 Week 3 Week 4 Week 5 Week 6 Week 7

1 1 455 460 510 504 436 466
1 2 467 565 610 596 542 587
1 3 445 530 580 597 582 619
1 4 485 542 594 583 611 612
1 5 480 500 550 528 562 576
2 6 514 560 565 524 552 597
2 7 440 480 536 484 567 569
2 8 495 570 569 585 576 677
2 9 520 590 610 637 671 702
2 10 503 555 591 605 649 675
3 11 496 560 622 622 632 670
3 12 498 540 589 557 568 609
3 13 478 510 568 555 576 605
3 14 545 565 580 601 633 649
3 15 472 498 540 524 532 583
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The three mean vectors are

y′
1. = (466.4, 519.4, 568.8, 561.6, 546.6, 572.0),

y′
2. = (494.4, 551.0, 574.2, 567.0, 603.0, 644.0),

y′
3. = (497.8, 534.6, 579.8, 571.8, 588.2, 623.2),

and the overall mean vector is

y′
.. = (486.2, 535.0, 574.3, 566.8, 579.3, 613.1).

A profile plot of the means y1., y2., and y3. is given in Figure 6.3. There is a high
degree of parallelism in the three profiles, with the possible exception of week 6 for
group 1.

The E and H matrices are as follows:

E =




8481.2 8538.8 4819.8 8513.6 8710.0 8468.2
8538.8 17170.4 13293.0 19476.4 17034.2 20035.4
4819.8 13293.0 12992.4 17077.4 17287.8 17697.2
8513.6 19476.4 17077.4 28906.0 26226.4 28625.2
8710.0 17034.2 17287.8 26226.4 36898.0 31505.8
8468.2 20035.4 17697.2 28625.2 31505.8 33538.8



,

Figure 6.3. Profile of the three groups for the guinea pig data of Table 6.8.
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H =




2969.2 2177.2 859.4 813.0 4725.2 5921.6
2177.2 2497.6 410.0 411.6 4428.8 5657.6
859.4 410.0 302.5 280.4 1132.1 1392.5
813.0 411.6 280.4 260.4 1096.4 1352.0

4725.2 4428.8 1132.1 1096.4 8550.9 10830.9
5921.6 5657.6 1392.5 1352.0 10830.9 13730.1



.

Using

C =




1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1




in the test statistic (6.79), we have, as a test for parallelism,

� = |CEC′|
|C(E + H)C′| = 3.8238 × 1018

2.1355 × 1019

= .1791 > �.05,5,2,12 = .153.

Thus we do not reject the parallelism hypothesis.
To test the hypothesis that the three profiles are at the same level, we use (6.81),

� = j′Ej
j′Ej + j′Hj

= 632, 605.2

632, 605.2 + 111, 288.1

= .8504 > �.05,1,2,12 = .607.

Hence we do not reject the levels hypothesis. This can also be seen by using (6.82)
to transform � to F ,

F = (1 −�)νE

�νH
= (1 − .8504)12

(.8504)2
= 1.0555,

which is clearly nonsignificant (p = .378).
To test the “flatness” hypothesis, we use (6.84):

T 2 = kn(Cy..)
′(CEC′/νE )

−1Cy..

= 15




−48.80
−39.27

7.47
−12.47
−33.80




′


714.5 −13.2 207.5 −219.9 270.2
−13.2 298.1 −174.9 221.0 −216.0
207.5 −174.9 645.3 −240.8 165.8

−219.9 221.0 −240.8 1112.6 −649.2
270.2 −216.0 165.8 −649.2 618.8




−1
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×




−48.80
−39.27

7.47
−12.47
−33.80




= 297.13 > T 2
.01,5,12 = 49.739.

Thus only the flatness hypothesis is rejected in this case.

6.9 REPEATED MEASURES DESIGNS

6.9.1 Multivariate vs. Univariate Approach

In repeated measures designs, the research unit is typically a human or animal sub-
ject. Each subject is measured under several treatments or at different points of time.
The treatments might be tests, drug levels, various kinds of stimuli, and so on. If
the treatments are such that the order of presentation to the various subjects can be
varied, then the order should be randomized to avoid an ordering bias. If subjects
are measured at successive time points, it may be of interest to determine the degree
of polynomial required to fit the curve. This is treated in Section 6.10 as part of an
analysis of growth curves.

When comparing means of the treatments applied to each subject, we are exam-
ining the within-subjects factor. There will also be a between-subjects factor if there
are several groups of subjects that we wish to compare. In Sections 6.9.2–6.9.6, we
consider designs up to a complexity level of two within-subjects factors and two
between-subjects factors.

We now discuss univariate and multivariate approaches to hypothesis testing in
repeated measures designs. As a framework for this discussion, consider the layout
in Table 6.9 for a repeated measures design with one repeated measures (within-
subjects) factor, A, and one grouping (between-subjects) factor, B.

This design has often been analyzed as a univariate mixed-model nested design,
also called a split-plot design, with subjects nested in factor B (whole-plot), which
is crossed with factor A (repeated measures, or split-plot). The univariate model for
each yi jr would be

yi jr = µ+ Bi + S(i) j + Ar + B Air + εi jr , (6.85)

where the factor level designations (B, S, A, and B A) from (6.85) and Table 6.9 are
used as parameter values and the subscript (i) j on S indicates that subjects are nested
in factor B. In Table 6.9, the observations yi jr for r = 1, 2, . . . , p are enclosed in
parentheses and denoted by y′

i j to emphasize that these p variables are measured
on one subject and thus constitute a vector of correlated variables. The ranges of
the subscripts can be seen in Table 6.9: i = 1, 2, . . . , k; j = 1, 2, . . . , n; and r =



REPEATED MEASURES DESIGNS 205

Table 6.9. Data Layout for k-Groups Repeated Measures Experiment

Factor B
Factor A (Repeated Measures)

(Group) Subjects A1 A2 · · · Ap

B1 S11 (y111 y112 · · · y11p) = y′
11

S12 (y121 y122 · · · y12p) = y′
12

.

..
.
..

.

..
.
..

S1n (y1n1 y1n2 · · · y1np) = y′
1n

B2 S21 (y211 y212 · · · y21p) = y′
21

S22 (y221 y222 . . . y22p) = y′
22

...
...

...
...

S2n (y2n1 y2n2 . . . y2np) = y′
2n

...
...

...
...

...

Bk Sk1 (yk11 yk12 . . . yk1p) = y′
k1

Sk2 (yk21 yk22 . . . yk2p) = y′
k2

...
...

...
...

Skn (ykn1 ykn2 . . . yknp) = y′
kn

1, 2, . . . , p. With factors A and B fixed and subjects random, the univariate ANOVA
is given in Table 6.10.

However, our initial reaction would be to rule out the univariate ANOVA because
the y’s in each row are correlated and the assumption of independence is critical,
as noted in Section 6.7. We will discuss below some assumptions under which the
univariate analysis would be appropriate.

In the multivariate approach, the p responses yi j1, yi j2, . . . , yi jp (repeated mea-
sures) for subject Si j constitute a vector yi j , as shown in Table 6.9. The multivariate
model for yi j is a simple one-way MANOVA model,

yi j = � + �i + �i j , (6.86)

Table 6.10. Univariate ANOVA for Data Layout in Table 6.9

Source df MS F

B (between) k − 1 MSB MSB/MSS
S (subjects) k(n − 1) MSS
A (within or repeated) p − 1 MSA MSA/MSE
B A (k − 1)(p − 1) MSBA MSBA/MSE
Error (S A interaction) k(n − 1)(p − 1) MSE
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where �i is a vector of p main effects (corresponding to the p variables in yi j ) for
factor B, and �i j is an error vector for subject Si j . This model seems to include
only factor B, but we show in Section 6.9.3 how to use an approach similar to pro-
file analysis in Section 6.8 to obtain tests on factor A and the B A interaction. The
MANOVA assumption that cov(yi j ) = � for all i and j allows the p repeated mea-
sures to be correlated in any pattern, since � is completely general. On the other
hand, the ANOVA assumptions of independence and homogeneity of variances can
be expressed as cov(yi j ) = σ 2I. We would be very surprised if repeated measure-
ments on the same subject were independent.

The univariate ANOVA approach has been found to be appropriate under less
stringent conditions than � = σ 2I. Wilks (1946) showed that the ordinary F-tests of
ANOVA remain valid for a covariance structure of the form

cov(yi j ) = � = σ 2




1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ
...

...
...

...

ρ ρ ρ · · · 1




= σ 2[(1 − ρ)I + ρJ], (6.87)

where J is a square matrix of 1’s, as defined in (2.12) [see Rencher (2000, pp. 150–
151)]. The covariance pattern (6.87) is variously known as uniformity, compound
symmetry, or the intraclass correlation model. It allows for the variables to be corre-
lated but restricts every variable to have the same variance and every pair of variables
to have the same covariance. In a carefully designed experiment with appropriate
randomization, this assumption may hold under the hypothesis of no A effect. Alter-
natively, we could use a test of the hypothesis that � has the pattern (6.87) (see Sec-
tion 7.2.3). If this hypothesis is accepted, one could proceed with the usual ANOVA
F-tests.

Bock (1963) and Huynh and Feldt (1970) showed that the most general condition
under which univariate F-tests remain valid is that

C�C′ = σ 2I, (6.88)

where C is a (p − 1)× p matrix whose rows are orthonormal contrasts (orthogonal
contrasts that have been normalized to unit length). We can construct C by choosing
any p − 1 orthogonal contrasts among the means µ1, µ2, . . . , µp of the repeated

measures factor and dividing each contrast
∑p

r=1 crµr by
√∑p

r=1 c2
r . (This matrix

C is different from C used in Section 6.8 and in the remainder of Section 6.9, whose
rows are contrasts that are not normalized to unit length.) It can be shown that (6.87)
is a special case of (6.88). The condition (6.88) is sometimes referred to as sphericity,
although this term can also refer to the covariance pattern � = σ 2I on the untrans-
formed yi j (see Section 7.2.2).
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A simple way to test the hypothesis that (6.88) holds is to transform the data by
zi j = Cyi j and test H0 : �z = σ 2I, as in Section 7.2.2, using CSplC′ in place of
Sp1 = E/νE .

Thus one procedure for repeated measures designs is to make a preliminary test
for (6.87) or (6.88) and, if the hypothesis is accepted, use univariate F-tests, as in
Table 6.10. Fehlberg (1980) investigated the use of larger α-values with a preliminary
test of structure of the covariance matrix, as in (6.88). He concludes that using α =
.40 sufficiently controls the problem of falsely accepting sphericity so as to justify
the use of a preliminary test.

If the univariate test for the repeated measures factor A is appropriate, it is more
powerful because it has more degrees of freedom for error than the corresponding
multivariate test. However, even mild departures from (6.88) seriously inflate the
Type I error rate of the univariate test for factor A (Box 1954; Davidson 1972; Boik
1981). Because such departures can be easily missed in a preliminary test, Boik
(1981) concludes that “on the whole, the ordinary F tests have nothing to recommend
them” (p. 248) and emphasized that “there is no justification for employing ordinary
univariate F tests for repeated measures treatment contrasts” (p. 254).

Another approach to analysis of repeated measures designs is to adjust the univari-
ate F-test for the amount of departure from sphericity. Box (1954) and Greenhouse
and Geisser (1959) showed that when � 	= σ 2I, an approximate F-test for effects
involving the repeated measures is obtained by reducing the degrees of freedom for
both numerator and denominator by a factor of

ε = [tr(� − J�/p)]2

(p − 1) tr(� − J�/p)2
, (6.89)

where J is a p × p matrix of 1’s defined in (2.12). For example, in Table 6.10 the
F-value for the B A interaction would be compared to Fα with ε(k − 1)(p − 1) and
εk(n − 1)(p − 1) degrees of freedom. An estimate ε̂ can be obtained by substituting
�̂ = E/νE in (6.89). Greenhouse and Geisser (1959) showed that ε and ε̂ vary
between 1/(p − 1) and 1, with ε = 1 when sphericity holds and ε ≥ 1/(p − 1)
for other values of �. Thus ε is a measure of nonsphericity. For a conservative test,
Greenhouse and Geisser recommend dividing numerator and denominator degrees
of freedom by p − 1. Huynh and Feldt (1976) provided an improved estimator of ε.

The behavior of the approximate univariate F-test with degrees of freedom
adjusted by ε̂ has been investigated by Collier et al. (1967), Huynh (1978), Davidson
(1972), Rogan, Keselman, and Mendoza (1979), and Maxwell and Avery (1982). In
these studies, the true α-level turned out to be close to the nominal α, and the power
was close to that of the multivariate test. However, since the ε-adjusted F-test is
only approximate and has no power advantage over the exact multivariate test, there
appears to be no compelling reason to use it. The only case in which we need to fall
back on a univariate test is when there are insufficient degrees of freedom to perform
a multivariate test, that is, when p > νE .

In Sections 6.9.2–6.9.6, we discuss the multivariate approach to repeated mea-
sures. We will cover several models, beginning with the simple one-sample design.
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6.9.2 One-Sample Repeated Measures Model

We illustrate some of the procedures in this section with p = 4. A one-sample
design with four repeated measures on n subjects would appear as in Table 6.11.
There is a superficial resemblance to a univariate randomized block design. How-
ever, in the repeated measures design, the observations yi1, yi2, yi3, and yi4 are cor-
related because they are measured on the same subject (experimental unit), whereas
in a randomized block design yi1, yi2, yi3, and yi4 would be measured on four dif-
ferent experimental units. Thus we have a single sample of n observation vectors
y1, y2, . . . , yn .

To test for significance of factor A, we compare the means of the four variables
in yi ,

E(yi ) = � =



µ1
µ2
µ3
µ4


 .

The hypothesis is H0 : µ1 = µ2 = µ3 = µ4, which can be reexpressed as H0 : µ1 −
µ2 = µ2 − µ3 = µ3 − µ4 = 0 or C1� = 0, where

C1 =

 1 −1 0 0

0 1 −1 0
0 0 1 −1


 .

To test H0 : C1� = 0 for a general value of p (p repeated measures on n subjects),
we calculate y and S from y1, y2, . . . , yn and extend C1 to p − 1 rows. Then when
H0 is true, C1y is Np−1(0,C1�C′

1/n), and

T 2 = n(C1y)′(C1SC′
1)

−1(C1y) (6.90)

is distributed as T 2
p−1,n−1. We reject H0 : C1� = 0 if T 2 ≥ T 2

α,p−1,n−1. Note that
the dimension is p − 1 because C1y is (p − 1)× 1 [see (5.33)].

The multivariate approach involving transformed observations zi = C1yi was
first suggested by Hsu (1938) and has been discussed further by Williams (1970)

Table 6.11. Data Layout for a Single-Sample Repeated
Measures Design

Factor A (Repeated Measures)

Subjects A1 A2 A3 A4

S1 (y11 y12 y13 y14) = y′
1

S2 (y21 y22 y23 y24) = y′
2

...
...

...
...

...
...

Sn (yn1 yn2 yn3 yn4) = y′
n
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and Morrison (1972). Note that in C1y (for p = 4), we work with contrasts on the
elements y1, y2, y3, and y4 within the vector

y =




y1
y2
y3
y4


 ,

as opposed to the contrasts involving comparisons of several mean vectors them-
selves, as, for example, in Section 6.3.2.

The hypothesis H0 : µ1 = µ2 = µ3 = µ4 can also be expressed as H0 : µ1 −
µ4 = µ2 − µ4 = µ3 − µ4 = 0, or C2� = 0, where

C2 =

 1 0 0 −1

0 1 0 −1
0 0 1 −1


 .

The matrix C1 can be obtained from C2 by simple row operations, for example,
subtracting the second row from the first and the third row from the second. Hence,
C1 = AC2, where

A =

 1 −1 0

0 1 −1
0 0 1


 .

In fact, H0 : µ1 = µ2 = · · · = µp can be expressed as C� = 0 for any full-rank
(p − 1) × p matrix C such that Cj = 0, and the same value of T 2 in (6.90) will
result. The contrasts in C can be either linearly independent or orthogonal.

The hypothesis H0 : µ1 = µ2 = · · · = µp = µ, say, can also be expressed as

H0 : � = µj,

where j = (1, 1, . . . , 1)′. The maximum likelihood estimate of µ is

µ̂ = y′S−1j

j′S−1j
. (6.91)

The likelihood ratio test of H0 is a function of

y′S−1y − (y′S−1j)2

j′S−1j
.

Williams (1970) showed that for any (p − 1)× p matrix C of rank p − 1 such that
Cj = 0,
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y′S−1y − (y′S−1j)2

j′S−1j
= (Cy)′(CSC′)−1(Cy),

and thus the T 2-test in (6.90) is equivalent to the likelihood ratio test.

Example 6.9.2. The data in Table 6.12 were given by Cochran and Cox (1957,
p. 130). As rearranged by Timm (1980), the observations constitute a one-sample
repeated measures design with two within-subjects factors. Factor A is a comparison
of two tasks; factor B is a comparison of two types of calculators. The measurements
are speed of calculation.

To test the hypothesis H0 : µ1 = µ2 = µ3 = µ4, we use the contrast matrix

C =

 1 1 −1 −1

1 −1 1 −1
1 −1 −1 1


 ,

where the first row compares the two levels of A, the second row compares the two
levels of B, and the third row corresponds to the AB interaction. From the five obser-
vation vectors in Table 6.12, we obtain

y =




23.2
15.6
20.0
11.6


 , S =




51.7 29.8 9.2 7.4
29.8 46.8 16.2 −8.7
9.2 16.2 8.5 −10.5
7.4 −8.7 −10.5 24.3


 .

For the overall test of equality of means, we have, by (6.90),

T 2 = n(Cy)′(CSC′)−1(Cy) = 29.736 < T 2
.05,3,4 = 114.986.

Since the T 2-test is not significant, we would ordinarily not proceed with tests based
on the individual rows of C. We will do so, however, for illustrative purposes. (Note
that the T 2-test has very low power in this case, because n − 1 = 4 is very small.)

To test A, B, and AB, we test each row of C, where T 2 = n(c′
i y)

′(c′
i Sci )

−1c′
i y is

the square of the t-statistic

Table 6.12. Calculator Speed Data

A1 A2

Subjects B1 B2 B1 B2

S1 30 21 21 14
S2 22 13 22 5
S3 29 13 18 17
S4 12 7 16 14
S5 23 24 23 8
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ti =
√

nc′
i y√

c′
i Sci

, i = 1, 2, 3,

where c′
i is the i th row of C.

The three results are as follows:

Factor A : t1 = 1.459 < t.025,4 = 2.776,

Factor B : t2 = 5.247 > t.005,4 = 4.604,

Interaction AB : t3 = −.152.

Thus only the main effect for B is significant. Note that in all but one case in Table
6.12, the value for B1 is greater than that for B2.

6.9.3 k-Sample Repeated Measures Model

We turn now to the k-sample repeated measures design depicted in Table 6.9. As
noted in Section 6.9.1, the multivariate approach to this repeated measures design
uses the one-way MANOVA model yi j = � + �i + �i j = �i + �i j . From the k
groups of n observation vectors each, we calculate y1., y2., . . . , yk. and the error
matrix E.

The layout in Table 6.9 is similar to that of a k-sample profile analysis in Sec-
tion 6.8. To test (the within-subjects) factor A, we need to compare the means of
the variables y1, y2, . . . , yp within y averaged across the levels of factor B. The p
variables correspond to the levels of factor A. In the model yi j = �i + �i j , the mean
vectors �1, �2, . . . ,�k correspond to the levels of factor B and are estimated by y1.,
y2., . . . , yk.. To compare the means of y1, y2, . . . , yp averaged across the levels of
B, we use �. = ∑k

i=1 �i/k, which is estimated by y.. =
∑k

i=1 yi./k. The hypothe-
sis H0 : µ.1 = µ.2 = · · · = µ.p comparing the means of y1, y2, . . . , yp (for factor
A) can be expressed using contrasts:

H0 : C�. = 0, (6.92)

where C is any (p − 1)× p full-rank contrast matrix with Cj = 0. This is equivalent
to the “flatness” test of profile analysis, the third test in Section 6.8. Under H0, the
vector Cy.. is distributed as Np−1(0,C�C′/N ), where N = ∑

i ni for an unbalanced
design and N = kn in the balanced case. We can, therefore, test H0 with

T 2 = N (Cy..)
′(CSplC′)−1(Cy..), (6.93)

where Spl = E/νE . The T 2-statistic in (6.93) is distributed as T 2
p−1,νE

when H0 is
true, where νE = N − k [see (6.84) and the comments following]. Note that the
dimension of T 2 is p − 1 because Cy.. is (p − 1)× 1.
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For the grouping or between-subjects factor B, we wish to compare the means for
the k levels of B. The mean response for the i th level of B (averaged over the levels
of A) is

∑p
r=1 µir/p = j′�i/p. The hypothesis can be expressed as

H0 : j′�1 = j′�2 = · · · = j′�k, (6.94)

which is analogous to (6.80), the “levels” hypothesis in profile analysis. This is easily
tested by calculating a univariate F-statistic for a one-way ANOVA on zi j = j′yi j ,
i = 1, 2, . . . , k; j = 1, 2, . . . , ni . There is a zi j corresponding to each subject, Si j .
The observation vector for each subject is thus reduced to a single scalar observation,
and we have a one-way ANOVA comparing the means j′y1., j′y2., . . . , j′yk.. (Note
that j′yi./p is an average over the p levels of A.)

The AB interaction hypothesis is equivalent to the parallelism hypothesis in pro-
file analysis [see (6.78)],

H0 : C�1 = C�2 = · · · = C�k . (6.95)

In other words, differences or contrasts among the levels of factor A are the same
across all levels of factor B. This is easily tested by performing a one-way MANOVA
on zi j = Cyi j or directly by

� = |CEC′|
|C(E + H)C′| (6.96)

[see (6.78)], which is distributed as �p−1,νH ,νE , with νH = k − 1 and νE = N − k;
that is, νE = ∑

i (ni −1) for the unbalanced model or νE = k(n −1) in the balanced
model.

6.9.4 Computation of Repeated Measures Tests

Some statistical software packages have automated repeated measures procedures
that are easily implemented. However, if one is unsure as to how the resulting tests
correspond to the tests in Section 6.9.3, there are two ways to obtain the tests directly.
One approach is to calculate (6.93) and (6.96) outright using a matrix manipula-
tion routine. We would need to have available the E and H matrices of a one-way
MANOVA using a data layout as in Table 6.9.

The second approach uses simple data transformations available in virtually all
programs. To test (6.92) for factor A, we would transform each yi j to zi j = Cyi j by
using the rows of C. For example, if

C =

 1 −1 0 0

0 1 −1 0
0 0 1 −1


 ,
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then each y′ = (y1, y2, y3, y4) becomes z′ = (y1 − y2, y2 − y3, y3 − y4). We then
test H0 : �z = 0 using a one-sample T 2 on all N of the zi j ’s,

T 2 = Nz′S−1
z z,

where N = ∑
i ni , z = ∑

i j zi j/N , and Sz = Ez/νE is the pooled covariance matrix.

Reject H0 if T 2 ≥ T 2
α,p−1,νE

.
To test (6.94) for factor B, we sum the components of each observation vector to

obtain zi j = j′yi j = yi j1 + yi j2 + · · · + yi jp and compare the means z1., z2., . . . , zk.

by an F-test, as in one-way ANOVA.
To test the interaction hypothesis (6.95), we transform each yi j to zi j = Cyi j

using the rows of C, as before. Note that zi j is (p − 1) × 1. We then do a one-way
MANOVA on zi j to obtain

� = |Ez |
|Ez + Hz| . (6.97)

6.9.5 Repeated Measures with Two Within-Subjects Factors and One
Between-Subjects Factor

The repeated measures model with two within-subjects factors A and B and one
between-subjects factor C corresponds to a one-way MANOVA design in which each
observation vector includes measurements on a two-way factorial arrangement of
treatments. Thus each subject receives all treatment combinations of the two factors
A and B. As usual, the sequence of administration of treatment combinations should
be randomized for each subject. A design of this type is illustrated in Table 6.13.

Each yi j in Table 6.13 has nine elements, consisting of responses to the nine treat-
ment combinations A1 B1, A1 B2, . . . , A3 B3. We are interested in the same hypothe-
ses as in a univariate split-plot design, but we use a multivariate approach to allow
for correlated y’s. The model for the observation vectors is the one-way MANOVA
model

yi j = � + �i + �i j = �i + �i j ,

where �i is the C effect.
To test factors A, B, and AB in Table 6.13, we use contrasts in the y’s. As an

example of contrast matrices, consider

A =
(

2 2 2 −1 −1 −1 −1 −1 −1
0 0 0 1 1 1 −1 −1 −1

)
, (6.98)

B =
(

2 −1 −1 2 −1 −1 2 −1 −1
0 1 −1 0 1 −1 0 1 −1

)
, (6.99)
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Table 6.13. Data Layout for Repeated Measures with Two Within-Subjects Factors and
One Between-Subjects Factor

Between
Within-Subjects Factors

Subjects A1 A2 A3

Factor Subjects B1 B2 B3 B1 B2 B3 B1 B2 B3

C1 S11 (y111 y112 y113 y114 y115 y116 y117 y118 y119) = y′
11

S12 y′
12

.

..
.
..

S1n1 y′
1n1

C2 S21 y′
21

S22 y′
22

.

..
.
..

S2n2 y′
2n2

C3 S31 y′
31

S32 y′
32

.

..
.
..

S3n3 y′
3n3

G =




4 −2 −2 −2 1 1 −2 1 1
0 2 −2 0 −1 1 0 −1 1
0 0 0 2 −1 −1 −2 1 1
0 0 0 0 1 −1 0 −1 1


 . (6.100)

The rows of A are orthogonal contrasts with two comparisons:

A1 vs. A2 and A3,

A2 vs. A3.

Similarly, B compares

B1 vs. B2 and B3,

B2 vs. B3.

Other orthogonal (or linearly independent) contrasts could be used for A and B. The
matrix G is for the AB interaction and is obtained from products of the corresponding
elements of the rows of A and the rows of B.

As before, we define y.. = ∑
i j yi j/N , Spl = E/νE , and N = ∑

i ni . If there
were k levels of C in Table 6.13 with mean vectors �1, �2, . . . ,�k , then �. =∑k

i=1 �i/k, and the A main effect corresponding to H0 : A�. = 0 could be tested
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with

T 2 = N (Ay..)
′(ASplA′)−1(Ay..), (6.101)

which is distributed as T 2
2,νE

under H0, where νE = ∑k
i=1(ni − 1). The dimension

is 2, corresponding to the two rows of A.
Similarly, to test H0 : B�. = 0 and H0 : G�. = 0 for the B main effect and the

AB interaction, respectively, we have

T 2 = N (By..)
′(BSplB′)−1(By..), (6.102)

T 2 = N (Gy..)
′(GSplG′)−1(Gy..), (6.103)

which are distributed as T 2
2,νE

and T 2
4,νE

, respectively. In general, if factor A has a
levels and factor B has b levels, then A has a − 1 rows, B has b − 1 rows, and G has
(a − 1)(b − 1) rows. The T 2-statistics are then distributed as T 2

a−1,νE
, T 2

b−1,νE
, and

T 2
(a−1)(b−1),νE

, respectively.

Factors A, B, and AB can be tested with Wilks’ � as well as T 2. Define H∗ =
Ny..y

′
.. from the partitioning

∑
i j yi j y′

i j = E + H + Ny..y
′
... This can be used to test

H0 : �. = 0 (not usually a hypothesis of interest) by means of

� = |E|
|E + H∗| , (6.104)

which is �p,1,νE if H0 is true. Then the hypothesis of interest, H0 : A�. = 0 for
factor A, can be tested with

� = |AEA′|
|A(E + H∗)A′| , (6.105)

which is distributed as�a−1,1,νE when H0 is true, where a is the number of levels of
factor A. There are similar expressions for testing factors B and AB. Note that the
dimension of � in (6.105) is a − 1, because AEA′ is (a − 1)× (a − 1).

The T 2 and Wilks � expressions in (6.101) and (6.105) are related by

� = νE

νE + T 2
, (6.106)

T 2 = νE
1 −�

�
. (6.107)

We can establish (6.106) as follows. By (6.28),

U (s) =
s∑

i=1

λi = tr[(AEA′)−1(AH∗A′)]



216 MULTIVARIATE ANALYSIS OF VARIANCE

= tr[(AEA′)−1ANy..y
′
..A

′]
= N tr[(AEA′)−1Ay..(Ay..)

′]
= N tr[(Ay..)

′(AEA′)−1Ay..]
= N

νE
(Ay..)

′(ASplA′)−1Ay..

= T 2

νE
.

Since rank (H∗) = 1, only λ1 is nonzero, and

U (1) =
s∑

i=1

λi = λ1.

By (6.14),

� = 1

1 + λ1
= 1

1 + U (1)
= 1

1 + T 2/νE
,

which is the same as (6.106).
Factor C is tested exactly as factor B in Section 6.9.3. The hypothesis is

H0 : j′�1 = j′�2 = · · · = j′�k,

as in (6.94), and we perform a univariate F-test on zi j = j′yi j in a one-way ANOVA
layout.

The AC , BC , and ABC interactions are tested as follows.

AC Interaction
The AC interaction hypothesis is

H0 : A�1 = A�2 = · · · = A�k,

which states that contrasts in factor A are the same across all levels of factor C . This
can be tested by

� = |AEA′|
|A(E + H)A′| , (6.108)

which is distributed as �2,νH ,νE , where a − 1 = 2 is the number of rows of A and
νH and νE are from the multivariate one-way model. Alternatively, the test can be
carried out by transforming yi j to zi j = Ayi j and doing a one-way MANOVA on zi j .
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BC Interaction
The BC interaction hypothesis,

H0 : B�1 = B�2 = · · · = B�k,

is tested by

� = |BEB′|
|B(E + H)B′| ,

which is �2,νH ,νE , where b − 1 = 2; H0 can also be tested by doing MANOVA on
zi j = Byi j .

ABC Interaction
The ABC interaction hypothesis,

H0 : G�1 = G�2 = · · · = G�k,

is tested by

� = |GEG′|
|G(E + H)G′| ,

which is �4,νH ,νE , or by doing MANOVA on zi j = Gyi j . In this case the dimension
is (a − 1)(b − 1) = 4.

The preceding tests for AC , BC , or ABC can be also carried out with the other
three MANOVA test statistics using eigenvalues of the appropriate matrices. For
example, for AC we would use (AEA′)−1(AHA′).

Example 6.9.5. The data in Table 6.14 represent a repeated measures design with
two within-subjects factors and one between-subjects factor (Timm 1980). Since A
and B have three levels each, as in the illustration in this section, we will use the A,
B, and G matrices in (6.98), (6.99), and (6.100). The E and H matrices are 9 × 9 and
will not be shown. The overall mean vector is given by

y′
.. = (46.45, 39.25, 31.70, 38.85, 45.40, 40.15, 34.55, 36.90, 39.15).

By (6.101), the test for factor A is

T 2 = N (Ay..)
′(ASplA′)−1(Ay..)

= 20(−.20, 13.80)

(
2138.4 138.6
138.6 450.4

)−1 ( −.20
13.80

)

= 8.645 > T 2
.05,2,18 = 7.606.
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Table 6.14. Data from a Repeated Measures Experiment with Two Within-Subjects
Factors and One Between-Subjects Factor

Between
Within-Subjects Factors

Subjects A1 A2 A3

Factor Subjects B1 B2 B3 B1 B2 B3 B1 B2 B3

C1 S11 20 21 21 32 42 37 32 32 32
S12 67 48 29 43 56 48 39 40 41
S13 37 31 25 27 28 30 31 33 34
S14 42 40 38 37 36 28 19 27 35
S15 57 45 32 27 21 25 30 29 29
S16 39 39 38 46 54 43 31 29 28
S17 43 32 20 33 46 44 42 37 31
S18 35 34 34 39 43 39 35 39 42
S19 41 32 23 37 51 39 27 28 30

S1,10 39 32 24 30 35 31 26 29 32

C2 S21 47 36 25 31 36 29 21 24 27
S22 53 43 32 40 48 47 46 50 54
S23 38 35 33 38 42 45 48 48 49
S24 60 51 41 54 67 60 53 52 50
S25 37 36 35 40 45 40 34 40 46
S26 59 48 37 45 52 44 36 44 52
S27 67 50 33 47 61 46 31 41 50
S28 43 35 27 32 36 35 33 33 32
S29 64 59 53 58 62 51 40 42 43

S2,10 41 38 34 41 47 42 37 41 46

For factor B, we use (6.102) to obtain

T 2 = N (By..)
′(BSplB′)−1(By..)

= 20(7.15, 10.55)

(
305.7 94.0
94.0 69.8

)−1 ( 7.15
10.55

)

= 37.438 > T 2
.01,2,18 = 12.943.

By (6.103), the test for the AB interaction is given by

T 2 = N (Gy..)
′(GSplG′)−1(Gy..)

= 61.825 > T 2
.01,4,18 = 23.487.

To test factor C , we carry out a one-way ANOVA on zi j = j′yi j/9:
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Source Sum of Squares df Mean Square F

Between 3042.22 1 3042.22 8.54
Error 6408.98 18 356.05

The observed F , 8.54, has a p-value of .0091 and is therefore significant.
The AC interaction is tested by (6.108) as

� = |AEA′|
|A(E + H)A′| = 3.058 × 108

3.092 × 108

= .9889 > �.05,2,1,18 = .703.

For the BC interaction, we have

� = |BEB′|
|B(E + H)B′| = 4.053 × 106

4.170 × 106

= .9718 > �.05,2,1,18 = .703.

For ABC , we obtain

� = |GEG′|
|G(E + H)G′| = 2.643 × 1012

2.927 × 1012

= .9029 > �.05,4,1,18 = .551.

In summary, factors A, B, and C and the AB interaction are significant.

6.9.6 Repeated Measures with Two Within-Subjects Factors
and Two Between-Subjects Factors

In this section we consider a balanced two-way MANOVA design in which each
observation vector arises from a two-way factorial arrangement of treatments. This
is illustrated in Table 6.15 for a balanced design with three levels of all factors. Each
yi jk has nine elements, consisting of responses to the nine treatment combinations
A1 B1, A1 B2, . . . , A3 B3 (see Table 6.13).

To test A, B, and AB, we can use the same contrast matrices A, B, and G as
in (6.98)–(6.100). We define a grand mean vector y... = ∑

i jk yi jk/N , where N is
the total number of observation vectors; in this illustration, N = 27. In general,
N = cdn, where c and d are the number of levels of factors C and D and n is the
number of replications in each cell (in the illustration, n = 3). The test statistics for
A, B, and AB are as follows, where Spl = E/νE and the E matrix is obtained from
the two-way MANOVA with νE = cd(n − 1) degrees of freedom.
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Table 6.15. Data Layout for Repeated Measures with Two Within-Subjects Factors and
Two Between-Subjects Factors

Between-Subjects
Within-Subjects Factors

Factors A1 A2 A3

C D Subject B1 B2 B3 B1 B2 B3 B1 B2 B3

C1 D1 S111 y′
111

S112 y′
112

S113 y′
113

D2 S121 y′
121

S122 y′
122

S123 y′
123

D3 S131 y′
131

S132 y′
132

S133 y′
133

C2 D1 S211 y′
211

S212 y′
212

S213 y′
213

D2 S221 y′
221

D3

...
...

C3 D1

..

.
..
.

D2

...
...

D3 S333 y′
333

Factor A

T 2 = N (Ay...)
′(ASplA′)−1(Ay...)

is distributed as T 2
a−1,νE

.

Factor B

T 2 = N (By...)
′(BSplB′)−1(By...)

is distributed as T 2
b−1,νE

.

AB Interaction

T 2 = N (Gy...)
′(GSplG′)−1(Gy...)

is distributed as T 2
(a−1)(b−1),νE

.
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To test factors C , D, and C D, we transform to zi jk = j′yi jk and carry out univari-
ate F-tests on a two-way ANOVA design.

To test factors AC , AD, and AC D, we perform a two-way MANOVA on Ayi jk .
Then, the C main effect on Ayi jk compares the levels of C on Ayi jk , which is an
effective description of the AC interaction. Similarly, the D main effect on Ayi jk
yields the AD interaction, and the C D interaction on Ayi jk gives the AC D interac-
tion.

To test factors BC , B D, and BC D, we carry out a two-way MANOVA on Byi jk .
The C main effect on Byi jk gives the BC interaction, the D main effect on Byi jk
yields the B D interaction, and the C D interaction on Byi jk corresponds to the BC D
interaction.

Finally, to test factors ABC , AB D, and ABC D, we perform a two-way MANOVA
on Gyi jk . Then the C main effect on Gyi jk gives the ABC interaction, the D main
effect on Gyi jk yields the AB D interaction, and the C D interaction on Gyi jk corre-
sponds to the ABC D interaction.

6.9.7 Additional Topics

Wang (1983) and Timm (1980) give a method for obtaining univariate mixed-model
sums of squares from the multivariate E and H matrices. Crepeau et al. (1985) con-
sider repeated measures experiments with missing data. Federer (1986) discusses
the planning of repeated measures designs, emphasizing such aspects as determining
the length of treatment period, eliminating carry-over effects, the nature of pre- and
posttreatment, the nature of a response to a treatment, treatment sequences, and the
choice of a model. Vonesh (1986) discusses sample size requirements to achieve a
given power level in repeated measures designs. Patel (1986) presents a model that
accommodates both within- and between-subjects covariates in repeated measures
designs. Jensen (1982) compares the efficiency and robustness of various procedures.

A multivariate or multiresponse repeated measurement design will result if more
than one variable is measured on each subject at each treatment combination. Such
designs are discussed by Timm (1980), Reinsel (1982), Wang (1983), and Thomas
(1983). Bock (1975) refers to observations of this type as doubly multivariate data.

6.10 GROWTH CURVES

When the subject responds to a treatment or stimulus at successive time periods,
the pattern of responses is often referred to as a growth curve. As in repeated mea-
sures experiments, subjects are usually human or animal. We consider estimation
and testing hypotheses about the form of the response curve for a single sample in
Section 6.10.1 and extend to growth curves for several samples in Section 6.10.2.

6.10.1 Growth Curve for One Sample

The data layout for a single sample growth curve experiment is analogous to
Table 6.11, with the levels of factor A representing time periods. Thus we have
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a sample of n observation vectors y1, y2, . . . , yn , for which we compute y and S.
The usual approach is to approximate the shape of the growth curve by a polyno-
mial function of time. If the time points are equally spaced, we can use orthogonal
polynomials. This approach will be described first, followed by a method suitable
for unequal time intervals.

Orthogonal polynomials are special contrasts that are often used in testing for lin-
ear, quadratic, cubic, and higher order trends in quantitative factors. For a more com-
plete description and derivation see Guttman (1982, pp. 194–207), Morrison (1983,
pp. 182–188), or Rencher (2000, pp. 323–331). Here we give only a heuristic intro-
duction to the use of these contrasts.

Suppose we administer a drug to some subjects and measure a certain reaction at
3-min intervals. Let µ1, µ2, µ3, µ4, and µ5 designate the average responses at 0, 3,
6, 9, and 12 min, respectively. To test the hypothesis that there are no trends in the
µ j ’s, we could test H0 : µ1 = µ2 = · · · = µ5 or H0 : C� = 0 using the contrast
matrix

C =




−2 −1 0 1 2
2 −1 −2 −1 2

−1 2 0 −2 1
1 −4 6 −4 1


 (6.109)

in T 2 = n(Cy)′(CSC′)−1(Cy), as in (6.90). The four rows of C are orthogonal
polynomials that test for linear, quadratic, cubic, and quartic trends in the means. As
noted in Section 6.9.2 , any set of orthogonal contrasts in C will give the same value
of T 2 to test H0 : µ1 = µ2 = · · · = µ5. However, in this case we will be interested
in using a subset of the rows of C to determine the shape of the response curve.

Table A.13 (Kleinbaum, Kupper, and Muller 1988) gives orthogonal polynomials
for p = 3, 4, . . . , 10. The p − 1 entries for each value of p constitute the matrix C.
Some software programs will generate these automatically.

As with all orthogonal contrasts, the rows of C in (6.109) sum to zero and are
mutually orthogonal. It is also apparent that the coefficients in each row increase
and decrease in conformity with the desired pattern. Thus the entries in the first row,
(−2, −1, 0, 1, 2), increase steadily in a straight-line trend. The values in the second
row dip down and back up in a quadratic-type bend. The third-row entries increase,
decrease, then increase in a cubic pattern with two bends. The fourth row bends three
times in a quartic curve.

To further illustrate how the orthogonal polynomials pinpoint trends in the
means when testing H0 : C� = 0, consider the three different patterns for �
depicted in Figure 6.4, where �′

a = (8, 8, 8, 8, 8), �′
b = (20, 16, 12, 8, 4), and

�′
c = (5, 12, 15, 12, 5). Let us denote the rows of C in (6.109) as c′

1, c′
2, c′

3, and c′
4.

It is clear that c′
i �a = 0 for i = 1, 2, 3, 4; that is, when H0 : µ1 = · · · = µ5 is true,

all four comparisons confirm it. If � has the pattern �b, only c′
1�b is nonzero. The

other rows are not sensitive to a linear pattern. We illustrate this for c′
1 and c′

2:

c′
1�b = (−2)(20)+ (−1)(16)+ (0)(12)+ (1)(8)+ (2)(4) = −44,

c′
2�b = 2(20)− 16 − 2(12)− 8 + 2(4) = 0.
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Figure 6.4. Three different patterns for �.

For �c, only c′
2�c is nonzero. For example,

c′
1�c = −2(5)− 12 + 12 + 2(5) = 0,

c′
2�c = 2(5)− 12 − 2(15)− 12 + 2(5) = −19.

Thus each orthogonal polynomial independently detects the type of curvature it is
designed for and ignores other types. Of course real curves generally exhibit a mix-
ture of more than one type of curvature, and in practice more than one orthogonal
polynomial contrast may be significant.

To test hypotheses about the shape of the curve, we therefore use the appropriate
rows of C in (6.109). Suppose we suspected a priori that there would be a combined
linear and quadratic trend. Then we would partition C as follows:

C1 =
( −2 −1 0 1 2

2 −1 −2 −1 2

)
,

C2 =
( −1 2 0 −2 1

1 −4 6 −4 1

)
.

We would test H0 : C1� = 0 by

T 2 = n(C1y)′(C1SC′
1)

−1(C1y),

which is distributed as T 2
2,n−1, where 2 is the number of rows of C1, n is the number

of subjects in the sample, and y and S are the mean vector and covariance matrix for
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the sample. Similarly, H0 : C2� = 0 is tested by

T 2 = n(C2y)′(C2SC′
2)

−1(C2y),

which is T 2
2,n−1. In this case we might expect the first to reject H0 and the second to

accept H0.
If we have no a priori expectations as to the shape of the curve, we could proceed

as follows. Test the overall hypothesis H0 : C� = 0, and if H0 is rejected, use each
of the rows of C separately to test H0 : c′

i � = 0, i = 1, 2, 3, 4. The respective test
statistics are

T 2 = n(Cy)′(CSC′)−1(Cy),

which is T 2
4,n−1, and

ti = c′
i y√

c′
i Sci/n

, i = 1, 2, 3, 4,

each of which is distributed as tn−1 (see Example 6.9.2).
In a case where p is large so that � has a large number of levels, say 10 or more,

we would likely want to stop testing after the first four or five rows of C and test
the remaining rows in one group. However, for larger values of p, most tables of
orthogonal polynomials give only the first few rows and omit those corresponding
to higher degrees of curvature. We can find a matrix whose rows are orthogonal
to the rows of a given matrix as follows. Suppose p = 11 so that C is 10 × 11
and C1 contains the first five orthogonal polynomials. Then a matrix C2, with rows
orthogonal to those of C1, can be obtained by selecting five linearly independent
rows of

B = I − C′
1(C1C′

1)
−1C1, (6.110)

whose rows can easily be shown to be orthogonal to those of C1. The matrix B
is not full rank, and some care must be exercised in choosing linearly independent
rows. However, if an incorrect choice of C2 is made, the computer algorithm should
indicate this as it attempts to invert C2SC′

2 in T 2 = n(C2y)′(C2SC′
2)

−1(C2y).
Alternatively, to check for significant curvature beyond the rows of C1 without

finding C2, we can use the test for additional information in a subset of variables in
Section 5.8. We need not find C2 in order to find the overall T 2, since, as noted in
Section 6.9.2 , any full rank (p − 1) × p matrix C such that Cj = 0 will give the
same value in the overall T 2-test of H0 : C� = 0. We can conveniently use a simple
contrast matrix such as

C =




1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...

0 0 0 · · · −1


 .
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in

T 2 = n(Cy)′(CSC′)−1(Cy), (6.111)

which is T 2
p−1,n−1. Let p1 be the number of orthogonal polynomials in C1 and p2 be

the number of rows of C2 if it were available; that is p1 + p2 = p − 1. Then the test
statistic for the p1 orthogonal polynomials in C1 is

T 2
1 = n(C1y)′(C1SC′

1)
−1(C1y), (6.112)

which is T 2
p1,n−1. We wish to compare T 2

1 in (6.112) to T 2 in (6.111) to check for
significant curvature beyond the rows of C1. However, the test for additional infor-
mation in a subset of variables in Section 5.8 was for the two-sample case. We can
adapt (5.29) for use with the one-sample case, as follows. The test for significance
of any curvature remaining after that accounted for in C1 is made by comparing

(n − p1 − 1)
T 2 − T 2

1

n − 1 + T 2
1

with the critical value T 2
α,p2,n−p1−1.

We now describe an approach that can be used when the time points are not
equally spaced. It may also be of interest in the equal-time-increment case because
it provides an estimate of the response function.

Suppose we observe the response of the subject at p time points t1, t2, . . . , tp and
that the average response µ at any time point t is a polynomial in t of degree k < p:

µ = β0 + β1t + β2t2 + · · · + βk tk .

This holds for each point tr and the corresponding average response µr . Thus our
hypothesis becomes

H0 :



µ1
µ2
...

µp




=
=

=



β0 + β1t1 + β2t2

1 + · · · + βk tk
1

β0 + β1t2 + β2t2
2 + · · · + βk tk

2
...

β0 + β1tp + β2t2
p + · · · + βk tk

p


 , (6.113)

which can be expressed in matrix notation as

H0 : � = A�, (6.114)

where
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A =




1 t1 t2
1 · · · tk

1

1 t2 t2
2 · · · tk

2
...

...
...

...

1 tp t2
p · · · tk

p


 and � =



β0
β1
...

βk


 .

In practice, it may be useful to transform the tr ’s by subtracting the mean or the
smallest value in order to reduce their size for computational purposes.

The following method of testing H0 is due to Rao (1959, 1973). The model � =
A� is similar to a regression model E(y) = X� (see Section 10.2.1). However,
in this case, we have cov(y) = � rather than σ 2I, as in the standard regression
assumption. In place of the usual regression approach of seeking �̂ to minimize
SSE = (y−X�̂)′(y−X�̂) [see (10.4) and (10.6)], we use a standardized distance as
in (3.80), (y − A�̂)′S−1(y − A�̂). The value of �̂ that minimizes (y − A�̂)′S−1(y −
A�̂) is

�̂ = (A′S−1A)−1A′S−1y (6.115)

[see Rencher (2000, Section 7.8.1)], and H0 : � = A� can be tested by

T 2 = n(y − A�̂)′S−1(y − A�̂), (6.116)

which is distributed as T 2
p−k−1,n−1. The dimension of T 2 is reduced from p to p −

k −1 because k +1 parameters have been estimated in �̂. The T 2-statistic in (6.116)
is usually given in the equivalent form

T 2 = n(y′S−1y − y′S−1A�̂). (6.117)

The mean response at the r th time point,

µr = β0 + β1tr + β2t2
r + · · · + βk tk

r

= (1, tr , t2
r , . . . , tk

r )� = a′
r �,

can be estimated by

µ̂r = a′
r �̂. (6.118)

Simultaneous confidence intervals for all possible a′� are given by

a′�̂ ± Tα√
n

√
a′(A′S−1A)−1a

(
1 + T 2

n − 1

)
, (6.119)

where Tα =
√

T 2
α,k+1,n−1 is from Table A.7 and T 2 is given by (6.116) or (6.117).
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The intervals in (6.119) for a′� include, of course, a′
r � for the p rows of A, that

is, confidence intervals for the p time points. If a′
r �, r = 1, 2, . . . , p, are the only

values of interest, we can shorten the intervals in (6.119) by using a Bonferroni coef-
ficient tα/2p in place of Tα:

a′
r �̂ ± tα/2p√

n

√
a′

r (A′S−1A)−1ar

(
1 + T 2

n − 1

)
, (6.120)

where tα/2p = tα/2p,n−1. Bonferroni critical values tα/2p,ν are given in Table A.8.
See procedures 2 and 3 in Section 5.5 for additional comments on the use of tα/2p

and Tα .

Example 6.10.1. Potthoff and Roy (1964) reported measurements in a dental study
on boys and girls from ages 8 to 14. The data are given in Table 6.16.

To illustrate the methods of this section, we use the data for the boys alone. In
Example 6.10.2 we will compare the growth curves of the boys with those of the
girls. We first test the overall hypothesis H0 : C� = 0, where C contains orthogonal
polynomials for linear, quadratic, and cubic effects:

C =

 −3 −1 1 3

1 −1 −1 1
−1 3 −3 1


 . (6.121)

Table 6.16. Dental Measurements

Girls’ Ages in Years Boys’ Ages in Years

Subject 8 10 12 14 Subject 8 10 12 14

1 21.0 20.0 21.5 23.0 1 26.0 25.0 29.0 31.0
2 21.0 21.5 24.0 25.5 2 21.5 22.5 23.0 26.5
3 20.5 24.0 24.5 26.0 3 23.0 22.5 24.0 27.5
4 23.5 24.5 25.0 26.5 4 25.5 27.5 26.5 27.0
5 21.5 23.0 22.5 23.5 5 20.0 23.5 22.5 26.0
6 20.0 21.0 21.0 22.5 6 24.5 25.5 27.0 28.5
7 21.5 22.5 23.0 25.0 7 22.0 22.0 24.5 26.5
8 23.0 23.0 23.5 24.0 8 24.0 21.5 24.5 25.5
9 20.0 21.0 22.0 21.5 9 23.0 20.5 31.0 26.0

10 16.5 19.0 19.0 19.5 10 27.5 28.0 31.0 31.5
11 24.5 25.0 28.0 28.0 11 23.0 23.0 23.5 25.0

12 21.5 23.5 24.0 28.0
13 17.0 24.5 26.0 29.5
14 22.5 25.5 25.5 26.0
15 23.0 24.5 26.0 30.0
16 22.0 21.5 23.5 25.0
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From the 16 observation vectors we obtain

y =




22.88
23.81
25.72
27.47


 , S =




6.02 2.29 3.63 1.61
2.29 4.56 2.19 2.81
3.63 2.19 7.03 3.24
1.61 2.81 3.24 4.35


 .

To test H0 : C� = 0, we calculate

T 2 = n(Cy)′(CSC′)−1(Cy) = 77.957,

which exceeds T 2
.01,3,15 = 19.867. We now test H0 : c′

i � = 0 for each row of C to
determine the shape of the growth curve. For the linear effect, using the first row, c′

1,
we obtain

t1 = c′
1y√

c′
1Sc1/n

= 7.722 > t.005,15 = 2.947.

The test of significance of the quadratic component using the second row yields

t2 = c′
2y√

c′
2Sc2/n

= 1.370 < t.025,15 = 2.131.

To test for a cubic trend, we use the third row of C:

t3 = c′
3y√

c′
3Sc3/n

= −.511 > −t.025,15 = −2.131.

Thus only the linear trend is needed to describe the growth curve.
To model the curve for each variable, we use (6.113),

µr = β0 + β1tr , r = 1, 2, 3, 4, or

� = A�,

where

A =




1 −3
1 −1
1 1
1 3


 , � =

(
β0
β1

)
.

The values in the second column of A are obtained as t = age − 11. By (6.115), we
obtain
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�̂ = (A′S−1A)−1A′S−1y =
(

25.002
.834

)
,

and our prediction equation is

µ̂ = 25.002 + .834t = 25.002 + .834(age − 11)

= 15.828 + .834(age).

6.10.2 Growth Curves for Several Samples

For the case of several samples or groups, the data layout would be similar to that
in Table 6.9, where the p levels of factor A represent time points. Assuming the
time points are equally spaced, we can use orthogonal polynomials in the (p − 1)×
p contrast matrix C and express the basic hypothesis in the form H0 : C�. = 0,
where �. = ∑k

i=1 �i/k. This is equivalent to H0 : µ.1 = µ.2 = · · · = µ.p, which
compares the means of the p time points averaged across groups. As in Section 6.9.3,
let us denote the sample mean vectors for the k groups as y1., y2., . . . , yk., with
grand mean y.. and pooled covariance matrix Spl = E/νE . For the overall test of
H0 : C�. = 0 we use the test statistic

T 2 = N (Cy..)
′(CSplC′)−1(Cy..), (6.122)

which is T 2
p−1,νE

as in (6.93), where N = ∑k
i=1 ni for unbalanced data or N = kn

for balanced data. The corresponding degrees of freedom for error is given by νE =
N −k or νE = k(n −1). A test that the average growth curve (averaged over groups)
has a particular form can be tested with C1, containing a subset of the rows of C:

T 2 = N (C1y..)
′(C1SplC′

1)
−1(C1y..), (6.123)

which is distributed as T 2
p1,νE

, where p1 is the number of rows in C1.
The growth curves for the k groups can be compared by the interaction or par-

allelism test of Section 6.9.3 using either C or C1. We do a one-way MANOVA on
Cyi j or C1yi j , or equivalently calculate by (6.96),

� = |CEC′|
|C(E + H)C′| or � = |C1EC′

1|
|C1(E + H)C′

1|
, (6.124)

which are distributed as �p−1,k−1,νE and �p1,k−1,νE , respectively.

Example 6.10.2. In Example 6.10.1, we found a linear trend for the growth curve
for dental measurements of boys in Table 6.16. We now consider the growth curve
for the combined group and also compare the girls’ group with the boys’ group.

The two sample sizes are unequal and we use (6.33) to calculate the E matrix for
the two groups,
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E =




135.39 67.88 97.76 67.76
67.88 103.76 72.86 82.71
97.76 72.86 161.39 103.27
67.76 82.71 103.27 124.64


 ,

from which we obtain Spl = E/νE . Using the C matrix in (6.121), we can test the
basic hypothesis of equal means for the combined samples, H0 : C�. = 0, using
(6.122):

T 2 = N (Cy..)
′(CSplC′)−1(Cy..)

= 118.322 > T 2
.01,3,25 = 15.538.

To test for a linear trend, we use the first row of C in (6.123):

T 2 = N (c′
1y..)

′(c′
1Splc1)

−1(c′
1y..)

= 99.445 > T 2
.01,1,25 = 7.770.

This is, of course, the square of a t-statistic, but in the T 2 form it can readily be
compared with the preceding T 2 using all three rows of C. The linear trend is seen
to dominate the relationship among the means.

We now compare the growth curves of the two groups using (6.124). For C, we
obtain

� = |CEC′|
|C(E + H)C′| = 1.3996 × 108

1.9025 × 108

= .736 > �.05,3,1,25 = .717.

For the linear trend, we have

� = |c′
1Ec1|

|c′
1(E + H)c1| = 1184.2

1427.9

= .829 < �.05,1,1,25 = .855.

Thus the overall comparison does not reach significance, but the more specific com-
parison of linear trends does give a significant result.

6.10.3 Additional Topics

Jackson and Bryce (1981) presented methods of analyzing growth curves based on
univariate linear models. Snee (1972) and Snee Acuff, and Gibson (1979) proposed
the use of eigenvalues and eigenvectors of a matrix derived from residuals after fitting
the model. If one of the eigenvalues is dominant, certain simplifications result. Bryce
(1980) discussed a similar simplification for the two-group case. Geisser (1980) and
Fearn (1975, 1977) gave the Bayesian approach to growth curves, including estima-
tion and prediction. Zerbe (1979a, b) provided a randomization test requiring fewer
assumptions than normal-based tests.
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6.11 TESTS ON A SUBVECTOR

6.11.1 Test for Additional Information

In Section 5.8, we considered tests of significance of the additional information in
a subvector when comparing two groups. We now extend these concepts to several
groups and use similar notation.

Let y be a p × 1 vector of measurements and x be a q × 1 vector measured
in addition to y. We are interested in determining whether x makes a significant
contribution to the test of H0 : �1 = �2 = · · · = �k above and beyond y. Another
way to phrase the question is, Can the separation of groups achieved by x be predicted
from the separation achieved by y? It is not necessary, of course, that x represent
new variables. It may be that

(y
x

)
is a partitioning of the present variables, and we

wish to know if the variables in x can be deleted because they do not contribute to
rejecting H0.

We consider here only the one-way MANOVA, but the results could be extended
to higher order designs, where various possibilities arise. In a two-way context, for
example, it may happen that x contributes nothing to the A main effect but does
contribute significantly to the B main effect.

It is assumed that we have k samples,

(
yi j

xi j

)
, i = 1, 2, . . . , k; j = 1, 2, . . . , n,

from which we calculate

E =
(

Eyy Eyx

Exy Exx

)
, H =

(
Hyy Hyx

Hxy Hxx

)
,

where E and H are (p + q)× (p + q) and Eyy and Hyy are p × p.
Then

�(y, x) = |E|
|E + H| (6.125)

is distributed as �p+q,νH ,νE and tests the significance of group separation using the
full vector

(y
x

)
. In the balanced one-way model, the degrees of freedom are νH = k−1

and νE = k(n − 1). To test group separation using the reduced vector y, we can
compute

�(y) = |Eyy|
|Eyy + Hyy| , (6.126)

which is distributed as �p,νH ,νE .
To test the hypothesis that the extra variables in x do not contribute anything

significant to separating the groups beyond the information already available in y,
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we calculate

�(x|y) = �(y, x)
�(y)

, (6.127)

which is distributed as�q,νH ,νE −p. Note that the dimension of�(x|y) is q, the num-
ber of x’s. The error degrees of freedom, νE − p, has been adjusted for the p y’s.
Thus to test for the contribution of additional variables to separation of groups, we
take the ratio of Wilks’ � for the full set of variables in (6.125) to Wilks’ � for the
reduced set in (6.126). If the addition of x makes �(y, x) sufficiently smaller than
�(y), then �(x|y) in (6.127) will be small enough to reject the hypothesis.

If we are interested in the effect of adding a single x , then q = 1, and (6.127)
becomes

�(x |y1, . . . , yp) = �(y1, . . . , yp, x)

�(y1, . . . , yp)
, (6.128)

which is distributed as�1,νH ,νE −p. In this test we are inquiring whether x reduces the
overall � by a significant amount. With a dimension of 1, the �-statistic in (6.128)
has an exact F-transformation from Table 6.1,

F = 1 −�

�

νE − p

νH
, (6.129)

which is distributed as FνH ,νE −p . The statistic (6.128) is often referred to as a partial
�-statistic; correspondingly, (6.129) is called a partial F-statistic.

In (6.128) and (6.129), we have a test of the significance of a variable in the
presence of the other variables. For a breakdown of precisely how the contribution
of a variable depends on the other variables, see Rencher (1993; 1998, Section 4.1.6).

We can rewrite (6.128) as

�(y1, . . . , yp, x) = �(x |y1, . . . , yp)�(y1, . . . , yp) ≤ �(y1, . . . , yp), (6.130)

which shows that Wilks’ � can only decrease with an additional variable.

Example 6.11.1. We use the rootstock data of Table 6.2 to illustrate tests on subvec-
tors. From Example 6.1.7, we have, for all four variables,�(y1, y2, y3, y4) = .1540.
For the first two variables, we obtain�(y1, y2) = .6990. Then to test the significance
of y3 and y4 adjusted for y1 and y2, we have by (6.127),

�(y3, y4|y1, y2) = �(y1, y2, y3, y4)

�(y1, y2)
= .1540

.6990
= .2203,

which is less than the critical value �.05,2,5,40 = .639.
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Similarly, the test for y4 adjusted for y1, y2, and y3 is given by (6.128) as

�(y4|y1, y2, y3) = �(y1, y2, y3, y4)

�(y1, y2, y3)
= .1540

.2460

= .6261 < �.05,1,5,39 = .759.

For each of the other variables, we have a similar test:

y3: �(y3|y1, y2, y4) = .1540

.2741
= .5618 < �.05,1,5,39 = .759,

y2: �(y2|y1, y3, y4) = .1540

.1922
= .8014 > �.05,1,5,39 = .759,

y1: �(y1|y2, y3, y4) = .1540

.1599
= .9630 > �.05,1,5,39 = .759.

Thus the two variables y3 and y4, either individually or together, contribute a
significant amount to separation of the six groups.

6.11.2 Stepwise Selection of Variables

If there are no variables for which we have a priori interest in testing for significance,
we can do a data-directed search for the variables that best separate the groups. Such
a strategy is often called stepwise discriminant analysis, although it could more aptly
be called stepwise MANOVA. The procedure appears in many software packages.

We first describe an approach that is usually called forward selection. At the first
step calculate �(yi) for each individual variable and choose the one with minimum
�(yi) (or maximum associated F). At the second step calculate �(yi |y1) for each
of the p − 1 variables not entered at the first step, where y1 indicates the first vari-
able entered. For the second variable we choose the one with minimum�(yi |y1) (or
maximum associated partial F), that is, the variable that adds the maximum sepa-
ration to the one entered at step 1. Denote the variable entered at step 2 by y2. At
the third step calculate �(yi |y1, y2) for each of the p − 2 remaining variables and
choose the one that minimizes�(yi |y1, y2) (or maximizes the associated partial F).
Continue this process until the F falls below some predetermined threshold value,
say, Fin.

A stepwise procedure follows a similar sequence, except that after a variable has
entered, the variables previously selected are reexamined to see if each still con-
tributes a significant amount. The variable with smallest partial F will be removed
if the partial F is less than a second threshold value, Fout. If Fout is the same as Fin,
there is a very small possibility that the procedure will cycle continuously without
stopping. This possibility can be eliminated by using a value of Fout slightly less than
Fin. For an illustration of the stepwise procedure, see Example 8.9.
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PROBLEMS

6.1 Verify the computational forms given in (6.3) and (6.5); that is, show that

(a)
∑

i j (yi j − yi.)
2 = ∑

i j y2
i j −∑

i y2
i./n,

(b) n
∑

i (yi. − y..)
2 = ∑

i y2
i./n − y2

../kn.

6.2 Show that Wilks’ � can be expressed in terms of the eigenvalues of E−1H as
in (6.14).

6.3 Show that the eigenvalues of E−1H are the same as those of (E1/2)−1H(E1/2)−1,
as noted in Section 6.1.4, where E1/2 is the square root matrix defined in
(2.112).

6.4 Show that F3 in (6.27) is the same as F1 in (6.25).

6.5 Show that if p ≤ νH , then F3 in (6.31) is the same as F2 in (6.30).

6.6 Show that if there is only one nonzero eigenvalue λ1, then U (1), V (1), and �
can be expressed in terms of θ , as in (6.34)–(6.36).

6.7 Show that (5.16), (5.18), and (5.19), which relate T 2 to �, V (s), and θ , follow
from (6.34)–(6.36) and (6.39), U (1) = T 2/(n1 + n2 − 2).

6.8 Verify the computational forms of H and E in (6.32) and (6.33); that is, show
that

(a)
∑k

i=1 ni (yi. − y..)(yi. − y..)
′ = ∑k

i=1yi.y′
i./ni − y..y′

../N ,

(b)
∑k

i=1
∑ni

j=1(yi j − yi.)(yi j − yi.)
′ = ∑k

i=1
∑ni

j=1 yi j y′
i j −∑k

i=1 yi.y′
i./ni .

6.9 Show that for two groups, H = ∑2
i=1 ni (yi. − y..)(yi. − y..)

′ can be expressed
as H = [n1n2/(n1 + n2)](y1.− y2.)(y1.− y2.)

′, thus verifying (6.38). Note that

y.. =
n1y1. + n2y2.

n1 + n2
.

6.10 Show that θ can be expressed as θ = SSH(z)/[SSE(z)+ SSH(z)] as in (6.42).

6.11 Show that

s∏
i=1

1

1 + λi
=

s∏
i=1

(1 − r2
i ),

as in (6.45), where r2
i = λi/(1 + λi ).

6.12 Show that the F-approximation based on AP in (6.50) reduces to (6.26) if
AP = V (s)/s, as in (6.49).

6.13 Show that if s = 1, ALH in (6.51) reduces to (6.43).

6.14 Show that the F-approximation denoted by F3 in (6.31) is equivalent to (6.52).

6.15 Show that cov(�̂) = �
n

∑k
i=1 c2

i as in (6.61).
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6.16 If zi j = Cyi j , where C is (p −1)× p, show that Hz = CHC′ and Ez = CEC′,
as used in (6.79).

6.17 Why do C and C′ not “cancel out” of Wilks’ � in (6.79)?

6.18 Show that under H03 and H01, Cy.. is Np−1(0,C�C′/kn), as noted preceding
(6.84).

6.19 Show that T 2 = kn(Cy..)
′(CEC′/νE )

−1Cy.. in (6.84) is distributed as T 2
p−1,νE

.

6.20 For ε defined by (6.89), show that ε = 1 when � = σ 2I.

6.21 Give a justification of the Wilks’ � test of H0 : �. = 0 in (6.104).

6.22 Provide an alternative derivation of (6.106), � = νE/(νE + T 2), starting with
(6.105).

6.23 Obtain T 2 in terms of � in (6.107), starting with (6.106).

6.24 Show that the rows of C1 are orthogonal to those of B = I − C′
1(C1C′

1)
−1C1

in (6.110).

6.25 Show that �̂ in (6.115) minimizes (y − A�̂)′S−1(y − A�̂).

6.26 Show that T 2 in (6.117) is equivalent to T 2 in (6.116).

6.27 Baten, Tack, and Baeder (1958) compared judges’ scores on fish prepared by
three methods. Twelve fish were cooked by each method, and several judges
tasted fish samples and rated each on four variables: y1 = aroma, y2 = flavor,
y3 = texture, and y4 = moisture. The data are in Table 6.17. Each entry is an
average score for the judges on that fish.

(a) Compare the three methods using all four MANOVA tests.

Table 6.17. Judges’ Scores on Fish Prepared by Three Methods

Method 1 Method 2 Method 3

y1 y2 y3 y4 y1 y2 y3 y4 y1 y2 y3 y4

5.4 6.0 6.3 6.7 5.0 5.3 5.3 6.5 4.8 5.0 6.5 7.0
5.2 6.2 6.0 5.8 4.8 4.9 4.2 5.6 5.4 5.0 6.0 6.4
6.1 5.9 6.0 7.0 3.9 4.0 4.4 5.0 4.9 5.1 5.9 6.5
4.8 5.0 4.9 5.0 4.0 5.1 4.8 5.8 5.7 5.2 6.4 6.4
5.0 5.7 5.0 6.5 5.6 5.4 5.1 6.2 4.2 4.6 5.3 6.3
5.7 6.1 6.0 6.6 6.0 5.5 5.7 6.0 6.0 5.3 5.8 6.4
6.0 6.0 5.8 6.0 5.2 4.8 5.4 6.0 5.1 5.2 6.2 6.5
4.0 5.0 4.0 5.0 5.3 5.1 5.8 6.4 4.8 4.6 5.7 5.7
5.7 5.4 4.9 5.0 5.9 6.1 5.7 6.0 5.3 5.4 6.8 6.6
5.6 5.2 5.4 5.8 6.1 6.0 6.1 6.2 4.6 4.4 5.7 5.6
5.8 6.1 5.2 6.4 6.2 5.7 5.9 6.0 4.5 4.0 5.0 5.9
5.3 5.9 5.8 6.0 5.1 4.9 5.3 4.8 4.4 4.2 5.6 5.5

Source: Baten, Tack, and Baeder (1958, p. 8).
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(b) Compute the following measures of multivariate association from Sec-
tion 6.1.8: η2

�, η2
θ , A�, ALH, AP .

(c) Based on the eigenvalues, is the essential dimensionality of the space con-
taining the mean vectors equal to 1 or 2?

(d) Using contrasts, test the following two comparisons of methods: 1 and 2
vs. 3, and 1 vs. 2.

(e) If any of the four tests in (a) is significant, run an ANOVA F-test on each
yi and examine the discriminant function z = a′y (Section 6.4).

(f) Test the significance of y3 and y4 adjusted for y1 and y2.
(g) Test the significance of each variable adjusted for the other three.

6.28 Table 6.18, from Keuls, Martakis, and Magid (1984), gives data from a two-
way (fixed-effects) MANOVA on snap beans showing the results of four vari-

Table 6.18. Snapbean Data

S V y1 y2 y3 y4 S V y1 y2 y3 y4

1 1 1 59.3 4.5 38.4 295 3 1 1 68.1 3.4 42.2 280
2 60.3 4.5 38.6 302 2 68.0 2.9 42.4 284
3 60.9 5.3 37.2 318 3 68.5 3.3 41.5 286
4 60.6 5.8 38.1 345 4 68.6 3.1 41.9 284
5 60.4 6.0 38.8 325 5 68.6 3.3 42.1 268

1 2 1 59.3 6.7 37.9 275 3 2 1 64.0 3.6 40.9 233
2 59.4 4.8 36.6 290 2 63.4 3.9 41.4 248
3 60.0 5.1 38.7 295 3 63.5 3.7 41.6 244
4 58.9 5.8 37.5 296 4 63.4 3.7 41.4 266
5 59.5 4.8 37.0 330 5 63.5 4.1 41.1 244

1 3 1 59.4 5.1 38.7 299 3 3 1 68.0 3.7 42.3 293
2 60.2 5.3 37.0 315 2 68.7 3.5 41.6 284
3 60.7 6.4 37.4 304 3 68.7 3.8 40.7 277
4 60.5 7.1 37.0 302 4 68.4 3.5 42.0 299
5 60.1 7.8 36.9 308 5 68.6 3.4 42.4 285

2 1 1 63.7 5.4 39.5 271 4 1 1 69.8 1.4 48.4 265
2 64.1 5.4 39.2 284 2 69.5 1.3 47.8 247
3 63.4 5.4 39.0 281 3 69.5 1.3 46.9 231
4 63.2 5.3 39.0 291 4 69.9 1.3 47.5 268
5 63.2 5.0 39.0 270 5 70.3 1.1 47.1 247

2 2 1 60.6 6.8 38.1 248 4 2 1 66.6 1.8 45.7 205
2 61.0 6.5 38.6 264 2 66.5 1.7 46.8 239
3 60.7 6.8 38.8 257 3 67.1 1.7 46.3 230
4 60.6 7.1 38.6 260 4 65.8 1.8 46.3 235
5 60.3 6.0 38.5 261 5 65.6 1.9 46.1 220

2 3 1 63.8 5.7 40.5 282 4 3 1 70.1 1.7 48.1 253
2 63.2 6.1 40.2 284 2 72.3 0.7 47.8 249
3 63.3 6.0 40.0 291 3 69.7 1.5 46.7 226
4 63.2 5.9 40.0 299 4 69.9 1.3 47.1 248
5 63.1 5.4 39.7 295 5 69.8 1.4 46.7 236
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ables: y1 = yield earliness, y2 = specific leaf area (SLA) earliness, y3 =
total yield, and y4 = average SLA. The factors are sowing date (S) and variety
(V ).

(a) Test for main effects and interaction using all four MANOVA statistics.
(b) In previous experiments, the second variety gave higher yields. Compare

variety 2 with varieties 1 and 3 by means of a test on a contrast.
(c) Test linear, quadratic, and cubic contrasts for sowing date. (Interpretation

of these for mean vectors is not as straightforward as for univariate means.)
(d) If any of the tests in part (a) rejects H0, carry out ANOVA F-tests on the

four variables.
(e) Test the significance of y3 and y4 adjusted for y1 and y2 in main effects

and interaction.
(f) Test the significance of each variable adjusted for the other three in main

effects and interaction.

6.29 The bar steel data in Table 6.6 were analyzed in Example 6.5.2 as a two-way
fixed-effects design. Consider lubricants to be random so that we have a mixed
model. Test for main effects and interaction.

6.30 In Table 6.19, we have a comparison of four reagents (Burdick 1979). The
first reagent is the one presently in use and the other three are less expen-

Table 6.19. Blood Data

Reagent 1 Reagent 2 Reagent 3 Reagent 4

Subject y1 y2 y3 y1 y2 y3 y1 y2 y3 y1 y2 y3

1 8.0 3.96 12.5 8.0 3.93 12.7 7.9 3.86 13.0 7.9 3.87 13.2
2 4.0 5.37 16.9 4.2 5.35 17.2 4.1 5.39 17.2 4.0 5.35 17.3
3 6.3 5.47 17.1 6.3 5.39 17.5 6.0 5.39 17.2 6.1 5.41 17.4
4 9.4 5.16 16.2 9.4 5.16 16.7 9.4 5.17 16.7 9.1 5.16 16.7
5 8.2 5.16 17.0 8.0 5.13 17.5 8.1 5.10 17.4 7.8 5.12 17.5
6 11.0 4.67 14.3 10.7 4.60 14.7 10.6 4.52 14.6 10.5 4.58 14.7
7 6.8 5.20 16.2 6.8 5.16 16.7 6.9 5.13 16.8 6.7 5.19 16.8
8 9.0 4.65 14.7 9.0 4.57 15.0 8.9 4.58 15.0 8.6 4.55 15.1
9 6.1 5.22 16.3 6.0 5.16 16.9 6.1 5.14 16.9 6.0 5.21 16.9

10 6.4 5.13 15.9 6.4 5.11 16.4 6.4 5.11 16.4 6.3 5.07 16.3
11 5.6 4.47 13.3 5.5 4.45 13.6 5.3 4.46 13.6 5.3 4.44 13.7
12 8.2 5.22 16.0 8.2 5.14 16.5 8.0 5.14 16.5 7.8 5.16 16.5
13 5.7 5.10 14.9 5.6 5.05 15.3 5.5 5.02 15.4 5.4 5.05 15.5
14 9.8 5.25 16.1 9.8 5.15 16.6 8.1 5.10 13.8 9.4 5.16 16.6
15 5.9 5.28 15.8 5.8 5.25 16.4 5.7 5.26 16.4 5.6 5.29 16.2
16 6.6 4.65 12.8 6.4 4.59 13.2 6.3 4.58 13.1 6.4 4.57 13.2
17 5.7 4.42 14.5 5.5 4.31 14.9 5.5 4.30 14.9 5.4 4.32 14.8
18 6.7 4.38 13.1 6.5 4.32 13.4 6.5 4.32 13.6 6.5 4.31 13.5
19 6.8 4.67 15.6 6.6 4.57 15.8 6.5 4.55 16.0 6.5 4.56 15.9
20 9.6 5.64 17.0 9.5 5.58 17.5 9.3 5.50 17.4 9.2 5.46 17.5
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Table 6.20. Wear of Coated Fabrics in Three Periods (mg)

Proportion of Filler

Surface
P1 (25%) P2 (50%) P3 (75%)

Treatment Filler y1 y2 y3 y1 y2 y3 y1 y2 y3

T0 F1 194 192 141 233 217 171 265 252 207
208 188 165 241 222 201 269 283 191

F2 239 127 90 224 123 79 243 117 100
187 105 85 243 123 110 226 125 75

T1 F1 155 169 151 198 187 176 235 225 166
173 152 141 177 196 167 229 270 183

F2 137 82 77 129 94 78 155 76 92
160 82 83 98 89 48 132 105 67

sive reagents that we wish to compare with the first. All four reagents are
used with a blood sample from each patient. The three variables measured
for each reagent are y1 = white blood count, y2 = red blood count, and
y3 = hemoglobin count.

(a) Analyze as a randomized block design with subjects as blocks.

(b) Compare the first reagent with the other three using a contrast.

6.31 The data in Table 6.20, from Box (1950), show the amount of fabric wear y1,
y2, and y3 in three successive periods: (1) the first 1000 revolutions, (2) the sec-
ond 1000 revolutions, and (3) the third 1000 revolutions of the abrasive wheel.
There were three factors: type of abrasive surface, type of filler, and proportion
of filler. There were two replications. Carry out a three-way MANOVA, testing
for main effects and interactions. (Ignore the repeated measures aspects of the
data.)

6.32 The fabric wear data in Table 6.20 can be considered to be a growth curve
model, with the three periods (y1, y2, y3) representing repeated measurements
on the same specimen. We thus have one within-subjects factor, to which we
should assign polynomial contrasts (−1, 0, 1) and (−1, 2,−1), and a three-
way between-subjects classification. Test for period and the interaction of
period with the between-subjects factors and interactions.

6.33 Carry out a profile analysis on the fish data in Table 6.17, testing for parallelism,
equal levels, and flatness.

6.34 Rao (1948) measured the weight of cork borings taken from the north (N),
east (E), south (S), and west (W) directions of 28 trees. The data are given in
Table 6.21. It is of interest to compare the bark thickness (and hence weight)
in the four directions. This can be done by analyzing the data as a one-sample
repeated measures design. Since the primary comparison of interest is north
and south vs. east and west, use the contrast matrix
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Table 6.21. Weights of Cork Borings (cg) in Four Directions for 28 Trees

Tree N E S W Tree N E S W

1 72 66 76 77 15 91 79 100 75
2 60 53 66 63 16 56 68 47 50
3 56 57 64 58 17 79 65 70 61
4 41 29 36 38 18 81 80 68 58
5 32 32 35 36 19 78 55 67 60
6 30 35 34 26 20 46 38 37 38
7 39 39 31 27 21 39 35 34 37
8 42 43 31 25 22 32 30 30 32
9 37 40 31 25 23 60 50 67 54

10 33 29 27 36 24 35 37 48 39
11 32 30 34 28 25 39 36 39 31
12 63 45 74 63 26 50 34 37 40
13 54 46 60 52 27 43 37 39 50
14 47 51 52 43 28 48 54 57 43

C =

 1 −1 1 −1

1 0 −1 0
0 1 0 −1


 .

(a) Test H0 : µN = µE = µS = µW using the entire matrix C.
(b) If the test in (a) rejects H0, test each row of C.

6.35 Analyze the glucose data in Table 3.8 as a one-sample repeated measures
design with two within-subjects factors. Factor A is a comparison of fasting
test vs. 1 hour posttest. The three levels of factor B are y1 (and x1), y2 (and
x2), and y3 (and x3).

6.36 Table 6.22 gives survival times for cancer patients (Cameron and Pauling 1978;
see also Andrews and Herzberg 1985, pp. 203–206). The factors in this two-
way design are gender (1 = male, 2 = female) and type of cancer (1 =
stomach, 2 = bronchus, 3 = colon, 4 = rectum, 5 = bladder, 6 = kidney).
The variables (repeated measures) are y1 = survival time (days) of patient

Table 6.22. Survival Times for Cancer Patients

Type of
Cancer Gender Age y1 y2 y3 y4

1 2 61 124 264 124 38
1 1 69 42 62 12 18
1 2 62 25 149 19 36
1 2 66 45 18 45 12
1 1 63 412 180 257 64
1 1 79 51 142 23 20
1 1 76 1112 35 128 13
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Table 6.22. (Continued)

Type of
Cancer Gender Age y1 y2 y3 y4

1 1 54 46 299 46 51
1 1 62 103 85 90 10
1 1 46 146 361 123 52
1 1 57 340 269 310 28
1 2 59 396 130 359 55
2 1 74 81 72 74 33
2 1 74 461 134 423 18
2 1 66 20 84 16 20
2 1 52 450 98 450 58
2 2 48 246 48 87 13
2 2 64 166 142 115 49
2 1 70 63 113 50 38
2 1 77 64 90 50 24
2 1 71 155 30 113 18
2 1 39 151 260 38 34
2 1 70 166 116 156 20
2 1 70 37 87 27 27
2 1 55 223 69 218 32
2 1 74 138 100 138 27
2 1 69 72 315 39 39
2 1 73 245 188 231 65
3 2 76 248 292 135 18
3 2 58 377 492 50 30
3 1 49 189 462 189 65
3 1 69 1843 235 1267 17
3 2 70 180 294 155 57
3 2 68 537 144 534 16
3 1 50 519 643 502 25
3 2 74 455 301 126 21
3 1 66 406 148 90 17
3 2 76 365 641 365 42
3 2 56 942 272 911 40
3 2 74 372 37 366 28
3 1 58 163 199 156 31
3 2 60 101 154 99 28
3 1 77 20 649 20 33
3 1 38 283 162 274 80
4 2 56 185 422 62 38
4 2 75 479 82 226 10
4 2 57 875 551 437 62
4 1 56 115 140 85 13
4 1 68 362 106 122 36
4 1 54 241 645 198 80
4 1 59 2175 407 759 64
5 1 93 4288 464 260 29
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Table 6.22. (Continued)

Type of
Cancer Gender Age y1 y2 y3 y4

5 2 70 3658 694 305 22
5 2 77 51 221 37 21
5 2 72 278 490 109 16
5 1 44 548 433 37 11
6 2 71 205 332 8 91
6 2 63 538 377 96 47
6 2 51 203 147 190 35
6 1 53 296 500 64 34
6 1 57 870 299 260 19
6 1 73 331 585 326 37
6 1 69 1685 1056 46 15

treated with ascorbate measured from date of first hospital attendance, y2 =
mean survival time for the patient’s 10 matched controls (untreated with ascor-
bate), y3 = survival time after ascorbate treatment ceased, and y4 = mean
survival time after all treatment ceased for the patient’s 10 matched controls.
Analyze as a repeated measures design with one within-subjects factor (y1, y2,
y3, y4) and a two-way (unbalanced) design between subjects. Since the two-
way classification of subjects is unbalanced, you will need to use a program
that allows for this or delete some observations to achieve a balanced design.

6.37 Analyze the ramus bone data of Table 3.8 as a one-sample growth curve design.

(a) Using a matrix C of orthogonal polynomial contrasts, test the hypothesis
of overall equality of means, H0 : C� = 0.

Table 6.23. Weights of 13 Male Mice Measured at Successive Intervals of 3 Days over 21
Days from Birth to Weaning

Mouse Day 3 Day 6 Day 9 Day 12 Day 15 Day 18 Day 21

1 .190 .388 .621 .823 1.078 1.132 1.191
2 .218 .393 .568 .729 .839 .852 1.004
3 .211 .394 .549 .700 .783 .870 .925
4 .209 .419 .645 .850 1.001 1.026 1.069
5 .193 .362 .520 .530 .641 .640 .751
6 .201 .361 .502 .530 .657 .762 .888
7 .202 .370 .498 .650 .795 .858 .910
8 .190 .350 .510 .666 .819 .879 .929
9 .219 .399 .578 .699 .709 .822 .953

10 .225 .400 .545 .690 .796 .825 .836
11 .224 .381 .577 .756 .869 .929 .999
12 .187 .329 .441 .525 .589 .621 .796
13 .278 .471 .606 .770 .888 1.001 1.105
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(b) If the overall hypothesis in (a) is rejected, find the degree of growth curve
by testing each row of C.

6.38 Table 6.23 contains the weights of 13 male mice measured every 3 days from
birth to weaning. The data set was reported and analyzed by Williams and
Izenman (1981) and by Izenman and Williams (1989) and has been further
analyzed by Rao (1984, 1987) and by Lee (1988). Analyze as a one-sample
growth curve design.

(a) Using a matrix C of orthogonal polynomial contrasts, test the hypothesis
of overall equality of means, H0 : C� = 0.

(b) If the overall hypothesis in (a) is rejected, find the degree of growth curve
by testing each row of C.

6.39 In Table 6.24, we have measurements of proportions of albumin at four time
points on three groups of trout (Beauchamp and Hoel 1974).

(a) Using a matrix C of orthogonal contrasts, test the hypothesis of overall
equality of means, H0 : C�. = 0, for the combined samples, as in Sec-
tion 6.10.2.

(b) If the overall hypothesis is rejected, find the degree of growth curve for the
combined samples by testing each row of C.

(c) Compare the three groups using the entire matrix C.
(d) Compare the three groups using each row of C.

Table 6.24. Measurements of Trout

Time Point

Group 1 2 3 4

1 .257 .288 .328 .358
1 .266 .282 .315 .464
1 .256 .303 .293 .261
1 .272 .456 .288 .261
2 .312 .300 .273 .253
2 .253 .220 .314 .261
2 .239 .261 .279 .224
2 .254 .243 .304 .254
3 .272 .279 .259 .295
3 .246 .292 .279 .302
3 .262 .311 .263 .264
3 .292 .261 .314 .244

6.40 Table 6.25 contains weight gains for three groups of rats (Box 1950).

The variables are yi = gain in i th week, i = 1, 2, 3, 4.

The groups are 1 = controls, 2 = thyroxin added to drinking water, and 3 =
thiouracil added to drinking water.
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Table 6.25. Weekly Gains in Weight for 27 Rats

Group 1 Group 2 Group 3

Rat y1 y2 y3 y4 Rat y1 y2 y3 y4 Rat y1 y2 y3 y4

1 29 28 25 33 11 26 36 35 35 18 25 23 11 9
2 33 30 23 31 12 17 19 20 28 19 21 21 10 11
3 25 34 33 41 13 19 33 43 38 20 26 21 6 27
4 18 33 29 35 14 26 31 32 29 21 29 12 11 11
5 25 23 17 30 15 15 25 23 24 22 24 26 22 17
6 24 32 29 22 16 21 24 19 24 23 24 17 8 19
7 20 23 16 31 17 18 35 33 33 24 22 17 8 5
8 28 21 18 24 25 11 24 21 24
9 18 23 22 28 26 15 17 12 17

10 25 28 29 30 27 19 17 15 18

(a) Using a matrix C of orthogonal contrasts, test the hypothesis of overall
equality of means, H0 : C�. = 0, for the combined samples, as in Sec-
tion 6.10.2.

(b) If the overall hypothesis is rejected, find the degree of growth curve for the
combined samples by testing each row of C.

(c) Compare the three groups using the entire matrix C.

(d) Compare the three groups using each row of C.

6.41 Table 6.26 contains measurements of coronary sinus potassium at 2-min inter-
vals after coronary occlusion on four groups of dogs (Grizzle and Allen 1969).
The groups are 1 = control dogs, 2 = dogs with extrinsic cardiac denervation
3 wk prior to coronary occlusion, 3 = dogs with extrinsic cardiac denervation
immediately prior to coronary occlusion, and 4 = dogs with bilateral thoracic
sympathectomy and stellectomy 3 wk prior to coronary occlusion.

Table 6.26. Coronary Sinus Potassium Measured at
2-min Intervals on Dogs

Time

Group 1 3 5 7 9 11 13

1 4.0 4.0 4.1 3.6 3.6 3.8 3.1
1 4.2 4.3 3.7 3.7 4.8 5.0 5.2
1 4.3 4.2 4.3 4.3 4.5 5.8 5.4
1 4.2 4.4 4.6 4.9 5.3 5.6 4.9
1 4.6 4.4 5.3 5.6 5.9 5.9 5.3
1 3.1 3.6 4.9 5.2 5.3 4.2 4.1
1 3.7 3.9 3.9 4.8 5.2 5.4 4.2
1 4.3 4.2 4.4 5.2 5.6 5.4 4.7
1 4.6 4.6 4.4 4.6 5.4 5.9 5.6
2 3.4 3.4 3.5 3.1 3.1 3.7 3.3
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Table 6.26. (Continued)

Time

Group 1 3 5 7 9 11 13

2 3.0 3.1 3.2 3.0 3.3 3.0 3.0
2 3.0 3.2 3.0 3.0 3.1 3.2 3.1
2 3.1 3.2 3.2 3.2 3.3 3.1 3.1
2 3.8 3.9 4.0 2.9 3.5 3.5 3.4
2 3.0 3.6 3.2 3.1 3.0 3.0 3.0
2 3.3 3.3 3.3 3.4 3.6 3.1 3.1
2 4.2 4.0 4.2 4.1 4.2 4.0 4.0
2 4.1 4.2 4.3 4.3 4.2 4.0 4.2
2 4.5 4.4 4.3 4.5 5.3 4.4 4.4
3 3.2 3.3 3.8 3.8 4.4 4.2 3.7
3 3.3 3.4 3.4 3.7 3.7 3.6 3.7
3 3.1 3.3 3.2 3.1 3.2 3.1 3.1
3 3.6 3.4 3.5 4.6 4.9 5.2 4.4
3 4.5 4.5 5.4 5.7 4.9 4.0 4.0
3 3.7 4.0 4.4 4.2 4.6 4.8 5.4
3 3.5 3.9 5.8 5.4 4.9 5.3 5.6
3 3.9 4.0 4.1 5.0 5.4 4.4 3.9
4 3.1 3.5 3.5 3.2 3.0 3.0 3.2
4 3.3 3.2 3.6 3.7 3.7 4.2 4.4
4 3.5 3.9 4.7 4.3 3.9 3.4 3.5
4 3.4 3.4 3.5 3.3 3.4 3.2 3.4
4 3.7 3.8 4.2 4.3 3.6 3.8 3.7
4 4.0 4.6 4.8 4.9 5.4 5.6 4.8
4 4.2 3.9 4.5 4.7 3.9 3.8 3.7
4 4.1 4.1 3.7 4.0 4.1 4.6 4.7
4 3.5 3.6 3.6 4.2 4.8 4.9 5.0

(a) Using a matrix C of orthogonal contrasts, test the hypothesis of overall
equality of means, H0 : C�. = 0, for the combined samples, as in Sec-
tion 6.10.2.

(b) If the overall hypothesis is rejected, find the degree of growth curve for the
combined samples by testing each row of C.

(c) Compare the four groups using the entire matrix C.

(d) Compare the four groups using each row of C.

6.42 Table 6.27 contains blood pressure measurements at intervals after inducing a
heart attack for four groups of rats: group 1 is the controls and groups 2–4 have
been exposed to halothane concentrations of .25%, .50%, 1.0%, respectively
(Crepeau et al. 1985).

(a) Find the degree of growth curve for the combined sample using the meth-
ods in (6.113)–(6.118).
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Table 6.27. Blood Pressure Data

Number of Minutes after Ligation

Group 1 5 10 15 30 60

1 112.5 100.5 102.5 102.5 107.5 107.5
1 92.5 102.5 105.0 100.0 110.0 117.5
1 132.5 125.0 115.0 112.5 110.0 110.0
1 102.5 107.5 107.5 102.5 90.0 112.5
1 110.0 130.0 115.0 105.0 112.5 110.0
1 97.5 97.5 80.0 82.5 82.5 102.5
1 90.0 70.0 85.0 85.0 92.5 97.5
2 115.0 115.0 107.5 107.5 112.5 107.5
2 125.0 125.0 120.0 120.0 117.5 125.0
2 95.0 90.0 95.0 90.0 100.0 107.5
2 87.5 65.5 85.0 90.0 105.0 90.0
2 90.0 87.5 97.5 95.0 100.0 95.0
2 97.5 92.5 57.5 55.0 90.0 97.5
2 107.5 107.5 145.0 110.0 105.0 112.5
2 102.5 130.0 85.0 80.0 127.5 97.5
3 107.5 107.5 102.5 102.5 102.5 97.5
3 97.5 108.5 94.5 102.5 102.5 107.5
3 100.0 105.0 105.0 105.0 110.0 110.0
3 95.0 95.0 90.0 100.0 100.0 100.0
3 85.0 92.5 92.5 92.5 90.0 110.0
3 82.5 77.5 75.0 65.5 65.0 72.5
3 62.5 75.0 115.0 110.0 100.0 100.0
4 70.0 67.5 67.5 77.5 77.5 77.5
4 45.0 37.5 45.0 45.0 47.5 45.0
4 52.5 22.5 90.0 65.0 60.0 65.5
4 100.0 100.0 100.0 100.0 97.5 92.5
4 115.0 110.0 100.0 110.0 105.0 105.0
4 97.5 97.5 97.5 105.0 95.0 92.5
4 95.0 125.0 130.0 125.0 115.0 117.5
4 72.5 87.5 65.0 57.5 92.5 82.5
4 105.0 105.0 105.0 105.0 102.5 100.0

(b) Repeat (a) for group 1.
(c) Repeat (a) for groups 2–4 combined.

6.43 Table 6.28, from Zerbe (1979a), compares 13 control and 20 obese patients on
a glucose tolerance test using plasma inorganic phosphate. Delete the obser-
vations corresponding to 1

2 and 1 1
2 hours so that the time points are equally

spaced.

(a) For the control group, use orthogonal polynomials to find the degree of
growth curve.

(b) Repeat (a) for the obese group.
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Table 6.28. Plasma Inorganic Phosphate (mg/dl)

Hours after Glucose Challenge

Patient 0 1
2 1 1 1

2 2 3 4 5

Control
1 4.3 3.3 3.0 2.6 2.2 2.5 3.4 4.4a

2 3.7 2.6 2.6 1.9 2.9 3.2 3.1 3.9
3 4.0 4.1 3.1 2.3 2.9 3.1 3.9 4.0
4 3.6 3.0 2.2 2.8 2.9 3.9 3.8 4.0
5 4.1 3.8 2.1 3.0 3.6 3.4 3.6 3.7
6 3.8 2.2 2.0 2.6 3.8 3.6 3.0 3.5
7 3.8 3.0 2.4 2.5 3.1 3.4 3.5 3.7
8 4.4 3.9 2.8 2.1 3.6 3.8 4.0 3.9
9 5.0 4.0 3.4 3.4 3.3 3.6 4.0 4.3

10 3.7 3.1 2.9 2.2 1.5 2.3 2.7 2.8
11 3.7 2.6 2.6 2.3 2.9 2.2 3.1 3.9
12 4.4 3.7 3.1 3.2 3.7 4.3 3.9 4.8
13 4.7 3.1 3.2 3.3 3.2 4.2 3.7 4.3

Obese
1 4.3 3.3 3.0 2.6 2.2 2.5 2.4 3.4a

2 5.0 4.9 4.1 3.7 3.7 4.1 4.7 4.9
3 4.6 4.4 3.9 3.9 3.7 4.2 4.8 5.0
4 4.3 3.9 3.1 3.1 3.1 3.1 3.6 4.0
5 3.1 3.1 3.3 2.6 2.6 1.9 2.3 2.7
6 4.8 5.0 2.9 2.8 2.2 3.1 3.5 3.6
7 3.7 3.1 3.3 2.8 2.9 3.6 4.3 4.4
8 5.4 4.7 3.9 4.1 2.8 3.7 3.5 3.7
9 3.0 2.5 2.3 2.2 2.1 2.6 3.2 3.5

10 4.9 5.0 4.1 3.7 3.7 4.1 4.7 4.9
11 4.8 4.3 4.7 4.6 4.7 3.7 3.6 3.9
12 4.4 4.2 4.2 3.4 3.5 3.4 3.9 4.0
13 4.9 4.3 4.0 4.0 3.3 4.1 4.2 4.3
14 5.1 4.1 4.6 4.1 3.4 4.2 4.4 4.9
15 4.8 4.6 4.6 4.4 4.1 4.0 3.8 3.8
16 4.2 3.5 3.8 3.6 3.3 3.1 3.5 3.9
17 6.6 6.1 5.2 4.1 4.3 3.8 4.2 4.8
18 3.6 3.4 3.1 2.8 2.1 2.4 2.5 3.5
19 4.5 4.0 3.7 3.3 2.4 2.3 3.1 3.3
20 4.6 4.4 3.8 3.8 3.8 3.6 3.8 3.8

aThe similarity in the data for patient 1 in the control group and patient 1 in the obese group is coincidental.
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Table 6.29. Mandible Measurements

Activator Treatment

1 2 3

Group Subject y1 y2 y3 y1 y2 y3 y1 y2 y3

1 1 117.0 117.5 118.5 59.0 59.0 60.0 10.5 16.5 16.5
2 109.0 110.5 111.0 60.0 61.5 61.5 30.5 30.5 30.5
3 117.0 120.0 120.5 60.0 61.5 62.0 23.5 23.5 23.5
4 122.0 126.0 127.0 67.5 70.5 71.5 33.0 32.0 32.5
5 116.0 118.5 119.5 61.5 62.5 63.5 24.5 24.5 24.5
6 123.0 126.0 127.0 65.5 61.5 67.5 22.0 22.0 22.0
7 130.5 132.0 134.5 68.5 69.5 71.0 33.0 32.5 32.0
8 126.5 128.5 130.5 69.0 71.0 73.0 20.0 20.0 20.0
9 113.0 116.5 118.0 58.0 59.0 60.5 25.0 25.0 24.5

2 1 128.0 129.0 131.5 67.0 67.5 69.0 24.0 24.0 24.0
2 116.5 120.0 121.5 63.5 65.0 66.0 28.5 29.5 29.5
3 121.5 125.5 127.0 64.5 67.5 69.0 26.5 27.0 27.0
4 109.5 112.0 114.0 54.0 55.5 57.0 18.0 18.5 19.0
5 133.0 136.0 137.5 72.0 73.5 75.5 34.5 34.5 34.5
6 120.0 124.5 126.0 62.5 65.0 66.0 26.0 26.0 26.0
7 129.5 133.5 134.5 65.0 68.0 69.0 18.5 18.5 18.5
8 122.0 124.0 125.5 64.5 65.5 66.0 18.5 18.5 18.5
9 125.0 127.0 128.0 65.5 66.5 67.0 21.5 21.5 21.6

(c) Find the degree of growth curve for the combined groups, and compare the
growth curves of the two groups.

6.44 Consider the complete data from Table 6.28 including the observations corre-
sponding to 1

2 and 1 1
2 hours. Use the methods in (6.113)–(6.118) for unequally

spaced time points to analyze each group separately and the combined groups.

6.45 Table 6.29 contains mandible measurements (Timm 1980). There were two
groups of subjects. Each subject was measured at three time points y1, y2, and
y3 for each of three types of activator treatment. Analyze as a repeated mea-
sures design with two within-subjects factors and one between-subjects factor.
Use linear and quadratic contrasts for time (growth curve).
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Tests on Covariance Matrices

7.1 INTRODUCTION

We now consider tests of hypotheses involving the variance–covariance structure.
These tests are often carried out to check assumptions pertaining to other tests. In
Sections 7.2–7.4, we cover three basic types of hypotheses: (1) the covariance matrix
has a particular structure, (2) two or more covariance matrices are equal, and (3) cer-
tain elements of the covariance matrix are zero, thus implying independence of the
corresponding (multivariate normal) random variables. In most cases we use the like-
lihood ratio approach (Section 5.4.3). The resulting test statistics often involve the
ratio of the determinants of the sample covariance matrix under the null hypothesis
and under the alternative hypothesis.

7.2 TESTING A SPECIFIED PATTERN FOR Σ

In this section, the discussion is in terms of a sample covariance matrix S from a
single sample. However, the tests can be applied to a sample covariance matrix Spl =
E/νE obtained by pooling across several samples. To allow for either possibility, the
degrees-of-freedom parameter has been indicated by ν. For a single sample, ν =
n − 1; for a pooled covariance matrix,ν = ∑k

i=1(ni − 1) = ∑k
i=1 ni − k = N − k.

7.2.1 Testing H0 : Σ = Σ0

We begin with the basic hypothesis H0 : � = �0 vs. H1 : � �= �0. The hypothe-
sized covariance matrix �0 is a target value for � or a nominal value from previous
experience. Note that �0 is completely specified in H0, whereas � is not specified.

To test H0, we obtain a random sample of n observation vectors y1, y2, . . . , yn

from Np(�,�) and calculate S. To see if S is significantly different from �0, we
use the following test statistic, which is a modification of the likelihood ratio (Sec-

248
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tion 5.4.3):

u = ν
[

ln |�0| − ln |S| + tr(S�−1
0 )− p

]
, (7.1)

where ν represents the degrees of freedom of S (seecomments at the beginning of
Section 7.2), ln is the natural logarithm (base e), and tr is the trace of a matrix (Sec-
tion 2.9). Note that if S = �0, then u = 0; otherwise u increases with the“distance”
between S and �0 [see(7.4) and the comment following].

When ν is large, the statistic u in (7.1) is approximately distributed as χ2[ 1
2 p(p +

1)] ifH0 is true. For moderate size ν,

u′ =
[

1 − 1

6ν − 1

(
2p + 1 − 2

p + 1

)]
u (7.2)

is a better approximation to the χ2[ 1
2 p(p +1)] distribution. We reject H0 if u or u′ is

greater thanχ2[α, 1
2 p(p + 1)]. Note that the degrees of freedom for the χ2-statistic,

1
2 p(p + 1), is the number of distinct parameters in �.

We can express u in terms of the eigenvalues λ1, λ2, . . . , λp of S�−1
0 by noting

that tr(S�−1
0 ) and ln |�0| − ln |S| become

tr(S�−1
0 ) =

p∑
i=1

λi [by (2.107)],

ln |�0| − ln |S| = − ln |�0|−1 − ln |S|
= − ln |S�−1

0 | [by (2.89) and (2.91)] (7.3)

= − ln

(
p∏

i=1

λi

)
[by (2.108)],

from which (7.1) can be written as

u = ν

[
− ln

(
p∏

i=1

λi

)
+

p∑
i=1

λi − p

]

= ν

[
p∑

i=1

(λi − lnλi )− p

]
. (7.4)

A plot of y = x − ln x will show that x − ln x ≥ 1 for all x > 0, with equality
holding only for x = 1. Thus

∑p
i=1(λi − lnλi ) > p and u > 0.

The hypothesis that the variables are independent and have unit variance,

H0 : � = I,

can be tested by simply setting �0 = I in (7.1).
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7.2.2 Testing Sphericity

The hypothesis that the variables y1, y2, . . . , yp in y are independent and have the
same variance can be expressed as H0 : � = σ 2I versus H1 : � �= σ 2I, where σ 2 is
the unknown common variance. This hypothesis is of interest in repeated measures
(see Section 6.9.1). Under H0, the ellipsoid (y − �)′�−1(y − �) = c2 reduces to
(y−�)′(y−�) = σ 2c2, the equation of a sphere; hence the term sphericity is applied
to the covariance structure � = σ 2I. Another sphericity hypothesis of interest in
repeated measures is H0 : C�C′ = σ 2I, where C is any full-rank (p − 1)× p matrix
of orthonormal contrasts (see Section 6.9.1).

For a random sample y1, y2, . . . , yn from Np(�,�), the likelihood ratio for test-
ing H0 : � = σ 2I is

LR =
[ |S|
(tr S/p)p

]n/2

. (7.5)

In some cases that we have considered previously, the likelihood ratio is a simple
function of a test statistic such as F , T 2, Wilks’ , and so on. However, LR in (7.5)
does not reduce to a standard statistic, and we resort to an approximation for its
distribution. It has been shown that for a general likelihood ratio statistic LR,

−2 ln (LR) is approximately χ2
ν (7.6)

for large n, where ν is the total number of parameters minus the number estimated
under the restrictions imposed by H0.

For the likelihood ratio statistic in (7.5), we obtain

−2 ln(LR) = −n ln

[ |S|
(tr S/p)p

]
= −n ln u,

where

u = (LR)2/n = p p|S|
(tr S)p

. (7.7)

By (2.107) and (2.108), u becomes

u = p p ∏p
i=1 λi

(
∑p

i=1 λi )p
, (7.8)

where λ1, λ2, . . . , λp are the eigenvalues of S. An improvement over −n ln u is
given by

u′ = −
(
ν − 2p2 + p + 2

6p

)
ln u, (7.9)
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where ν is the degrees of freedom for S (see comments at the beginning of Section
7.2). The statistic u′ has an approximate χ2-distribution with 1

2 p(p+1)−1 degrees of
freedom. We reject H0 if u′ ≥ χ2[α, 1

2 p(p +1)−1]. As noted before, the degrees of
freedom in the χ2-approximation is equal to the total number of parameters minus
the number of parameters estimated under H0. The number of parameters in � is
p + (p

2

) = 1
2 p(p +1), and the loss of 1 degree of freedom is due to estimation of σ 2.

We see from (7.8) and (7.9) that if the sample λi ’s are all equal, u = 1 and
u′ = 0. Hence, this statistic also tests the hypothesis of equality of the population
eigenvalues.

To test H0 : C�C′ = σ 2I, use CSC′ in place of S in (7.7) and use p − 1 in place
of p in (7.7)–(7.9) and in the degrees of freedom for χ2.

The likelihood ratio (7.5) was first given by Mauchly (1940), and his name is often
associated with this test. Nagarsenker and Pillai (1973) gave the exact distribution of
u and provided a table for p = 4, 5, . . . , 10. Venables (1976) showed that u can be
obtained by a union–intersection approach (Section 6.1.4).

Example 7.2.2. We use the probe word data in Table 3.5 to illustrate tests of spheric-
ity. The five variables appear to be commensurate, and the hypothesis H0 : µ1 =
µ2 = · · · = µ5 may be of interest. We would expect the variables to be corre-
lated, and H0 would ordinarily be tested using a multivariate approach, as in Sec-
tions 5.9.1 and 6.9.2. However, if � = σ 2I or C�C′ = σ 2I, then the hypothesis
H0 : µ1 = µ2 = · · · = µ5 can be tested with a univariate ANOVA F-test (see
Section 6.9.1).

We first test H0 : � = σ 2I. The sample covariance matrix S was obtained in
Example 3.9.1. By (7.7),

u = p p|S|
(tr S)p

= 55(27, 236, 586)

(292.891)5
= .0395.

Then by (7.9), with n = 11 and p = 5, we have

u′ = −
(

n − 1 − 2p2 + p + 2

6p

)
ln u = 26.177.

The approximate χ2-test has 1
2 p(p + 1)− 1 = 14 degrees of freedom. We therefore

compare u′ = 26.177 with χ2
.05,14 = 23.68 and reject H0 : � = σ 2I.

To test H0 : C�C′ = σ 2I, we use the following matrix of orthonormalized con-
trasts:

C =




4/
√

20 −1/
√

20 −1/
√

20 −1/
√

20 −1/
√

20
0 3/

√
12 −1/

√
12 −1/

√
12 −1/

√
12

0 0 2/
√

6 −1/
√

6 −1/
√

6
0 0 0 1/

√
2 −1/

√
2


 .
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Then using CSC′ in place of S and with p − 1 = 4 for the four rows of C, we obtain

u = (p − 1)p−1|CSC′|
[tr(CSC′)]p−1

= 44(144039.8)

(93.6)4
= .480,

u′ = 6.170.

For degrees of freedom, we now have 1
2 (4)(5) − 1 = 9, and the critical value is

χ2
.05,9 = 16.92. Hence, we do not reject H0 : C�C′ = σ 2I, and a univariate F-test

of H0 : µ1 = µ2 = · · · = µ5 may be justified.

7.2.3 Testing H0 : Σ = σ2[(1 − ρ)I + ρJ]
In Section 6.9.1, it was noted that univariate ANOVA remains valid if

� = σ 2




1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ
...

...
...

...

ρ ρ ρ . . . 1


 (7.10)

= σ 2[(1 − ρ)I + ρJ], (7.11)

where J is a square matrix of 1’s, as defined in (2.12), and ρ is the population correla-
tion between any two variables. This pattern of equal variances and equal covariances
in � is variously referred to as uniformity, compound symmetry, or the intraclass cor-
relation model.

We now consider the hypothesis that (7.10) holds:

H0 : � =




σ 2 σ 2ρ · · · σ 2ρ

σ 2ρ σ 2 · · · σ 2ρ
...

...
...

σ 2ρ σ 2ρ · · · σ 2


 .

From a sample, we obtain the sample covariance matrix S. Estimates of σ 2 and σ 2ρ

under H0 are given by

s2 = 1

p

p∑
j=1

s j j and s2r = 1

p(p − 1)

∑
j �=k

s jk, (7.12)

respectively, where s j j and s jk are from S. Thus s2 is an average of the variances
on the diagonal of S, and s2r is an average of the off-diagonal covariances in S. An
estimate of ρ can be obtained as r = s2r/s2. Using s2 and s2r in (7.12), the estimate
of � under H0 is then
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S0 =




s2 s2r · · · s2r
s2r s2 · · · s2r
...

...
...

s2r s2r · · · s2


 = s2[(1 − r)I + rJ]. (7.13)

To compare S and S0, we use the following function of the likelihood ratio:

u = |S|
|S0| , (7.14)

which can be expressed in the alternative form

u = |S|
(s2)p(1 − r)p−1[1 + (p − 1)r] . (7.15)

By analogy with (7.9), the test statistic is given by

u′ = −
[
ν − p(p + 1)2(2p − 3)

6(p − 1)(p2 + p − 4)

]
ln u, (7.16)

where ν is the degrees of freedom of S (see comments at the beginning of Section
7.2). The statistic u′ is approximately χ2[ 1

2 p(p + 1)− 2], and we reject H0 if u′ >
χ2[α, 1

2 p(p + 1) − 2]. Note that 2 degrees of freedom are lost due to estimation of
σ 2 and ρ.

An alternative approximate test that is more precise when p is large and ν is
relatively small is given by

F = −(γ2 − γ2c1 − γ1)ν

γ1γ2
ln u,

where

c1 = p(p + 1)2(2p − 3)

6ν(p − 1)(p2 + p − 4)
, c2 = p(p2 − 1)(p + 2)

6ν2(p2 + p − 4)
,

γ1 = 1

2
p(p + 1)− 2, γ2 = γ1 + 2

c2 − c2
1

.

We reject H0 : � = σ 2[(1 − ρ)I + ρJ] if F > Fα,γ1,γ2 .

Example 7.2.3. To illustrate this test, we use the cork data of Table 6.21. In Prob-
lem 6.34, a comparison is made of average thickness, and hence weight, in the four
directions. A standard ANOVA approach to this repeated measures design would be
valid if (7.10) holds. To check this assumption, we test H0 : � = σ 2[(1 − ρ)I + ρJ].
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The sample covariance matrix is given by

S =




290.41 223.75 288.44 226.27
223.75 219.93 229.06 171.37
288.44 229.06 350.00 259.54
226.27 171.37 259.54 226.00


 ,

from which we obtain

|S| = 25,617,563.28, s2 = 1

p

p∑
j=1

s j j = 271.586,

s2r = 1

p(p − 1)

∑
j �=k

s jk = 233.072, r = s2r

s2
= 233.072

271.586
= .858.

From (7.15) and (7.16), we now have

u = 25,617,563.28

(271.586)4(1 − .858)3[1 + (3)(.858)] = .461,

u′ = −
[
ν − p(p + 1)2(2p − 3)

6(p − 1)(p2 + p − 4)

]
ln u

=
[

27 − (4)(25)(5)

(6)(3)(16)

]
.774 = 19.511.

Since 19.511 > χ2
.05,8 = 15.5, we reject H0 and conclude that � does not have the

pattern in (7.10).

7.3 TESTS COMPARING COVARIANCE MATRICES

An assumption for T 2 or MANOVA tests comparing two or more mean vectors is
that the corresponding population covariance matrices are equal: �1 = �2 = · · · =
�k . Under this assumption, the sample covariance matrices S1, S2, . . . ,Sk reflect a
common population � and are therefore pooled to obtain an estimate of �. If �1 =
�2 = · · · = �k is not true, large differences in S1, S2, . . . ,Sk may possibly lead
to rejection of H0 : �1 = �2 = · · · = �k . However, the T 2 and MANOVA tests
are fairly robust to heterogeneity of covariance matrices as long as the sample sizes
are large and equal. For other cases it is useful to have available a test of equality of
covariance matrices. We begin with a review of the univariate case.

7.3.1 Univariate Tests of Equality of Variances

The two-sample univariate hypothesis H0 : σ 2
1 = σ 2

2 vs. H1 : σ 2
1 �= σ 2

2 is tested with

F = s2
1

s2
2

, (7.17)
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where s2
1 and s2

2 are the variances of the two samples. If H0 is true (and assuming
normality), f is distributed as Fν1,ν2 , where ν1 and ν2 are the degrees of freedom of
s2

1 and s2
2 (typically, n1 − 1 and n2 − 1). Note that s2

1 and s2
2 must be independent,

which will hold if the two samples are independent.
For the several-sample case, various procedures have been proposed. We present

Bartlett’s (1937) test of homogeneity of variances because it has been extended to
the multivariate case. To test

H0 : σ 2
1 = σ 2

2 = · · · = σ 2
k ,

we calculate

c = 1 + 1

3(k − 1)

[
k∑

i=1

1

νi
− 1∑k

i=1 νi

]
, s2 =

∑k
i=1 νi s2

i∑k
i=1 νi

,

m =
(

k∑
i=1

νi

)
ln s2 −

k∑
i=1

νi ln s2
i ,

where s2
1 , s2

2 , . . . , s2
k are independent sample variances with ν1, ν2, . . . , νk degrees

of freedom, respectively. Then

m

c
is approximately χ2

k−1.

We reject H0 if m/c > χ2
α,k−1.

For an F-approximation, we use c and m and calculate in addition

a1 = k − 1, a2 = k + 1

(c − 1)2
, b = a2

2 − c + 2/a2
.

Then

F = a2m

a1(b − m)
is approximately Fa1,a2 .

We reject H0 if F > Fα .
Note that an assumption for either form of the preceding test is independence

of s2
1 , s2

2 , . . . , s2
k , which will hold for random samples from k distinct populations.

This test would therefore be inappropriate for comparing s11, s22, . . . , spp from the
diagonal of S, since the s j j ’s are correlated.

7.3.2 Multivariate Tests of Equality of Covariance Matrices

For k multivariate populations, the hypothesis of equality of covariance matrices is

H0 : �1 = �2 = · · · = �k . (7.18)
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The test of H0 : �1 = �2 for two groups is treated as a special case by setting k = 2.
There is no exact test of H0 : �1 = �2 as there is in the analogous univariate case [see
(7.17)]. We assume independent samples of size n1, n2, . . . , nk from multivariate
normal distributions, as in an unbalanced one-way MANOVA, for example. To make
the test, we calculate

M = |S1|ν1/2|S2|ν2/2 · · · |Sk |νk/2

|Spl|
∑

i νi/2
, (7.19)

in which νi = ni − 1, Si is the covariance matrix of the i th sample, and Spl is the
pooled sample covariance matrix

Spl =
∑k

i=1 νi Si∑k
i=1 νi

= E
νE
, (7.20)

where E is given by (6.33) and νE = ∑k
i=1 νi = ∑

i ni − k. It is clear that we
must have every νi > p; otherwise |Si | = 0 for some i , and M would be zero.
Exact upper percentage points of −2 ln M = ν(k ln |Spl|−∑i ln |Si |) for the special
case of ν1 = ν2 = · · · = νk = ν are given in Table A.14 for p = 2, 3, 4, 5 and
k = 2, 3, . . . , 10 (Lee, Chiang, and Krishnaiah 1977). We can easily modify (7.19)
and (7.20) to compare covariance matrices for the cells of a two-way model by using
νi j = ni j − 1.

The statistic M is a modification of the likelihood ratio and varies between 0 and
1, with values near 1 favoring H0 in (7.18) and values near 0 leading to rejection of
H0. It is not immediately obvious that M in (7.19) behaves in this way, and we offer
the following heuristic argument. First we note that (7.19) can be expressed as

M =
( |S1|

|Spl|
)ν1/2 ( |S2|

|Spl|
)ν2/2

· · ·
( |Sk |

|Spl|
)νk/2

. (7.21)

If S1 = S2 = · · · = Sk = Spl, then M = 1. As the disparity among S1, S2, . . . ,Sk

increases, M approaches zero. To see this, note that the determinant of the pooled
covariance matrix, |Spl|, lies somewhere near the“middle” of the |Si |’s and that as a
set of variables z1, z2, . . . , zn increases in spread, z(1)/z reduces the product more
than z(n)/z increases it, where z(1) and z(n) are the minimum and maximum values,
respectively. We illustrate this with the two sets of numbers, 4, 5, 6 and 1, 5, 9, which
have the same mean but different spread. If we assume ν1 = ν2 = ν3 = ν, then for
the first set,

M1 =
[(

4

5

)(
5

5

)(
6

5

)]ν/2
= [(.8)(1)(1.2)]ν/2 = (.96)ν/2

and for the second set,
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M2 =
[(

1

5

)(
5

5

)(
9

5

)]ν/2
= [(.2)(1)(1.8)]ν/2 = (.36)ν/2.

In M2, the smallest value, .2, reduces the product proportionally more than the largest
value, 1.8, increases it. Another illustration is found in Problem 7.9.

Box (1949, 1950) gave χ2- and F-approximations for the distribution of M.
Either of these approximate tests is referred to as Box’s M-test. For the χ2-
approximation, calculate

c1 =
[

k∑
i=1

1

νi
− 1∑k

i=1 νi

][
2p2 + 3p − 1

6(p + 1)(k − 1)

]
. (7.22)

Then

u = −2(1 − c1) ln M is approximately χ2
[

1
2 (k − 1)p(p + 1)

]
, (7.23)

where M is defined in (7.19), and

ln M = 1

2

k∑
i=1

νi ln |Si | − 1

2

(
k∑

i=1

νi

)
ln |Spl|. (7.24)

We reject H0 if u > χ2
α . If ν1 = ν2 = · · · = νk = ν, then c1 simplifies to

c1 = (k + 1)(2p2 + 3p − 1)

6kν(p + 1)
. (7.25)

To justify the degrees of freedom of the χ2-approximation, note that the total
number of parameters estimated under H1 is k[ 1

2 p(p + 1)], whereas under H0 we
estimate only �, which has p + (p

2

) = 1
2 p(p + 1) parameters. The difference is

(k − 1)[ 1
2 p(p + 1)]. The quantity k[ 1

2 p(p + 1)] arises from the assumption that all
�i , i = 1, 2, . . . , k, are different. Technically, H1 can be stated as �i �= � j for some
i �= j . However, the most general case is all �i different, and the distribution of M
is derived accordingly.

For the F-approximation, we use c1 from (7.22) and calculate, additionally,

c2 = (p − 1)(p + 2)

6(k − 1)


 k∑

i=1

1

ν2
i

− 1(∑k
i=1 νi

)2


 , (7.26)

a1 = 1

2
(k − 1)p(p + 1), a2 = a1 + 2

|c2 − c2
1|
,

b1 = 1 − c1 − a1/a2

a1
, b2 = 1 − c1 + 2/a2

a2
.
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If c2 > c2
1,

F = −2b1 ln M is approximately Fa1,a2 . (7.27)

If c2 < c2
1,

F = − 2a2b2 ln M

a1(1 + 2b2 ln M)
is approximately Fa1,a2 . (7.28)

In either case, we reject H0 if F > Fα . If ν1 = ν2 = · · · = νk = ν, then c1 simplifies
as in (7.25) and c2 simplifies to

c2 = (p − 1)(p + 2)(k2 + k + 1)

6k2ν2
. (7.29)

Box’s M-test is calculated routinely in many computer programs for MANOVA.
However, Olson (1974) showed that the M-test with equal νi may detect some forms
of heterogeneity that have only minor effects on the MANOVA tests. The test is also
sensitive to some forms of nonnormality. For example, it is sensitive to kurtosis for
which the MANOVA tests are rather robust. Thus the M-test may signal covariance
heterogeneity in some cases where it is not damaging to the MANOVA tests. Hence
we may not wish to automatically rule out standard MANOVA tests if the M-test
leads to rejection of H0. Olson showed that the skewness and kurtosis statistics b1,p
and b2,p (see Section 4.4.2) have similar shortcomings.

Example 7.3.2. We test the hypothesis H0 : �1 = �2 for the psychological data
of Table 5.1. The covariance matrices S1, S2, and Spl were given in Example 5.4.2.
Using these, we obtain, by (7.24),

ln M = 1
2 [ν1 ln |S1| + ν2 ln |S2|] − 1

2 (ν1 + ν2) ln |Spl|
= 1

2 [(31) ln(7917.7)+ (31) ln(58958.1)]
− 1

2 (31 + 31) ln(27325.2) = −7.2803.

For an exact test, we compare

−2 ln M = 14.561

with 19.74, its critical value from Table A.14.
For the χ2-approximation, we compute, by (7.25) and (7.23),

c1 = (2 + 1)[2(42)+ 3(4)− 1]
6(2)(31)(4 + 1)

= .06935,

u = −2(1 − c1) ln M = 13.551 < χ2
.05,10 = 18.307.



TESTS OF INDEPENDENCE 259

For an approximate F-test, we first calculate the following:

c2 = (4 − 1)(4 + 2)

6(2 − 1)

[
1

312
+ 1

312
− 1

(31 + 31)2

]
= .005463,

a1 = 1

2
(2 − 1)(4)(4 + 1) = 10,

a2 = 10 + 2

|.005463 − .069352| = 18377.7,

b1 = 1 − .06935 − 10/18377.7

10
= .0930,

b2 = 1 − .06935 + 2/18377.7

18377.7
= 5.0646 × 10−5.

Since c2 = .005463 > c2
1 = .00481, we use (7.27) to obtain

F = −2b1 ln M = 1.354 < F.05,10,∞ = 1.83.

Thus all three tests accept H0.

7.4 TESTS OF INDEPENDENCE

7.4.1 Independence of Two Subvectors

Suppose the observation vector is partitioned into two subvectors of interest, which
we label y and x, as in Section 3.8.1, where y is p × 1 and x is q × 1. By (3.46), the
corresponding partitioning of the population covariance matrix is

� =
(

�yy �yx

�xy �xx

)
,

with analogous partitioning of S and R as in (3.42):

S =
(

Syy Syx

Sxy Sxx

)
, R =

(
Ryy Ryx

Rxy Rxx

)
.

The hypothesis of independence of y and x can be expressed as

H0 : � =
(

�yy O
O �xx

)
or H0 : �yx = O.

Thus independence of y and x means that every variable in y is independent of every
variable in x. Note that there is no restriction on �yy or �xx .



260 TESTS ON COVARIANCE MATRICES

The likelihood ratio test statistic for H0 : �yx = O is given by

 = |S|
|Syy||Sxx | = |R|

|Ryy||Rxx | , (7.30)

which is distributed as p,q,n−1−q . We reject H0 if  ≤ α . We thus have an exact
test for H0 : �yx = O. Critical values for Wilks’  are given in Table A.9 using
νH = q and νE = n − 1 − q. The test statistic in (7.30) is equivalent (when H0
is true) to the -statistic (10.55) in Section 10.5.1 for testing the significance of the
regression of y on x.

By the symmetry of

|S|
|Syy||Sxx | = |S|

|Sxx ||Syy| ,

 in (7.30) is also distributed as q,p,n−1−p . This is equivalent to property 3 in
Section 6.1.3.

Note that |Syy||Sxx | in (7.30) is an estimate of |�yy||�xx |, which by (2.92) is the
determinant of � when �yx = O. Thus Wilks’ compares an estimate of � without
restrictions to an estimate of � under H0 : �yx = O. We can see intuitively that
|S| < |Syy||Sxx | by noting from (2.94) that |S| = |Sxx ||Syy − Syx S−1

xx Sxy|, and since
SyxS−1

xx Sxy is positive definite, |Syy − SyxS−1
xx Sxy| < |Syy|. This can be illustrated

for the case p = q = 1:

|S| =
∣∣∣∣ s2

y syx

syx s2
x

∣∣∣∣ = s2
ys2

x − (syx)
2 < s2

ys2
x .

As s2
yx increases, |S| decreases.

Wilks’  in (7.30) can be expressed in terms of eigenvalues:

 =
s∏

i=1

(1 − r2
i ), (7.31)

where s = min(p, q) and the r2
i ’s are the nonzero eigenvalues of S−1

xx SxyS−1
yy Syx . We

could also use S−1
yy SyxS−1

xx Sxy , since the (nonzero) eigenvalues of S−1
yy SyxS−1

xx Sxy

are the same as those of S−1
xx SxyS−1

yy Syx (these two matrices are of the form AB
and BA; see Section 2.11.5). The number of nonzero eigenvalues is s = min(p, q),
since s is the rank of both S−1

yy SyxS−1
xx Sxy and S−1

xx SxyS−1
yy Syx . The eigenvalues are

designated r2
i because they are the squared canonical correlations between y and x

(see Chapter 11). In the special case p = 1, (7.31) becomes

 = 1 − r2
1 = 1 − R2,

where R2 is the square of the multiple correlation between y and (x1, x2, . . . , xq).
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The other test statistics, U (s), V (s), and Roy’s θ , can also be defined in terms of
the r2

i ’s (see Section 11.4.1).

Example 7.4.1. Consider the diabetes data in Table 3.4. There is a natural partition-
ing in the variables, with y1 and y2 of minor interest and x1, x2, and x3 of major
interest. We test independence of the y’s and the x’s, that is, H0 : �yx = O. From
Example 3.8.1, the partitioned covariance matrix is

S =
(

Syy Syx

Sxy Sxx

)
=




.0162 .2160 .7872 −.2138 2.189

.2160 70.56 26.23 −23.96 −20.84

.7872 26.23 1106 396.7 108.4
−.2138 −23.96 396.7 2382 1143

2.189 −20.84 108.4 1143 2136


 .

To make the test, we compute

 = |S|
|Syy||Sxx | = 3.108 × 109

(1.095)(3.920 × 109)
= .724 < .05,2,3,40 = .730.

Thus we reject the hypothesis of independence. Note the use of 40 in .05,2,3,40 in
place of n − 1 − q = 46 − 1 − 3 = 42. This is a conservative approach that allows
the use of a table value without interpolation.

7.4.2 Independence of Several Subvectors

Let there be k sets of variates so that y and � are partitioned as

y =




y1
y2
...

yk


 and � =




�11 �12 · · · �1k
�21 �22 · · · �2k
...

...
...

�k1 �k2 · · · �kk


 ,

with pi variables in yi , where p1 + p2 +· · ·+ pk = p. Note that y1, y2, . . . , yk rep-
resents a partitioning of y, not a random sample of independent vectors. The hypoth-
esis that the subvectors y1, y2, . . . , yk are mutually independent can be expressed as
H0 : �i j = O for all i �= j , or

H0 : � =




�11 O · · · O
O �22 · · · O
...

...
...

O O · · · �kk


 . (7.32)



262 TESTS ON COVARIANCE MATRICES

The likelihood ratio statistic is

u = |S|
|S11||S22| · · · |Skk | (7.33)

= |R|
|R11||R22| · · · |Rkk | , (7.34)

where S and R are obtained from a random sample of n observations and are par-
titioned as � above, conforming to y1, y2, . . . , yk . Note that the denominator of
(7.33) is the determinant of S restricted by H0, that is, with Si j = O for all i �= j
[see (2.92)]. The statistic u does not have Wilks’ -distribution as it does in (7.30)
when k = 2, but a good χ2-approximation to its distribution is given by

u′ = −νc ln u, (7.35)

where

c = 1 − 1

12 f ν
(2a3 + 3a2), (7.36)

f = 1

2
a2, a2 = p2 −

k∑
i=1

p2
i , a3 = p3 −

k∑
i=1

p3
i ,

and ν is the degrees of freedom of S or R (see comments at the beginning of Sec-
tion 7.2). We reject the independence hypothesis if u′ > χ2

α, f .

The degrees of freedom, f = 1
2a2, arises from thefollowing consideration. The

number of parameters in � unrestricted by the hypothesis is 1
2 p(p + 1). Under the

hypothesis (7.32), the number of parameters in each �i i is 1
2 pi (pi + 1), for a total of

1
2

∑k
i=1 pi (pi + 1). The difference is

f = 1

2
p(p + 1)− 1

2

k∑
i=1

pi (pi + 1) = 1

2

(
p2 + p −

∑
i

p2
i −

∑
i

pi

)

= 1

2

(
p2 + p −

∑
i

p2
i − p

)
= 1

2

(
p2 −

∑
i

p2
i

)
= a2

2
.

Example 7.4.2. For 30 brands of Japanese Seishu wine, Siotani et al. (1963) studied
the relationship between

y1 = taste,

y2 = odor,
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Table 7.1. Seishu Measurements

y1 y2 x1 x2 x3 x4 x5 x6 x7 x8

1.0 .8 4.05 1.68 .85 3.0 3.97 5.00 16.90 122.0
.1 .2 3.81 1.39 .30 .6 3.62 4.52 15.80 62.0
.5 .0 4.20 1.63 .92 −2.3 3.48 4.46 15.80 139.0
.7 .7 4.35 1.43 .97 −1.6 3.45 3.98 15.40 150.0

−.1 −1.1 4.35 1.53 .87 −2.0 3.67 4.22 15.40 138.0
.4 .5 4.05 1.84 .95 −2.5 3.61 5.00 16.78 123.0
.2 −.3 4.20 1.61 1.09 −1.7 3.25 4.15 15.81 172.0
.3 −.1 4.32 1.43 .93 −5.0 4.16 5.45 16.78 144.0
.7 .4 4.21 1.74 .95 −1.5 3.40 4.25 16.62 153.0
.5 −.1 4.17 1.72 .92 −1.2 3.62 4.31 16.70 121.0

−.1 .1 4.45 1.78 1.19 −2.0 3.09 3.92 16.50 176.0
.5 −.5 4.45 1.48 .86 −2.0 3.32 4.09 15.40 128.0
.5 .8 4.25 1.53 .83 −3.0 3.48 4.54 15.55 126.0
.6 .2 4.25 1.49 .86 2.0 3.13 3.45 15.60 128.0
.0 −.5 4.05 1.48 .30 .0 3.67 4.52 15.38 99.0

−.2 −.2 4.22 1.64 .90 −2.2 3.59 4.49 16.37 122.8
.0 −.2 4.10 1.55 .85 1.8 3.02 3.62 15.31 114.0
.2 .2 4.28 1.52 .75 −4.8 3.64 4.93 15.77 125.0

−.1 −.2 4.32 1.54 .83 −2.0 3.17 4.62 16.60 119.0
.6 .1 4.12 1.68 .84 −2.1 3.72 4.83 16.93 111.0

.8 .5 4.30 1.50 .92 −1.5 2.98 3.92 15.10 68.0

.5 .2 4.55 1.50 1.14 .9 2.60 3.45 15.70 197.0

.4 .7 4.15 1.62 .78 −7.0 4.11 5.55 15.50 106.0

.6 −.3 4.15 1.32 .31 .8 3.56 4.42 15.40 49.5
−.7 −.3 4.25 1.77 1.12 .5 2.84 4.15 16.65 164.0
−.2 .0 3.95 1.36 .25 1.0 3.67 4.52 15.98 29.5

.3 −.1 4.35 1.42 .96 −2.5 3.40 4.12 15.30 131.0

.1 .4 4.15 1.17 1.06 −4.5 3.89 5.00 16.79 168.2

.4 .5 4.16 1.61 .91 −2.1 3.93 4.35 15.70 118.0
−.6 −.3 3.85 1.32 .30 .7 3.61 4.29 15.71 48.0

and

x1 = pH, x5 = direct reducing sugar,

x2 = acidity 1, x6 = total sugar,

x3 = acidity 2, x7 = alcohol,

x4 = sake meter, x8 = formyl-nitrogen.

The data are in Table 7.1.
We test independence of the following four subsets of variables:

(y1, y2), (x1, x2, x3), (x4, x5, x6), (x7, x8).
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The sample covariance matrix is

S =




S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44




=




.16 .10 .01 .006 .02 −.04 .02 .01 −.02 1.44

.10 .19 −.01 .009 .02 −.16 .03 .05 .04 1.03

.01 −.01 .03 .004 .03 −.11 −.03 −.03 −.01 4.45
.006 .009 .004 .024 .020 −.012 −.009 .0004 .038 2.23
.02 .02 .03 .020 .07 −.18 −.03 −.03 .05 9.03

−.04 −.16 −.11 −.012 −.18 5.02 −.35 −.67 −.12 −23.11
.02 .03 −.03 −.009 −.03 −.35 .13 .15 .05 −4.26
.01 .05 −.03 .0004 −.03 −.67 .15 .26 .13 −3.47

−.02 .04 −.01 .038 .05 −.12 .05 .13 .35 6.73
1.44 1.03 4.45 2.23 9.03 .− 23.11 −4.26 −3.47 6.73 1541




,

where S11 is 2 × 2, S22 is 3 × 3, S33 is 3 × 3, and S44 is 2 × 2. We first obtain

u = |S|
|S11||S22||S33||S44|

= 2.925 × 10−7

(.0210)(.0000158)(.0361)(496.04)
= .01627.

For the χ2-approximation, we calculate

a2 = p2 −
4∑

i=1

p2
i = 102 − (22 + 32 + 32 + 22) = 74,

a3 = p3 −
4∑

i=1

p3
i = 930, f = 1

2
a2 = 37,

c = 1 − 1

12 f ν
(2a3 + 3a2) = 1 − 2(930)+ 3(74)

12(37)(29)
= .838.

Then,

u′ = −νc ln u = −(29)(.838) ln(.01627) = 100.122,

which exceeds χ2
.001,37 = 69.35, and we reject the hypothesis of independence of the

four subsets.



TESTS OF INDEPENDENCE 265

7.4.3 Test for Independence of All Variables

If all pi = 1 in the hypothesis (7.32) in Section 7.4.2, we have the special case in
which all the variables are mutually independent, H0 : σ jk = 0 for j �= k, or

H0 : � =



σ11 0 · · · 0
0 σ22 · · · 0
...

...
...

0 0 · · · σpp


 .

There is no restriction on the σ j j ’s. With σ jk = 0 for all j �= k, the corresponding
ρ jk’s are also 0, and an equivalent form of the hypothesis is H0 : Pρ = I, where Pρ
is thepopulation correlation matrix defined in (3.37).

Since all pi = 1, the statistics (7.33) and (7.34) reduce to

u = |S|
s11s22 · · · spp

= |R|, (7.37)

and (7.35) becomes

u′ = −[ν − 1
6 (2p + 5)] ln u, (7.38)

which has an approximate χ2
f -distribution, where ν is the degrees of freedom of S

or R (see a comment at the beginning of Section 7.2) and f = 1
2 p(p − 1) is the

degrees of freedom of χ2. We reject H0 if u′ > χ2
α, f . Exact percentage points of u′

for selected values of n and p are given in Table A.15 (Mathai and Katiyar 1979).
Percentage points for the limiting χ2-distribution are also given for comparison.

Note that |R| in (7.37) varies between 0 and 1. If the variables were uncorrelated
(in the sample), we would have R = I and |R| = 1. On the other hand, if two or more
variables were linearly related, R would not be full rank and we would have |R| = 0.
If the variables were highly correlated, |R| would be close to 0; if the correlations
were all small, |R| would be close to 1. This can be illustrated for p = 2:

|R| =
∣∣∣∣ 1 r

r 1

∣∣∣∣ = 1 − r2.

Example 7.4.3. To test the hypothesis H0 : σ jk = 0, j �= k, for the probe word data
from Table 3.5, we calculate

R =




1.000 .614 .757 .575 .413
.614 1.000 .547 .750 .548
.757 .547 1.000 .605 .692
.575 .750 .605 1.000 .524
.413 .548 .692 .524 1.000


 .
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Then by (7.37) and (7.38),

u = |R| = .0409,

u′ = −
[
n − 1 − 1

6 (2p + 5)
]

ln u = 23.97.

The exact .01 critical value for u′ from Table A.15 is 23.75, and we therefore reject
H0. The approximate χ2 critical value for u′ is χ2

.01,10 = 23.21, with which we also
reject H0.

PROBLEMS

7.1 Show that if S = �0 in (7.1), then u = 0.

7.2 Verify (7.3); that is, show that ln |�0| − ln |S| = − ln |S�−1
0 |.

7.3 Verify (7.4); that is, show that − ln(
∏p

i=1 λi )+∑p
i=1 λi = ∑p

i=1(λi − lnλi ).

7.4 Show that the likelihood ratio for H0 : � = σ 2I is given by (7.5), LR =
[|S|/(tr S/p)p]n/2.

7.5 Show that u = 1 and u′ = 0 if all the λi ’s are equal, as noted in Section 7.2.2,
where u is given by (7.8) and u′ by (7.9).

7.6 Show that the covariance matrix in (7.10) can be written in the form σ 2[(1 −
ρ)I + ρJ], as given in (7.11).

7.7 Obtain (7.15) from (7.14) as follows:

(a) Show that the p × p matrix J has a single nonzero eigenvalue equal to p
and corresponding eigenvector proportional to j.

(b) Show that S0 = s2[(1 − r)I + rJ] in (7.13) can be written in the form
S0 = s2(1 − r)(I + r

1−r J).
(c) Use Section 2.11.2 and (2.108) to obtain (7.15).

7.8 Show that M in (7.19) can be expressed in the form given in (7.21).

7.9 (a) Calculate M as given in (7.21) for

S1 =
(

2 1
1 4

)
, S2 =

(
4 3
3 6

)
.

Assume ν1 = ν2 = 5.
(b) Calculate M for

S1 =
(

2 1
1 4

)
, S2 =

(
10 15
15 30

)
.

Assume ν1 = ν2 = 5.
In (b), S1 and S2 differ more than in (a) and M is accordingly much

smaller. This illustrates the comments following (7.21).
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7.10 Obtain (7.31),  = ∏s
i=1(1 − r2

i ), by using (2.94) to write |S| in the form
|S| = |Sxx | |Syy − SyxS−1

xx Sxy|.
7.11 Show that the forms of u in (7.33) and (7.34) reduce to (7.37) when all pi = 1.

7.12 Show that when all pi = 1, c in (7.36) reduces to 1 − (2p + 5)/6ν, so that
(7.35) becomes (7.38).

7.13 Give a justification for the degrees of freedom f = 1
2 p(p − 1) for the approx-

imate χ2 test statistic u′ in (7.38).

7.14 In Example 5.2.2, we assumed that for the height and weight data of Table 3.1,
the population covariance matrix is

� =
(

20 100
100 1000

)
.

Test this as a hypothesis using (7.2).

7.15 Test H0 : � = σ 2I and H0 : C�C′ = σ 2I for the calculator speed data of
Table 6.12.

7.16 Test H0 : � = σ 2I and H0 : C�C′ = σ 2I for the ramus bone data of Table 3.6.

7.17 Test H0 : � = σ 2I and H0 : C�C′ = σ 2I for the cork data of Table 6.21.

7.18 Test H0 : � = σ 2[(1−ρ)I+ρJ] for the probe word data in Table 3.5. Use both
χ2- and F-approximations.

7.19 Test H0 : � = σ 2[(1 − ρ)I + ρJ] for the calculator speed data in Table 6.12.
Use both χ2- and F-approximations.

7.20 Test H0 : � = σ 2[(1 − ρ)I + ρJ] for the ramus bone data in Table 3.6. Use
both χ2- and F-approximations.

7.21 Test H0 : �1 = �2 for the beetles data of Table 5.5. Use an exact critical value
from Table A.14 as well as χ2- and F-approximations.

7.22 Test H0 : �1 = �2 for the engineer data of Table 5.6. Use an exact critical
value from Table A.14 as well as χ2- and F-approximations.

7.23 Test H0 : �1 = �2 for the dystrophy data of Table 5.7. Use an exact critical
value from Table A.14 as well as χ2- and F-approximations.

7.24 Test H0 : �1 = �2 for the cyclical data of Table 5.8. Use an exact critical value
from Table A.14 as well as χ2- and F-approximations.

7.25 Test H0 : �1 = �2 = �3 for the fish data of Table 6.17. Use an exact critical
value from Table A.14 as well as χ2- and F-approximations.

7.26 Test H0 : �1 = �2 = · · · = �6 for the rootstock data in Table 6.2. Use an
exact critical value from Table A.14 as well as χ2- and F-approximations.

7.27 Test H0 : �11 = �12 = · · · = �43 for the snap bean data in Table 6.18. Use
both χ2- and F-approximations.
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7.28 Test independence of (y1, y2) and (x1, x2) for the sons data in Table 3.7.

7.29 Test independence of (y1, y2, y3) and (x1, x2, x3) for the glucose data in
Table 3.8.

7.30 Test independence of (y1, y2) and (x1, x2, . . . , x8) for the Seishu data of
Table 7.1.

7.31 The data in Table 7.2 relate temperature, humidity, and evaporation (courtesy
of R. J. Freund). The variables are

y1 = maximum daily air temperature,

y2 = minimum daily air temperature,

y3 = integrated area under daily air temperature curve, that is,
a measure of average air temperature,

y4 = maximum daily soil temperature,

y5 = minimum daily soil temperature,

y6 = integrated area under soil temperature curve,

y7 = maximum daily relative humidity,

y8 = minimum daily relative humidity,

y9 = integrated area under daily humidity curve,

y10 = total wind, measured in miles per day,

y11 = evaporation.

Test independence of the following five groups of variables: (y1, y2, y3),
(y4, y5, y6), (y7, y8, y9), y10, and y11.

7.32 Test the independence of all the variables for the calcium data of Table 3.3.

7.33 Test the independence of all the variables for the calculator speed data of
Table 6.12.

7.34 Test the independence of all the variables for the ramus bone data of Table 3.6.

7.35 Test the independence of all the variables for the cork data of Table 6.21.
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Table 7.2. Temperature, Humidity, and Evaporation

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

84 65 147 85 59 151 95 40 398 273 30
84 65 149 86 61 159 94 28 345 140 34
79 66 142 83 64 152 94 41 368 318 33
81 67 147 83 65 158 94 50 406 282 26
84 68 167 88 69 180 93 46 379 311 41
74 66 131 77 67 147 96 73 478 446 4
73 66 131 78 69 159 96 72 462 294 5
75 67 134 84 68 159 95 70 464 313 20
84 68 161 89 71 195 95 63 430 455 31
86 72 169 91 76 206 93 56 406 604 36
88 73 176 91 76 206 94 55 393 610 43
90 74 187 94 76 211 94 51 385 520 47
88 72 171 94 75 211 96 54 405 663 45
58 72 171 92 70 201 95 51 392 467 45
81 69 154 87 68 167 95 61 448 184 11
79 68 149 83 68 162 95 59 436 177 10
84 69 160 87 66 173 95 42 392 173 30
84 70 160 87 68 177 94 44 392 76 29
84 70 168 88 70 169 95 48 396 72 23
77 67 147 83 66 170 97 60 431 183 16
87 67 166 92 67 196 96 44 379 76 37
89 69 171 92 72 199 94 48 393 230 50
89 72 180 94 72 204 95 48 394 193 36
93 72 186 92 73 201 94 47 386 400 54
93 74 188 93 72 206 95 47 389 339 44
94 75 199 94 72 208 96 45 370 172 41
93 74 193 95 73 214 95 50 396 238 45
93 74 196 95 70 210 96 45 380 118 42
96 75 198 95 71 207 93 40 365 93 50
95 76 202 95 69 202 93 39 357 269 48
84 73 173 96 69 173 94 58 418 128 17
91 71 170 91 69 168 94 44 420 423 20
88 72 179 89 70 189 93 50 399 415 15
89 72 179 95 71 210 98 46 389 300 42
91 72 182 96 73 208 95 43 384 193 44
92 74 196 97 75 215 96 46 389 195 41
94 75 192 96 69 198 95 36 380 215 49
96 75 195 95 67 196 97 24 354 185 53
93 76 198 94 75 211 93 43 364 466 53
88 74 188 92 73 198 95 52 405 399 21
88 74 178 90 74 197 95 61 447 232 1
91 72 175 94 70 205 94 42 380 275 44
92 72 190 95 71 209 96 44 379 166 44
92 73 189 96 72 208 93 42 372 189 46
94 75 194 95 71 208 93 43 373 164 47
96 76 202 96 71 208 94 40 368 139 50



C H A P T E R 8

Discriminant Analysis: Description
of Group Separation

8.1 INTRODUCTION

We use the term group to represent either a population or a sample from the popula-
tion. There are two major objectives in separation of groups:

1. Description of group separation, in which linear functions of the variables (dis-
criminant functions) are used to describe or elucidate the differences between
two or more groups. The goals of descriptive discriminant analysis include
identifying the relative contribution of the p variables to separation of the
groups and finding the optimal plane on which the points can be projected
to best illustrate the configuration of the groups.

2. Prediction or allocation of observations to groups, in which linear or quadratic
functions of the variables (classification functions) are employed to assign an
individual sampling unit to one of the groups. The measured values in the
observation vector for an individual or object are evaluated by the classification
functions to find the group to which the individual most likely belongs.

For consistency we will use the term discriminant analysis only in connection
with objective 1. We will refer to all aspects of objective 2 as classification analysis,
which is the subject of Chapter 9. Unfortunately, there is no general agreement with
regard to usage of the terms discriminant analysis and discriminant functions. Many
writers, perhaps the majority, use the term discriminant analysis in connection with
the second objective, prediction or allocation. The linear functions contributing to
the first objective, description of group separation, are often referred to as canonical
variates or discriminant coordinates. To avoid confusion, we prefer to reserve the
term canonical for canonical correlation analysis in Chapter 11.

Discriminant functions are linear combinations of variables that best separate
groups. They were introduced in Section 5.5 for two groups and in Sections 6.1.4
and 6.4 for several groups. In those sections, interest was centered on follow-up to
Hotelling’s T 2-tests and MANOVA tests. In this chapter, we further develop these
useful multivariate tools.

270
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8.2 THE DISCRIMINANT FUNCTION FOR TWO GROUPS

We assume that the two populations to be compared have the same covariance matrix
� but distinct mean vectors �1 and �2. We work with samples y11, y12, . . . , y1n1 and
y21, y22, . . . , y2n2 from the two populations. As usual, each vector yi j consists of
measurements on p variables. The discriminant function is the linear combination of
these p variables that maximizes the distance between the two (transformed) group
mean vectors. A linear combination z = a′y transforms each observation vector to a
scalar:

z1i = a′y1i = a1 y1i1 + a2 y1i2 + · · · + ap y1i p, i = 1, 2, . . . , n1

z2i = a′y2i = a1 y2i1 + a2 y2i2 + · · · + ap y2i p, i = 1, 2, . . . , n2.

Hence the n1 + n2 observation vectors in the two samples,

y11
y12
...

y1n1

y21
y22
...

y2n2,

are transformed to scalars,

z11
z12
...

z1n1

z21
z22
...

z2n2 .

We find the means z1 = ∑n1
i=1 z1i/n1 = a′y1 and z2 = a′y2 by (3.54), where

y1 = ∑n1
i=1 y1i/n1 and y2 = ∑n2

i=1 y2i/n2. We then wish to find the vector a that
maximizes the standardized difference (z1 − z2)/sz . Since (z1 − z2)/sz can be nega-
tive, we use the squared distance (z1 − z2)

2/s2
z , which, by (3.54) and (3.55), can be

expressed as

(z1 − z2)
2

s2
z

= [a′(y1 − y2)]2

a′Spla
. (8.1)

The maximum of (8.1) occurs when

a = S−1
pl (y1 − y2), (8.2)

or when a is any multiple of S−1
pl (y1 − y2). Thus the maximizing vector a is not

unique. However, its “direction” is unique; that is, the relative values or ratios of
a1, a2, . . . , ap are unique, and z = a′y projects points y onto the line on which
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(z1 − z2)
2/s2

z is maximized. Note that in order for S−1
pl to exist, we must have n1 +

n2 − 2 > p.
The optimum direction given by a = S−1

pl (y1 − y2) is effectively parallel to the

line joining y1 and y2, because the squared distance (z1 − z2)
2/s2

z is equivalent to
the standardized distance between y1 and y2. This can be seen by substituting (8.2)
into (8.1) to obtain

(z1 − z2)
2

s2
z

= (y1 − y2)
′S−1

pl (y1 − y2) (8.3)

for z = a′y with a = S−1
pl (y1 − y2). Since a′ = (y1 − y2)

′S−1
pl , we can write (8.3)

as (z1 − z2)
2/s2

z = a′(y1 − y2), and any other direction than that represented by
a = S−1

pl (y1 − y2) would yield a smaller difference between a′y1 and a′y2 (see
Section 5.5).

Figure 8.1 illustrates the separation of two bivariate normal (p = 2) groups along
the single dimension represented by the discriminant function z = a′y, where a is
given by (8.2). In this illustration the population covariance matrices are equal. The
linear combinations z1i = a′y1i = a1 y1i1 +a2 y1i2 and z2i = a′y2i = a1 y2i1 +a2 y2i2
project the points y1i and y2i onto the line of optimum separation of the two groups.
Since the two variables y1 and y2 are bivariate normal, a linear combination z =
a1 y1 + a2 y2 = a′y is univariate normal (see property 1a in Section 4.2). We have
therefore indicated this by two univariate normal densities along the line represent-
ing z.

The point where the line joining the points of intersection of the two ellipses inter-
sects the discriminant function line z is the point of maximum separation (minimum

y2

G2

G1

y1

z

z2

z1

Figure 8.1. Two-group discriminant analysis.
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z'

z-   2

z-   '1

z-   1

z-   '2

y2

G2

G1

y1

z

Figure 8.2. Separation achieved by the discriminant function.

overlap) of points projected onto the line. If the two populations are multivariate nor-
mal with common covariance matrix �, as illustrated in Figure 8.1, it can be shown
that all possible group separation is expressed in a single new dimension.

In Figure 8.2, we illustrate the optimum separation achieved by the discriminant
function. Projection in another direction denoted by z′ gives a smaller standardized
distance between the transformed means z′

1 and z′
2 and also a larger overlap between

the projected points.

Example 8.2. Samples of steel produced at two different rolling temperatures are
compared in Table 8.1 (Kramer and Jensen 1969a). The variables are y1 = yield

Table 8.1. Yield Point and Ultimate Strength of Steel
Produced at Two Rolling Temperatures

Temperature 1 Temperature 2

y1 y2 y1 y2

33 60 35 57
36 61 36 59
35 64 38 59
38 63 39 61
40 65 41 63

43 65
41 59
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Figure 8.3. Ultimate strength and yield point for steel rolled at two temperatures.

point and y2 = ultimate strength. From the data, we calculate

y1 =
(

36.4
62.6

)
, y2 =

(
39.0
60.4

)
, Spl =

(
7.92 5.68
5.68 6.29

)
.

A plot of the data appears in Figure 8.3. We see that if the points were projected
on either the y1 or the y2 axis, there would be considerable overlap. In fact, when the
two groups are compared by means of a t-statistic for each variable separately, both
t’s are nonsignificant:

t1 = y11 − y21√
s11(1/n1 + 1/n2)

= −1.58,

t2 = y12 − y22√
s22(1/n1 + 1/n2)

= 1.48.

However, it is clear in Figure 8.3 that the two groups can be separated. If they
are projected in an appropriate direction, as in Figure 8.1, there will be no overlap.
The single dimension onto which the points would be projected is the discriminant
function

z = a′y = a1 y1 + a2 y2 = −1.633y1 + 1.820y2,
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Table 8.2. Discriminant Function z = −1.633y1+1.820y2

Evaluated for Data in Table 8.1

Temperature 1 Temperature 2

55.29 46.56
52.20 48.57
59.30 45.30
52.58 47.30
52.95 47.68

48.05
40.40

where a is obtained as

a = S−1
pl (y1 − y2) =

( −1.633
1.820

)
.

The values of the projected points are found by calculating z for each observation
vector y in the two groups. The results are given in Table 8.2, where the separation
provided by the discriminant function is clearly evident.

8.3 RELATIONSHIP BETWEEN TWO-GROUP DISCRIMINANT
ANALYSIS AND MULTIPLE REGRESSION

The mutual connection between multiple regression and two-group discriminant
analysis was introduced as a computational device in Section 5.6.2. The roles of
independent and dependent variables are reversed in the two models. The depen-
dent variables (y’s) of discriminant analysis become the independent variables in
regression.

Let w be a grouping variable (identifying groups 1 and 2) such that w = 0 and
define b = (b1, b2, . . . , bp)

′ as the vector of regression coefficients when w is fit
to the y’s. Then by (5.21), b is proportional to the discriminant function coefficient
vector a = S−1

pl (y1 − y2):

b = n1n2

(n1 + n2)(n1 + n2 − 2 + T 2)
a, (8.4)

where T 2 = [n1n2/(n1 + n2)](y1 − y2)
′S−1

pl (y1 − y2) as in (5.9). From (5.20) the

squared multiple correlation R2 is related to T 2 by

R2 = (y1 − y2)
′b = T 2

n1 + n2 − 2 + T 2
. (8.5)
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The test statistic (5.29) for the hypothesis that q of the p + q variables are redundant
for separating the groups can also be obtained in terms of regression by (5.31) as

F = n1 + n2 − p − q − 1

q

R2
p+q − R2

p

1 − R2
p+q

, (8.6)

where R2
p+q and R2

p are from regressions with p + q and p variables, respectively.
The link between two-group discriminant analysis and multiple regression was

first noted by Fisher (1936). Flury and Riedwyl (1985) give further insights into the
relationship.

Example 8.3. In Example 5.6.2, the psychological data of Table 5.1 were used in an
illustration of the regression approach to computation of a and T 2. We use the same
data to obtain b and R2 from a and T 2.

From the results of Examples 5.4.2 and 5.5, we have

T 2 = 97.6015,

a =




.5104
−.2033
.4660

−.3097


 .

To find b from a and T 2, we use (8.4):

b = (32)(32)

(32 + 32)(32 + 32 − 2 + 97.6015)
a =




.051
−.020
.047

−.031


 .

To find R2, we use (8.5):

R2 = (y1 − y2)
′b =




3.625
2.000

10.531
.812




′


.051
−.020
.047

−.031


 = .611.

We can also use the relationship with T 2 in (8.5):

R2 = T 2

n1 + n2 − 2 + T 2
= 97.6105

32 + 32 − 2 + 97.6015
= .611.
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8.4 DISCRIMINANT ANALYSIS FOR SEVERAL GROUPS

8.4.1 Discriminant Functions

In discriminant analysis for several groups, we are concerned with finding linear
combinations of variables that best separate the k groups of multivariate observa-
tions. Discriminant analysis for several groups may serve any one of various pur-
poses:

1. Examine group separation in a two-dimensional plot. When there are more
than two groups, it requires more than one discriminant function to describe
group separation. If the points in the p-dimensional space are projected onto a
two-dimensional space represented by the first two discriminant functions, we
obtain the best possible view of how the groups are separated.

2. Find a subset of the original variables that separates the groups almost as well
as the original set. This topic was introduced in Section 6.11.2.

3. Rank the variables in terms of their relative contribution to group separation.
This use for discriminant functions has been mentioned in Sections 5.5, 6.1.4,
6.1.8, and 6.4. In Section 8.5, we discuss standardized discriminant function
coefficients that provide a more valid comparison of the variables.

4. Interpret the new dimensions represented by the discriminant functions.

5. Follow up to fixed-effects MANOVA.

Purposes 3 and 4 are closely related. Any of the first four can be used to accom-
plish purpose 5. Methods of achieving these five goals of discriminant analysis are
discussed in subsequent sections. In the present section we review discriminant func-
tions for the several-group case and discuss attendant assumptions. For alternative
estimators of discriminant functions that may be useful in the presence of multi-
collinearity or outliers, see Rencher (1998, Section 5.11).

For k groups (samples) with ni observations in the i th group, we transform each
observation vector yi j to obtain zi j = a′yi j , i = 1, 2, . . . , k; j = 1, 2, . . . , ni ,
and find the means zi = a′yi , where yi = ∑ni

j=1 yi j/ni . As in the two-group case,
we seek the vector a that maximally separates z1, z2, . . . , zk . To express separation
among z1, z2, . . . , zk , we extend the separation criterion (8.1) to the k-group case.
Since a′(y1 − y2) = (y1 − y2)

′a, we can express (8.1) in the form

(z1 − z2)
2

s2
z

= [a′(y1 − y2)]2

a′Spla
= a′(y1 − y2)(y1 − y2)

′a
a′Spla

. (8.7)

To extend (8.7) to k groups, we use the H matrix from MANOVA in place of
(y1 − y2)(y1 − y2)

′ [see (6.38)] and E in place of Spl to obtain

λ = a′Ha
a′Ea

, (8.8)
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which can also be expressed as

λ = SSH(z)

SSE(z)
, (8.9)

where SSH(z) and SSE(z) are the between and within sums of squares for z [see
(6.42)].

We can write (8.8) in the form

a′Ha = λa′Ea,

a′(Ha − λEa) = 0. (8.10)

We examine values of λ and a that are solutions of (8.10) in a search for the value of
a that results in maximum λ. The solution a′ = 0′ is not permissible because it gives
λ = 0/0 in (8.8). Other solutions are found from

Ha − λEa = 0, (8.11)

which can be written in the form

(E−1H − λI)a = 0. (8.12)

The solutions of (8.12) are the eigenvalues λ1, λ2, . . . , λs and associated eigenvec-
tors a1, a2, . . . , as of E−1H. As in previous discussions of eigenvalues, we consider
them to be ranked λ1 > λ2 > · · · > λs . The number of (nonzero) eigenvalues s is the
rank of H, which can be found as the smaller of k − 1 or p. Thus the largest eigen-
value λ1 is the maximum value of λ = a′Ha/a′Ea in (8.8), and the coefficient vector
that produces the maximum is the corresponding eigenvector a1. (This can be ver-
ified using calculus.) Hence the discriminant function that maximally separates the
means is z1 = a′

1y; that is, z1 represents the dimension or direction that maximally
separates the means.

From the s eigenvectors a1, a2, . . . , as of E−1H corresponding to λ1, λ2, . . . , λs ,
we obtain s discriminant functions z1 = a′

1y, z2 = a′
2y, . . . , zs = a′

sy, which show
the dimensions or directions of differences among y1, y2, . . . , yk . These discrimi-
nant functions are uncorrelated, but they are not orthogonal (a′

i a j = 0 for i 	= j)
because E−1H is not symmetric [see Rencher (1998, pp. 203–204)]. Note that the
numbering z1, z2, . . . , zs corresponds to the eigenvalues, not to the k groups as was
done earlier in this section.

The relative importance of each discriminant function zi can be assessed by con-
sidering its eigenvalue as a proportion of the total:

λi∑s
j=1 λ j

. (8.13)

By this criterion, two or three discriminant functions will often suffice to describe the
group differences. The discriminant functions associated with small eigenvalues can
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be neglected. A test of significance for each discriminant function is also available
(see Section 8.6).

The matrix E−1H is not symmetric. Many algorithms for computation of eigenval-
ues and eigenvectors accept only symmetric matrices. In Section 6.1.4, it was shown
that the eigenvalues of the symmetric matrix (U−1)′HU−1 are the same as those of
E−1H, where E = U′U is the Cholesky factorization of E. However, an adjustment
is needed for the eigenvectors. If b is an eigenvector of (U−1)′HU−1, then a = U−1b
is an eigenvector of E−1H.

The preceding discussion was presented in terms of unequal sample sizes
n1, n2, . . . , nk . In applications, this situation is common and can be handled with no
difficulty. Ideally, the smallest ni should exceed the number of variables, p. This is
not required mathematically but will lead to more stable discriminant functions.

Example 8.4.1. The data in Table 8.3 were collected by G. R. Bryce and R. M. Barker
(Brigham Young University) as part of a preliminary study of a possible link between
football helmet design and neck injuries.

Six head measurements were made on each subject. There were 30 subjects in
each of three groups: high school football players (group 1), college football players
(group 2), and nonfootball players (group 3). The six variables are

WDIM = head width at widest dimension,

CIRCUM = head circumference,

FBEYE = front-to-back measurement at eye level,

EYEHD = eye-to-top-of-head measurement,

EARHD = ear-to-top-of-head measurement,

JAW = jaw width.

The eigenvalues of E−1H are λ1 = 1.9178 and λ2 = .1159. The corresponding
eigenvectors are

a1 =




−.948
.004
.006
.647
.504
.829



, a2 =




−1.407
.001
.029

−.540
.384

1.529



.

The first eigenvalue accounts for a substantial proportion of the total:

λ1

λ1 + λ2
= 1.9178

1.9178 + .1159
= .94.

Thus the mean vectors lie largely in one dimension, and one discriminant function
suffices to describe most of the separation among the three groups.
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Table 8.3. Head Measurements for Three Groups

Group WDIM CIRCUM FBEYE EYEHD EARHD JAW

1 13.5 57.2 19.5 12.5 14.0 11.0
1 15.5 58.4 21.0 12.0 16.0 12.0
1 14.5 55.9 19.0 10.0 13.0 12.0
1 15.5 58.4 20.0 13.5 15.0 12.0
1 14.5 58.4 20.0 13.0 15.5 12.0
1 14.0 61.0 21.0 12.0 14.0 13.0
1 15.0 58.4 19.5 13.5 15.5 13.0
1 15.0 58.4 21.0 13.0 14.0 13.0
1 15.5 59.7 20.5 13.5 14.5 12.5
1 15.5 59.7 20.5 13.0 15.0 13.0
1 15.0 57.2 19.0 14.0 14.5 11.5
1 15.5 59.7 21.0 13.0 16.0 12.5
1 16.0 57.2 19.0 14.0 14.5 12.0
1 15.5 62.2 21.5 14.0 16.0 12.0
1 15.5 57.2 19.5 13.5 15.0 12.0
1 14.0 61.0 20.0 15.0 15.0 12.0
1 14.5 58.4 20.0 12.0 14.5 12.0
1 15.0 56.9 19.0 13.0 14.0 12.5
1 15.5 59.7 20.0 12.5 14.0 12.5
1 15.0 57.2 19.5 12.0 14.0 11.0
1 15.0 56.9 19.0 12.0 13.0 12.0
1 15.5 56.9 19.5 14.5 14.5 13.0
1 17.5 63.5 21.5 14.0 15.5 13.5
1 15.5 57.2 19.0 13.0 15.5 12.5
1 15.5 61.0 20.5 12.0 13.0 12.5
1 15.5 61.0 21.0 14.5 15.5 12.5
1 15.5 63.5 21.8 14.5 16.5 13.5
1 14.5 58.4 20.5 13.0 16.0 10.5
1 15.5 56.9 20.0 13.5 14.0 12.0
1 16.0 61.0 20.0 12.5 14.5 12.5
2 15.5 60.0 21.1 10.3 13.4 12.4
2 15.4 59.7 20.0 12.8 14.5 11.3
2 15.1 59.7 20.2 11.4 14.1 12.1
2 14.3 56.9 18.9 11.0 13.4 11.0
2 14.8 58.0 20.1 9.6 11.1 11.7
2 15.2 57.5 18.5 9.9 12.8 11.4
2 15.4 58.0 20.8 10.2 12.8 11.9
2 16.3 58.0 20.1 8.8 13.0 12.9
2 15.5 57.0 19.6 10.5 13.9 11.8
2 15.0 56.5 19.6 10.4 14.5 12.0
2 15.5 57.2 20.0 11.2 13.4 12.4
2 15.5 56.5 19.8 9.2 12.8 12.2
2 15.7 57.5 19.8 11.8 12.6 12.5
2 14.4 57.0 20.4 10.2 12.7 12.3
2 14.9 54.8 18.5 11.2 13.8 11.3
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Table 8.3. (Continued)

Group WDIM CIRCUM FBEYE EYEHD EARHD JAW

2 16.5 59.8 20.2 9.4 14.3 12.2
2 15.5 56.1 18.8 9.8 13.8 12.6
2 15.3 55.0 19.0 10.1 14.2 11.6
2 14.5 55.6 19.3 12.0 12.6 11.6
2 15.5 56.5 20.0 9.9 13.4 11.5
2 15.2 55.0 19.3 9.9 14.4 11.9
2 15.3 56.5 19.3 9.1 12.8 11.7
2 15.3 56.8 20.2 8.6 14.2 11.5
2 15.8 55.5 19.2 8.2 13.0 12.6
2 14.8 57.0 20.2 9.8 13.8 10.5
2 15.2 56.9 19.1 9.6 13.0 11.2
2 15.9 58.8 21.0 8.6 13.5 11.8
2 15.5 57.3 20.1 9.6 14.1 12.3
2 16.5 58.0 19.5 9.0 13.9 13.3
2 17.3 62.6 21.5 10.3 13.8 12.8
3 14.9 56.5 20.4 7.4 13.0 12.0
3 15.4 57.5 19.5 10.5 13.8 11.5
3 15.3 55.4 19.2 9.7 13.3 11.5
3 14.6 56.0 19.8 8.5 12.0 11.5
3 16.2 56.5 19.5 11.5 14.5 11.8
3 14.6 58.0 19.9 13.0 13.4 11.5
3 15.9 56.7 18.7 10.8 12.8 12.6
3 14.7 55.8 18.7 11.1 13.9 11.2
3 15.5 58.5 19.4 11.5 13.4 11.9
3 16.1 60.0 20.3 10.6 13.7 12.2
3 15.2 57.8 19.9 10.4 13.5 11.4
3 15.1 56.0 19.4 10.0 13.1 10.9
3 15.9 59.8 20.5 12.0 13.6 11.5
3 16.1 57.7 19.7 10.2 13.6 11.5
3 15.7 58.7 20.7 11.3 13.6 11.3
3 15.3 56.9 19.6 10.5 13.5 12.1
3 15.3 56.9 19.5 9.9 14.0 12.1
3 15.2 58.0 20.6 11.0 15.1 11.7
3 16.6 59.3 19.9 12.1 14.6 12.1
3 15.5 58.2 19.7 11.7 13.8 12.1
3 15.8 57.5 18.9 11.8 14.7 11.8
3 16.0 57.2 19.8 10.8 13.9 12.0
3 15.4 57.0 19.8 11.3 14.0 11.4
3 16.0 59.2 20.8 10.4 13.8 12.2
3 15.4 57.6 19.6 10.2 13.9 11.7
3 15.8 60.3 20.8 12.4 13.4 12.1
3 15.4 55.0 18.8 10.7 14.2 10.8
3 15.5 58.4 19.8 13.1 14.5 11.7
3 15.7 59.0 20.4 12.1 13.0 12.7
3 17.3 61.7 20.7 11.9 13.3 13.3
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8.4.2 A Measure of Association for Discriminant Functions

Measures of association between the dependent variables y1, y2, . . . , yp and the
independent grouping variable i associated with �i , i = 1, 2, . . . , k, were presented
in Section 6.1.8. These measures attempt to answer the question, How well do the
variables separate the groups? It was noted that Roy’s statistic θ serves as an R2-like
measure of association, since it is the ratio of between to total sum of squares for the
first discriminant function, z1 = a′

1y:

η2
θ = θ = λ1

1 + λ1
= SSH(z1)

SSE(z1)+ SSH(z1)

[see (6.42) and (8.9)]. Another interpretation of η2
θ is the maximum squared cor-

relation between the first discriminant function and the best linear combination of
the k − 1 (dummy) group membership variables [see a comment following (6.40)
in Section 6.1.8]. Dummy variables were defined in the first two paragraphs of Sec-
tion 6.1.8. The maximum correlation is called the (first) canonical correlation (see
Chapter 11). The squared canonical correlation can be calculated for each discrimi-
nant function:

r2
i = λi

1 + λi
, i = 1, 2, . . . , s. (8.14)

The average squared canonical correlation was used as a measure of association in
(6.49).

Example 8.4.2. For the football data of Table 8.3, we obtain the squared canonical
correlation between each of the two discriminant functions and the grouping vari-
ables,

r2
1 = λ1

1 + λ1
= 1.9178

1 + 1.9178
= .657,

r2
2 = λ2

1 + λ2
= .1159

1 + .1159
= .104.

8.5 STANDARDIZED DISCRIMINANT FUNCTIONS

In Section 5.5, it was noted that in the two-group case the relative contribution of the
y’s to separation of the two groups can best be assessed by comparing the coefficients
ar , r = 1, 2, . . . , p, in the discriminant function

z = a′y = a1 y1 + a2 y2 + · · · + ap yp.

Similar comments appeared in Section 6.1.4, 6.1.8, and 6.4 concerning the use of dis-
criminant functions to assess contribution of the y’s to separation of several groups.
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However, such comparisons are informative only if the y’s are commensurate, that
is, measured on the same scale and with comparable variances. If the y’s are not
commensurate, we need coefficients a∗

r that are applicable to standardized variables.
Consider the case of two groups. For the i th observation vector y1i or y2i in

group 1 or 2, we can express the discriminant function in terms of standardized vari-
ables as

z1i = a∗
1

y1i1 − y11

s1
+ a∗

2
y1i2 − y12

s2
+ · · · + a∗

p

y1i p − y1p

sp
, (8.15)

i = 1, 2, . . . , n1,

z2i = a∗
1

y2i1 − y21

s1
+ a∗

2
y2i2 − y22

s2
+ · · · + a∗

p

y2i p − y2p

sp
,

i = 1, 2, . . . , n2,

where y′
1 = (y11, y12, . . . , y1p) and y′

2 = (y21, y22, . . . , y2p) are the mean vectors
for the two groups, and sr is the within-sample standard deviation of the r th vari-
able, obtained as the square root of the r th diagonal element of Spl. Clearly, these
standardized coefficients must be of the form

a∗
r = sr ar , r = 1, 2, . . . , p. (8.16)

In vector form, this becomes

a∗ = (diag Spl)
1/2a. (8.17)

For the several-group case, we can standardize the discriminant functions in an
analogous fashion. If we denote the r th coefficient in the mth discriminant function
by amr , m = 1, 2, . . . , s; r = 1, 2, . . . , p, then the standardized form is

a∗
mr = sr amr ,

where sr is the within-group standard deviation obtained from the diagonal of Spl =
E/νE . Note that a∗

mr has two subscripts because there are several discriminant func-
tions, whereas a∗

r in (8.16) has only one subscript because there is one discriminant
function for two groups.

Alternatively, since the mth eigenvector is unique only up to multiplication by a
scalar, we can simplify the standardization by using

a∗
mr = √

err amr , r = 1, 2, . . . , p,

where err is the r th diagonal element of E. For further discussion of the use of stan-
dardized discriminant function coefficients to gauge the relative contribution of the
variables to group separation, see Section 8.7.1 [see also Rencher and Scott (1990)
and Rencher (1998, Section 5.4)].
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Example 8.5. In Example 8.4.1, we obtained the discriminant function coefficient
vectors a1 and a2 for the football data of Table 8.3. Since λ1/(λ1 + λ2) = .94, we
concentrate on a1. To standardize a1, we need the within-sample standard deviations
of the variables. The pooled covariance matrix is given by

Spl = E
87

=




.428 .578 .158 .084 .125 .228

.578 3.161 1.020 .653 .340 .505

.158 1.020 .546 .077 .129 .159

.084 .653 .077 1.232 .315 .024

.125 .340 .129 .315 .618 .009

.228 .505 .159 .024 .009 .376



.

Using the square roots of the diagonal elements of Spl, we obtain

a∗
1 =




√
.428(−.948)√
3.161(.004)

...√
.376(.829)


 =




−.621
.007
.005
.719
.397
.508



.

Thus the fourth, first, sixth, and fifth variables contribute most to separating the
groups, in that order. The second and third variables are not useful (in the presence
of the others) in distinguishing groups.

8.6 TESTS OF SIGNIFICANCE

In order to test hypotheses, we need the assumption of multivariate normality. This
was not explicitly required for the development of discriminant functions.

8.6.1 Tests for the Two-Group Case

By (8.3) we see that the separation of transformed means, (z1 − z2)
2/s2

z , achieved by
the discriminant function z = a′y is equivalent to the standardized distance between
the mean vectors y1 and y2. This standardized distance is proportional to the two-
group T 2 in (5.9) in Section 5.4.2. Hence the discriminant function coefficient vector
a is significantly different from 0 if T 2 is significant. More formally, if the population
discriminant function coefficient vector is expressed as � = �−1(�1 − �2), then
H0 : � = 0 is equivalent to H0 : �1 = �2.

To test the significance of a subset of the discriminant function coefficients, we
can use the test of the corresponding subset of y’s given in Section 5.9. To test the
hypothesis that the population discriminant function has a specified form a′

0y, see
Rencher (1998, Section 5.5.1).
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8.6.2 Tests for the Several-Group Case

In Section 8.4.1 we noted that the discriminant criterion λ = a′Ha/a′Ea is max-
imized by λ1, the largest eigenvalue of E−1H, and that the remaining eigenvalues
λ2, . . . , λs correspond to other discriminant dimensions. These eigenvalues are the
same as those in the Wilks �-test in (6.14) for significant differences among mean
vectors,

�1 =
s∏

i=1

1

1 + λi
, (8.18)

which is distributed as �p,k−1,N−k , where N = ∑
i ni for an unbalanced design or

N = kn in the balanced case. Since �1 is small if one or more λi ’s are large, Wilks’
� tests for significance of the eigenvalues and thereby for the discriminant func-
tions. The s eigenvalues represent s dimensions of separation of the mean vectors
y1, y2, . . . , yk . We are interested in which, if any, of these dimensions are signifi-
cant. In the context of discriminant functions, Wilks’� is more useful than the other
three MANOVA test statistics, because it can be used on a subset of eigenvalues, as
we see shortly.

In addition to the exact test provided by the critical values for � found in
Table A.9, we can use the χ2-approximation for �1 given in (6.16), with νE =
N − k = ∑

i ni − k and νH = k − 1:

V1 = −[νE − 1
2 (p − νH + 1)

]
ln�1

= −[N − 1 − 1
2 (p + k)

]
ln

s∏
i=1

1

1 + λi

= [
N − 1 − 1

2 (p + k)
] s∑

i=1

ln(1 + λi ), (8.19)

which is approximately χ2 with p(k − 1) degrees of freedom. The test statistic �1
and its approximation (8.19) test the significance of all of λ1, λ2, . . . , λs . If the test
leads to rejection of H0, we conclude that at least one of the λ’s is significantly
different from zero, and therefore there is at least one dimension of separation of
mean vectors. Since λ1 is the largest, we are only sure of its significance, along with
that of z1 = a′

1y.
To test the significance of λ2, λ3, . . . , λs , we delete λ1 from Wilks’ � and the

associated χ2-approximation to obtain

�2 =
s∏

i=2

1

1 + λi
, (8.20)
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V2 = −[N − 1 − 1
2 (p + k)

]
ln�2 = [

N − 1 − 1
2 (p + k)

] s∑
i=2

ln(1 + λi ), (8.21)

which is approximately χ2 with (p−1)(k−2) degrees of freedom. If this test leads to
rejection of H0, we conclude that at least λ2 is significant along with the associated
discriminant function z2 = a′

2y. We can continue in this fashion, testing each λi

in turn until a test fails to reject H0. (To compensate for making several tests, an
adjustment to the α-level of each test could be made as in procedure 2, Section 5.5.)
The test statistic at the mth step is

�m =
s∏

i=m

1

1 + λi
, (8.22)

which is distributed as �p−m+1,k−m,N−k−m+1. The statistic

Vm = −[N − 1 − 1
2 (p + k)

]
ln�m

= [
N − 1 − 1

2 (p + k)
] s∑

i=m

ln(1 + λi ) (8.23)

has an approximate χ2-distribution with (p − m + 1)(k − m) degrees of freedom.
In some cases, more λ’s will be statistically significant than the researcher consid-
ers to be of practical importance. If λi/

∑
j λ j is small, the associated discriminant

function may not be of interest, even if it is significant.
We can also use an F-approximation for each �i . For

�1 =
s∏

i=1

1

1 + λi
,

we use (6.15), with νE = N − k and νH = k − 1:

F = 1 −�
1/t
1

�
1/t
1

df2

df1
, (8.24)

where

t =
√

p2(k − 1)2 − 4

p2 + (k − 1)2 − 5
, w = N − 1 − 1

2 (p + k),

df1 = p(k − 1), df2 = wt − 1
2 [p(k − 1)− 2].

For

�m =
s∏

i=m

1

1 + λi
, m = 2, 3, . . . , s,
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we use

F = 1 −�
1/t
m

�
1/t
m

df2

df1
(8.25)

with p − m + 1 and k − m in place of p and k − 1:

t =
√

(p − m + 1)2(k − m)2 − 4

(p − m + 1)2 + (k − m)2 − 5
,

w = N − 1 − 1
2 (p + k),

df1 = (p − m + 1)(k − m),

df2 = wt − 1
2 [(p − m + 1)(k − m)− 2].

Example 8.6.2. We test the significance of the two discriminant functions obtained
in Example 8.4.1 for the football data. For the overall test we have, by (8.18),

�1 =
2∏

i=1

1

1 + λi
= 1

1 + 1.9178

1

1 + .1159
= .307.

With p = 6, k = 3, and N −k = 87, the critical value from Table A.9 is�.05,6,2,80 =
.762. By (8.19), the χ2-approximation is

V1 = −[N − 1 − 1

2
(p + k)

]
ln�1

= −[90 − 1 − 1

2
(6 + 3)

]
ln(.307) = 99.75,

which exceeds the critical value χ2
.01,12 = 26.217. Thus at least the first discriminant

function is significant.
To test the second discriminant function, we have, by (8.20),

�2 = 1

1 + .1159
= .896.

With m = 2, the (conservative) critical value is�.05,5,1,80 = .867. Since this is close
to � = .896, we interpolate in Table A.9 to obtain �.05,5,1,86 = .875. By (8.21), the
χ2-approximation is

V2 = −
[

N − 1 − 1

2
(p + k)

]
ln�2
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= −
[

90 − 1 − 1

2
(6 + 3)

]
ln

1

1 + .1159
= 9.27 < χ2

.05,5 = 11.070.

For the F-approximation for �1, we obtain by (8.24)

t =
√

p2(k − 1)2 − 4

p2 + (k − 1)2 − 5
=
√

6222 − 4

62 + 22 − 5
= 2,

w = N − 1 − 1
2 (p + k) = 90 − 1 − 1

2 (6 + 3) = 84.5,

df1 = p(k − 1) = 6(2) = 12,

df2 = wt − 1
2 [p(k − 1)− 2] = (84.5)(2)− 1

2 [6(2)− 2] = 164,

F = 1 −�
1/2
1

�
1/2
1

df2

df1
= 1 − .3071/2

.3071/2

164

12
= 10.994.

The p-value for F = 10.994 is less than .0001. For the F-approximation for �2, we
reduce p and k by 1 and obtain by (8.25)

t =
√

5212 − 4

52 + 12 − 5
= 1, w = 90 − 1 − 1

2 (6 + 3) = 84.5,

df1 = 5(1) = 5, df2 = 84.5(1)− 1
2 [5(1)− 2] = 83,

F = 1 −�2

�2
.
df2

df1
= 1 − .896

.896

83

5
= 1.924.

The p-value for F = 1.924 is .099. Thus only the first discriminant function signif-
icantly separates groups. The exact test using �2 appears to be somewhat closer to
rejection than are the approximate tests.

8.7 INTERPRETATION OF DISCRIMINANT FUNCTIONS

There is a close correspondence between interpreting discriminant functions and
determining the contribution of each variable, and we shall not always make a dis-
tinction. In interpretation, the signs of the coefficients are taken into account; in
ascertaining the contribution, the signs are ignored, and the coefficients are ranked
in absolute value. (We discuss this distinction further in Section 8.7.1.) We are more
commonly interested in assessing the contribution of the variables than in interpret-
ing the function.

In the next three sections, we cover three common approaches to assessing the
contribution of each variable (in the presence of the other variables) to separating the
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groups. The three methods are (1) examine the standardized discriminant function
coefficients, (2) calculate a partial F-test for each variable, and (3) calculate a corre-
lation between each variable and the discriminant function. The third method is the
most widely recommended, but we note in Section 8.7.3 that it is the least useful.

8.7.1 Standardized Coefficients

To offset differing scales among the variables, the discriminant function coefficients
can be standardized using (8.16) or (8.17), in which the coefficients have been
adjusted so that they apply to standardized variables. For the observations in the first
of two groups, for example, we have by (8.15),

z1i = a∗
1

y1i1 − y11

s1
+ a∗

2
y1i2 − y12

s2
+ · · · + a∗

p

y1i p − y1p

sp
,

i = 1, 2, . . . , n1.

The standardized variables (y1ir − y1r )/sr are scale free, and the standardized coef-
ficients a∗

r = sr ar , r = 1, 2, . . . , p, therefore correctly reflect the joint contribu-
tion of the variables to the discriminant function z as it maximally separates the
groups. For the case of several groups, each discriminant function coefficient vector
a = (a1, a2, . . . , ap)

′ is an eigenvector of E−1H, and as such, it takes into account
the sample correlations among the variables as well as the influence of each variable
in the presence of the others.

As noted in Section 8.5, this standardization is carried out for each of the s dis-
criminant functions. Typically, each will have a different interpretation; that is, the
pattern of the coefficients a∗

r will vary from one function to another.
The absolute values of the coefficients can be used to rank the variables in order

of their contribution to separating the groups. If we wish to go further and interpret
or “name” a discriminant function, the signs can be taken into account. Thus, for
example, z1 = .8y1 − .9y2 + .5y3 has a different meaning than does z2 = .8y1 +
.9y2 + .5y3, since z1 depends on the difference between y1 and y2, whereas z2 is
related to the sum of y1 and y2.

The discriminant function is subject to the same limitations as other linear combi-
nations such as a regression equation: for example, (1) the coefficient for a variable
may change notably if variables are added or deleted, and (2) the coefficients may
not be stable from sample to sample unless the sample size is large relative to the
number of variables. With regard to limitation 1, we note that the coefficients reflect
the contribution of each variable in the presence of the particular variables at hand.
This is, in fact, what we want the coefficients to do. As to limitation 2, the process-
ing of a substantial number of variables is not “free.” More stable estimates will be
obtained from 50 observations on 2 variables than from 50 observations on 20 vari-
ables. In other words, if N/p is too small, the variables that rank high in one sample
may emerge as less important in another sample.
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8.7.2 Partial F-Values

For any variable yr , we can calculate a partial F-test showing the significance of
yr after adjusting for the other variables, that is, the separation provided by yr in
addition to that due to the other variables. After computing the partial F for each
variable, the variables can then be ranked.

In the case of two groups, the partial F is given by (5.32) as

F = (ν − p + 1)
T 2

p − T 2
p−1

ν + T 2
p−1

, (8.26)

where T 2
p is the two-sample Hotelling T 2 with all p variables, T 2

p−1 is the T 2-statistic
with all variables except yr , and ν = n1 + n2 − 2. The F-statistic in (8.26) is dis-
tributed as F1,ν−p+1.

For the several-group case, the partial � for yr adjusted for the other p − 1 vari-
ables is given by (6.128) as

�(yr |y1, . . . , yr−1, yr+1, . . . , yp) = �p

�p−1
, (8.27)

where �p is Wilks’ � for all p variables and �p−1 involves all variables except yr .
The corresponding partial F is given by (6.129) as

F = 1 −�

�

νE − p + 1

νH
, (8.28)

where � is defined in (8.27), νE = N − k, and νH = k − 1. The partial �-statistic
in (8.27) is distributed as �1,νH ,νE −p+1, and the partial F in (8.28) is distributed as
FνH ,νE −p+1.

The partial F-values in (8.26) and (8.28) are not associated with a single dimen-
sion of group separation, as are the standardized discriminant function coefficients.
For example, y2 will have a different contribution in each of the s discriminant func-
tions, but the partial F for y2 constitutes an overall index of the contribution of y2 to
group separation taking into account all dimensions. However, the partial F-values
will often rank the variables in the same order as the standardized coefficients for
the first discriminant function, especially if λ1/

∑
j λ j is very large so that the first

function accounts for most of the available separation.
A partial index of association for yr similar to the overall measure for all y’s given

in (6.41), η2
� = 1 −�, can be defined by

R2
r = 1 −�r , r = 1, 2, . . . , p, (8.29)

where�r is the partial� in (8.27) for yr . This partial R2 is a measure of association
between the grouping variables and yi after adjusting for the other p − 1 y’s.
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8.7.3 Correlations between Variables and Discriminant Functions

Many textbooks and research papers assert that the best measure of variable impor-
tance is the correlation between each variable and a discriminant function, ryi z j . It is
claimed that these correlations are more informative than standardized coefficients
with respect to the joint contribution of the variables to the discriminant functions.
The correlations are often referred to as loadings or structure coefficients and are
routinely provided in many major programs. However, Rencher (1988; 1992b; 1998,
Section 5.7) has shown that the correlations in question show the contribution of
each variable in a univariate context rather than in a multivariate one. The correla-
tions actually reproduce the t or F for each variable, and consequently they show
only how each variable by itself separates the groups, ignoring the presence of the
other variables. Hence these correlations provide no information about how the vari-
ables contribute jointly to separation of the groups. They become misleading if used
for interpretation of discriminant functions.

Upon reflection, we could have anticipated this failure of the correlations to pro-
vide multivariate information. The objection to standardized coefficients is based
on the argument that they are “unstable” because they change if some variables are
deleted and others added. However, we actually want them to behave this way, so as
to reflect the mutual influence of the variables on each other. In a multivariate analy-
sis, interest is centered on the joint performance of the set of variables at hand. To ask
for the contribution of each variable independent of all other variables is to request a
univariate index that ignores the other variables. The correlations ryi z j are stable and
do not change when variables are added or deleted; this should be a clear signal that
they are univariate in nature. There is no middle ground between the univariate and
multivariate realms.

8.7.4 Rotation

Rotation of the discriminant function coefficients is sometimes recommended. This
is a procedure (see Section 13.5) that attempts to produce a pattern with (absolute
values of) coefficients closer to 0 or 1. Discriminant functions with such coefficients
might be easier to interpret, but they have two deficiencies: they no longer maximize
group separation and they are correlated.

Accordingly, for interpretation of discriminant functions we recommend stan-
dardized coefficients rather than correlations or rotated coefficients.

8.8 SCATTER PLOTS

One benefit of the dimension reduction effected by discriminant analysis is the poten-
tial for plotting. It was noted in Section 6.2 that the number of large eigenvalues of
E−1H reflects the dimensionality of the space occupied by the mean vectors. In many
data sets, the first two discriminant functions account for most of λ1 +λ2 +· · ·+λs ,
and consequently the pattern of the mean vectors can be effectively portrayed in a
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two-dimensional plot. If the essential dimensionality is greater than 2, there may
be some distortion in intergroup configuration in a two-dimensional plot; that is,
some groups that overlap in two dimensions may be well separated in a third dimen-
sion.

To plot the first two discriminant functions for the individual observation vectors
yi j , simply calculate z1i j = a′

1yi j and z2i j = a′
2yi j for i = 1, 2, . . . , k; j = 1,

2, . . . , ni , and plot a scatter plot of the N = ∑
i ni values of

zi j =
(

z1i j

z2i j

)
=
(

a′
1yi j

a′
2yi j

)
=
(

a′
1

a′
2

)
yi j = Ayi j . (8.30)

The transformed mean vectors,

zi =
(

z1i

z2i

)
=
(

a′
1

a′
2

)
yi = Ayi , i = 1, 2, . . . , k (8.31)

should be plotted along with the individual values, zi j . In some cases, a plot would
show only the transformed mean vectors z1, z2, . . . , zk . For confidence regions for
�zi = A�i , see Rencher (1998, Section 5.8).

We note that the eigenvalues of E−1H reveal the dimensionality of the mean vec-
tors, not of the individual points. The dimensionality of the individual observations
is p, although the essential dimensionality may be less because the variables are cor-
related. (The dimensionality of the observation vectors is the concern of principal
components; see Chapter 12.) If s = 2, for example, so that the mean vectors occupy
only two dimensions, the individual observation vectors ordinarily lie in more than
two dimensions, and their inclusion in a plot constitutes a projection onto the two-
dimensional plane of the mean vectors.

It was noted in Section 8.4.1 that the discriminant functions are uncorrelated but
not orthogonal. Thus the angle between a1 and a2 as given by (3.14) is not 90◦
(that is, a′

1a2 	= 0). In practice, however, the usual procedure is to plot discriminant
functions on a rectangular coordinate system. The resulting distortion is generally
not serious.

Example 8.8. Figure 8.4 contains a scatter plot of (z1, z2) for the observations in the
football data of Table 8.3. Each observation in group 1 is denoted by a square, obser-
vations in group 2 are denoted by circles, and observations in group 3 are indicated
by triangles. We see that the first discriminant function z1 (the horizontal direction)
effectively separates group 1 from groups 2 and 3, whereas the second discrimi-
nant function z2 (the vertical direction) is less successful in separating group 2 from
group 3.

The group mean vectors are indicated by solid circles. They are almost collinear,
as we would expect since λ1 = 1.92 dominates λ2 = .12.
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Figure 8.4. Scatter plot of discriminant function values for the football data of Table 8.3.

8.9 STEPWISE SELECTION OF VARIABLES

In many applications, a large number of dependent variables is available and the
experimenter would like to discard those that are redundant (in the presence of the
other variables) for separating the groups. Our discussion is limited to procedures
that delete or add variables one at a time. We emphasize that we are selecting depen-
dent variables (y’s), and therefore the basic model (one-way MANOVA) does not
change. In subset selection in regression, on the other hand, we select independent
variables with a consequent alteration of the model.

A forward selection method was discussed in Section 6.11.2. We begin with a sin-
gle variable, the one that maximally separates the groups by itself. Then the variable
entered at each step is the one that maximizes the partial F-statistic based on Wilks’
�, thus obtaining the maximal additional separation of groups above and beyond
the separation already attained by the other variables. Since we choose the variable
with maximum partial F at each step, the proportion of these maximum F’s that
exceed Fα is greater than α. This bias is discussed in Rencher and Larson (1980) and
Rencher (1998, Section 5.10).

Backward elimination is a similar operation in which we begin with all the vari-
ables and then at each step, the variable that contributes least is deleted, as indicated
by the partial F .

Stepwise selection is a combination of the forward and backward approaches.
Variables are added one at a time, and at each step, the variables are reexamined
to see if any variable that entered earlier has become redundant in the presence of
recently added variables. The procedure stops when the largest partial F among the
variables available for entry fails to exceed a preset threshold value. The stepwise
procedure has long been popular with practitioners. Some detail about the steps in
this procedure was given in Section 6.11.2.
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All the preceding procedures are commonly referred to as stepwise discrimi-
nant analysis. However, as noted in Section 6.11.2, we are actually doing stepwise
MANOVA. No discriminant functions are calculated in the selection process. After
the subset selection is completed, we can calculate discriminant functions for the
selected variables. We could also use the variables in a classification analysis, as
described in Chapter 9.

Example 8.9. We use the football data of Table 8.3 to illustrate the stepwise proce-
dure outlined in this section and in Section 6.11.2. At the first step, we carry out a
univariate F (using ordinary ANOVA) for each variable to determine which variable
best separates the three groups by itself:

Variable F p-Value

WDIM 2.550 .0839
CIRCUM 6.231 .0030
FBEYE 1.668 .1947
EYEHD 58.162 1.11 × 10−16

EARHD 22.427 1.40 × 10−8

JAW 4.511 .0137

Thus EYEHD is the first variable to “enter.” The Wilks � value equivalent to F =
58.162 is�(y1) = .4279 (see Table 6.1 with p = 1). At the second step we calculate
a partial � and accompanying partial F using (8.27) and (8.28):

�(yr |y1) = �(y1, yr )

�(y1)
,

F = 1 −�(yr |y1)

�(yr |y1)

νE − 1

νH
,

where y1 indicates the variable selected at step 1 (EYEHD) and yr represents each
of the five variables to be examined at step 2. The results are

Variable Partial � Partial F p-Value

WDIM .9355 2.964 .0569
CIRCUM .9997 .012 .9881
FBEYE .9946 .235 .7911
EARHD .9525 2.143 .1235
JAW .9540 2.072 .1322

The variable WDIM would enter at this step, since it has the largest partial F . With a
p-value of .0569, entering this variable may be questionable, but we will continue the
procedure for illustrative purposes. We next check to see if EYEHD is still significant
now that WDIM has entered. The partial � and F for EYEHD adjusted for WDIM
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are � = .424 and F = 58.47. Thus EYEHD stays in. The overall Wilks’ � for
EYEHD and WDIM is �(y1, y2) = .4003.

At step 3 we check each of the four remaining variables for possible entry using

�(yr |y1, y2) = �(y1, y2, yr )

�(y1, y2)
,

F = 1 −�(yr |y1, y2)

�(yr |y1, y2)

νE − 2

νH
,

where y1 = EYEHD, y2 = WDIM, and yr represents each of the other four vari-
ables. The results are

Variable Partial � Partial F p-Value

CIRCUM .9774 .981 .3793
FBEYE .9748 1.098 .3381
EARHD .9292 3.239 .0441
JAW .8451 7.791 .0008

The indicated variable for entry at this step is JAW. To determine whether one of the
first two should be removed after JAW has entered, we calculate the partial� and F
for each, adjusted for the other two:

Variable Partial � Partial F p-Value

WDIM .8287 8.787 .0003
EYEHD .4634 49.211 6.33 × 10−15

Thus both previously entered variables remain in the model. The overall Wilks� for
EYEHD, WDIM, and JAW is �(y1, y2, y3) = .3383.

At step 4 there are three candidate variables for entry. The partial �- and F-
statistics are

�(yr |y1, y2, y3) = �(y1, y2, y3, yr )

�(y1, y2, y3)
,

F = 1 −�(yr |y1, y2, y3)

�(yr |y1, y2, y3)

νE − 3

νH
,

where y1, y2, and y3 are the three variables already entered and yr represents each of
the other three remaining variables. The results are

Variable Partial � Partial F p-Value

CIRCUM .9987 .055 .9462
FBEYE .9955 .189 .8282
EARHD .9080 4.257 .0173
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Hence EARHD enters at this step, and we check to see if any of the three previ-
ously entered variables has now become redundant. The partial � and partial F for
each of these three are

Variable Partial � Partial F p-Value

WDIM .7889 11.237 4.74 × 10−15

EYEHD .6719 20.508 5.59 × 10−8

JAW .8258 8.861 .0003

Consequently, all three variables are retained. The overall Wilks’ � for all four
variables is now �(y1, y2, y3, y4) = .3072.

At step 5, the partial �- and F-values are

Variable Partial � Partial F p-Value

CIRCUM .9999 .003 .9971
FBEYE .9999 .004 .9965

Thus no more variables will enter.
We summarize the selection process as follows:

Variable
Step Entered Overall � Partial � Partial F p-Value

1 EYEHD .4279 .4279 58.162 1.11 × 10−16

2 WDIM .4003 .9355 2.964 .0569
3 JAW .3383 .8451 7.791 .0008
4 EARHD .3072 .9080 4.257 .0173

PROBLEMS

8.1 Show that if a = S−1
p1 (y1 − y2) is substituted into [a′(y1 − y2)]2/a′Spla, the

result is (8.3).

8.2 Verify (8.4) for the relationship between b and a.

8.3 Verify the relationship between R2 and T 2 shown in (8.5).

8.4 Show that [a′(y1 − y2)]2 = a′(y1 − y2)(y1 − y2)
′a as in (8.7).

8.5 Show that Ha − λEa = 0 can be written in the form (E−1H − λI)a = 0, as in
(8.12).

8.6 Verify (8.16) by substituting a∗
r = sr ar into (8.15) to obtain z1i = a1 y1i1 +

a2 y1i2 + · · · + ap y1i p − a′y1.

8.7 For the psychological data in Table 5.1, the discriminant function coefficient
vector was given in Example 5.5.
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(a) Find the standardized coefficients.
(b) Calculate t-tests for the individual variables.
(c) Compare the results of (a) and (b) as to the contribution of the variables to

separation of the two groups.
(d) Find the partial F for each variable, as in (8.26), and compare with the

standardized coefficients.

8.8 Using the beetle data of Table 5.5, do the following:

(a) Find the discriminant function coefficient vector.
(b) Find the standardized coefficients.
(c) Calculate t-tests for individual variables.
(d) Compare the results of (b) and (c) as to the contribution of each variable to

separation of the groups.
(e) Find the partial F for each variable, as in (8.26). Do the partial F’s rank the

variables in the same order of importance as the standardized coefficients?

8.9 Using the dystrophy data of Table 5.7, do the following:

(a) Find the discriminant function coefficient vector.
(b) Find the standardized coefficients.
(c) Calculate t-tests for individual variables.
(d) Compare the results of (b) and (c) as to the contribution of each variable to

separation of the groups.
(e) Find the partial F for each variable, as in (8.26). Do the partial F’s rank the

variables in the same order of importance as the standardized coefficients?

8.10 For the cyclical data of Table 5.8, do the following:

(a) Find the discriminant function coefficient vector.
(b) Find the standardized coefficients.
(c) Calculate t-tests for individual variables.
(d) Compare the results of (b) and (c) as to the contribution of each variable to

separation of the groups.
(e) Find the partial F for each variable, as in (8.26). Do the partial F’s rank the

variables in the same order of importance as the standardized coefficients?

8.11 Using the fish data in Table 6.17, do the following:

(a) Find the eigenvectors of E−1H.
(b) Carry out tests of significance for the discriminant functions and find the

relative importance of each as in (8.13), λi/
∑

j λ j . Do these two proce-
dures agree as to the number of important discriminant functions?

(c) Find the standardized coefficients and comment on the contribution of the
variables to separation of groups.

(d) Find the partial F for each variable, as in (8.28). Do they rank the variables
in the same order as the standardized coefficients for the first discriminant
function?
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(e) Plot the first two discriminant functions for each observation and for the
mean vectors.

8.12 For the rootstock data of Table 6.2, do the following:

(a) Find the eigenvalues and eigenvectors of E−1H.
(b) Carry out tests of significance for the discriminant functions and find the

relative importance of each as in (8.13), λi/
∑

j λ j . Do these two proce-
dures agree as to the number of important discriminant functions?

(c) Find the standardized coefficients and comment on the contribution of the
variables to separation of groups.

(d) Find the partial F for each variable, as in (8.28). Do they rank the variables
in the same order as the standardized coefficients for the first discriminant
function?

(e) Plot the first two discriminant functions for each observation and for the
mean vectors.

8.13 Carry out a stepwise selection of variables on the rootstock data of Table 6.2.

8.14 Carry out a stepwise selection of variables on the engineer data of Table 5.6.

8.15 Carry out a stepwise selection of variables on the fish data of Table 6.17.



C H A P T E R 9

Classification Analysis: Allocation of
Observations to Groups

9.1 INTRODUCTION

The descriptive aspect of discriminant analysis, in which group separation is charac-
terized by means of discriminant functions, was covered in Chapter 8. We turn now
to allocation of observations to groups, which is the predictive aspect of discriminant
analysis. We prefer to call this classification analysis to clearly distinguish it from the
descriptive aspect. However, classification is often referred to simply as discriminant
analysis. In engineering and computer science, classification is usually called pat-
tern recognition. Some writers use the term classification analysis to describe cluster
analysis, in which the observations are clustered according to variable values rather
than into predefined groups (see Chapter 14).

In classification, a sampling unit (subject or object) whose group membership is
unknown is assigned to a group on the basis of the vector of p measured values, y,
associated with the unit. To classify the unit, we must have available a previously
obtained sample of observation vectors from each group. Then one approach is to
compare y with the mean vectors y1, y2, . . . , yk of the k samples and assign the unit
to the group whose yi is closest to y.

In this chapter, the term groups may refer to either the k samples or the k popu-
lations from which they were taken. It should be clear from the context which of the
two uses is intended in every case.

We give some examples to illustrate the classification technique:

1. A university admissions committee wants to classify applicants as likely to
succeed or likely to fail. The variables available are high school grades in var-
ious subject areas, standardized test scores, rating of high school, number of
advanced placement courses, etc.

2. A psychiatrist gives a battery of diagnostic tests in order to assign a patient to
the appropriate mental illness category.

3. A college student takes aptitude and interest tests in order to determine which
vocational area his or her profile best matches.

299
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4. African, or “killer,” bees cannot be distinguished visually from ordinary
domestic honey bees. Ten variables based on chromatograph peaks can be
used to readily identify them (Lavine and Carlson 1987).

5. The Air Force wishes to classify each applicant into the training program
where he or she has the most potential.

6. Twelve of the Federalist Papers were claimed by both Madison and Hamilton.
Can we identify authorship by measuring frequencies of word usage (Mosteller
and Wallace 1984)?

7. Variables such as availability of fingerprints, availability of eye witnesses, and
time until police arrive can be used to classify burglaries into solvable and
unsolvable.

8. One approach to speech recognition by computer consists of an attempt to
identify phonemes based on the energy levels in speech waves.

9. A number of variables are measured at five weather stations. Based on these
variables, we wish to predict the ceiling at a particular airport in 2 hours. The
ceiling categories are closed, low instrument, high instrument, low open, and
high open (Lachenbruch 1975, p. 2).

9.2 CLASSIFICATION INTO TWO GROUPS

In the case of two populations, we have a sampling unit (subject or object) to be
classified into one of two populations. The information we have available consists of
the p variables in the observation vector y measured on the sampling unit. In the first
illustration in Section 9.1, for example, we have an applicant with high school grades
and various test scores recorded in y. We do not know if the applicant will succeed
or fail at the university, but we have data on previous students at the university for
whom it is now known whether they succeeded or failed. By comparing y with y1 for
those who succeeded and y2 for those who failed, we attempt to predict the group to
which the applicant will eventually belong.

When there are two populations, we can use a classification procedure due to
Fisher (1936). The principal assumption for Fisher’s procedure is that the two popu-
lations have the same covariance matrix (�1 = �2). Normality is not required. We
obtain a sample from each of the two populations and compute y1, y2, and Spl. A
simple procedure for classification can be based on the discriminant function,

z = a′y = (y1 − y2)
′S−1

pl y (9.1)

(see Sections 5.5, 5.6, 8.2, and 8.5), where y is the vector of measurements on a new
sampling unit that we wish to classify into one of the two groups (populations). For
convenience we speak of classifying y rather than classifying the subject or object
associated with y.

To determine whether y is closer to y1 or y2, we check to see if z in (9.1) is
closer to the transformed mean z1 or to z2. We evaluate (9.1) for each observation
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y1i from the first sample and obtain z11, z12, . . . , z1n1 , from which, by (3.54), z1 =∑n1
i=1 z1i/n1 = a′y1 = (y1 − y2)

′S−1
pl y1. Similarly, z2 = a′y2. Denote the two

groups by G1 and G2. Fisher’s (1936) linear classification procedure assigns y to
G1 if z = a′y is closer to z1 than to z2 and assigns y to G2 if z is closer to z2. This is
illustrated in Figure 9.1.

For the configuration in Figure 9.1, we see that z is closer to z1 if

z > 1
2 (z1 + z2). (9.2)

This is true in general because z1 is always greater than z2, which can easily be
shown as follows:

z1 − z2 = a′(y1 − y2) = (y1 − y2)
′S−1

pl (y1 − y2) > 0, (9.3)

because S−1
pl is positive definite. Thus z1 > z2. [If a were of the form a′ = (y2 −

y1)
′S−1

pl , then z2 − z1 would be positive.] Since 1
2 (z1 + z2) is the midpoint, z >

1
2 (z1 + z2) implies that z is closer to z1. By (9.3) the distance from z1 to z2 is the
same as that from y1 to y2.

To express the classification rule in terms of y, we first write 1
2 (z1 + z2) in the

form

1
2 (z1 + z2) = 1

2 (y1 − y2)
′S−1

pl (y1 + y2). (9.4)

Then the classification rule becomes: Assign y to G1 if

a′y = (y1 − y2)
′S−1

pl y > 1
2 (y1 − y2)

′S−1
pl (y1 + y2) (9.5)

z-   2
z-   1

y2

G2

G1

y1

z

Assign to G2

Assign to G1

1–
2

(z-   1 + z
-   
2)

Figure 9.1. Fisher’s procedure for classification into two groups.
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and assign y to G2 if

a′y = (y1 − y2)
′S−1

pl y < 1
2 (y1 − y2)

′S−1
pl (y1 + y2). (9.6)

This linear classification rule employs the same discriminant function z = a′y
used in Section 8.2 in connection with descriptive separation of groups. Thus in the
two-group case, the discriminant function serves as a linear classification function as
well. However, in the several-group case in Section 9.3, we use classification func-
tions that are different from the descriptive discriminant functions in Section 8.4.

Fisher’s (1936) approach using (9.5) and (9.6) is essentially nonparametric
because no distributional assumptions were made. However, if the two populations
are normal with equal covariance matrices, then this method is (asymptotically)
optimal; that is, the probability of misclassification is minimized [see comments
following (9.8)].

If prior probabilities p1 and p2 are known for the two populations, the classifica-
tion rule can be modified to exploit this additional information. We define the prior
probabilities as follows: p1 is the proportion of observations in G1 and p2 is the pro-
portion in G2, where p2 = 1 − p1. For example, suppose that at a certain university
70% of entering freshmen ultimately graduate. Then p1 = .7 and p2 = .3.

In order to use the prior probabilities, the density functions for the two popula-
tions, f (y|G1) and f (y|G2), must also be known. Then the optimal classification
rule (Welch 1939) that minimizes the probability of misclassification is: Assign y to
G1 if

p1 f (y|G1) > p2 f (y|G2) (9.7)

and to G2 otherwise. Note that f (y|G1) is a convenient notation for the density when
sampling from the population represented by G1. It does not represent a conditional
distribution in the usual sense (Section 4.2).

Assuming that the two densities are multivariate normal with equal covariance
matrices, namely, f (y|G1) = Np(�1,�) and f (y|G2) = Np(�2,�), then from
(9.7) we obtain the following rule (with estimates in place of �1, �2, and �): Assign
y to G1 if

a′y = (y1 − y2)
′S−1

pl y > 1
2 (y1 − y2)

′S−1
pl (y1 + y2)+ ln

(
p2

p1

)
(9.8)

and to G2 otherwise [see Rencher (1998, p. 231)]. Because we have substituted esti-
mates for the parameters, the rule in (9.8) is no longer optimal, as is (9.7). However,
it is asymptotically optimal (approaches optimality as the sample size increases).

If p1 = p2, the normal-based classification rule in (9.8) becomes the same as
Fisher’s procedure given in (9.5) and (9.6). Thus Fisher’s rule, which is not based on
a normality assumption, has optimal properties when the data come from multivari-
ate normal populations with �1 = �2 and p1 = p2. [For the case when �1 �= �2,
see Rencher (1998, Section 6.2.2).] Hence, even though Fisher’s method is nonpara-
metric, it works better for normally distributed populations or other populations with
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Figure 9.2. Two populations with nonlinear separation.

linear trends. For example, suppose two populations have 95% contours, as in Fig-
ure 9.2. If the points are projected in any direction onto a straight line, there will be
almost total overlap. A linear discriminant procedure will not successfully separate
the two populations.

Example 9.2. For the psychological data of Table 5.1, y1, y2, and Spl were obtained
in Example 5.4.2. The discriminant function coefficients were obtainedin Exam-
ple 5.5 as a′ = (.5104,−.2032, .4660,−.3097). For G1 (the male group), we find

z1 = a′y1 = .5104(15.97)− .2032(15.91)+ .4660(27.19)− .3097(22.75)

= 10.5427.

Similarly, for G2 (the female group), z2 = a′y2 = 4.4426. Thus we assign an obser-
vation vector y to G1 if

z = a′y > 1
2 (z1 + z2) = 7.4927

and assign y to G2 if z < 7.4927.
There are no new observations available, so we will illustrate the procedure

by classifying two of the observations in G1. For y′
11 = (15, 17, 24, 14), the first

observation in G1, we have z11 = a′y11 = .5104(15) − .2032(17) + .4660(24) −
.3097(14) = 11.0498, which is greater than 7.4927, and y11 would be correctly
classified as belonging to G1. For y′

14 = (13, 12, 10, 16), the fourth observation in
G1, we find z14 = 3.9016, which would misclassify y14 into G2.
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9.3 CLASSIFICATION INTO SEVERAL GROUPS

In this section we discuss classification rules for several groups. As in the two-group
case, we use a sample from each of the k groups to find the sample mean vectors y1,
y2, . . . , yk . For a vector y whose group membership is unknown, one approach is to
use a distance function to find the mean vector that y is closest to and assign y to the
corresponding group.

9.3.1 Equal Population Covariance Matrices: Linear Classification Functions

In this section we assume �1 = �2 = · · · = �k . We can estimate the common
population covariance matrix by a pooled sample covariance matrix

Spl = 1

N − k

k∑
i=1

(ni − 1)Si = E
N − k

,

where ni and Si are the sample size and covariance matrix of the i th group, E is the
error matrix from one-way MANOVA, and N = ∑

i ni . We compare y to each yi ,
i = 1, 2, . . . , k, by the distance function

D2
i (y) = (y − yi )

′S−1
pl (y − yi ) (9.9)

and assign y to the group for which D2
i (y) is smallest.

We can obtain a linear classification rule by expanding (9.9):

D2
i (y) = y′S−1

pl y − y′S−1
pl yi − y′

i S
−1
pl y + y′

i S
−1
pl yi

= y′S−1
pl y − 2y′

i S
−1
pl y + y′

i S
−1
pl yi .

The term y′S−1
pl y on the right can be neglected since it is not a function of i and,

consequently, does not change from group to group. The second term is a linear
function of y, and the third does not involve y. We thus delete y′S−1

pl y and obtain a

linear classification function, which we denote by Li (y). If we multiply by − 1
2 to

agree with the rule based on the normal distribution and prior probabilities given in
(9.12), our linear classification rule becomes: Assign y to the group for which

Li (y) = y′
i S

−1
pl y − 1

2 y′
i S

−1
pl yi , i = 1, 2, . . . , k (9.10)

is a maximum (we reversed the sign when multiplying by − 1
2 ). To highlight the

linearity of (9.10) as a function of y, we can express it as

Li (y) = c′
i y + ci0 = ci1y1 + ci2 y2 + · · · + cip yp + ci0,

where c′
i = y′

i S
−1
pl and ci0 = − 1

2 y′
i S

−1
pl yi . To assign y to a group using this procedure,

we calculate ci and ci0 for each of the k groups, evaluate Li (y), i = 1, 2, . . . , k, and
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allocate y to the group for which Li (y) is largest. This will be the same group for
which D2

i (y) in (9.9) is smallest, that is, the group whose mean vector yi is closest
to y.

For the case of several groups, the optimal rule in (9.7) extends to:

Assign y to the group for which pi f (y|Gi ) is maximum. (9.11)

With this rule, the probability of misclassification is minimized. If we assume nor-
mality with equal covariance matrices and with prior probabilities of group member-
ship, p1, p2, . . . , pk , then f (y|Gi ) = Np(�i ,�), and the rule in (9.11) becomes
(with estimates in place of parameters): Calculate

L ′
i (y) = ln pi + y′

i S
−1
pl y − 1

2 y′
i S

−1
pl yi , i = 1, 2, . . . , k (9.12)

and assign y to the group with maximum value of L ′
i (y). Note that if p1 = p2 =

· · · = pk , then (9.12), which optimizes the classification rate for the normal distri-
bution, reduces to (9.10), which was based on the heuristic approach of minimizing
the distance of y to yi .

The linear functions Li (y) defined in (9.10) are called linear classification func-
tions (many writers refer to them as linear discriminant functions). They are different
from the linear discriminant functions in Sections 6.1.4, 6.4, and 8.4.1, whose coef-
ficients are eigenvectors of E−1H. In fact, there will be k classification functions and
s = min(p, k − 1) discriminant functions, where k is the number of groups and p is
the number of variables. In many cases we do not need all s discriminant functions
to effectively describe group differences, whereas all k classification functions must
be used in assigning observations to groups.

Example 9.3.1. For the football data of Table 8.3, the mean vectors for the three
groups are as follows:

y′
1 = (15.2, 58.9, 20.1, 13.1, 14.7, 12.3),

y′
2 = (15.4, 57.4, 19.8, 10.1, 13.5, 11.9),

y′
3 = (15.6, 57.8, 19.8, 10.9, 13.7, 11.8).

Using these values of yi and the pooled covariance matrix Spl, given in Example 8.5,
the linear classification functions (9.10) become

L1(y) = 7.6y1 + 13.3y2 + 4.2y3 − 1.2y4 + 14.6y5 + 8.2y6 − 641.1,

L2(y) = 10.2y1 + 13.3y2 + 4.2y3 − 3.4y4 + 13.2y5 + 6.1y6 − 608.0,

L3(y) = 10.9y1 + 13.3y2 + 4.1y3 − 2.7y4 + 13.1y5 + 5.2y6 − 614.6.

We note that y2 and y3 have essentially the same coefficients in all three functions
and hence do not contribute to classification of y. These same two variables were
eliminated in the stepwise discriminant analysis in Example 8.9.
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We illustrate the use of these linear functions for the first and third observations
in group 1. For the first observation, y11, we obtain

L1(y11) = 7.6(13.5)+ 13.3(57.2)+ 4.2(19.5)− 1.2(12.5)+ 14.6(14.0)

+ 8.2(11.0)− 641.1 = 582.124,

L2(y11) = 10.2(13.5)+ 13.3(57.2)+ 4.2(19.5)− 3.4(12.5)+ 13.2(14.0)

+ 6.1(11.0)− 608.0 = 578.099,

L3(y11) = 10.9(13.5)+ 13.3(57.2)+ 4.1(19.5)− 2.7(12.5)+ 13.1(14.0)

+ 5.2(11.0)− 614.6 = 578.760.

We classify y11 into group 1 since L1(y11) = 582.1 exceeds L2(y11) and L3(y11).
For the third observation in group 1, y13, we obtain

L1(y13) = 567.054, L2(y13) = 570.290, L3(y13) = 569.137.

This observation is misclassified into group 2 since L2(y13) = 570.290 exceeds
L1(y13) and L3(y13).

9.3.2 Unequal Population Covariance Matrices: Quadratic
Classification Functions

The linear classification functions in Section 9.3.1 are based on the assumption
�1 = �2 = · · · = �k . The resulting classification rules are sensitive to hetero-
geneity of covariance matrices. Observations tend to be classified too frequently into
groups whose covariance matrices have larger variances on the diagonal. Thus the
population covariance matrices should not be assumed to be equal if there is reason
to suspect otherwise.

If �1 = �2 = · · · = �k does not hold, the classification rules can easily be
altered to preserve optimality of classification rates. In place of (9.9), we can use

D2
i (y) = (y − yi )

′S−1
i (y − yi ), i = 1, 2, . . . , k, (9.13)

where Si is the sample covariance matrix for the i th group. As before, we would
assign y to the group for which D2

i (y) is smallest. With Si in place of Spl, (9.13) can-
not be reduced to a linear function of y as in (9.10) but remains a quadratic function.
Hence rules based on Si are called quadratic classification rules.

If we assume normality with unequal covariance matrices and with prior proba-
bilities p1, p2, . . . , pk , then f (y|Gi ) = Np(�i ,�i ), and the optimal rule in (9.11)
based on pi f (y|Gi ) becomes: Assign y to the group for which

Qi (y) = ln pi − 1
2 ln |Si | − 1

2 (y − yi )
′S−1

i (y − yi ) (9.14)

is maximum. If p1 = p2 = · · · = pk or if the pi ’s are unknown, the term ln pi is
deleted.
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In order to use a quadratic classification rule based on Si , each ni must be greater
than p so that S−1

i will exist. This restriction does not apply to linear classification
rules based on Spl. Since more parameters are estimated with quadratic classification
functions, larger values of the ni ’s are needed for stability of estimates. Note the
distinction between p, the number of variables, and pi , the prior probability for the
i th group.

9.4 ESTIMATING MISCLASSIFICATION RATES

In Chapter 8, we assessed the effectiveness of the discriminant functions in group
separation by the use of significance tests or by examining λi/

∑
j λ j . To judge the

ability of classification procedures to predict group membership, we usually use the
probability of misclassification, which is known as the error rate. We could also use
its complement, the correct classification rate.

A simple estimate of the error rate can be obtained by trying out the classifica-
tion procedure on the same data set that has been used to compute the classification
functions. This method is commonly referred to as resubstitution. Each observation
vector yi j is submitted to the classification functions and assigned to a group. We
then count the number of correct classifications and the number of misclassifica-
tions. The proportion of misclassifications resulting from resubstitution is called the
apparent error rate. The results can be conveniently displayed in a classification
table or confusion matrix, such as Table 9.1 for two groups.

Among the n1 observations in G1, n11 are correctly classified into G1, and n12
are misclassified into G2, where n1 = n11 + n12. Similarly, of the n2 observations
in G2, n21 are misclassified into G1, and n22 are correctly classified into G2, where
n2 = n21 + n22. Thus

Apparent error rate = n12 + n21

n1 + n2

= n12 + n21

n11 + n12 + n21 + n22
. (9.15)

Similarly, we can define

Apparent correct classification rate = n11 + n22

n1 + n2
. (9.16)

Table 9.1. Classification Table for Two Groups

Actual Number of Predicted Group

Group Observations 1 2

1 n1 n11 n12

2 n2 n21 n22
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Table 9.2. Classification Table for the Psychological Data
of Table 5.1

Actual Number of Predicted Group

Group Observations 1 2

Male 32 28 4
Female 32 4 28

Clearly,

Apparent error rate = 1 − apparent correct classification rate.

The method of resubstitution can be readily extended to the case of several groups.
The apparent error rate is easily obtained and is routinely provided by most clas-

sification software programs. It is an estimate of the probability that our classifi-
cation functions based on the present sample will misclassify a future observation.
This probability is called the actual error rate. Unfortunately, the apparent error rate
underestimates the actual error rate because the data set used to compute the classi-
fication functions is also used to evaluate them. The classification functions are opti-
mized for the particular sample and may be capitalizing on chance to some degree,
especially for small samples. For other estimates of error rates, see Rencher (1998,
Section 6.4). In Section 9.5 we consider some approaches to reducing the bias in the
apparent error rate.

Example 9.4.(a). We use the psychological data of Table 5.1 to illustrate the appar-
ent error rate obtained by the resubstitution method for two groups. The hypothesis
H0 : �1 = �2 was not rejected in Example 7.3.2, and we therefore classify each of
the 64 observations using the linear classification procedure obtained in Example 9.2:
Classify as G1 if a′y > 7.4927 and as G2 otherwise. The resulting classification table
is given in Table 9.2. By (9.15),

Apparent error rate = n12 + n21

n1 + n2
= 4 + 4

32 + 32
= .125.

Example 9.4.(b). We use the football data of Table 8.3 to illustrate the use of the
resubstitution method for estimating the error rate in the case of more than two
groups. The sample covariance matrices for the three groups are almost significantly
different, and we will use both linear and quadratic classification functions.

The linear classification functions Li (y) from(9.10) were given in Example 9.3.1
for the football data. Using these, we classify each of the 90 observations. The results
are shown in Table 9.3.

An examination of this data set in Example 8.8 showed that groups 2 and 3 are
harder to separate than 1 and 2 or 1 and 3. This pattern is reflected here in the misclas-
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Table 9.3. Classification Table for the Football Data of
Table 8.3 Using Linear Classification Functions

Actual Number of Predicted Group

Group Observations 1 2 3

1 30 26 1 3
2 30 1 20 9
3 30 2 8 20

Apparent correct classification rate = 26 + 20 + 20

90
= .733

Apparent error rate = 1 − .733 = .267

Table 9.4. Classification Table for the Football Data of
Table 8.3 Using Quadratic Classification Functions

Actual Number of Predicted Group

Group Observations 1 2 3

1 30 27 1 2
2 30 2 21 7
3 30 1 4 25

Apparent correct classification rate = 27 + 21 + 25

90
= .811

Apparent error rate = 1 − .811 = .189

sifications. Only 4 of the observation vectors in group 1 are misclassified, whereas
10 observations in each of groups 2 and 3 are misclassified.

Using the quadratic classification functions Qi (y), i = 1, 2, 3, in (9.14) and
assuming p1 = p2 = p3, we obtain the classification results in Table 9.4. There is
some improvement in the apparent error rate using quadratic classification functions.

9.5 IMPROVED ESTIMATES OF ERROR RATES

For large samples, the apparent error rate has only a small amount of bias for esti-
mating the actual error rate and can be used with little concern. For small samples,
however, it is overly optimistic (biased downward), as noted before. We discuss two
techniques for reducing the bias in the apparent error rate, that is, increasing the
apparent error rate to a more realistic level.
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9.5.1 Partitioning the Sample

One way to avoid bias is to split the sample into two parts, a training sample used to
construct the classification rule and a validation sample used to evaluate it. With
the training sample, we calculate linear or quadratic classification functions. We
then submit each observation vector in the validation sample to the classification
functions obtained from the training sample. Since these observations are not used
in calculating the classification functions, the resulting error rate is unbiased. To
increase the information gained, we could also reverse the roles of the two sam-
ples so that the classification functions are obtained from the validation sample and
evaluated on the training sample. The two estimates of error could then be aver-
aged.

Partitioning the sample has at least two disadvantages:

1. It requires large samples that may not be available.

2. It does not evaluate the classification function we will use in practice. The esti-
mate of error based on half the sample may vary considerably from that based
on the entire sample. We prefer to use all or almost all the data to construct
the classification functions so as to minimize the variance of our error rate
estimate.

9.5.2 Holdout Method

The holdout method is an improved version of the sample-splitting procedure in
Section 9.5.1. In the holdout procedure, all but one observation is used to compute the
classification rule, and this rule is then used to classify the omitted observation. We
repeat this procedure for each observation, so that, in a sample of size N = ∑

i ni ,
each observation is classified by a function based on the other N − 1 observations.
The computation load is increased because N distinct classification procedures have
to be constructed. The holdout procedure is also referred to as the leaving-one-out
method or as cross validation. Note that this procedure is used to estimate error
rates. The actual classification rule for future observations would be based on all N
observations.

Example 9.5.2. We use the football data of Table 8.3 to illustrate the holdout method
for estimating the error rate. Each of the 90 observations is classified by linear clas-
sification functions based on the other 89 observations. To begin the procedure, the
first observation in group 1 (y11) is held out and the linear classification functions
Li (y), i = 1, 2, 3, in (9.10) are calculated using the remaining 29 observations in
group 1 and the 60 observations in groups 2 and 3. The observation y11 is now clas-
sified using L1(y), L2(y), and L3(y). Then y11 is reinserted in group 1, and y12 is
held out. The functions L1(y), L2(y), and L3(y) are recomputed and y12 is then clas-
sified. This procedure is followed for each of the 90 observations, and the results are
in Table 9.5.
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Table 9.5. Classification Table for the Football Data of
Table 8.3 Using the Holdout Method Based on Linear
Classification Functions

Actual Number of Predicted Group

Group Observations 1 2 3

1 30 26 1 3
2 30 1 18 11
3 30 2 9 19

Correct classification rate = 26 + 18 + 19

90
= .700

Error rate = 1 − .700 = .300

As expected, the holdout error rate has increased somewhat from the apparent
error rate based on resubstitution in Tables 9.3 and 9.4 in Example 9.4.(b). An error
rate of .300 is a less optimistic (more realistic) estimate of what the classification
functions can do with future samples.

9.6 SUBSET SELECTION

The experimenter often has available a large number of variables and wishes to keep
any that might aid in predicting group membership but at the same time to delete any
superfluous variables that do not contribute to allocation. A reduction in the number
of redundant variables may in fact lead to improved error rates. As an additional con-
sideration, there is an increase in robustness to nonnormality of linear and quadratic
classification functions as p (the number of variables) decreases.

The majority of selection schemes for classification analysis are based on step-
wise discriminant analysis or a similar approach (Section 8.9). One finds the subset
of variables that best separates groups using Wilks’ 	, for example, and then uses
these variables to construct classification functions. Most of the major statistical soft-
ware packages offer this method. When the “best” subset is selected in this way, an
optimistic bias in error rates is introduced. For a discussion of this bias, see Rencher
(1992a; 1998, Section 6.7).

Another link between separation and classification is the use of error rates in an
informal stopping rule in a stepwise discriminant analysis. Thus, for example, if a
subset of 5 variables out of 10 gives a misclassification rate of 33% compared to
30% for the full set of variables, we may decide that the 5 variables are adequate for
separating the groups. We could try several subsets of decreasing sizes to see when
the error rate begins to escalate noticeably.

Example 9.6.(a). In Example 8.9, a stepwise discriminant analysis based on a par-
tial Wilks’ 	 (or partial F) was carried out for the football data of Table 8.3. Four
variables were selected: EYEHD, WDIM, JAW, and EARHD. These same four vari-
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Table 9.6. Classification Table for the Football Data of
Table 8.3 Using Linear Classification Functions Based on
Four Variables Chosen by Stepwise Selection

Actual Number of Predicted Group

Group Observations 1 2 3

1 30 26 1 3
2 30 1 20 9
3 30 2 8 20

ables are indicated by the coefficients in the linear classification functions in Exam-
ple 9.3.1. We now use these four variables to classify the observations using the
method of resubstitution to obtain the apparent error rate.

The linear classification functions (9.10) are

Group 1: L1(y) = y′
1S−1

pl y − 1
2 y′

1S−1
pl y1

= 18.67y1 + 4.13y2 + 17.67y3 + 20.44y4 − 425.50,

Group 2: L2(y) = 21.13y1 + 1.96y2 + 16.24y3 + 18.36y4 − 392.75,

Group 3: L3(y) = 21.87y1 + 2.67y2 + 16.13y3 + 17.46y4 − 399.63.

When each observation vector is classified using these linear functions, we obtain
the classification results in Table 9.6.

Table 9.6 is identical to Table 9.3 in Example 9.4.(b), where all six variables
were used. Thus the four selected variables can classify the sample as well as all six
variables classify it.

Example 9.6.(b). We illustrate the use of error rates as an informal stopping rule in
a stepwise discriminant analysis. Fifteen teacher and pupil behaviors were observed
during 5-min intervals of reading instruction in elementary school classrooms
(Rencher, Wadham, and Young 1978). The observations were recorded in rate of
occurrences per minute for each variable. The variables were the following:

Teacher Behaviors
1. Explains—Explains task to learner.

2. Models—Models the task response for the learner.

3. Questions—Asks a question to elicit a task response.

4. Directs—Gives a direct signal to elicit a task response.

5. Controls—Controls management behavior with direction statements or ges-
tures.

6. Positive—Gives a positive (affirmative) statement or gesture.

7. Negative—Gives a negative statement or gesture.
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Pupil Behaviors
8. Overt delayed—An overt learner response to task signals that cannot be

judged correct or incorrect until later.

9. Correct—A correct learner response with relationship to task signals.

10. Incorrect—An incorrect learner response with relationship to task signals.

11. No response—Learner gives no response with relationship to task signals.

12. Asks—Learner asks a question about the task.

13. Statement—Learner gives a positive statement or gestures not related to the
task.

14. Inappropriate—Learner gives in appropriate management behavior.

15. Other—Other learner than one being observed gives responses as teacher
directs task signals.

The teachers were grouped into four categories:

Group 1: Outstanding teachers,

Group 2: Poor teachers,

Group 3: First-year teachers,

Group 4: Teacher aides.

The sample sizes in groups 1–4 were 62, 61, 57, and 41, respectively. Because of the
large values of N and p (N = 221, p = 15), the data are not given here.

The stepwise discriminant analysis was run several times with different thresh-
old F-to-enter values in order to select subsets with different sizes. A classification
analysis based on resubstitution was carried out with each of the resulting subsets of
variables. In Table 9.7, we compare the overall Wilks’ 	 and the apparent correct
classification rate.

According to the correct classification rate, we would choose to stop at five vari-
ables because of the abrupt change from 5 to 4. On the other hand, the changes in
Wilks’ 	 are more gradual, and no clear stopping point is indicated.

Table 9.7. Stepwise Selection Statistics for the Teacher Data

Number of Overall Percentage of Correct
Variables Wilks’ 	 Classification

15 .132 77.4
10 .159 72.4
9 .170 73.3
8 .182 70.6
7 .195 72.9
6 .211 70.1
5 .231 70.6
4 .256 65.6
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9.7 NONPARAMETRIC PROCEDURES

We have previously discussed both parametric and nonparametric procedures.
Welch’s optional rule in (9.7) and (9.11) is parametric, whereas Fisher’s linear
classification rule for two groups as given in (9.5) and (9.6) is essentially nonpara-
metric, since no distributional assumptions were involved in its derivation. However,
Fisher’s procedure also turns out to be equivalent to the optimal normal-based
approach in (9.8). Nonparametric procedures for estimating error rate include the
resubstitution and holdout methods. In the next three sections we discuss three
additional nonparametric classification procedures.

9.7.1 Multinomial Data

We now consider data in which an observation vector consists of responses on each
of several categorical variables. The various combinations of categories constitute
the possible outcomes of a multinomial random variable. For example, consider the
following four categorical variables: gender (male or female), political party (Repub-
lican, Democrat, other), size of city of residence (under 10,000, between 10,000 and
100,000, over 100,000), and education (less than high school graduation, high school
graduate, college graduate, advanced degree). An observation vector might be (2, 1,
3, 4), that is, a female Republican who lives in a city of over 100,000 and is a college
graduate. The total number of possible outcomes in this multinomial distribution is
the product of the number of states of the individual variables: 2 × 3 × 3 × 4 = 72.
We will use this example to illustrate classification procedures for multinomial data.
Suppose we are attempting to predict whether or not a person will vote. Then there
are two groups, G1 and G2, and we assign a person to one of the groups after observ-
ing which of the 72 possible outcomes he or she gives.

Welch’s (1939) optimum rule given in (9.7) can be written as: Assign y to G1 if

f (y|G1)

f (y|G2)
>

p2

p1
(9.17)

and to G2 otherwise. In our categorical example, f (y|G1) is represented by q1i ,
i = 1, 2, . . . , 72, and f (y|G2) becomes q2i , i = 1, 2, . . . , 72, where q1i is the
probability that a person in group 1 will give the i th outcome, with an analogous
definition for q2i . In terms of these multinomial probabilities, the classification rule
in (9.17) becomes: If a person gives the i th outcome, assign him or her to G1 if

q1i

q2i
>

p2

p1
(9.18)

and to G2 otherwise. If the probabilities q1i and q2i were known, it would be easy
to check (9.18) for each i and partition the 72 possible outcomes into two subsets,
those for which the person would be assigned to G1 and those corresponding to G2.

The values of q1i and q2i are usually unknown and must be estimated from a
sample. Let n1i and n2i be the numbers of persons in groups 1 and 2 who give the
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i th outcome, i = 1, 2, . . . , 72. Then we estimate q1i and q2i by

q̂1i = n1i

N1
and q̂2i = n2i

N2
, i = 1, 2, . . . , 72, (9.19)

where N1 = ∑
i n1i and N2 = ∑

i n2i . However, a large sample size would be
required for stable estimates; in any given example, some of the n’s may be zero.

Multinomial data can also be classified by ordinary linear classification functions.
We must distinguish between ordered and unordered categories. If all the variables
have ordered categories, the data can be submitted directly to an ordinary classifi-
cation program. In the preceding example, city size and education are variables of
this type. It is customary to assign ordered categories ranked values such as 1, 2, 3,
4. It has been shown that linear classification functions perform reasonably well on
(ordered) discrete data of this type [see Lachenbruch (1975, p. 45), Titterington et al.
(1981), and Gilbert (1968)].

Unordered categorical variables cannot be handled this same way. Thus the polit-
ical party variable in the preceding example should not be coded 1, 2, 3 and entered
into the computation of the classification functions. However, an unordered cate-
gorical variable with k categories can be replaced by k − 1 dummy variables (see
Sections 6.1.8 and 11.6.2) for use with linear classification functions. For exam-
ple, the political preference variable with three categories can be converted to two
dummy variables as follows:

y1 =
{

1 if Republican,
0 otherwise,

y2 =
{

1 if Democrat,
0 otherwise.

Thus the (y1, y2) pair takes the value (1, 0) for a Republican, (0, 1) for a Democrat,
and (0, 0) for other. Many software programs will create dummy variables automati-
cally. Note that if a subset selection program is used, the dummy variables for a given
categorical variable must be kept together; that is, they must all be included in the
chosen subset or all excluded, because all are necessary to describe the categorical
variable.

In some cases, such as in medical data collection, there is a mixture of continuous
and categorical variables. Various approaches to classification with such data have
been discussed by Krzanowski (1975, 1976, 1977, 1979, 1980), Lachenbruch and
Goldstein (1979), Tu and Han (1982), and Bayne et al. (1983). See Rencher (1998,
Section 6.8) for a discussion of logistic and probit classification, which are useful for
certain types of continuous and discrete data that are not normally distributed.

9.7.2 Classification Based on Density Estimators

In (9.8), (9.12), and (9.14) we have linear and quadratic classification rules based
on the multivariate normal density and prior probabilities. These normal-based rules
arose from Welch’s optimal rule that assigns y to the group for which pi f (y|Gi ) is
maximum. If the form of f (y|Gi ) is nonnormal and unknown, the density can be
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estimated directly from the data. The approach we describe is known as the kernel
estimator.

We first describe the kernel method for a univariate continuous random vari-
able y. Suppose y has density f (y), which we wish to estimate using a sample
y1, y2, . . . , yn . A simple estimate of f (y0) for an arbitrary point y0 can be based
on the proportion of points in the interval (y0 − h, y0 + h). If the number of points
in the interval is denoted by N (y0), then the proportion N (y0)/n is an estimate of
P(y0−h < y < y0+h), which is approximately equal to 2h f (y0). Thus we estimate
f (y0) by

f̂ (y0) = N (y0)

2hn
. (9.20)

We can express f̂ (y0) as a function of all yi in the sample by defining

K (u) =
{

1
2 for |u| ≤ 1,
0 for |u| > 1,

(9.21)

so that N (y0) = 2
∑n

i=1 K [(y0 − yi )/h], and (9.20) becomes

f̂ (y0) = 1

hn

n∑
i=1

K

(
y0 − yi

h

)
. (9.22)

The function K (u) is called the kernel. In (9.22), K [(y0 − yi )/h] is 1
2 for any point

yi in the interval (y0 − h, y0 + h) and is zero for points outside the interval. Points
in the interval add 1/2hn to the density and points outside the interval contribute
nothing.

Kernel estimators were first proposed by Rosenblatt (1956) and Parzen (1962).
A good review of nonparametric density estimation including kernel estimators has
been given by Silverman (1986), who noted that classification analysis provided the
initial motivation for the development of density estimation.

The kernel defined by (9.21) is rectangular, and the graph of f̂ (y0) plotted as a
function of y0 will be a step function, since there will be a jump (or drop) whenever
y0 is a distance h from one of the yi ’s. (A moving average has a similar property.) To
obtain a smooth estimator of f (y), we must choose a smooth kernel. Two possibili-
ties are

K (u) = 1

π

sin2 u

u2
, (9.23)

K (u) = 1√
2π

e−u2/2, (9.24)

which have the property that all n sample points y1, y2, . . . , yn contribute to f̂ (y0),
with the closest points weighted heavier than the more distant points. Even though
K (u) in (9.24) has the form of the normal distribution, this does not imply any
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assumption about the density f (y). We have used the normal density function
because it is symmetric and unimodal. Other density functions could be used as
kernels.

Cacoullos (1966) provided kernel estimates for multivariate density functions; see
also Scott (1992). If y′

0 = (y01, y02, . . . , y0p) is an arbitrary point whose density we
wish to estimate, then the extension of (9.22) is

f̂ (y0) = 1

nh1h2 · · · h p

n∑
i=1

K

(
y01 − yi1

h1
, . . . ,

y0p − yip

h p

)
. (9.25)

An estimate f̂ (y0) based on a multivariate normal kernel is given by

f̂ (y0) = 1

nh p|Spl|1/2
n∑

i=1

e−(y0−yi )
′S−1

pl (y0−yi )/2h2
, (9.26)

where h1 = h2 = · · · = h p = h and Spl is the pooled covariance matrix from the
k groups in the sample. The covariance matrix Spl could be replaced by other forms.
Two examples are (1) Si for the i th group and (2) a diagonal matrix.

The choice of the smoothing parameter h is critical in a kernel density estimator.
The size of h determines how much each yi contributes to f̂ (y0). If h is too small,
f̂ (y0) has a peak at each yi , and if h is too large, f̂ (y0) is almost uniform (overly
smoothed). Therefore, the value chosen for h must depend on the sample size n to
avoid too much or too little smoothing; the larger the sample size, the smaller h
should be. In practice, we could try several values of h and check the resulting error
rates from the classification analysis.

To use the kernel method of density estimation in classification, we can apply it to
each group to obtain f̂ (y0|G1), f̂ (y0|G2), . . . , f̂ (y0|Gk), where y0 is the vector of
measurements for an individual of unknown group membership. The classification
rule then becomes: Assign y0 to the group Gi for which

pi f̂ (y0|Gi ) is maximum. (9.27)

Habbema, Hermans, and Van den Broek (1974) proposed a forward selection
method for classification based on density estimation. Wegman (1972) and Habbema,
Hermans, and Remme (1978) found that the size of the hi ’s is more important than
the shape of the kernel. The choice of h was investigated by Pfeiffer (1985) in a
stepwise mode. Remme, Habbema, and Hermans (1980) compared linear, quadratic,
and kernel classification methods for two groups and reported that for multivariate
normal data with equal covariance matrices, the linear classifications were clearly
superior. For some cases with departures from these assumptions, the kernel meth-
ods gave better results.

Example 9.7.2. We illustrate the density estimation method of classification for the
football data of Table 8.3. We use the multivariate normal kernel estimator in (9.26)
with h = 2 to obtain f̂ (y0|Gi ), i = 1, 2, 3, for the three groups. Using p1 =
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p2 = p3, the rule in (9.27) becomes: Assign y0 to the group for which f̂ (y0|Gi ) is
greatest. To obtain an apparent error rate, we follow this procedure for each of the 90
observations and obtain the classification results in Table 9.8.

Applying a holdout method in which the observation yi j being classified is
excluded from computation of f̂ (yi j |G1), f̂ (yi j |G2), and f̂ (yi j |G3), we obtain the
classification results in Table 9.9. As expected, the holdout error rate has increased
somewhat from the apparent error rate in Table 9.8.

9.7.3 Nearest Neighbor Classification Rule

The earliest nonparametric classification method was the nearest neighbor rule of
Fix and Hodges (1951), also known as the k nearest neighbor rule. The procedure
is conceptually simple. We compute the distance from an observation yi to all other
points y j using the distance function

(yi − y j )
′S−1

pl (yi − y j ), j �= i.

Table 9.8. Classification Table for the Football Data of
Table 8.3 Using the Density Estimation Method of Clas-
sification with Multivariate Normal Kernel

Actual Number of Predicted Group

Group Observations 1 2 3

1 30 25 1 4
2 30 0 12 18
3 30 0 3 27

Apparent correct classification rate = 25 + 12 + 27

90
= .711

Apparent error rate = 1 − .711 = .289

Table 9.9. Classification Table for the Football Data of
Table 8.3 Using the Holdout Method Based on Density
Estimation

Actual Number of Predicted Group

Group Observations 1 2 3

1 30 24 1 5
2 30 0 10 20
3 30 1 3 26

Correct classification rate = 24 + 10 + 26

90
= .667

Error rate = 71 − .667 = .333



NONPARAMETRIC PROCEDURES 319

To classify yi into one of two groups, the k points nearest to yi are examined, and
if the majority of the k points belong to G1, assign yi to G1; otherwise assign yi to
G2. If we denote the number of points from G1 as k1, with the remaining k2 points
from G2, where k = k1 + k2, then the rule can be expressed as: Assign yi to G1 if

k1 > k2 (9.28)

and to G2 otherwise. If the sample sizes n1 and n2 differ, we may wish to use pro-
portions in place of counts: Assign yi to G1 if

k1

n1
>

k2

n2
. (9.29)

A further refinement can be made by taking into account prior probabilities: Assign
yi to G1 if

k1/n1

k2/n2
>

p2

p1
. (9.30)

These rules are easily extended to more than two groups. For example, (9.29)
becomes: Assign the observation to the group that has the highest proportion ki/ni ,
where ki is the number of observations from Gi among the k nearest neighbors of
the observation in question.

A decision must be made as to the value of k. Loftsgaarden and Quesenberry
(1965) suggest choosing k near

√
ni for a typical ni . In practice, one could try several

values of k and use the one with the best error rate.
Reviews and extensions of the nearest neighbor method have been given by Hart

(1968), Gates (1972), Hand and Batchelor (1978), Chidananda Gowda and Krishna
(1979), Rogers and Wagner (1978), and Brown and Koplowitz (1979).

Example 9.7.3. We use the football data of Table 8.3 to illustrate the k nearest neigh-
bor method of estimating error rate, with k = 5. Since n1 = n2 = n3 = 30 and the
pi ’s are also assumed to be equal, we simply examine the five points closest to a

Table 9.10. Classification Table for the Football Data
of Table 8.3 Using the k Nearest Neighbor Method with
k = 5

Actual Number of Predicted Group

Group Observations 1 2 3

1 30 26 0 1
2 30 1 19 9
3 30 1 4 22

Correct classification rate = 26 + 19 + 22

83
= .807

Error rate = 1 − .807 = .193



320 CLASSIFICATION ANALYSIS: ALLOCATION OF OBSERVATIONS TO GROUPS

point y and classify y into the group that has the most points among the five points.
If there is a tie, we do not classify the point. For example, if the numbers from G1,
G2, and G3 were 1, 2, and 2, respectively, then we do not assign y to either G2 or G3.

For each point yi j , i = 1, 2, 3; j = 1, 2, . . . , 30, we find the five nearest neighbors
and classify the point accordingly. Table 9.10 gives the classification results. As can
be seen, there were 3 observations in group 1 that were not classified because of ties,
1 in group 2, and 3 in group 3. This left a total of 83 observations classified.

PROBLEMS

9.1 Show that if z1i = a′y1i , i = 1, 2, . . . , n1, and z2i = a′y2i , i = 1, 2, . . . , n2,
where z is the discriminant function defined in (9.1), then z1 − z2 = (y1 −
y2)

′S−1
pl (y1 − y2) as in (9.3).

9.2 With z = a′y as in (9.1) and z1 = a′y1, z2 = a′y2, show that 1
2 (z1 + z2) =

1
2 (y1 − y2)

′S−1
pl (y1 + y2) as in (9.4).

9.3 Obtain the normal-based classification rule in (9.8).

9.4 Derive the linear classification rule in (9.12).

9.5 Derive the quadratic classification function in (9.14).

9.6 Do a classification analysis on the beetle data in Table 5.5 as follows:

(a) Find the classification function z = (y1 − y2)
′S−1

pl y and the cutoff point
1
2 (z1 + z2).

(b) Find the classification table using the linear classification function in
part (a).

(c) Find the classification table using the nearest neighbor method.

9.7 Do a classification analysis on the dystrophy data of Table 5.7 as follows:

(a) Find the classification function z = (y1 − y2)
′S−1

pl y and the cutoff point
1
2 (z1 + z2).

(b) Find the classification table using the linear classification function in
part (a).

(c) Repeat part (b) using p1 and p2 proportional to sample sizes.

9.8 Do a classification analysis on the cyclical data of Table 5.8 as follows:

(a) Find the classification function z = (y1 − y2)
′S−1

pl y and the cutoff point
1
2 (z1 + z2).

(b) Find the classification table using the linear classification function in
part (a).

(c) Find the classification table using the holdout method.
(d) Find the classification table using a kernel density estimator method.
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9.9 Using the engineer data of Table 5.6, carry out a classification analysis as fol-
lows:

(a) Find the classification table using the linear classification function.
(b) Carry out a stepwise discriminant selection of variables (see Problem 8.14).
(c) Find the classification table for the variables selected in part (b).

9.10 Do a classification analysis on the fish data in Table 6.17 as follows. Assume
p1 = p2 = p3.

(a) Find the linear classification functions.
(b) Find the classification table using the linear classification functions in

part (a) (assuming �1 = �2 = �3).
(c) Find the classification table using quadratic classification functions (assum-

ing population covariance matrices are not equal).
(d) Find the classification table using linear classification functions and the

holdout method.
(e) Find the classification table using a nearest neighbor method.

9.11 Do a classification analysis on the rootstock data of Table 6.2 as follows:

(a) Find the linear classification functions.
(b) Find the classification table using the linear classification functions in

part (a) (assuming �1 = �2 = �3).
(c) Find the classification table using quadratic classification functions (assum-

ing population covariance matrices are not equal).
(d) Find the classification table using the nearest neighbor method.
(e) Find the classification table using a kernel density estimator method.
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Multivariate Regression

10.1 INTRODUCTION

In this chapter, we consider the linear relationship between one or more y’s (the
dependent or response variables) and one or more x’s (the independent or predictor
variables). We will use a linear model to relate the y’s to the x’s and will be concerned
with estimation and testing of the parameters in the model. One aspect of interest will
be choosing which variables to include in the model if this is not already known.

We can distinguish three cases according to the number of variables:

1. Simple linear regression: one y and one x . For example, suppose we wish to
predict college grade point average (GPA) based on an applicant’s high school
GPA.

2. Multiple linear regression: one y and several x’s. We could attempt to improve
our prediction of college GPA by using more than one independent variable,
for example, high school GPA, standardized test scores (such as ACT or SAT),
or rating of high school.

3. Multivariate multiple linear regression: several y’s and several x’s. In the pre-
ceding illustration, we may wish to predict several y’s (such as number of
years of college the person will complete or GPA in the sciences, arts, and
humanities). As another example, suppose the Air Force wishes to predict sev-
eral measures of pilot efficiency. These response variables could be regressed
against independent variables (such as math and science skills, reaction time,
eyesight acuity, and manual dexterity).

To further distinguish case 2 from case 3, we could designate case 2 as univariate
multiple regression because there is only one y. Thus in case 3, multivariate indicates
that there are several y’s and multiple implies several x’s. The term multivariate
regression usually refers to case 3.

There are two basic types of independent variables, fixed and random. In the pre-
ceding illustrations, all x’s are random variables and are therefore not under the con-
trol of the researcher. A person is chosen at random, and all the y’s and x’s are

322



MULTIPLE REGRESSION: FIXED x ’S 323

measured, or observed, for that person. In some experimental situations, the x’s are
fixed, that is, under the control of the experimenter. For example, a researcher may
wish to relate yield per acre and nutritional value to level of application of various
chemical fertilizers. The experimenter can choose the amount of chemicals to be
applied and then observe the changes in the yield and nutritional responses.

In order to provide a solid base for multivariate multiple regression, we review
several aspects of multiple regression with fixed x’s in Section 10.2. The random-x
case for multiple regression is discussed briefly in Section 10.3.

10.2 MULTIPLE REGRESSION: FIXED x’s

10.2.1 Model for Fixed x’s

In the fixed-x regression model, we express each y in a sample of n observations as
a linear function of the x’s plus a random error, ε:

y1 = β0 + β1x11 + β2x12 + · · · + βq x1q + ε1
y2 = β0 + β1x21 + β2x22 + · · · + βq x2q + ε2
...

yn = β0 + β1xn1 + β2xn2 + · · · + βq xnq + εn .

(10.1)

The number of x’s is denoted by q. The β’s in (10.1) are called regression coef-
ficients. Additional assumptions that accompany the equations of the model are as
follows:

1. E(εi ) = 0 for all i = 1, 2, . . . , n.

2. var(εi ) = σ 2 for all i = 1, 2, . . . , n.

3. cov(εi , ε j ) = 0 for all i �= j .

Assumption 1 states that the model is linear and that no additional terms are needed
to predict y; all remaining variation in y is purely random and unpredictable. Thus
if E(εi ) = 0 and the x’s are fixed, then E(yi) = β0 + β1xi1 + β2xi2 + · · · + βq xiq ,
and the mean of y is expressible in terms of these q x’s with no others needed. In
assumption 2, the variance of each εi is the same, which also implies that var(yi) =
σ 2, since the x’s are fixed. Assumption 3 imposes the condition that the error terms
be uncorrelated, from which it follows that the y’s are also uncorrelated, that is,
cov(yi , y j ) = 0.

Thus the three assumptions can be restated in terms of y as follows:

1. E(yi) = β0 + β1xi1 + β2xi2 + · · · + βq xiq , i = 1, 2, . . . , n.

2. var(yi ) = σ 2, i = 1, 2, . . . , n.

3. cov(yi , y j ) = 0, for all i �= j .
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Using matrix notation, the models for the n observations in (10.1) can be written
much more concisely in the form


y1
y2
...

yn


 =




1 x11 x12 · · · x1q

1 x21 x22 · · · x2q
...

...
...

...

1 xn1 xn2 · · · xnq





β0
β1
...

βq


+



ε1
ε2
...

εn


 (10.2)

or

y = X� + �. (10.3)

With this notation, the preceding three assumptions become

1. E(�) = 0,
2. cov(�) = σ 2I,

which can be rewritten in terms of y as

1. E(y) = X�,
2. cov(y) = σ 2I.

Note that the second assumption in matrix form incorporates both the second and
third assumptions in univariate form; that is, cov(y) = σ 2I implies var(yi) = σ 2 and
cov(yi , y j ) = 0.

For estimation and testing purposes, we need to have n > q + 1. Therefore, the
matrix expression (10.3) has the following typical pattern:

10.2.2 Least Squares Estimation in the Fixed-x Model

If the first assumption holds, we have E(yi) = β0 + β1xi1 + β2xi2 + · · · + βq xiq .
We seek to estimate the β’s and thereby estimate E(yi). If the estimates are denoted
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by β̂0, β̂1, . . . , β̂q , then Ê(yi ) = β̂0 + β̂1xi1 + β̂2xi2 + · · · + β̂q xiq . However, Ê(yi )

is usually designated ŷi . Thus ŷi estimates E(yi), not yi . We now consider the least
squares estimates of the β’s.

The least squares estimates of β0, β1, . . . , βq minimize the sum of squares of
deviations of the n observed y’s from their “modeled” values, that is, from their
values ŷi predicted by the model. Thus we seek β̂0, β̂1, . . . , β̂q that minimize

SSE =
n∑

i=1

ε̂2
i =

n∑
i=1

(yi − ŷi )
2

=
n∑

i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − · · · − β̂q xiq)
2. (10.4)

The value of �̂ = (β̂0, β̂1, . . . , β̂q )
′ that minimizes SSE in (10.4) is given by

�̂ = (X′X)−1X′y. (10.5)

In (10.5), we assume that X′X is nonsingular. This will ordinarily hold if n > q + 1
and no x j is a linear combination of other x’s.

In expression (10.5), we see a characteristic pattern similar to that for β̂1 in sim-
ple linear regression given in (3.11), β̂1 = sxy/s2

x . The product X′y can be used to
compute the covariances of the x’s with y. The product X′X can be used to obtain
the covariance matrix of the x’s, which includes the variances and covariances of the
x’s [see the comment following (10.16) about variances and covariances involving
the fixed x’s]. Since X′X is typically not diagonal, each β̂ j depends on sx j y and s2

x j
as well as the relationship of x j to the other x’s.

We now demonstrate algebraically that �̂ = (X′X)−1X′y in (10.5) minimizes
SSE (this can also be done readily with calculus). If we designate the i th row of X
as x′

i = (1, xi1, xi2, . . . , xiq), we can write (10.4) as

SSE =
n∑

i=1

(yi − x′
i �̂)

2.

The quantity yi − x′
i �̂ is the i th element of the vector y − X�̂. Hence, by (2.33),

SSE = (y − X�̂)′(y − X�̂). (10.6)

Let b be an alternative estimate that may lead to a smaller value of SSE than does �̂.
We add X(�̂ − b) to see if this reduces SSE.

SSE = [(y − X�̂)+ X(�̂ − b)]′[(y − X�̂)+ X(�̂ − b)].
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We now expand this using the two terms y − X�̂ and X(�̂ − b) to obtain

SSE = (y − X�̂)′(y − X�̂)+ [X(�̂ − b)]′X(�̂ − b)+ 2[X(�̂ − b)]′(y − X�̂)

= (y − X�̂)′(y − X�̂)+ (�̂ − b)′X′X(�̂ − b)+ 2(�̂ − b)′X′(y − X�̂)

= (y − X�̂)′(y − X�̂)+ (�̂ − b)′X′X(�̂ − b)+ 2(�̂ − b)′(X′y − X′X�̂).

The third term vanishes if we substitute �̂ = (X′X)−1X′y into X′X�̂. The second
term is a positive definite quadratic form, and SSE is therefore minimized when
b = �̂. Thus no value of b can reduce SSE from the value given by �̂. For a review
of properties of �̂ and an alternative derivation of �̂ based on the assumption that y
is normally distributed, see Rencher (1998, Chapter 7; 2000, Chapter 7).

10.2.3 An Estimator for �2

It can be shown that

E(SSE) = σ 2[n − (q + 1)] = σ 2(n − q − 1). (10.7)

We can therefore obtain an unbiased estimator of σ 2 as

s2 = SSE

n − q − 1
= 1

n − q − 1
(y − X�̂)′(y − X�̂). (10.8)

We can also express SSE in the form

SSE = y′y − �̂′X′y, (10.9)

and we note that there are n terms in y′y and q + 1 terms in �̂′X′y. The difference is
the denominator of s2 in (10.8). Thus the degrees of freedom (denominator) for SSE
are reduced by q + 1.

The need for an adjustment of q + 1 to the degrees of freedom of SSE can be
illustrated with a simple random sample of a random variable y from a population
with mean µ and variance σ 2. The sum of squares

∑
i (yi − µ)2 has n degrees of

freedom, whereas
∑

i (yi − y)2 has n − 1. It is intuitively clear that

E

[
n∑

i=1

(yi − µ)2

]
> E

[
n∑

i=1

(yi − y)2
]

because y fits the sample better thanµ, which is the mean of the population but not of
the sample. Thus (squared) deviations from y will tend to be smaller than deviations
from µ. In fact, it is easily shown that
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n∑
i=1

(yi − µ)2 =
n∑

i=1

(yi − y + y − µ)2

=
∑

i

(yi − y)2 + n(y − µ)2, (10.10)

whence ∑
i

(yi − y)2 =
∑

i

(yi − µ)2 − n(y − µ)2.

Thus
∑

i (yi − y)2 is expressible as a sum of n squares minus 1 square, which corre-
sponds to n − 1 degrees of freedom. More formally, we have

E

[∑
i

(yi − y)2
]

= nσ 2 − nσ 2

n
= (n − 1)σ 2.

10.2.4 The Model Corrected for Means

It is sometimes convenient to “center” the x’s by subtracting their means, x1 =∑n
i=1 xi1/n, x2 = ∑n

i=1 xi2/n, and so on [x1, x2, . . . , xq are the means of the
columns of X in (10.2)]. In terms of centered x’s, the model for each yi in (10.1)
becomes

yi = α + β1(xi1 − x1)+ β2(xi2 − x2)+ · · · + βq(xiq − xq)+ εi , (10.11)

where

α = β0 + β1x1 + β2x2 + · · · + βq xq . (10.12)

To estimate

�1 =



β1
β2
...

βq


 ,

we use the centered x’s in the matrix

Xc =




x11 − x1 x12 − x2 · · · x1q − xq

x21 − x1 x22 − x2 · · · x2q − xq
...

...
...

xn1 − x1 xn2 − x2 · · · xnq − xq


 =



(x1 − x)′
(x2 − x)′

...

(xn − x)′


 , (10.13)

where x′
i = (xi1, xi2, . . . , xiq) and x′ = (x1, x2, . . . , xq). Then by analogy to

(10.5), the least squares estimate of �1 is

�̂1 = (X′
cXc)

−1X′
cy. (10.14)
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If E(y) = β0 + β1x1 + · · · + βq xq is evaluated at x1 = x1, x2 = x2, . . . , xq = xq ,
the result is the same as α in (10.12). Thus, we estimate α by y:

α̂ = y.

In other words, if the origin of the x’s is shifted to x = (x1, x2, . . . , xq)
′, then the

intercept of the fitted model is y. With α̂ = y, we obtain

β̂0 = α̂ − β̂1x1 − β̂2x2 − · · · − β̂q xq = y − �̂′
1x (10.15)

as an estimate of β0 in (10.12). Together, the estimators β̂0 and �̂1 in (10.15) and
(10.14) are the same as the usual least squares estimator �̂ = (X′X)−1X′y in (10.5).

We can express �̂1 in (10.14) in terms of sample variances and covariances. The
overall sample covariance matrix of y and the x’s is

S =




syy sy1 sy2 · · · syq

s1y s11 s12 · · · s1q
...

...
...

...

sqy sq1 sq2 · · · sqq


 =

(
syy s′

yx
syx Sxx

)
, (10.16)

where syy is the variance of y, sy j is the covariance of y and x j , s j j is the vari-
ance of x j , s jk is the covariance of x j and xk , and s′

yx = (sy1, sy2, . . . , syq). These
sample variances and covariances are mathematically equivalent to analogous formu-
las (3.23) and (3.25) for random variables, where the sample variances and covari-
ances were estimates of population variances and covariances. However, here the x’s
are considered to be constants that remain fixed from sample to sample, and a for-
mula such as s11 = ∑n

i=1(xi1 − x1)
2/(n − 1) summarizes the spread in the n values

of x1 but does not estimate a population variance.
To express �̂1 in terms of Sxx and syx in (10.16), we note first that the diagonal

elements of X′
cXc are corrected sums of squares. For example, in the second diagonal

position, we have

n∑
i=1

(xi2 − x2)
2 = (n − 1)s22.

The off-diagonal elements of X′
cXc are analogous corrected sums of products; for

example, the element in the (1, 2) position is

n∑
i=1

(xi1 − x1)(xi2 − x2) = (n − 1)s12.

Thus

1

n − 1
X′

cXc = Sxx . (10.17)
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Similarly,

1

n − 1
X′

cy = syx , (10.18)

even though y has not been centered. The second element of X′
cy, for example, is∑

i (xi2 − x2)yi , which is equal to (n − 1)s2y:

(n − 1)s2y =
n∑

i=1

(xi2 − x2)(yi − y)

=
∑

i

(xi2 − x2)yi −
∑

i

(xi2 − x2)y

=
∑

i

(xi2 − x2)yi ,

since ∑
i

(xi2 − x2)y = 0. (10.19)

Now, multiplying and dividing by n − 1 in (10.14), we obtain

�̂1 = (n − 1)(X′
cXc)

−1 X′
cy

n − 1
=
(

X′
cXc

n − 1

)−1 X′
cy

n − 1

= S−1
xx syx [by (10.17) and (10.18)], (10.20)

and substituting this in (10.15) gives

β̂0 = α̂ − �̂′
1x = y − s′

yx S−1
xx x. (10.21)

10.2.5 Hypothesis Tests

In this section, we review two basic tests on the β’s. For other tests and confidence
intervals, see Rencher (1998, Section 7.2.4; 2000, Sections 8.4–8.7). In order to
obtain F-tests, we assume that y is Nn(X�, σ 2I).

10.2.5a Test of Overall Regression
The overall regression hypothesis that none of the x’s predict y can be expressed
as H0 : �1 = 0, since �′

1 = (β1, β2, . . . , βq). We do not include β0 = 0 in the
hypothesis so as not to restrict y to have an intercept of zero.

We can write SSE = y′y − �̂′X′y in (10.9) in the form

y′y = (y′y − �̂′X′y)+ �̂′X′y, (10.22)
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which partitions y′y into a part due to � and a part due to deviations from the fitted
model.

To correct y for its mean and thereby avoid inclusion of β0 = 0, we subtract ny2

from both sides of (10.22) to obtain

y′y − ny2 = (y′y − �̂′X′y)+ (�̂′X′y − ny2) (10.23)

= SSE + SSR,

where y′y − ny2 = ∑
i (yi − y)2 is the total sum of squares adjusted for the mean

and SSR = �̂′X′y − ny2 is the overall regression sum of squares adjusted for the
intercept.

We can test H0 : �1 = 0 by means of

F = SSR/q

SSE/(n − q − 1)
, (10.24)

which is distributed as Fq,n−q−1 when H0 : �1 = 0 is true. We reject H0 if F >

Fα,q,n−q,−1.

10.2.5b Test on a Subset of the �’s
In an attempt to simplify the model, we may wish to test the hypothesis that some of
the β’s are zero. For example, in the model

y = β0 + β1x1 + β2x2 + β3x2
1 + β4x2

2 + β5x1x2 + ε,

we may be interested in the hypothesis H0 : β3 = β4 = β5 = 0. If H0 is true, the
model is linear in x1 and x2. In other cases, we may want to ascertain whether a
single β j can be deleted.

For convenience of exposition, let the β’s that are candidates for deletion be re-
arranged to appear last in � and denote this subset of β’s by �d , where d reminds
us that these β’s are to be deleted if H0 : �d = 0 is accepted. Let the subset to be
retained in the reduced model be denoted by �r . Thus � is partitioned into

� =
(

�r

�d

)
.

Let h designate the number of parameters in �d . Then there are q +1−h parameters
in �r .

To test the hypothesis H0 : �d = 0, we fit the full model containing all the β’s
in � and then fit the reduced model containing only the β’s in �r . Let Xr be the
columns of X corresponding to �r . Then the reduced model can be written as

y = Xr �r + �, (10.25)
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and �r is estimated by �̂r = (X′
r Xr )

−1X′
r y. To compare the fit of the full model and

the reduced model, we calculate

�̂′X′y − �̂′
r X′

r y, (10.26)

where �̂′X′y is the regression sum of squares from the full model and �̂′
r X′

r y is the
regression sum of squares for the reduced model. The difference in (10.26) shows
what �d contributes “above and beyond” �r . We can test H0 : �d = 0 with an F-
statistic:

F = (�̂′X′y − �̂′
r X′

r y)/h

(y′y − �̂′X′y)/(n − q − 1)
(10.27)

= (SSR f − SSRr )/h

SSE f /(n − q − 1)
= MSR

MSE
, (10.28)

where SSR f = �̂′X′y and SSRr = �̂′
r X′

r y. The F-statistic in (10.27) and (10.28) is
distributed as Fh,n−q−1 if H0 is true. We reject H0 if F > Fα,h,n−q−1.

The test in (10.27) is easy to carry out in practice. We fit the full model and obtain
the regression and error sums of squares �̂′X′y and y′y − �̂′X′y, respectively. We
then fit the reduced model and obtain its regression sum of squares �̂′

r X′
r y to be

subtracted from �̂′X′y. If a software package gives the regression sum of squares in
corrected form, this can readily be used to obtain �̂′X′y − �̂′

r X′
r y, since

�̂′X′y − ny2 − (�̂′
r X′

r y − ny2) = �̂′X′y − �̂′
r X′

r y.

Alternatively, we can obtain �̂′X′y − �̂′
r X′

r y as the difference between error sums of
squares for the two models:

SSEr − SSE f = y′y − �̂′
r X′

r y − (y′y − �̂′X′y)

= �̂′X′y − �̂′
r X′

r y.

A test for an individual β j above and beyond the other β’s is readily obtained
using (10.27). To test H0 : β j = 0, we arrange β j last in �,

� =
(

�r

β j

)
,

where �r = (β0, β1, . . . , βq−1)
′ contains all the β’s except β j . By (10.27), the test

statistic is

F = �̂′X′y − �̂′
r X′

r y
SSE f /(n − q − 1)

, (10.29)
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which is F1,n−q−1. Note that h = 1. The test of H0 : β j = 0 by the F-statistic in
(10.29) is called a partial F-test. A detailed breakdown of the effect of each variable
in the presence of the others is given by Rencher (1993; 2000, Section 10.5).

Since the F-statistic in (10.29) has 1 and n − q − 1 degrees of freedom, it is the
square of a t-statistic. The t-statistic equivalent to (10.29) is

t = β̂ j

s
√

g j j
,

where g j j is the j th diagonal element of (X′X)−1 and s = √
SSE f /(n − q − 1)

(Rencher 2000, Section 8.5.1).

10.2.6 R2 in Fixed-x Regression

The proportion of the (corrected) total variation in the y’s that can be attributed to
regression on the x’s is denoted by R2:

R2 = regression sum of squares

total sum of squares

= �̂′X′y − ny2

y′y − ny2
. (10.30)

The ratio R2 is called the coefficient of multiple determination, or more commonly
the squared multiple correlation. The multiple correlation R is defined as the positive
square root of R2.

The F-test for overall regression in (10.24) can be expressed in terms of R2 as

F = n − q − 1

q

R2

1 − R2
. (10.31)

For the reduced model (10.25), R2 can be written as

R2
r = �̂′

r X′
r y − ny2

y′y − ny2
. (10.32)

Then in terms of R2 and R2
r , the full and reduced model test in (10.27) for

H0 : �d = 0 becomes

F = (R2 − R2
r )/h

(1 − R2)/(n − q − 1)
(10.33)

[see (11.36)].
We can express R2 in terms of sample variances, covariances, and correlations:

R2 = s′
yx S−1

xx syx

syy
= r′

yxR−1
xx ryx , (10.34)
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where syy , syx , and Sxx are defined in (10.16) and ryx and Rxx are from an analogous
partitioning of the sample correlation matrix of y and the x’s:

R =




1 ry1 ry2 · · · ryq

r1y 1 r12 · · · r1q

...
...

...
...

rqy rq1 rq2 · · · 1


 =

(
1 r′

yx
ryx Rxx

)
. (10.35)

10.2.7 Subset Selection

In practice, one often has more x’s than are needed for predicting y. Some of them
may be redundant and could be discarded. In addition to logistical motivations for
deleting variables, there are statistical incentives; for example, if an x is deleted from
the fitted model, the variances of the β̂ j ’s and of the ŷi ’s are reduced. Various aspects
of model validation are reviewed by Rencher (2000, Section 7.9 and Chapter 9).

The two most popular approaches to subset selection are to (1) examine all pos-
sible subsets and (2) use a stepwise technique. We discuss these in the next two
sections.

10.2.7a All Possible Subsets
The optimal approach to subset selection is to examine all possible subsets of the x’s.
This may not be computationally feasible if the sample size and number of variables
are large. Some programs take advantage of algorithms that find the optimum subset
of each size without examining all of the subsets [see, for example, Furnival and
Wilson (1974)].

We discuss three criteria for comparing subsets when searching for the best subset.
To conform with established notation in the literature, the number of variables in a
subset is denoted by p − 1, so that with the inclusion of an intercept, there are p
parameters in the model. The corresponding total number of available variables from
which a subset is to be selected is denoted by k − 1, with k parameters in the model.

1. R2
p . By its definition in (10.30) as the proportion of total (corrected) sum of

squares accounted for by regression, R2 is clearly a measure of model fit. The sub-
script p is an index of the subset size, since it indicates the number of parameters
in the model, including an intercept. However, R2

p does not reach a maximum for
any value of p less than k because it cannot decrease when a variable is added to the
model. The usual procedure is to find the subset with largest R2

p for each of p = 2,
3, . . . , k and then choose a value of p beyond which the increases in R2 appear to
be unimportant. This judgment is, of course, subjective.

2. s2
p . Another useful criterion is the variance estimator for each subset as defined

in (10.8):

s2
p = SSEp

n − p
. (10.36)
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For each of p = 2, 3, . . . , k, we find the subset with smallest s2
p . If k is fairly large,

a typical pattern as p approaches k is for the minimal s2
p to decrease to an overall

minimum less than s2
k and then increase. The minimum value of s2

p can be less than

s2
k if the decrease in SSEp with an additional variable does not offset the loss of

a degree of freedom in the denominator. It is often suggested that the researcher
choose the subset with absolute minimum s2

p. However, as Hocking (1976, p. 19)
notes, this procedure may fit some noise unique to the sample and thereby include
one or more extraneous predictor variables. An alternative suggestion is to choose p
such that minp s2

p = s2
k or, more precisely, choose the smallest value of p such that

minp s2
p < s2

k , since there will not be a p < k such that minp s2
p is exactly equal

to s2
k .

3. Cp . The Cp criterion is due to Mallows (1964, 1973). In the following devel-
opment, we follow Myers (1990, pp. 180–182). The expected squared error, E[ŷi −
E(yi)]2, is used in formulating the Cp criterion because it incorporates a variance
component and a bias component. The goal is to find a model that achieves a good
balance between the bias and variance of the fitted values ŷi . Bias arises when the ŷi

values are based on an incorrect model, in which E(ŷi) �= E(yi). If ŷi were based
on the correct model, so that E(ŷi) = E(yi), then E[ŷi − E(yi)]2 would be equal
to var(ŷi). In general, however, as we examine many competing models, for various
values of p, ŷi is not based on the correct model, and we have (see Problem 10.4)

E[ŷi − E(yi)]2 = E[ŷi − E(ŷi)+ E(ŷi)− E(yi)]2

= E[ŷi − E(ŷi)]2 + [E(ŷi)− E(yi)]2 (10.37)

= var(ŷi)+ (bias in ŷi )
2. (10.38)

For a given value of p, the total expected squared error for the n observations in the
sample, standardized by dividing by σ 2, becomes

1

σ 2

n∑
i=1

E[ŷi − E(yi)]2 = 1

σ 2

n∑
i=1

var(ŷi)+ 1

σ 2

n∑
i=1

(bias in ŷi)
2. (10.39)

Before defining Cp as an estimate of (10.39), we can achieve some simplification.
We first show that

∑
i var(ŷi)/σ

2 is equal to p. Let the model for all n observations
be designated by

y = Xp�p + �.

We assume that, in general, this prospective model is underspecified and that the true
model (which produces σ 2) contains additional β’s and additional columns of the X
matrix. If we designate the i th row of Xp by x′

pi , then the first term on the right side
of (10.39) becomes (see also Problem 10.5)
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1

σ 2

n∑
i=1

var(ŷi) = 1

σ 2

n∑
i=1

var(x′
pi �̂p)

= 1

σ 2

∑
i

x′
pi [σ 2(X′

pXp)
−1]xpi [by (3.70)]

= tr[Xp(X′
pXp)

−1X′
p] [by (3.65)] (10.40)

= tr[(X′
pXp)

−1X′
pXp] [by (2.97)]

= tr(Ip) = p. (10.41)

It can be shown (Myers 1990, pp. 178–179) that

n∑
i=1

(bias in ŷi)
2 = (n − p)E(s2

p − σ 2). (10.42)

Using (10.41) and (10.42), the final simplified form of the (standardized) total
expected squared error in (10.39) is

1

σ 2

n∑
i=1

E[ŷi − E(yi)]2 = p + n − p

σ 2
E(s2

p − σ 2). (10.43)

In practice, σ 2 is usually estimated by s2
k , the MSE from the full model. We thus

estimate (10.43) by

Cp = p + (n − p)
s2

p − s2
k

s2
k

. (10.44)

An alternative form is

Cp = SSEp

s2
k

− (n − 2p). (10.45)

In (10.44), we see that if the bias is small for a particular model, C p will be close
to p. For this reason, the line Cp = p is commonly plotted along with the Cp values
of several candidate models. We look for small values of Cp that are near this line.

In a Monte Carlo study, Hilton (1983) compared several subset selection criteria
based on MSEp and Cp . The three best procedures were to choose (1) the subset with
the smallest p such that Cp < p, (2) the subset with the smallest p such that s2

p < s2
k ,

and (3) the subset with minimum s2
p. The first of these was found to give best results

overall, with the second method close behind. The third method performed best in
some cases where k was small.

10.2.7b Stepwise Selection
For many data sets, it may be impractical to examine all possible subsets, even with
an efficient algorithm such as that of Furnival and Wilson (1974). In such cases, we
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can use the familiar stepwise approach, which is widely available and has virtually
no limit as to the number of variables or observations. A related stepwise technique
was discussed in Sections 6.11.2 and 8.9 in connection with selection of dependent
variables to separate groups in a MANOVA or discriminant analysis setting. In this
section, we are concerned with selecting the independent variables (x’s) that best
predict the dependent variable (y) in regression.

We first review the forward selection procedure, which typically uses an F-test at
each step. At the first step, y is regressed on each x j alone, and the x with the largest
F-value is “entered” into the model. At the second step, we search for the variable
with the largest partial F-value for testing the significance of each variable in the
presence of the variable first entered. Thus, if we denote the first variable to enter as
x1, then at the second step we calculate the partial F-statistic

F = MSR(x j |x1)

MSE(x j , x1)

for each j �= 1 and choose the variable that maximizes F , where MSR = (SSR f −
SSRr )/h and MSE = SSE f /(n−q−1) are the mean squares for regression and error,
respectively, as in (10.28). In this case, SSR f = SSR(x1, x j ) and SSRr = SSR(x1).
Note also that h = 1 because only one variable is being added, and MSE is calculated
using only the variable already entered plus the candidate variable. This procedure
continues at each step until the largest partial F for an entering variable falls below
a preselected threshold F-value or until the corresponding p-value exceeds some
predetermined level.

The stepwise selection procedure similarly seeks the best variable to enter at each
step. Then after a variable has entered, each of the variables previously entered is
examined by a partial F-test to see if it is no longer significant and can be dropped
from the model.

The backward elimination procedure begins with all x’s in the model and deletes
one at a time. The partial F-statistic for each variable in the presence of the others
is calculated, and the variable with smallest F is eliminated. This continues until the
smallest F at some step exceeds a preselected threshold value.

Since these sequential methods do not examine all subsets, they will often fail
to find the optimum subset, especially if k is large. However, R2

p , s2
p, or Cp may

not differ substantially between the optimum subset and the one found by stepwise
selection. These sequential methods have been popular for at least a generation, and it
is very likely they will continue to be used, even though increased computing power
has put the optimal methods within reach for larger data sets.

There are some possible risks in the use of stepwise methods. The stepwise proce-
dure may fail to detect a true predictor (an x j for which β j �= 0) because s2

p is biased
upward in an underspecified model, thus artificially reducing the partial F-value. On
the other hand, a variable that is not a true predictor of y (an x j for which β j = 0)
may enter because of chance correlations in a particular sample. In the presence
of such “noise” variables, the partial F-statistic for the entering variable does not
have an F-distribution because it is maximized at each step. The calculated p-values
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become optimistic. This problem intensifies when the sample size is relatively small
compared to the number of variables. Rencher and Pun (1980) found that in such
cases some surprisingly large values of R2 can occur, even when there is no relation-
ship between y and the x’s in the population. In a related study, Flack and Chang
(1987) included x’s that were authentic contributors as well as noise variables. They
found that “for most samples, a large percentage of the selected variables is noise,
particularly when the number of candidate variables is large relative to the number
of observations. The adjusted R2 of the selected variables is highly inflated” (p. 84).

10.3 MULTIPLE REGRESSION: RANDOM x’s

In Section 10.2, it was assumed that the x’s were fixed and would have the same
values if another sample were taken; that is, the same X matrix would be used each
time a y vector was observed. However, many regression applications involve x’s
that are random variables.

Thus in the random-x case, the values of x1, x2, . . . , xq are not under the control
of the experimenter. They occur randomly along with y. On each subject we observe
y, x1, x2, . . . , xq .

If we assume that (y, x1, x2, . . . , xq) has a multivariate normal distribution, then
�̂, R2, and the F-tests have the same formulation as in the fixed-x case [for details,
see Rencher (1998, Section 7.3; 2000, Section 10.4)]. Thus with the multivariate
normal assumption, we can proceed with estimation and testing the same way in the
random-x case as with fixed x’s.

10.4 MULTIVARIATE MULTIPLE REGRESSION: ESTIMATION

In this section we extend the estimation results of Sections 10.2.2–10.2.4 to the mul-
tivariate y case. We assume the x’s are fixed.

10.4.1 The Multivariate Linear Model

We turn now to the multivariate multiple regression model, where multivariate refers
to the dependent variables and multiple pertains to the independent variables. In
this case, several y’s are measured corresponding to each set of x’s. Each of y1,
y2, . . . , yp is to be predicted by all of x1, x2, . . . , xq .

The n observed values of the vector of y’s can be listed as rows in the following
matrix:

Y =




y11 y12 · · · y1p

y21 y22 · · · y2p
...

...
...

yn1 yn2 · · · ynp


 =




y′
1

y′
2
...

y′
n


 .
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Thus each row of Y contains the values of the p dependent variables measured on a
subject. Each column of Y consists of the n observations on one of the p variables
and therefore corresponds to the y vector in the (univariate) regression model (10.3).

The n values of x1, x2, . . . , xq can be placed in a matrix that turns out to be the
same as the X matrix in the multiple regression formulation in Section 10.2.1:

X =




1 x11 x12 · · · x1q

1 x21 x22 · · · x2q
...

...
...

...

1 xn1 xn2 · · · xnq


 .

We assume that X is fixed from sample to sample.
Since each of the p y’s will depend on the x’s in its own way, each column of

Y will need different β’s. Thus we have a column of β’s for each column of Y,
and these columns form a matrix B = (�1,�2, . . . ,�p). Our multivariate model is
therefore

Y = XB + �,

where Y is n × p, X is n × (q + 1), and B is (q + 1) × p. The notation � (the
uppercase version of �) is adopted here because of its resemblance to ε.

We illustrate the multivariate model with p = 2, q = 3:


y11 y12
y21 y22
...

...

yn1 yn2


 =




1 x11 x12 x13
1 x21 x22 x23
...

...
...

...

1 xn1 xn2 xn3





β01 β02
β11 β12
β21 β22
β31 β32


+



ε11 ε12
ε21 ε22
...

...

εn1 εn2


 .

The model for the first column of Y is


y11
y21
...

yn1


 =




1 x11 x12 x13
1 x21 x22 x23
...

...
...

...

1 xn1 xn2 xn3





β01
β11
β21
β31


+



ε11
ε21
...

εn1


 ,

and for the second column, we have


y12
y22
...

yn2


 =




1 x11 x12 x13
1 x21 x22 x23
...

...
...

...

1 xn1 xn2 xn3





β02
β12
β22
β32


+



ε12
ε22
...

εn2


 .

By analogy with the univariate case in Section 10.2.1, additional assumptions that
lead to good estimates are as follows:
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1. E(Y) = XB or E(�) = O.
2. cov(yi ) = � for all i = 1, 2, . . . , n, where y′

i is the i th row of Y.
3. cov(yi , y j ) = O for all i �= j .

Assumption 1 states that the linear model is correct and that no additional x’s are
needed to predict the y’s. Assumption 2 asserts that each of the n observation vec-
tors (rows) in Y has the same covariance matrix. Assumption 3 declares that obser-
vation vectors (rows of Y) are uncorrelated with each other. Thus we assume that
the y’s within an observation vector (row of Y) are correlated with each other but
independent of the y’s in any other observation vector.

The covariance matrix � in assumption 2 contains the variances and covariances
of yi1, yi2, . . . , yip in any yi :

cov(yi ) = � =



σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p
...

...
...

σp1 σp2 · · · σpp


 .

The covariance matrix cov(yi , y j ) = O in assumption 3 contains the covariances of
each of yi1, yi2, . . . , yip with each of y j1, y j2, . . . , y jp:




cov(yi1, y j1) cov(yi1, y j2) · · · cov(yi1, y jp)

cov(yi2, y j1) cov(yi2, y j2) · · · cov(yi2, y jp)
...

...
...

cov(yip, y j1) cov(yip, y j2) · · · cov(yip, y jp)


 =




0 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0


 .

10.4.2 Least Squares Estimation in the Multivariate Model

By analogy with the univariate case in (10.5), we estimate B with

B̂ = (X′X)−1X′Y. (10.46)

We call B̂ the least squares estimator for B because it “minimizes” E = �̂′�̂, a
matrix analogous to SSE:

E = �̂′�̂ = (Y − XB̂)′(Y − XB̂).

The matrix B̂ minimizes E in the following sense. If we let B0 be an estimate that
may possibly be better than B̂ and add XB̂−XB0 to Y−XB̂, we find that this adds a
positive definite matrix to E = (Y − XB̂)′(Y − XB̂) (Rencher 1998, Section 7.4.2).
Thus we cannot improve on B̂. The least squares estimate B̂ also minimizes the
scalar quantities tr(Y − XB̂)′(Y − XB̂) and |(Y − XB̂)′(Y − XB̂)|. Note that by
(2.98) tr(Y − XB̂)′(Y − XB̂) = ∑n

i=1
∑p

j=1 ε̂
2
i j .
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We noted earlier that in the model Y = XB+�, there is a column of B correspond-
ing to each column of Y; that is, each y j , j = 1, 2, . . . , p, is predicted differently
by x1, x2, . . . , xq . (This is illustrated in Section 10.4.1 for p = 2.) In the estimate
B̂ = (X′X)−1X′Y, we have a similar pattern. The matrix product (X′X)−1X′ is mul-
tiplied by each column of Y [see (2.48)]. Thus the j th column of B̂ is the usual least
squares estimate �̂ for the j th dependent variable y j . To give this a more precise
expression, let us denote the p columns of Y by y(1), y(2), . . . , y(p) to distinguish
them from the n rows y′

i , i = 1, 2, . . . , n. Then

B̂ = (X′X)−1X′Y = (X′X)−1X′(y(1), y(2), . . . , y(p))

= [(X′X)−1X′y(1), (X′X)−1X′y(2), . . . , (X′X)−1X′y(p)]
= [�̂(1), �̂(2), . . . , �̂(p)]. (10.47)

Example 10.4.2. The results of a planned experiment involving a chemical reaction
are given in Table 10.1 (Box and Youle 1955).

The input (independent) variables are

x1 = temperature, x2 = concentration, x3 = time.

Table 10.1. Chemical Reaction Data

Experiment
Yield Variables Input Variables

Number y1 y2 y3 x1 x2 x3

1 41.5 45.9 11.2 162 23 3
2 33.8 53.3 11.2 162 23 8
3 27.7 57.5 12.7 162 30 5
4 21.7 58.8 16.0 162 30 8
5 19.9 60.6 16.2 172 25 5
6 15.0 58.0 22.6 172 25 8
7 12.2 58.6 24.5 172 30 5
8 4.3 52.4 38.0 172 30 8
9 19.3 56.9 21.3 167 27.5 6.5

10 6.4 55.4 30.8 177 27.5 6.5
11 37.6 46.9 14.7 157 27.5 6.5
12 18.0 57.3 22.2 167 32.5 6.5
13 26.3 55.0 18.3 167 22.5 6.5
14 9.9 58.9 28.0 167 27.5 9.5
15 25.0 50.3 22.1 167 27.5 3.5
16 14.1 61.1 23.0 177 20 6.5
17 15.2 62.9 20.7 177 20 6.5
18 15.9 60.0 22.1 160 34 7.5
19 19.6 60.6 19.3 160 34 7.5
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The yield (dependent) variables are

y1 = percentage of unchanged starting material,

y2 = percentage converted to the desired product,

y3 = percentage of unwanted by-product.

Using (10.46), the least squares estimator B̂ for the regression of (y1, y2, y3) on
(x1, x2, x3) is given by

B̂ = (X′X)−1X′Y

=




332.11 −26.04 −164.08
−1.55 .40 .91
−1.42 .29 .90
−2.24 1.03 1.15


 .

Note that the first column of B̂ gives β̂0, β̂1, β̂2, β̂3 for regression of y1 on x1, x2, x3;
the second column of B̂ gives β̂0, β̂1, β̂2, β̂3 for regression of y2 on x1, x2, x3, and so
on.

10.4.3 Properties of Least Squares Estimators B̂

The least squares estimator B̂ can be obtained without imposing the assumptions
E(y) = XB, cov(yi ) = �, and cov(yi , y j ) = O. However, when these assumptions
hold, B̂ has the following properties:

1. The estimator B̂ is unbiased, that is, E(B̂) = B. This means that if we took
repeated random samples from the same population, the average value of B̂
would be B.

2. The least squares estimators β̂ jk in B̂ have minimum variance among all pos-
sible linear unbiased estimators. This result is known as the Gauss–Markov
theorem. The restriction to unbiased estimators is necessary to exclude trivial
estimators such as a constant, which has variance equal to zero, but is of no
interest. This minimum variance property of least squares estimators is remark-
able for its distributional generality; normality of the y’s is not required.

3. All β̂ jk’s in B̂ are correlated with each other. This is due to the correlations
among the x’s and among the y’s. The β̂’s within a given column of B̂ are cor-
related because x1, x2, . . . , xq are correlated. If x1, x2, . . . , xq were orthog-
onal to each other, the β̂’s within each column of B̂ would be uncorrelated.
Thus the relationship of the x’s to each other affects the relationship of the β̂’s
within each column to each other. On the other hand, the β̂’s in each column
are correlated with β̂’s in other columns because y1, y2, . . . , yp are correlated.
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Because of the correlations among the columns of B̂, we need multivariate
tests for hypotheses about B. We cannot use an F-test from Section 10.2.5
on each column of B, because these F-tests would not take into account the
correlations or preserve the α-level. Some appropriate multivariate tests are
given in Section 10.5.

10.4.4 An Estimator for �

By analogy with (10.8) and (10.9), an unbiased estimator of cov(yi ) = � is given by

Se = E
n − q − 1

= (Y − XB̂)′(Y − XB̂)
n − q − 1

(10.48)

= Y′Y − B̂′X′Y
n − q − 1

. (10.49)

With the denominator n−q −1, Se is an unbiased estimator of �; that is, E(Se) = �.

10.4.5 Model Corrected for Means

If the x’s are centered by subtracting their means, we have the centered X matrix as
in (10.13),

Xc =




x11 − x1 x12 − x2 · · · x1q − xq

x21 − x1 x22 − x2 · · · x2q − xq
...

...
...

xn1 − x1 xn2 − x2 · · · xnq − xq


 .

The B matrix can be partitioned as

B =
(

�′
0

B1

)
=



β01 β02 · · · β0p

β11 β12 · · · β1p
...

...
...

βq1 βq2 · · · βqp


 .

By analogy with (10.14) and (10.15), the estimates are

B̂1 = (X′
cXc)

−1X′
cY, (10.50)

�̂′
0 = y′ − x′B̂1, (10.51)

where y′ = (y1, y2, . . . , y p) and x′ = (x1, x2, . . . , xq). These estimates give the

same results as B̂ = (X′X)−1X′Y in (10.46).
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As in (10.20), the estimate B̂1 in (10.50) can be expressed in terms of sample
covariance matrices. We multiply and divide (10.50) by n − 1 to obtain

B̂1 = (n − 1)(X′
cXc)

−1 X′
cY

n − 1
=
(

X′
cXc

n − 1

)−1 X′
cY

n − 1

= S−1
xx Sxy, (10.52)

where Sxx and Sxy are blocks from the overall sample covariance matrix of y1,
y2, . . . , yp, x1, x2, . . . , xq :

S =
(

Syy Syx

Sxy Sxx

)
. (10.53)

10.5 MULTIVARIATE MULTIPLE REGRESSION: HYPOTHESIS TESTS

In this section we extend the two tests of Section 10.2.5 to the multivariate y case.
We assume the x’s are fixed and the y’s are multivariate normal. For other tests and
confidence intervals, see Rencher (1998, Chapter 7).

10.5.1 Test of Overall Regression

We first consider the hypothesis that none of the x’s predict any of the y’s, which can
be expressed as H0 : B1 = O, where B1 includes all rows of B except the first:

B =
(

�′
0

B1

)
=



β01 β02 · · · β0p

β11 β12 · · · β1p
...

...
...

βq1 βq2 · · · βqp


 .

We do not wish to include �′
0 = 0′ in the hypothesis, because this would restrict

all y’s to have intercepts of zero. The alternative hypothesis is H1 : B1 �= O, which
implies that we want to know if even one β jk �= 0, j = 1, 2, . . . , q; k = 1, 2, . . . , p.

The numerator of (10.49) suggests a partitioning of the total sum of squares and
products matrix Y′Y,

Y′Y = (Y′Y − B̂′X′Y)+ B̂′X′Y.

By analogy to (10.23), we subtract ny y′ from both sides to avoid inclusion of
�′

0 = 0′:

Y′Y − ny y′ = (Y′Y − B̂′X′Y)+ (B̂′X′Y − ny y′)

= E + H. (10.54)
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The overall regression sum of squares and products matrix H = B̂′X′Y − ny y′ can
be used to test H0 : B1 = O. The notation E = Y′Y− B̂′X′Y and H = B̂′X′Y−ny y′
conforms with usage of E and H in Chapter 6.

As in Chapter 6, we can test H0 : B1 = O by means of

 = |E|
|E + H| = |Y′Y − B̂′X′Y|

|Y′Y − ny y′| , (10.55)

which is distributed asp,q,n−q−1 when H0 : B1 = O is true, where p is the number
of y’s and q is the number of x’s. We reject H0 if  ≤ α,p,q,n−q−1. The likelihood
ratio approach leads to the same test statistic. If H is “large” due to large values
of the β̂ jk’s, then |E + H| would be expected to be sufficiently greater than |E| so
that  would lead to rejection. By H large, we mean that the regression sums of
squares on the diagonal are large. Critical values for  are available in Table A.9
using νH = q and νE = n − q − 1. Note that these degrees of freedom are the same
as in the univariate test for regression of y on x1, x2, . . . , xq in (10.24). The F and
χ2 approximations for  in (6.15) and (6.16) can also be used.

There are two alternative expressions for Wilks’  in (10.55). We can express 
in terms of the eigenvalues λ1, λ2, . . . , λs of E−1H:

 =
s∏

i=1

1

1 + λi
, (10.56)

where s = min(p, q). Wilks’  can also be written in the form

 = |S|
|Sxx‖Syy| , (10.57)

where S is partitioned as in (10.53):

S =
(

Syy Syx

Sxy Sxx

)
.

The form of in (10.57) is the same as in the test for independence of y and x given
in (7.30), where y and x are both random vectors. In the present section, the y’s are
random variables and the x’s are fixed. Thus Syy is the sample covariance matrix
of the y’s in the usual sense, whereas Sxx consists of an analogous mathematical
expression involving the constant x’s (see comments about Sxx in Section 10.2.4).

By the symmetry of (10.57) in x and y, is distributed as q,p,n−p−1 as well as
p,q,n−q−1. This is equivalent to property 3 in Section 6.1.3. Hence, if we regressed
the x’s on the y’s, we would get a different B̂ but would have the same value of 
for the test.

The union–intersection test of H0 : B1 = O uses Roy’s test statistic analogous to
(6.20),
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θ = λ1

1 + λ1
, (10.58)

where λ1 is the largest eigenvalue of E−1H. Upper percentage points θα are given in
Table A.10. The accompanying parameters are

s = min(p, q), m = 1
2 (|q − p| − 1), N = 1

2 (n − q − p − 2).

The hypothesis is rejected if θ > θα .
As in Section 6.1.5, Pillai’s test statistic is defined as

V (s) =
s∑

i=1

λi

1 + λi
, (10.59)

and the Lawley–Hotelling test statistic is given by

U (s) =
s∑

i=1

λi , (10.60)

where λ1, λ2, . . . , λs are the eigenvalues of E−1H. For V (s), upper percentage points
are found in Table A.11, indexed by s, m, and n as defined earlier in connection with
Roy’s test. Upper percentage points for νEU (s)/νH (see Section 6.1.5) are provided
in Table A.12, where νH = q and νE = n − q − 1. Alternatively, we can use the
F-approximations for V (s) and U (s) in Section 6.1.5.

When H0 is true, all four test statistics have probability α of rejecting; that is, they
all have the same probability of a Type I error. When H0 is false, the power ranking
of the tests depends on the configuration of the population eigenvalues, as was noted
in Section 6.2. (The sample eigenvalues λ1, λ2, . . . , λs from E−1H are estimates of
the population eigenvalues.) If the population eigenvalues are equal or nearly equal,
the power ranking of the tests is V (s) ≥  ≥ U (s) ≥ θ . If only one population
eigenvalue is nonzero, the powers are reversed: θ ≥ U (s) ≥  ≥ V (s).

In the case of a single nonzero population eigenvalue, the rank of B1 is 1. There
are various ways this could occur; for example, B1 could have only one nonzero row,
which would indicate that only one of the x’s predicts the y’s. On the other hand,
a single nonzero column implies that only one of the y’s is predicted by the x’s.
Alternatively, B1 would have rank 1 if all rows were equal or linear combinations
of each other, manifesting that all x’s act alike in predicting the y’s. Similarly, all
columns equal to each other or linear functions of each other would signify only one
dimension in the y’s as they relate to the x’s.

Example 10.5.1. For the chemical data of Table 10.1, we test the overall regression
hypothesis H0 : B1 = O. The E and H matrices are given by
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E =

 80.174 −21.704 −65.923

−21.704 249.462 −179.496
−65.923 −179.496 231.197


 ,

H =

 1707.158 −492.532 −996.584

−492.532 151.002 283.607
−996.584 283.607 583.688


 .

The eigenvalues of E−1H are 26.3183, .1004, and .0033. The parameters for use in
obtaining critical values of the four test statistics are

νH = q = 3, νE = n − q − 1 = 19 − 3 − 1 = 15,

s = min(3, 3) = 3, m = 1
2 (|q − p| − 1) = − 1

2 ,

N = 1
2 (n − q − p − 2) = 5.5.

Using the eigenvalues, we obtain the test statistics

 =
3∏

i=1

1

1 + λi
= 1

1 + 26.3183

1

1 + .1004

1

1 + .0033

= .0332 < .05,3,3,15 = .309,

θ = λ1

1 + λ1
= .963 > θ(.05, 3, 0, 5) = .669,

V (s) =
3∑

i=1

λi

1 + λi
= 1.058 > V (s)

.05,3,0,5 = 1.040,

U (s) =
3∑

i=1

λi = 26.422,
νEU (s)

νH
= 132.11,

which exceeds the .05 critical value, 8.936 (interpolated), from Table A.11 (see Sec-
tion 6.1.5). Thus all four tests reject H0. Note that the critical values given for θ and
V (s) are conservative, since 0 was used in place of −.5 for m.

In this case, the first eigenvalue, 26.3183, completely dominates the other two. In
Example 10.4.2, we obtained

B̂1 =

 −1.55 .40 .91

−1.42 .29 .90
−2.24 1.03 1.15


 .

The columns are approximately proportional to each other, indicating that there is
essentially only one dimension in the y’s as they are predicted by the x’s. A similar
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statement can be made about the rows and the dimensionality of the x’s as they
predict the y’s.

10.5.2 Test on a Subset of the x’s

We consider the hypothesis that the y’s do not depend on the last h of the x’s, xq−h+1,
xq−h+2, . . . , xq . By this we mean that none of the p y’s is predicted by any of these
h x’s. To express this hypothesis, write the B matrix in partitioned form,

B =
(

Br

Bd

)
,

where, as in Section 10.2.5b, the subscript r denotes the subset of β jk’s to be retained
in the reduced model and d represents the subset of β jk’s to be deleted if they are
not significant predictors of the y’s. Thus Bd has h rows. The hypothesis can be
expressed as

H0 : Bd = O.

If Xr contains the columns of X corresponding to Br , then the reduced model is

Y = Xr Br + �. (10.61)

To compare the fit of the full model and the reduced model, we use the difference
between the regression sum of squares and products matrix for the full model, B̂′X′Y,
and regression sum of squares and products matrix for the reduced model, B̂′

r X′
r Y.

By analogy to (10.26), this difference becomes our H matrix:

H = B̂′X′Y − B̂′
r X′

r Y. (10.62)

Thus the test of H0 : Bd = O is a full and reduced model test of the significance of
xq−h+1, xq−h+2, . . . , xq above and beyond x1, x2, . . . , xq−h .

To make the test, we use the E matrix based on the full model, E = Y′Y− B̂′X′Y.
Then

E + H = (Y′Y − B̂′X′Y)+ (B̂′X′Y − B̂′
r X′

r Y)

= Y′Y − B̂′
r X′

r Y,

and Wilks’ -statistic is given by

(xq−h+1, . . . , xq |x1, . . . , xq−h) = |E|
|E + H|

= |Y′Y − B̂′X′Y|
|Y′Y − B̂′

r X′
r Y| , (10.63)
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which is distributed as p,h,n−q−1 when H0 : Bd = O is true. Critical values are
available in Table A.9 with νH = h and νE = n − q − 1. Note that these degrees of
freedom for the multivariate y case are the same as for the univariate y case (multiple
regression) in Section 10.2.5b. The F- and χ2-approximations for  in (6.15) and
(6.16) can also be used.

As implied in the notation(xq−h+1, . . . , xq |x1, . . . , xq−h), Wilks’ in (10.63)
provides a full and reduced model test. We can express it in terms of  for the full
model and a similar  for the reduced model. In the denominator of (10.63), we
have Y′Y − B̂′

r X′
r Y, which is the error matrix for the reduced model Y = Xr Br + �

in (10.61). This error matrix could be used in a test for the significance of overall
regression in the reduced model, as in (10.55),

r = |Y′Y − B̂′
r X′

r Y|
|Y′Y − ny y′| . (10.64)

Sincer in (10.64) has the same denominator as in (10.55), we recognize (10.63)
as the ratio of Wilks’  for the overall regression test in the full model to Wilks’ 
for the overall regression test in the reduced model,

(xq−h+1, . . . , xq |x1, . . . , xq−h) = |Y′Y − B̂′X′Y|
|Y′Y − B̂′

r X′
r Y|

=
|Y′Y − B̂′X′Y|
|Y′Y − ny y′|

|Y′Y − B̂′
r X′

r Y|
|Y′Y − ny y′|

=  f

r
, (10.65)

where  f is given by (10.55). In (10.65), we have a convenient computational
device. We run the overall regression test for the full model and again for the reduced
model and take the ratio of the resulting  values.

The Wilks’  in (10.65), comparing the full and reduced models, is similar in
appearance to (6.127). However, in (6.127), the full and reduced models involve the
dependent variables y1, y2, . . . , yp in MANOVA, whereas in (10.65), the reduced
model is obtained by deleting a subset of the independent variables x1, x2, . . . , xq in
regression. The parameters of the Wilks’ distribution are different in the two cases.
Note that in (6.127), some of the dependent variables were denoted by x1, . . . , xq

for convenience.
Test statistics due to Roy, Pillai, and Lawley–Hotelling can be obtained from the

eigenvalues of E−1H = (Y′Y − B̂′X′Y)−1(B̂′X′Y − B̂′
r X′

r Y). Critical values or
approximate tests for these three test statistics are based on νH = h, νE = n −q −1,
and

s = min(p, h), m = 1
2 (|h − p| − 1), N = 1

2 (n − p − h − 2).
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Example 10.5.2. The chemical data in Table 10.1 originated from a response surface
experiment seeking to locate optimum operating conditions. Therefore, a second-
order model is of interest, and we add x2

1 , x2
2 , x2

3 , x1x2, x1x3, x2x3 to the variables
x1, x2, x3 considered in Example 10.5.1. There are now q = 9 independent variables,
and we obtain an overall Wilks’  of

 = .00145 < .05,3,9,9 = .024,

where νH = q = 9 and νE = n − q − 1 = 19 − 9 − 1 = 9. To see whether the six
second-order variables add a significant amount to x1, x2, x3 for predicting the y’s,
we calculate

 =  f

r
= .00145

.0332
= .0438 < .05,3,6,9 = .049,

where νH = h = 6 and νE = n − q − 1 = 19 − 9 − 1 = 9. In this case,r = .0332
is from Example 10.5.1, in which we considered the model with x1, x2, and x3. Thus
we reject H0 : Bd = O and conclude that the second-order terms add significant
predictability to the model.

10.6 MEASURES OF ASSOCIATION BETWEEN THE y’s AND THE x’s

The most widely used measures of association between two sets of variables are the
canonical correlations, which are treated in Chapter 11. In this section, we review
other measures of association that have been proposed.

In (10.34), we have R2 = s′
yx S−1

xx syx/syy for the univariate y case. By analogy, we
define an R2-like measure of association between y1, y2, . . . , yp and x1, x2, . . . , xq

as

R2
M = |SyxS−1

xx Sxy|
|Syy| , (10.66)

where Syx , Sxy , Sxx , and Syy are defined in (10.53) and the subscript M indicates
multivariate y’s.

By analogy to rxy = sxy/sx sy in (3.13), Robert and Escoufier (1976) suggested

RV = tr(SxySyx)√
tr(S2

xx) tr(S2
yy)
. (10.67)

Kabe (1985) discussed the generalized correlation determinant

GCD = |L′SxyMM′SyxL|
|L′Sxx L‖M′SyyM|

for various choices of the transformation matrices L and M.
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In Section 6.1.8, we introduced several measures of association that quantify
the amount of relationship between the y’s and the dummy grouping variables in a
MANOVA context. These are even more appropriate here in the multivariate regres-
sion setting, where both the x’s and the y’s are continuous variables. The R2-like
indices given in (6.41), (6.43), (6.46), (6.49), and (6.51) range between 0 and 1 and
will be briefly reviewed in the remainder of this section. For more complete com-
mentary, see Section 6.1.8.

The two measures based on Wilks’  are

η2
 = 1 −,

A = 1 −1/s,

where s = min(p, q). A measure based on Roy’s θ is provided by θ itself,

η2
θ = λ1

1 + λ1
= θ,

where λ1 is the largest eigenvalue of E−1H. This was identified in Section 6.1.8 as
the square of the first canonical correlation (see Chapter 11) between the y’s and
the grouping variables in MANOVA. In the multivariate regression setting, θ is the
square of the first canonical correlation, r2

1 , between the y’s and the x’s.
Measures of association based on the Lawley–Hotelling and Pillai statistics are

given by

ALH = U (s)/s

1 + U (s)/s
,

AP = V (s)

s
. (10.68)

By (6.48) and (6.49), AP in (10.68) is the average of the s squared canonical corre-
lations, r2

1 , r2
2 , . . . , r

2
s .

Example 10.6. We use the chemical data of Table 10.1 to illustrate some measures
of association. For the three dependent variables y1, y2, and y3 and the three inde-
pendent variables x1, x2, and x3, the partitioned covariance matrix is

S =
(

Syy Syx
Sxy Sxx

)

=




99.30 −28.57 −59.03 −41.95 −9.49 −7.37
−28.57 22.25 5.78 11.85 1.60 3.03
−59.03 5.78 45.27 24.14 6.43 3.97

−41.95 11.85 24.14 38.67 −12.17 −.22
−9.49 1.60 6.43 −12.17 17.95 1.22
−7.36 3.03 3.97 −.22 1.22 2.67



,
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from which we obtain R2
M and RV directly using (10.66) and (10.67),

R2
M = |Syx S−1

xx Sxy|
|Syy| = .00029,

RV = tr(SxySyx)√
tr(S2

xx) tr(S2
yy)

= .403.

Using the results in Example 10.5.1, we obtain

η2
 = 1 − = 1 − .0332 = .967,

A = 1 −1/s = 1 −1/3 = .679,

η2
θ = λ1

1 + λ1
= .963,

ALH = U (s)/s

1 + U (s)/s
= 26.422/3

1 + 26.422/3
= .898,

AP = V (s)

s
= 1.058

3
= .352.

We have general agreement among η2
, A, η2

θ , and ALH. But R2
M , RV , and AP do

not appear to be measuring the same level of association, especially R2
M . It appears

that more study is needed before one or more of these measures can be universally
recommended.

10.7 SUBSET SELECTION

As in the univariate y case in Section 10.2.7, there may be more potential predictor
variables (x’s) than are useful in a given situation. Some of the x’s may be redundant
in the presence of the other x’s.

We may also be interested in deleting some of the y’s if they are not well predicted
by any of the x’s. This would lead to further simplification of the model.

We present two approaches to subset selection: stepwise procedures and methods
involving all possible subsets.

10.7.1 Stepwise Procedures

Subset selection among the x’s is discussed in Section 10.7.1a, followed by selection
among the y’s in Section 10.7.1b.

10.7.1a Finding a Subset of the x’s
We begin with the forward selection procedure based on Wilks’ . At the first step,
we test the regression of the p y’s on each x j . There will be two rows in the B̂ matrix,
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a row containing the intercepts and a row corresponding to x j :

B̂ j =
(
β̂01 β̂02 · · · β̂0p

β̂ j1 β̂ j2 · · · β̂ j p

)
.

We use the overall regression test statistic (10.55),

(x j ) = |Y′Y − B̂′
j X

′
j Y|

|Y′Y − ny y′| ,

which is distributed as p,1,n−2, since B̂ j has two rows and X j has two columns.
After calculating (x j ) for each j , we choose the variable with minimum (x j ).
Note that at the first step, we are not testing each variable in the presence of the
others. We are searching for the variable x j that best predicts the p y’s by itself, not
above and beyond the other x’s.

At the second step, we seek the variable yielding the smallest partial for each x
adjusted for the variable first entered, where the partial-statistic is given by (10.65).
After one variable has entered, (10.65) becomes

(x j |x1) = (x1, x j )

(x1)
, (10.69)

where x1 denotes the variable entered at the first step. We calculate (10.69) for each
x j �= x1 and choose the variable that minimizes (x j |x1).

If we denote the second variable to enter by x2, then at the third step we seek the
x j that minimizes

(x j |x1, x2) = (x1, x2, x j )

(x1, x2)
. (10.70)

By property 7 in Section 6.1.3, the partial Wilks’ -statistic transforms to an exact
F since νH = h = 1 at each step.

After m variables have been selected, the partialwould have the following form
at the next step:

(x j |x1, x2, . . . , xm) = (x1, x2, . . . , xm, x j )

(x1, x2, . . . , xm)
, (10.71)

where the first m variables to enter are denoted x1, x2, . . . , xm , and x j is a candi-
date variable from among the q − m remaining variables. At this step, we would
choose the x j that minimizes (10.71). The partial Wilks’  in (10.71) is distributed
as p,1,n−m−1 and, by Table 6.1, transforms to a partial F-statistic distributed as
Fp,n−m−p . [These distributions hold for a variable x j chosen before seeing the data
but not for the x j that minimizes (10.71) or maximizes the corresponding partial F .]

The procedure continues, bringing in the “best” variable at each step, until a step is
reached at which the minimum partial exceeds a predetermined threshold value or,
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equivalently, the associated partial F falls below a preselected value. Alternatively,
the stopping rule can be cast in terms of the p-value of the partial  or F . If the
smallest p-value at some step exceeds a predetermined value, the procedure stops.

For each x j , there corresponds an entire row of the B̂ matrix because x j has a
coefficient for each of the p y’s. Thus if a certain x significantly predicts even one of
the y’s, it should be retained.

The stepwise procedure is an extension of forward selection. Each time a variable
enters, all the variables that have entered previously are checked by a partial  or F
to see if the least “significant” one is now redundant and can be deleted.

The backward elimination procedure begins with all x’s (all rows of B̂) included
in the model and deletes one at a time using a partial  or F . At the first step, the
partial  for each x j is

(x j |x1, . . . , x j−1, x j+1, . . . , xq ) = (x1, . . . , xq )

(x1, . . . , x j−1, x j+1, . . . , xq)
, (10.72)

which is distributed as p,1,n−q−1 and can be converted to Fp,n−q−p by Table 6.1.
The variable with largest  or smallest F is deleted. At the second step, a partial
 or F is calculated for each of the q − 1 remaining variables, and again the least
important variable in the presence of the others is eliminated. This process continues
until a step is reached at which the largest  or smallest F is significant, indicating
that the corresponding variable is apparently not redundant in the presence of its
fellows. Some preselected p-value or threshold value of or F is used to determine
a stopping rule.

If no automated program is available for subset selection in the multivariate case,
a forward selection or backward elimination procedure could be carried out by means
of a rather simple set of commands based on (10.71) or (10.72).

A sequential procedure such as stepwise selection will often fail to find the opti-
mum subset, especially if a large pool of predictor variables is involved. However,
the value of Wilks’  found by stepwise selection may not be far from that for the
optimum subset.

The remarks in the final paragraph of Section 10.2.7b are pertinent in the mul-
tivariate context as well. True predictors of the y’s in the population may be over-
looked because of inflated error variances, or, on the other hand, x’s that are not true
predictors may appear to be so in the sample. The latter problem can be severe for
small sample sizes (Rencher and Pun 1980).

10.7.1b Finding a Subset of the y’s
After a subset of x’s has been found, the researcher may wish to know if these x’s
predict all p of the y’s. If some of the y’s do not relate to any of the x’s, they could be
deleted from the model to achieve a further simplification. The y’s can be checked for
redundancy in a manner analogous to the stepwise discriminant approach presented
in Sections 6.11.2 and 8.9, which finds subsets of dependent variables using a full and
reduced model Wilks’ for the y’s. The partial-statistic for adding or deleting a y
is similar to (10.69), (10.70), or (10.71), except that dependent variables are involved
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rather than independent variables. Thus to add a y at the third step of a forward
selection procedure, for example, where the first two variables already entered are
denoted as y1 and y2, we use (6.128) to obtain

(y j |y1, y2) = (y1, y2, y j )

(y1, y2)
(10.73)

for each y j �= y1 or y2, and we choose the y j that minimizes (y j |y1, y2). [In
(6.128) the dependent variable of interest was denoted by x instead of y j as here.]
Similarly, if three y’s, designated as y1, y2, and y3, were “in the model” and we were
checking the feasibility of adding y j , the partial -statistic would be

(y j |y1, y2, y3) = (y1, y2, y3, y j )

(y1, y2, y3)
, (10.74)

which is distributed as 1,q,n−q−4, where q is the number of x’s presently in the
model and 4 is the number of y’s presently in the model. The two Wilks  values
in the numerator and denominator of the right side of (10.74), (y1, y2, y3, y j ) and
(y1, y2, y3), are obtained from (10.55). Since p = 1, 1,q,n−q−4 in (10.74) trans-
forms to Fq,n−q−4 (see Table 6.1).

In the first step of a backward elimination procedure, we would delete the y j that
maximizes

(y j |y1, . . . , y j−1, y j+1, . . . , yp) = (y1, . . . , yp)

(y1, . . . , y j−1, y j+1, . . . , yp)
, (10.75)

which is distributed as 1,νH ,νE −p+1. In this case, νH = q and νE = n − q − 1 so
that the distribution of (10.75) is 1,q,n−q−p , which can be transformed to an exact
F . Note that q, the number of x’s, may have been reduced in a subset selection on
the x’s, as in Section 10.7.1a. Similarly, p is the number of y’s and will decrease in
subsequent steps.

Stopping rules for either the forward or backward approach could be defined in
terms of p-values or threshold values of or the equivalent F . A stepwise procedure
could be devised as a modification of the forward approach.

If a software program is available that tests the significance of one x as in (10.72),
it can be adapted to test one y as in (10.75) by use of property 3 of Section 6.1.3:
The distribution of p,νH ,νE is the same as that of νH ,p,νE +νH −p, which can also
be seen from the symmetry of  in (10.57),

 = |S|
|Sxx ||Syy| ,

which is distributed as p,q,n−q−1 or, equivalently, as q,p,n−p−1. Thus we can
reverse the y’s and x’s; we list the x’s as dependent variables in the program and the
y’s as independent variables. Then the test of a single y in (10.74) or (10.75) can be
carried out using (10.72) without any adjustment. The partial -statistic in (10.72)
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is distributed as p,1,n−q−1. If we interchange p and q, because the y’s and x’s are
interchanged as dependent and independent variables, this becomes q,1,n−p−1. By
property 3 of Section 6.1.3 (repeated above), this is equivalent to1,q,n−p−1+1−q =
1,q,n−p−q , which is the distribution of (10.75).

10.7.2 All Possible Subsets

In Section 10.2.7a, we discussed the criteria R2
p, s2

p , and Cp for comparing all possi-
ble subsets of x’s to predict a univariate y in multiple regression, where p−1 denotes
the number of x’s in a subset selected from a pool of k − 1 available independent
variables. We now discuss some matrix analogues of these criteria for the multivari-
ate y case, as suggested by Mallows (1973) and Sparks, Coutsourides, and Troskie
(1983).

In this section, in order to conform with notation in the literature, we will use p
for the number of columns in X (and the number of rows in B), rather than for the
number of y’s. The number of y’s will be indicated by m.

We now extend the three criteria R2
p, s2

p, and Cp to analogous matrix expressions

R2
p, Sp, and Cp. These can be reduced to scalar form using trace or determinant.

1. R2
p. In the univariate y case, R2

p for a (p − 1)-variable subset of x’s is defined
by (10.32) as

R2
p = �̂′

pX′
py − ny2

y′y − ny2
.

A direct extension of R2
p for the multivariate y case is given by the matrix

R2
p = (Y′Y − ny y′)−1(B̂′

pX′
pY − ny y′), (10.76)

where p − 1 is the number of x’s selected from the k − 1 available x’s. To convert
R2

p to scalar form, we can use tr(R2
p)/m, in which we divide by m, the number of

y’s, so that 0 ≤ tr(R2
p)/m ≤ 1. As in the univariate case, we identify the subset

that maximizes tr(R2
p)/m for each value of p = 2, 3, . . . , k. The criterion tr(R2

p)/m
does not attain its maximum until p reaches k, but we look for the value of p at
which further increases are deemed unimportant. We could also use |R2

p| in place of
tr(R2

p)/m.

2. Sp. A direct extension of the univariate criterion s2
p = MSEp = SSEp/(n − p)

is provided by

Sp = Ep

n − p
, (10.77)

where Ep = Y′Y−B̂′
pX′

pY. To convert to a scalar, we can use tr(Sp) or |Sp|, either of

which will behave in an analogous fashion to s2
p in the univariate case. The remarks in
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Section 10.2.7a apply here as well; one may wish to select the subset with minimum
value of tr(Sp) or perhaps the subset with smallest p such that tr(Sp) < tr(Sk). A
similar application could be made with |Sp|.

3. Cp. To extend the Cp criterion to the multivariate y case, we write the model
under consideration as

Y = XpBp + �,

where p − 1 is the number of x’s in the subset and k − 1 is the number of x’s in the
“full model.” The predicted values of the y’s are given by

Ŷ = XpB̂p.

We are interested in predicted values of the observation vectors, namely, ŷ1,
ŷ2, . . . , ŷn , which are given by the rows of Ŷ:




ŷ′
1

ŷ′
2
...

ŷ′
n


 =




x′
p1

x′
p2
...

x′
pn


 B̂p =




x′
p1B̂p

x′
p2B̂p
...

x′
pnB̂p


 .

In general, the predicted vectors ŷi are biased estimators of E(yi) in the correct
model, because we are examining many competing models for which E(ŷi) �=
E(yi). In place of the univariate expected squared error E[ŷi − E(yi)]2 in (10.37)
and (10.38), we define a matrix of expected squares and products of errors, E[ŷi −
E(yi)][ŷi − E(yi )]′. We then add and subtract E(ŷi ) to obtain (see Problem 10.8)

E[ŷi − E(yi )][ŷi − E(yi )]′
= E[ŷi − E(ŷi)+ E(ŷi )− E(yi )][ŷi − E(ŷi)+ E(ŷi )− E(yi )]′
= E[ŷi − E(ŷi)][ŷi − E(ŷi)]′ + [E(ŷi)− E(yi )][E(ŷi)− E(yi )]′
= cov(ŷi )+ (bias in ŷi )(bias in ŷi )

′. (10.78)

By analogy to (10.39), our Cp matrix will be an estimate of the sum of (10.78),
multiplied by �−1 for standardization.

We first find an expression for cov(ŷi ), which for convenience we write in row
form,

cov(ŷ′
i ) = cov(x′

pi B̂p) = cov(x′
pi �̂ p(1), x′

pi �̂ p(2), . . . , x′
pi �̂ p(m)),

where B̂ = (�̂(1), �̂(2), . . . , �̂(m)), as in (10.47). This can be written as
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cov(ŷ′
i ) =



σ11x′

pi (X
′
pXp)

−1xpi · · · σ1mx′
pi (X

′
pXp)

−1xpi
...

...

σm1x′
pi (X

′
pXp)

−1xpi · · · σmmx′
pi (X

′
pXp)

−1xpi


 (10.79)

= x′
pi (X

′
pXp)

−1xpi �,

where m is the number of y’s and � = cov(yi ) (see Problem 10.9). As in (10.41)
(see also Problem 10.5), we can sum over the n observations and use (3.65) to obtain

n∑
i=1

cov(ŷ′
i ) =

n∑
i=1

x′
pi (X

′
pXp)

−1xpi �

= �
n∑

i=1

x′
pi (X

′
pXp)

−1xpi = p�. (10.80)

To sum the second term on the right of (10.78), we have, by analogy to (10.42),

n∑
i=1

(bias in ŷi )(bias in ŷi )
′ = (n − p)E(Sp − �), (10.81)

where Sp is given by (10.77).
Now by (10.80) and (10.81), we can sum (10.78) and multiply by �−1 to obtain

the matrix of total expected squares and products of error standardized by �−1,

�−1
n∑

i=1

E[ŷi − E(ŷi )][ŷi − E(ŷi )]′ = �−1[p� + (n − p)E(Sp − �)]

= pI + (n − p)�−1 E(Sp − �). (10.82)

Using Sk = Ek/(n − k), the sample covariance matrix based on all k − 1 variables,
as an estimate of �, we can estimate (10.82) by

Cp = pI + (n − p)S−1
k (Sp − Sk) (10.83)

= S−1
k Ep + (2p − n)I [by (10.77)], (10.84)

which is the form suggested by Mallows (1973). We can use tr(Cp) or |Cp| to reduce
this to a scalar. But if 2p − n is negative, |Cp| can be negative, and Sparks, Cout-
sourides, and Troskie (1983) suggested a modification of |Cp|,

|Cp| = |E−1
k Ep|, (10.85)

which is always positive.
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To find the optimal subset of x’s for each value of p, we could examine all possible
subsets [or use a computational scheme such as that of Furnival and Wilson (1974)]
and look for the “smallest” Cp matrix for each p. In (10.82), we see that when the
bias is O, the “population Cp” is equal to pI. Thus we seek a Cp that is “small” and
near pI. In terms of trace, we seek tr(Cp) close to pm, where m is the number of y’s
in the vector of measurements; that is, tr(I) = m.

To find a “target” value for (10.85), we write E−1
k Ep in terms of Cp from (10.84),

E−1
k Ep = Cp + (n − 2p)I

n − k
. (10.86)

When the bias is O, we have Cp = pI, and (10.86) becomes

E−1
k Ep = n − p

n − k
I, (10.87)

whence, by (2.85),

|E−1
k Ep| =

(
n − p

n − k

)m

. (10.88)

Thus we seek subsets such that

tr(Cp) ≤ pm or |E−1
k Ep| ≤

(
n − p

n − k

)m

.

In summary, when examining all possible subsets, any or all of the following
criteria may be useful in finding the single best subset or the best subset for each p:

tr(R2
p)/m, |R2

p|, tr(Sp), |Sp|, tr(Cp), |E−1
k Ep|.

10.8 MULTIVARIATE REGRESSION: RANDOM x’s

In Sections 10.4 and 10.5, it was assumed that the x’s were fixed and would have
the same values in repeated sampling. In many applications, the x’s are random vari-
ables. In such a case, the values of x1, x2, . . . , xq are not under the control of the
experimenter but occur randomly along with y1, y2, . . . , yp. On each subject, we
observe p + q values in the vector (y1, y2, . . . , yp, x1, x2, . . . , xq ).

If we assume that (y1, y2, . . . , yp, x1, x2, . . . , xq ) has a multivariate normal dis-
tribution, then all estimates and tests have the same formulation as in the fixed-x case
[for details, see Rencher (1998, Section 7.7)]. Thus there is no essential difference in
our procedures between the fixed-x case and the random-x case.
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PROBLEMS

10.1 Show that
∑n

i=1(yi − x′
i �̂)

2 = (y − X�̂)′(y − X�̂) as in (10.6).

10.2 Show that
∑n

i=1(yi − µ)2 = ∑n
i=1(yi − y)2 + n(y − µ)2 as in (10.10).

10.3 Show that
∑n

i=1(xi2 − x2)y = 0 as in (10.19).

10.4 Show that E[ŷi − E(yi)]2 = E[ŷi − E(ŷi)]2 +[E(ŷi)− E(yi)]2 as in (10.37).

10.5 Show that
∑n

i=1 var(ŷi )/σ
2 = tr[Xp(X′

pXp)
−1X′

p] as in (10.40).

10.6 Show that the alternative form of Cp in (10.45) is equal to the original form
in (10.44).

10.7 Show that (10.48) is the same as (10.49), that is, (Y − XB̂)′(Y − XB̂) =
Y′Y − B̂′X′Y.

10.8 Show that

E[ŷi − E(yi)][ŷi − E(yi )]′
E[ŷi − E(ŷi )][ŷi − E(ŷi )]′ + [E(ŷi)− E(yi )][E(ŷi)− E(yi)]′,

thus verifying (10.78).

10.9 Show that cov(ŷ′
i ) has the form given in (10.79).

10.10 Show that the two forms of Cp in (10.83) and (10.84) are equal.

10.11 Explain why |E−1
k Ep| > 0, as claimed following (10.85).

10.12 Show that E−1
k Ep = [Cp + (n − 2p)I]/(n − k), as in (10.86), where Cp is

given in (10.83).

10.13 Show that if Cp = pI, then E−1
k Ep = [(n − p)/(n − k)]I as in (10.87).

10.14 Use the diabetes data of Table 3.4.

(a) Find the least squares estimate B̂ for the regression of (y1, y2) on (x1, x2,
x3).

(b) Test the significance of overall regression using all four test statistics.

(c) Determine what the eigenvalues of E−1H reveal about the essential rank
of B̂1 and the implications of this rank, such as the relative power of the
four tests.

(d) Test the significance of each of x1, x2, and x3 adjusted for the other two
x’s.

10.15 Use the sons data of Table 3.7.

(a) Find the least squares estimate B̂ for the regression of (y1, y2) on (x1, x2).

(b) Test the significance of overall regression using all four test statistics.
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(c) Determine what the eigenvalues of E−1H reveal about the essential rank
of B̂1 and the implications of this rank, such as the relative power of the
four tests.

(d) Test the significance of x1 adjusted for x2 and of x2 adjusted for x1.

10.16 Use the glucose data of Table 3.8.

(a) Find the least squares estimate B̂ for the regression of (y1, y2, y3) on (x1,
x2, x3).

(b) Test the significance of overall regression using all four test statistics.
(c) Determine what the eigenvalues of E−1H reveal about the essential rank

of B̂1 and the implications of this rank, such as the relative power of the
four tests.

(d) Test the significance of each of x1, x2, and x3 adjusted for the other two
x’s.

(e) Test the significance of each y adjusted for the other two by using (10.75).

10.17 Use the Seishu data of Table 7.1.

(a) Find the least squares estimate B̂ for the regression of (y1, y2) on (x1,
x2, . . . , x8) and test for significance.

(b) Test the significance of (x7, x8) adjusted for the other x’s.
(c) Test the significance of (x4, x5, x6) adjusted for the other x’s.
(d) Test the significance of (x1, x2, x3) adjusted for the other x’s.

10.18 Use the Seishu data of Table 7.1.

(a) Do a stepwise regression to select a subset of x1, x2, . . . , x8 that ade-
quately predicts (y1, y2).

(b) After selecting a subset of x’s, use the methods of Section 10.7.1b to
check if either of the y’s can be deleted.

10.19 Use the temperature data of Table 7.2.

(a) Find the least squares estimate B̂ for the regression of (y4, y5, y6) on (y1,
y2, y3) and test for significance.

(b) Find the least squares estimate B̂ for the regression of (y7, y8, y9) on
(y1, . . . , y6) and test for significance.

(c) Find the least squares estimate B̂ for the regression of (y10, y11) on
(y1, . . . , y9) and test for significance.

10.20 Using the temperature data of Table 7.2, carry out a stepwise regression to
select a subset of y1, y2, . . . , y9 that adequately predicts (y10, y11).
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Canonical Correlation

11.1 INTRODUCTION

Canonical correlation analysis is concerned with the amount of (linear) relationship
between two sets of variables. We often measure two types of variables on each
research unit—for example, a set of aptitude variables and a set of achievement vari-
ables, a set of personality variables and a set of ability measures, a set of price indices
and a set of production indices, a set of student behaviors and a set of teacher behav-
iors, a set of psychological attributes and a set of physiological attributes, a set of
ecological variables and a set of environmental variables, a set of academic achieve-
ment variables and a set of measures of job success, a set of closed-book exam scores
and a set of open-book exam scores, and a set of personality variables of freshmen
students and the same variables on the same students as seniors.

11.2 CANONICAL CORRELATIONS AND CANONICAL VARIATES

We assume that two sets of variables y′ = (y1, y2, . . . , yp) and x′ = (x1, x2, . . . , xq)

are measured on the same sampling unit. We denote the two sets of variables as y
and x to conform to notation in Chapters 3, 7, and 10. In Section 7.4.1, we discussed
the hypothesis that y and x were independent. In this chapter, we consider a measure
of overall correlation between y and x.

Canonical correlation is an extension of multiple correlation, which is the cor-
relation between one y and several x’s (see Section 10.2.6). Canonical correlation
analysis is often a useful complement to a multivariate regression analysis.

We first review multiple correlation. The sample covariances and correlations
among y, x1, x2, . . . , xq can be summarized in the matrices

S =
(

s2
y s′

yx
syx Sxx

)
, (11.1)

R =
(

1 r′
yx

ryx Rxx

)
, (11.2)

361
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where s′
yx = (sy1, sy2, . . . , syq) contains the sample covariances of y with x1,

x2, . . . , xq and Sxx is the sample covariance matrix of the x’s [see (10.16)]. The
partitioned matrix R is defined analogously; r′

yx = (ry1, ry2, . . . , ryq) contains the
sample correlations of y with x1, x2, . . . , xq , and Rxx is the sample correlation
matrix of the x’s [see (10.35)].

By (10.34), the squared multiple correlation between y and the x’s can be com-
puted from the partitioned covariance matrix (11.1) or correlation matrix (11.2) as
follows:

R2 = s′
yxS−1

xx syx

s2
y

= r′
yx R−1

xx ryx . (11.3)

In R2, the q covariances between y and the x’s in syx or the q correlations between y
and the x’s in ryx are channeled into a single measure of linear relationship between y
and the x’s. The multiple correlation R can be defined alternatively as the maximum
correlation between y and a linear combination of the x’s; that is, R = maxb ry,b′x.

We now return to the case of several y’s and several x’s. The covariance struc-
ture associated with two subvectors y and x was first discussed in Section 3.8.1.
By (3.42), the overall sample covariance matrix for (y1, . . . , yp, x1, . . . , xq) can be
partitioned as

S =
(

Syy Syx

Sxy Sxx

)
,

where Syy is the p × p sample covariance matrix of the y’s, Syx is the p × q matrix
of sample covariances between the y’s and the x’s, and Sxx is the q × q sample
covariance matrix of the x’s.

In Section 10.6, we discussed several measures of association between the y’s
and the x’s. The first of these is defined in (10.66) as R2

M = |SyxS−1
xx Sxy|/|Syy|,

which is analogous to R2 = s′
yx S−1

xx syx/s2
y in (11.3). By (2.89) and (2.91), R2

M can

be rewritten as R2
M = |S−1

yy SyxS−1
xx Sxy|. By (2.108), R2

M can be expressed as

R2
M = |S−1

yy SyxS−1
xx Sxy| =

s∏
i=1

r2
i ,

where s = min(p, q) and r2
1 , r2

2 , . . . , r
2
s are the eigenvalues of S−1

yy SyxS−1
xx Sxy .

When written in this form, R2
M is seen to be a poor measure of association because

0 ≤ r2
i ≤ 1 for all i , and the product will usually be too small to meaningfully reflect

the amount of association. (In Example 10.6, R2
M = .00029 was a tiny fraction of

the other measures of association.) The eigenvalues themselves, on the other hand,
provide meaningful measures of association between the y’s and the x’s. The square
roots of the eigenvalues, r1, r2, . . . , rs , are called canonical correlations.

The best overall measure of association is the largest squared canonical correla-
tion (maximum eigenvalue) r2

1 of S−1
yy SyxS−1

xx Sxy , but the other eigenvalues (squared
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canonical correlations) of S−1
yy SyxS−1

xx Sxy provide measures of supplemental dimen-
sions of (linear) relationship between y and x. As an alternative approach, it can be
shown that r2

1 is the maximum squared correlation between a linear combination of
the y’s, u = a′y, and a linear combination of the x’s, v = b′x; that is,

r1 = max
a,b

ra′y,b′x. (11.4)

We denote the coefficient vectors that yield the maximum correlation as a1 and b1.
Thus r1 (the positive square root of r2

1 ) is the correlation between u1 = a′
1y and

v1 = b′
1x. The coefficient vectors a1 and b1 can be found as eigenvectors [see (11.7)

and (11.8)]. The linear functions u1 and v1 are called the first canonical variates.
There are additional canonical variates ui = a′

i y and vi = b′
i x corresponding to r2,

r3, . . . , rs .
It was noted in Section 2.11.5 that the (nonzero) eigenvalues of AB are the same

as those of BA as long as AB and BA are square but that the eigenvectors of AB and
BA are not the same. If we let A = S−1

yy Syx and B = S−1
xx Sxy , then r2

1 , r2
2 , . . . , r

2
s can

also be obtained from BA = S−1
xx SxyS−1

yy Syx as well as from AB = S−1
yy SyxS−1

xx Sxy .
Thus the eigenvalues can be obtained from either of the characteristic equations

|S−1
yy SyxS−1

xx Sxy − r2I| = 0, (11.5)

|S−1
xx SxyS−1

yy Syx − r2I| = 0. (11.6)

The coefficient vectors ai and bi in the canonical variates ui = a′
i y and vi = b′

i x are
the eigenvectors of these same two matrices:

(S−1
yy SyxS−1

xx Sxy − r2I)a = 0, (11.7)

(S−1
xx SxyS−1

yy Syx − r2I)b = 0. (11.8)

Thus the two matrices S−1
yy SyxS−1

xx Sxy and S−1
xx SxyS−1

yy Syx have the same (nonzero)
eigenvalues, as indicated in (11.5) and (11.6), but different eigenvectors, as in (11.7)
and (11.8). Since y is p × 1 and x is q × 1, the ai ’s are p × 1 and the bi ’s are
q × 1. This can also be seen in the sizes of the matrices in (11.7) and (11.8); that is,
S−1

yy SyxS−1
xx Sxy is p × p and S−1

xx SxyS−1
yy Syx is q × q. Since p is typically not equal

to q, the matrix that is larger in size will be singular, and the smaller one will be
nonsingular. We illustrate for p < q. In this case S−1

xx SxyS−1
yy Syx has the form



364 CANONICAL CORRELATION

When p < q, the rank of S−1
xx SxyS−1

yy Syx is p, because S−1
xx has rank q and

SxyS−1
yy Syx has rank p. In this case p eigenvalues are nonzero and the remain-

ing q − p eigenvalues are equal to zero. In general, there are s = min(p, q) values of
the squared canonical correlation r2

i with s corresponding pairs of canonical variates
ui = a′

i y and vi = b′
i x. For example, if p = 3 and q = 7, there will be three

canonical correlations, r1, r2, and r3.
Thus we have s canonical correlations r1, r2, . . . , rs corresponding to the s pairs

of canonical variates ui and vi :

r1 u1 = a′
1y v1 = b′

1x
r2 u2 = a′

2y v2 = b′
2x

...
...

...

rs us = a′
sy vs = b′

sx.

For each i, ri is the (sample) correlation between ui and vi ; that is, ri = ruivi . The
pairs (ui , vi ), i = 1, 2, . . . , s, provide the s dimensions of relationship. For simplic-
ity, we would prefer only one dimension of relationship, but this occurs only when
s = 1, that is, when p = 1 or q = 1.

The s dimensions of relationship (ui , vi ), i = 1, 2, . . . , s, are nonredundant.
The information each pair provides is unavailable in the other pairs because u1,
u2, . . . , us are uncorrelated. They are not orthogonal because a1, a2, . . . , as are
eigenvectors of S−1

yy SyxS−1
xx Sxy , which is nonsymmetric. Similarly, the vi ’s are uncor-

related, and each ui is uncorrelated with all v j , j �= i , except, of course, vi .
We examine the elements of the coefficient vectors ai and bi for the information

they provide about the contribution of the y’s and x’s to ri . These coefficients can
be standardized, as noted in the last paragraph in the present section and in Sec-
tion 11.5.1.

As noted, the matrix S−1
yy SyxS−1

xx Sxy is not symmetric. Many algorithms for com-
putation of eigenvalues and eigenvectors accept only symmetric matrices. Since
S−1

yy SyxS−1
xx Sxy is the product of the two symmetric matrices S−1

yy and SyxS−1
xx Sxy ,

we can proceed as in (6.23) and work with (U′)−1SyxS−1
xx SxyU−1, where U′U = Syy

is the Cholesky factorization of Syy (see Section 2.7). The symmetric matrix
(U′)−1SyxS−1

xx SxyU−1 has the same eigenvalues as S−1
yy SyxS−1

xx Sxy but has eigenvec-
tors Uai , where ai is given in (11.7).

In effect, the pq covariances between the y’s and x’s in Syx have been replaced
by s = min(p, q) canonical correlations. These succinctly summarize the relation-
ships between y and x. In fact, in a typical study, we do not need all s canonical
correlations. The smallest eigenvalues can be disregarded to achieve even more sim-
plification. As in (8.13) for discriminant functions, we can judge the importance of
each eigenvalue by its relative size:

r2
i∑s

j=1 r2
j

. (11.9)
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The canonical correlations can also be obtained from the partitioned correlation
matrix of the y’s and x’s,

R =
(

Ryy Ryx

Rxy Rxx

)
,

where Ryy is the p × p sample correlation matrix of the y’s, Ryx is the p × q
matrix of sample correlations between the y’s and the x’s, and Rxx is the q × q
sample correlation matrix of the x’s. The matrix R−1

yy RyxR−1
xx Rxy is analogous to

R2 = r′
yx R−1

xx ryx in the univariate y case. The characteristic equations corresponding
to (11.5) and (11.6),

|R−1
yy RyxR−1

xx Rxy − r2I| = 0, (11.10)

|R−1
xx RxyR−1

yy Ryx − r2I| = 0, (11.11)

yield the same eigenvalues r2
1 , r2

2 , . . . , r
2
s as (11.5) and (11.6) (the canonical corre-

lations are scale invariant; see property 1 in Section 11.3).
If we use the partitioned correlation matrix in place of the covariance matrix in

(11.7) and (11.8), we obtain the same eigenvalues (squared canonical correlations)
but different eigenvectors:

(R−1
yy Ryx R−1

xx Rxy − r2I)c = 0, (11.12)

(R−1
xx RxyR−1

yy Ryx − r2I)d = 0. (11.13)

The relationship between the eigenvectors c and d in (11.12) and (11.13) and the
eigenvectors a and b in (11.7) and (11.8) is

c = Dya and d = Dx b, (11.14)

where Dy = diag(sy1, sy2, . . . , syp ) and Dx = diag(sx1, sx2 , . . . , sxq ).
The eigenvectors c and d in (11.12), (11.13), and (11.14) are standardized coeffi-

cient vectors. By analogy to (8.15), they would be applied to standardized variables.
To show this, note that in terms of centered variables y − y, we have

u = a′(y − y) = a′DyD−1
y (y − y)

= c′D−1
y (y − y) [by (11.14)]

= c1
y1 − y1

sy1

+ c2
y2 − y2

sy2

+ · · · + cp
yp − y p

syp

. (11.15)

Hence c and d are preferred to a and b for interpretation of the canonical variates ui

and vi .
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11.3 PROPERTIES OF CANONICAL CORRELATIONS

Two interesting properties of canonical correlations are the following [for other prop-
erties, see Rencher (1998, Section 8.3)]:

1. Canonical correlations are invariant to changes of scale on either the y’s or the
x’s. For example, if the measurement scale is changed from inches to centime-
ters, the canonical correlations will not change (the corresponding eigenvectors
will change). This property holds for simple and multiple correlations as well.

2. The first canonical correlation r1 is the maximum correlation between linear
functions of y and x. Therefore, r1 exceeds (the absolute value of) the simple
correlation between any y and any x or the multiple correlation between any y
and all the x’s or between any x and all the y’s.

Example 11.3. For the chemical data of Table 10.1, we obtain the canonical cor-
relations and illustrate property 2. We consider the extended set of nine x’s, as in
Example 10.5.2. The matrix Ryx of correlations between the y’s and the x’s is

x1 x2 x3 x1x2 x1x3 x2x3 x2
1 x2

2 x2
3

y1 −.68 −.22 −.45 −.41 −.55 −.45 −.68 −.23 −.42
y2 .40 .08 .39 .16 .44 .33 .40 .12 .33
y3 .58 .23 .36 .40 .45 .39 .58 .22 .36

The three canonical correlations and their squares are

r1 = .9899 r2
1 = .9800

r2 = .9528 r2
2 = .9078

r3 = .4625 r2
3 = .2139.

From the relative sizes of the squared canonical correlations, we would consider
only the first two to be important. A hypothesis test for the significance of each is
carried out in Example 11.4.2.

To confirm that property 2 holds in this case, we compare r1 = .9899 to the indi-
vidual correlations and the multiple correlations. We first note that .9899 is greater
than individual correlations, since (the absolute value of) the largest correlation in
Ryx is .68. The multiple correlation Ry j |x of each y j with the x’s is given by

Ry1|x = .987, Ry2|x = .921, Ry3|x = .906,

and for the multiple correlation of each x with the y’s we have

Rx1|y = .691, Rx2|y = .237, Rx3|y = .507,

Rx1x2|y = .432, Rx1x3|y = .585, Rx2x3|y = .482,

Rx2
1 |y = .690, Rx2

2 |y = .234, Rx2
3 |y = .466.
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The first canonical correlation r1 = .9899 exceeds all multiple correlations, and
property 2 is satisfied.

11.4 TESTS OF SIGNIFICANCE

In the following two sections we discuss basic tests of significance associated with
canonical correlations. For other aspects of model validation for canonical correla-
tions and variates, see Rencher (1998, Section 8.5).

11.4.1 Tests of No Relationship between the y’s and the x’s

In Section 7.4.1, we considered the hypothesis of independence, H0 : �yx = O. If
�yx = O, the covariance of every yi with every x j is zero, and all correspond-
ing correlations are likewise zero. Hence, under H0, there is no (linear) relationship
between the y’s and the x’s, and H0 is equivalent to the statement that all canonical
correlations r1, r2, . . . , rs are nonsignificant. Furthermore, H0 is equivalent to the
overall regression hypothesis in Section 10.5.1, H0 : B1 = O, which also relates all
the y’s to all the x’s. Thus by (7.30) or (10.57), the significance of r1, r2, . . . , rs can
be tested by

�1 = |S|
|Syy||Sxx | = |R|

|Ryy||Rxx | , (11.16)

which is distributed as �p,q,n−1−q . We reject H0 if �1 ≤ �α . Critical values �α
are available in Table A.9 using νH = q and νE = n − 1 − q. The statistic �1 in
(11.16) is also distributed as �q,p,n−1−p . As in (7.31), �1 is expressible in terms of
the squared canonical correlations:

�1 =
s∏

i=1

(1 − r2
i ). (11.17)

In this form, we can see that if one or more r2
i is large, �1 will be small. We have

used the notation �1 in (11.16) and (11.17) because in Section 11.4.2 we will define
�2, �3 and so on to test the significance of r2 and succeeding ri ’s after the first.

If the parameters exceed the range of critical values for Wilks’ � in Table A.9,
we can use the χ2-approximation in (6.16),

χ2 = −
[
n − 1

2 (p + q + 3)
]

ln�1, (11.18)

which is approximately distributed as χ2 with pq degrees of freedom. We reject H0
if χ2 ≥ χ2

α . Alternatively, we can use the F-approximation given in (6.15):

F = 1 −�
1/t
1

�
1/t
1

df2

df1
, (11.19)
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which has an approximate F-distribution with df1 and df2 degrees of freedom, where

df1 = pq, df2 = wt − 1
2 pq + 1,

w = n − 1
2 (p + q + 3), t =

√
p2q2 − 4

p2 + q2 − 5
.

We reject H0 if F > Fα . When pq = 2, t is set equal to 1. If s = min(p, q) is equal
to either 1 or 2, then the F-approximation in (11.19) has an exact F-distribution.
For example, if one of the two sets consists of only two variables, an exact test is
afforded by the F-approximation in (11.19). In contrast, the χ2-approximation in
(11.18) does not reduce to an exact test for any parameter values.

The other three multivariate test statistics in Sections 6.1.4, 6.1.5, and 10.5.1 can
also be used. Pillai’s test statistic for the significance of canonical correlations is

V (s) =
s∑

i=1

r2
i . (11.20)

Upper percentage points of V (s) are found in Table A.11, indexed by

s = min(p, q), m = 1
2 (|q − p| − 1), N = 1

2 (n − q − p − 2).

For F-approximations for V (s), see Section 6.1.5.
The Lawley–Hotelling statistic for canonical correlations is

U (s) =
s∑

i=1

r2
i

1 − r2
i

. (11.21)

Upper percentage points for νEU (s)/νH (see Section 6.1.5) are given in Table A.12,
which is entered with p, νH = q, and νE = n − q − 1. For F-approximations, see
Section 6.1.5.

Roy’s largest root statistic is given by

θ = r2
1 . (11.22)

Upper percentage points are found in Table A.10, with s, m, and N defined as before
for Pillai’s test. An “upper bound” on F for Roy’s test is given in (6.21). Even though
this upper bound is routinely calculated in many software packages, it is not a valid
approximation.

As noted at the beginning of this section, the following three tests are equivalent:

1. Test of H0 : �yx = O, independence of two sets of variables.
2. Test of H0 : B1 = O, significance of overall multivariate multiple regression.
3. Test of significance of the canonical correlations.
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Even though these tests are equivalent, we have discussed them separately because
each has an extension that is different from the others. The respective extensions are

1. Test of independence of three or more sets of variables (Section 7.4.2),
2. Test of full vs. reduced model in multivariate multiple regression (Sec-

tion 10.5.2),
3. Test of significance of succeeding canonical correlations after the first (Sec-

tion 11.4.2).

Example 11.4.1. For the chemical data of Table 10.1, with the extended set of nine
x’s, we obtained canonical correlations .9899, .9528, and .4625 in Example 11.3.
To test the significance of these, we calculate the following four test statistics and
associated approximate F’s.

Approximate p-Value
Statistic F df1 df2 for F

Wilks’ � = .00145 6.537 27 21.09 < .0001
Pillai’s V (s) = 2.10 2.340 27 27 .0155
Lawley–Hotelling U (s) = 59.03 12.388 27 17 < .0001
Roy’s θ = .980 48.908 9 9 < .0001

The F approximation for Roy’s test is, of course, an “upper bound.” Rejection
of H0 in these tests implies that at least r2

1 is significantly different from zero. The
question of how many r2

i ’s are significant is treated in the next section.

11.4.2 Test of Significance of Succeeding Canonical Correlations
after the First

If the test in (11.17) based on all s canonical correlations rejects H0, we are not sure
if the canonical correlations beyond the first are significant. To test the significance
of r2, . . . , rs , we delete r2

1 from �1 in (11.17) to obtain

�2 =
s∏

i=2

(1 − r2
i ). (11.23)

If this test rejects the hypothesis, we conclude that at least r2 is significantly different
from zero. We can continue in this manner, testing each ri in turn, until a test fails to
reject the hypothesis. At the kth step, the test statistic is

�k =
s∏

i=k

(1 − r2
i ), (11.24)

which is distributed as �p−k+1,q−k+1,n−k−q and tests the significance of rk , rk+1,

. . . , rs . (These test statistics are analogous to those for discriminant functions in
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Section 11.4.2.) Note that each parameter is reduced by k − 1 from the parameter
values p, q, and n − 1 − q for �1 in (11.16) or (11.17).

The usual χ2- and F-approximations can also be applied to �k . The χ2-
approximation analogous to (11.18) is given by

χ2 = −
[
n − 1

2 (p + q + 3)
]

ln�k, (11.25)

which has (p − k + 1)(q − k + 1) degrees of freedom. The F-approximation for�k

is a simple modification of (11.19) and the accompanying parameter definitions. In
place of p, q, and n, we use p − k + 1, q − k + 1, and n − k + 1 to obtain

F = 1 −�
1/t
k

�
1/t
k

df2

df1
,

where

df1 = (p − k + 1)(q − k + 1),

df2 = wt − 1
2 [(p − k + 1)(q − k + 1)] + 1,

w = n − 1
2 (p + q + 3),

t =
√

(p − k + 1)2(q − k + 1)2 − 4

(p − k + 1)2 + (q − k + 1)2 − 5
.

Example 11.4.2. We continue our analysis of the canonical correlations for the
chemical data in Table 10.1 with three y’s and nine x’s. The tests are summarized in
Table 11.1.

In the case of �2, we have a discrepancy between the exact Wilks �-test and
the approximate F-test. The test based on � is not significant, whereas the F-test
does reach significance. This illustrates the need to check critical values for exact
tests whenever p-values for approximate tests are close to the nominal value of α.
From the test using �, we conclude that only r1 = .9899 is significant. The rela-
tive sizes of the squared canonical correlations, .980, .908, and .214, would indicate
two dimensions of relationship, but this is not confirmed by the Wilks’ test, perhaps
because of the small sample size relative to the number of variables (p + q = 12
and n = 19).

Table 11.1. Tests of Three Canonical Correlations of the Chemical Data

k �k �.05 Approximate F df1 df2 p-Value for F

1 .00145 .024 6.537 27 21.1 < .0001
2 .0725 .069 2.714 16 16 .0269
3 .786 .209 .350 7 9 .91
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To illustrate the computations, we obtain the values in Table 11.1 for k = 2.
Using (11.24), the computation for �2 is

�2 =
3∏

i=2

(1 − r2
i ) = (1 − .908)(1 − .214) = .0725.

With k = 2, p = 3, q = 9, and n = 19, the critical value for �2 is obtained from
Table A.9 as

�.05,p−k+1,q−k+1,n−k−q = �.05,2,8,8 = .069.

For the approximate F for �2, we have

t =
√

(3 − 2 + 1)2(9 − 2 + 1)2 − 4

(3 − 2 + 1)2 + (9 − 2 + 1)2 − 5
= 2,

w = 19 − 1
2 (3 + 9 + 3) = 11.5,

df1 = (3 − 2 + 1)(9 − 2 + 1) = 16,

df2 = (11.5)(2)− 1
2 [(3 − 2 + 1)(9 − 2 + 1)] + 1 = 16,

F = 1 − (.0725)1/2

(0.725)1/2
16

16
= 2.714.

11.5 INTERPRETATION

We now turn to an assessment of the information contained in the canonical correla-
tions and canonical variates. As was done for discriminant functions in Section 8.7, a
distinction can be made between interpretation of the canonical variates and assess-
ing the contribution of each variable. In the former, the signs of the coefficients are
considered; in the latter, the signs are ignored and the coefficients are ranked in order
of absolute value.

In Sections 11.5.1–11.5.3, we discuss three common tools for interpretation of
canonical variates: (1) standardized coefficients, (2) the correlation between each
variable and the canonical variate, and (3) rotation of the canonical variate coef-
ficients. The second of these is the most widely recommended, but we note in Sec-
tion 11.5.2 that it is the least useful. In fact, for reasons to be outlined, we recommend
only the first, standardized coefficients. In Section 11.5.4, we describe redundancy
analysis and discuss its shortcomings as a measure of association between two sets
of variables.

11.5.1 Standardized Coefficients

The coefficients in the canonical variates ui = a′
i y and vi = b′

i x reflect differences
in scaling of the variables as well as differences in contribution of the variables to
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canonical correlation. To remove the effect of scaling, ai and bi can be standard-
ized by multiplying by the standard deviations of the corresponding variables as
in (11.14):

ci = Dyai , di = Dx bi ,

where Dy = diag(sy1, sy2, . . . , syp ) and Dx = diag(sx1, sx2 , . . . , sxq ). Alterna-
tively, ci and di can be obtained directly from (11.12) and (11.13) as eigenvectors
of R−1

yy RyxR−1
xx Rxy and R−1

xx RxyR−1
yy Ryx , respectively. It was noted at the end of

Section 11.2 that the coefficients in ci are applied to standardized variables [see
(11.15)]. Thus the effect of differences in size or scaling of the variables is removed,
and the coefficients ci1, ci2, . . . , cip in ci reflect the relative contribution of each of
y1, y2, . . . , yp to ui . A similar statement can be made about di .

The standardized coefficients show the contribution of the variables in the pres-
ence of each other. Thus if some of the variables are deleted and others added, the
coefficients will change. This is precisely the behavior we desire from the coefficients
in a multivariate setting.

Example 11.5.1. For the chemical data in Table 10.1 with the extended set of nine
x’s, we obtain the following standardized coefficients for the three canonical variates:

c1 c2 c3

y1 1.5360 4.4704 5.7961
y2 .2108 2.8291 2.2280
y3 .4676 3.1309 5.1442

d1 d2 d3

x1 5.0125 −38.3053 −12.5072
x2 5.8551 −17.7390 −24.2290
x3 1.6500 −7.9699 −32.7392

x1x2 −3.9209 19.2937 11.6420
x1x3 −2.2968 6.4001 31.2189
x2x3 .5316 .8096 1.2988
x2

1 −2.6655 32.7933 4.8454
x2

2 −1.2346 −3.3641 10.7979
x2

3 .5703 .8733 .9706

Thus

u1 = 1.54
y1 − y1

sy1

+ .21
y2 − y2

sy2

+ .47
y3 − y3

sy3

,

v1 = 5.01
x1 − x1

sx1

+ 5.86
x2 − x2

sx2

+ · · · + .57
x2

3 − x2
3

sx2
3

.
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The variables that contribute most to the correlation between u1 and v1 are y1 and
x1, x2, x1x2, x1x3, x2

1 . The correlation between u2 and v2 is due largely to all three
y’s and x1, x2, x1x2, x2

1 .

11.5.2 Correlations between Variables and Canonical Variates

Many writers recommend the additional step of converting the standardized coef-
ficients to correlations. Thus, for example, in c′

1 = (c11, c12, . . . , c1p), instead of
the second coefficient c12 we could examine ry2u1 , the correlation between y2 and
the first canonical variate u1. Such correlations are sometimes referred to as load-
ings or structure coefficients, and it is widely claimed that they provide a more valid
interpretation of the canonical variates. Rencher (1988; 1992b; 1998, Section 8.6.3)
has shown, however, that a weighted sum of the correlations between y j and the
canonical variates u1, u2, . . . , us is equal to R2

y j |x, the squared multiple correlation
between y j and the x’s. There is no information about how the y’s contribute jointly
to canonical correlation with the x’s. Therefore, the correlations are useless in gaug-
ing the importance of a given variable in the context of the others. The researcher
who uses these correlations for interpretation is unknowingly reducing the multivari-
ate setting to a univariate one.

11.5.3 Rotation

In an attempt to improve interpretability, the canonical variate coefficients can be
rotated (see Section 13.5) to increase the number of high and low coefficients and
reduce the number of intermediate ones.

We do not recommend rotation of the canonical variate coefficients for two rea-
sons [for proof and further discussion, see Rencher (1992b)]:

1. Rotation destroys the optimality of the canonical correlations. For example, the
first canonical correlation is reduced and is no longer equal to maxa,b ra′y,b′x
as in (11.4).

2. Rotation introduces correlations among succeeding canonical variates. Thus,
for example, u1 and u2 are correlated after rotation. Hence even though the
resulting coefficients may offer a subjectively more interpretable pattern, this
gain is offset by the increased complexity due to interrelationships among the
canonical variates. For example, u2 and v2 no longer offer a new dimension
of relationship uncorrelated with u1 and v1. The dimensions now overlap, and
some of the information in u2 and v2 is already available in u1 and v1.

11.5.4 Redundancy Analysis

The redundancy is a measure of association between the y’s and the x’s based on the
correlations between variables and canonical variates discussed in Section 11.5.2.
Since these correlations provide only univariate information, the redundancy turns
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out to be a univariate rather than a multivariate measure of relationship. If the squared
multiple correlation of y j regressed on the x’s is denoted by R2

y j |x , then the redun-
dancy of the y’s given the v’s is the average squared multiple correlation:

Rd(y|v) =
∑p

j=1 R2
y j |x

p
. (11.26)

Similarly, the redundancy of the x’s given the u’s is the average

Rd(x|u) =
∑q

j=1 R2
x j |y

q
, (11.27)

where R2
x j |y is the squared multiple correlation of x j regressed on the y’s. Since

Rd(y|v) in (11.26) is the average squared multiple correlation of each y j regressed
on the x’s, it does not take into account the correlations among the y’s. It is thus
an average univariate measure of relationship between the y’s and the x’s, not a
multivariate measure at all. The two redundancy measures in (11.26) and (11.27) are
not symmetric; that is, Rd(y|v) �= Rd(x|u).

Thus the so-called redundancy does not really quantify the redundancy among the
y’s and x’s and is, therefore, not a useful measure of association between two sets of
variables. For a measure of association we recommend r2

1 itself.

11.6 RELATIONSHIPS OF CANONICAL CORRELATION ANALYSIS
TO OTHER MULTIVARIATE TECHNIQUES

In Section 11.4.1, we noted the equivalence of the test for significance of the canon-
ical correlations and the test for significance of overall regression, H0 : B1 = O.
Additional relationships between canonical correlation and multivariate regression
are developed in Section 11.6.1. The relationship of canonical correlation analysis to
MANOVA and discriminant analysis is discussed in Section 11.6.2.

11.6.1 Regression

There is a direct link between canonical variate coefficients and multivariate multiple
regression coefficients. The matrix of regression coefficients of the y’s regressed on
the x’s (corrected for their means) is given in (10.52) as B̂1 = S−1

xx Sxy . This matrix
can be used to relate ai and bi :

bi = B̂1ai . (11.28)

[Since ai and bi are eigenvectors, (11.28) could also be written as bi = cB̂1ai , where
c is an arbitrary scale factor.] By (2.67) and (11.28), the canonical variate coefficient
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vector bi is expressible as a linear combination of the columns of B̂1. A similar
expression for ai can be obtained from the regression of x on y: ai = S−1

yy Syxbi .
In Section 11.2, canonical correlation was defined as an extension of multiple

correlation. Correspondingly, canonical correlation reduces to multiple correlation
when one of the two sets of variables has only one variable. When p = 1, for
example, Ryy becomes 1, and by (11.10), the single squared canonical correlation
reduces to r2 = r′

yxR−1
xx ryx , which we recognize from (10.34) as R2.

The two Wilks’ test statistics in multivariate regression in Sections 10.5.1 and
10.5.2, namely, the test for overall regression and the test on a subset of the x’s, can
both be expressed in terms of canonical correlations. By (10.55) and (11.17), the test
statistic for the overall regression hypothesis H0 : B1 = O can be written as

� f = |Y′Y − B̂′X′Y|
|Y′Y − ny y′| (11.29)

=
s∏

i=1

(1 − r2
i ), (11.30)

where r2
i is the i th squared canonical correlation.

A test statistic for H0 : Bd = O, the hypothesis that the y’s do not depend on the
last h of the x’s, is given by (10.65) as

�(xq−h+1, . . . , xq |x1, . . . , xq−h) = � f

�r
, (11.31)

where � f is given in (11.29) and �r is given in (10.64) as

�r = |Y′Y − B̂′
r X′

r Y|
|Y′Y − ny y′| . (11.32)

By analogy with (11.30), �r can be expressed in terms of the squared canonical
correlations c2

1, c2
2, . . . , c2

t between y1, y2, . . . , yp and x1, x2, . . . , xq−h :

�r =
t∏

i=1

(1 − c2
i ), (11.33)

where t = min(p, q − h). We have used the notation c2
i instead of r2

i to emphasize
that the canonical correlations in the reduced model differ from those in the full
model. By (11.30) and (11.33), the full and reduced model test of H0 : Bd = O in
(11.31) can now be expressed in terms of canonical correlations as

�(xq−h+1, . . . , xq |x1, . . . , xq−h) =
∏s

i=1(1 − r2
i )∏t

i=1(1 − c2
i )
. (11.34)
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If p = 1, as in multiple regression, then s = t = 1, and (11.34) reduces to

� = 1 − R2
f

1 − R2
r
, (11.35)

where R2
f and R2

r are the squared multiple correlations for the full model and for
the reduced model. The distribution of � in (11.35) is �1,h,n−q−1 when H0 is true.
Since p = 1, there is an exact F-transformation from Table 6.1,

F = (1 −�)(n − q − 1)

�h
,

which is distributed as Fh,n−q−1 when H0 is true. Substitution of� = (1− R2
f )/(1−

R2
r ) from (11.35) yields the F-statistic expressed in terms of R2,

F = (R2
f − R2

r )(n − q − 1)

(1 − R2
f )h

, (11.36)

as given in (10.33).
Subset selection in canonical correlation analysis can be handled by the methods

for multivariate regression given in Section 10.7. A subset of x’s can be found by
the procedure of Section 10.7.1a. After a subset of x’s is found, the approach in
Section 10.7.1b can be used to select a subset of y’s.

Muller (1982) discussed the relationship of canonical correlation analysis to mul-
tivariate regression and principal components. (Principal components are treated in
Chapter 12.)

11.6.2 MANOVA and Discriminant Analysis

In Sections 6.1.8 and 8.4.2, it was noted that in a one-way MANOVA or discriminant
analysis setting, λi/(1 + λi ) is equal to r2

i , where λi is the i th eigenvalue of E−1H
and r2

i is the i th squared canonical correlation between the p dependent variables
and the k − 1 grouping variables. We now give a justification of this assertion.

Let the dependent variables be denoted by y1, y2, . . . , yp, as usual. We represent
the k groups by k−1 dummy variables, x1, x2, . . . , xk−1, defined for each member of
the i th group, i ≤ k − 1, as x1 = 0, . . . , xi−1 = 0, xi = 1, xi+1 = 0, . . . , xk−1 = 0.
For the kth group, all x’s are zero. (See Section 6.1.8 for an introduction to dummy
variables.) To illustrate with k = 4, the x’s are defined as follows in each group:

Group x1 x2 x3

1 1 0 0
2 0 1 0
3 0 0 1
4 0 0 0



RELATIONSHIPS TO OTHER MULTIVARIATE TECHNIQUES 377

The MANOVA model is equivalent to multivariate regression of y1, y2, . . . , yp

on the dummy grouping variables x1, x2, . . . , xk−1. The MANOVA test of H0 : �1 =
�2 = · · · = �k is equivalent to the multivariate regression test of H0 : B1 = O, as
given by (11.17),

� =
s∏

i=1

(1 − r2
i ). (11.37)

When we compare this form of � to the MANOVA test statistic (6.14),

� =
s∏

i=1

1

1 + λi
, (11.38)

we obtain the relationships

r2
i = λi

1 + λi
, (11.39)

λi = r2
i

1 − r2
i

. (11.40)

To establish this relationship more formally, we write (6.22) as

Ha = λEa (11.41)

and (11.7) as

S−1
yy SyxS−1

xx Sxya = r2a. (11.42)

We multiply (11.42) on the left by Syy to obtain

SyxS−1
xx Sxya = r2Syya. (11.43)

Using the centered matrix Xc in (10.14), with an analogous definition for Yc, we can
write B1 in the form [see (10.52)]

B̂1 =
(

X′
cXc

n − 1

)−1 X′
cYc

n − 1
= S−1

xx Sxy.

In terms of centered matrices, E = Y′Y − B̂′X′Y in (10.49) can be written as

E
n − 1

= Y′
cYc

n − 1
− B̂′

1X′
cYc

n − 1

= Syy − S′
xyS−1

xx Sxy = Syy − SyxS−1
xx Sxy, (11.44)
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since S′
xy = Syx . Similarly,

H
n − 1

= B̂′
1X′

cYc

n − 1
= SyxS−1

xx Sxy. (11.45)

Since MANOVA is equivalent to multivariate regression on dummy grouping vari-
ables, we can substitute these values of E and H into (11.41) to obtain

SyxS−1
xx Sxya = λ(Syy − SyxS−1

xx Sxy)a. (11.46)

Subtracting r2SyxS−1
xx Sxya from both sides of (11.43) gives

SyxS−1
xx Sxya = r2

1 − r2
(Syy − SyxS−1

xx Sxy)a. (11.47)

A comparison of (11.46) and (11.47) shows that

λ = r2

1 − r2
,

as in (11.40). Lindsey, Webster, and Halpern (1985) discussed some advantages of
using canonical correlation analysis in place of discriminant analysis in the several-
group case.

PROBLEMS

11.1 Show that the expression for canonical correlations in (11.12) can be obtained
from the analogous expression in terms of variances and covariances in (11.7).

11.2 Verify (11.28), bi = B̂1ai .

11.3 Verify (11.35) for � when p = s = t = 1.

11.4 Verify the expression in (11.36) for F in terms of R2
f and R2

r .

11.5 Solve (11.39), r2
i = λi/(1 + λi ), for λi to obtain (11.40).

11.6 Verify (11.46), SyxS−1
xx Sxya = λ(Syy − SyxS−1

xx Sxy)a.

11.7 Show that (11.47) can be obtained by subtracting r2Syx S−1
xx Sxya from both

sides of (11.43).

11.8 Use the diabetes data of Table 3.4.

(a) Find the canonical correlations between (y1, y2) and (x1, x2, x3).

(b) Find the standardized coefficients for the canonical variates.

(c) Test the significance of each canonical correlation.
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11.9 Use the sons data of Table 3.7.

(a) Find the canonical correlations between (y1, y2) and (x1, x2).
(b) Find the standardized coefficients for the canonical variates.
(c) Test the significance of each canonical correlation.

11.10 Use the glucose data of Table 3.8.

(a) Find the canonical correlations between (y1, y2, y3) and (x1, x2, x3).
(b) Find the standardized coefficients for the canonical variates.
(c) Test the significance of each canonical correlation.

11.11 Use the Seishu data of Table 7.1.

(a) Find the canonical correlations between (y1, y2) and (x1, x2, . . . , x8).
(b) Find the standardized coefficients for the canonical variates.
(c) Test the significance of each canonical correlation.

11.12 Use canonical correlation to carry out the tests in parts (b), (c), and (d) of
Problem 10.17, using the Seishu data. You will need to find the canonical
correlations between (y1, y2) and the x’s in the indicated reduced models and
use (11.34).

11.13 Using the temperature data of Table 7.2, find the canonical correlations and
the standardized coefficients and carry out significance tests for the following:

(a) (y1, y2, y3) and (y4, y5, y6)

(b) (y1, y2, . . . , y6) and (y7, y8, y9)

(c) (y1, y2, . . . , y9) and (y10, y11)

(d) (y1, y2, . . . , y6) and (y7, y8, . . . , y11).
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Principal Component Analysis

12.1 INTRODUCTION

In principal component analysis, we seek to maximize the variance of a linear com-
bination of the variables. For example, we might want to rank students on the basis
of their scores on achievement tests in English, mathematics, reading, and so on. An
average score would provide a single scale on which to compare the students, but
with unequal weights we can spread the students out further on the scale and obtain
a better ranking.

Essentially, principal component analysis is a one-sample technique applied to
data with no groupings among the observations as in Chapters 8 and 9 and no parti-
tioning of the variables into subsets y and x, as in Chapters 10 and 11. All the linear
combinations that we have considered previously were related to other variables or
to the data structure. In regression, we have linear combinations of the independent
variables that best predict the dependent variable(s); in canonical correlation, we
have linear combinations of a subset of variables that maximally correlate with lin-
ear combinations of another subset of variables; and discriminant analysis involves
linear combinations that maximally separate groups of observations. Principal com-
ponents, on the other hand, are concerned only with the core structure of a single
sample of observations on p variables. None of the variables is designated as depen-
dent, and no grouping of observations is assumed. [For a discussion of the use of
principal components with data consisting of several samples or groups, see Rencher
(1998, Section 9.9)].

The first principal component is the linear combination with maximal variance;
we are essentially searching for a dimension along which the observations are max-
imally separated or spread out. The second principal component is the linear com-
bination with maximal variance in a direction orthogonal to the first principal com-
ponent, and so on. In general, the principal components define different dimensions
from those defined by discriminant functions or canonical variates.

In some applications, the principal components are an end in themselves and
may be amenable to interpretation. More often they are obtained for use as input to
another analysis. For example, two situations in regression where principal compo-
nents may be useful are (1) if the number of independent variables is large relative to

380
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the number of observations, a test may be ineffective or even impossible, and (2) if
the independent variables are highly correlated, the estimates of repression coeffi-
cients may be unstable. In such cases, the independent variables can be reduced to a
smaller number of principal components that will yield a better test or more stable
estimates of the regression coefficients. For details of this application, see Rencher
(1998, Section 9.8).

As another illustration, suppose that in a MANOVA application p is close to νE ,
so that a test has low power, or that p > νE , in which case we have so many depen-
dent variables that a test cannot be made. In such cases, we can replace the dependent
variables with a smaller set of principal components and then carry out the test.

In these illustrations, principal components are used to reduce the number of
dimensions. Another useful dimension reduction device is to evaluate the first two
principal components for each observation vector and construct a scatter plot to
check for multivariate normality, outliers, and so on.

Finally, we note that in the term principal components, we use the adjective prin-
cipal, describing what kind of components—main, primary, fundamental, major, and
so on. We do not use the noun principle as a modifier for components.

12.2 GEOMETRIC AND ALGEBRAIC BASES
OF PRINCIPAL COMPONENTS

12.2.1 Geometric Approach

As noted in Section 12.1, principal component analysis deals with a single sample of
n observation vectors y1, y2, . . . , yn that form a swarm of points in a p-dimensional
space. Principal component analysis can be applied to any distribution of y, but it
will be easier to visualize geometrically if the swarm of points is ellipsoidal.

If the variables y1, y2, . . . , yp in y are correlated, the ellipsoidal swarm of points
is not oriented parallel to any of the axes represented by y1, y2, . . . , yp. We wish to
find the natural axes of the swarm of points (the axes of the ellipsoid) with origin at
y, the mean vector of y1, y2, . . . , yn . This is done by translating the origin to y and
then rotating the axes. After rotation so that the axes become the natural axes of the
ellipsoid, the new variables (principal components) will be uncorrelated.

We could indicate the translation of the origin to y by writing yi − y, but we will
not usually do so for economy of notation. We will write yi − y when there is an
explicit need; otherwise we assume that yi has been centered.

The axes can be rotated by multiplying each yi by an orthogonal matrix A [see
(2.101), where the orthogonal matrix was denoted by C]:

zi = Ayi . (12.1)

Since A is orthogonal, A′A = I, and the distance to the origin is unchanged:

z′
i zi = (Ayi )

′(Ayi ) = y′
i A

′Ayi = y′
i yi



382 PRINCIPAL COMPONENT ANALYSIS

[see (2.103)]. Thus an orthogonal matrix transforms yi to a point zi that is the same
distance from the origin, and the axes are effectively rotated.

Finding the axes of the ellipsoid is equivalent to finding the orthogonal matrix A
that rotates the axes to line up with the natural extensions of the swarm of points so
that the new variables (principal components) z1, z2, . . . , z p in z = Ay are uncorre-
lated. Thus we want the sample covariance matrix of z, Sz = ASA′ [see (3.64)], to
be diagonal:

Sz = ASA′ =




s2
z1

0 · · · 0
0 s2

z2
· · · 0

...
...

...

0 0 · · · s2
z p


 , (12.2)

where S is the sample covariance matrix of y1, y2, . . . , yn . By (2.111), C′SC = D =
diag(λ1, λ2, . . . , λp), where the λi ’s are eigenvalues of S and C is an orthogonal
matrix whose columns are normalized eigenvectors of S. Thus the orthogonal matrix
A that diagonalizes S is the transpose of the matrix C:

A = C′ =




a′
1

a′
2
...

a′
p


 , (12.3)

where ai is the i th normalized (a′
i ai = 1) eigenvector of S. The principal components

are the transformed variables z1 = a′
1y, z2 = a′

2y, . . . , z p = a′
py in z = Ay. For

example, z1 = a11 y1 + a12 y2 + · · · + a1p yp.
By (2.111), the diagonal elements of ASA′ on the right side of (12.2) are eigen-

values of S. Hence the eigenvalues λ1, λ2, . . . , λp of S are the (sample) variances of
the principal components zi = a′

i y:

s2
zi

= λi . (12.4)

Since the rotation lines up with the natural extensions of the swarm of points, z1 =
a′

1y has the largest (sample) variance and z p = a′
py has the smallest variance. This

also follows from (12.4), because the variance of z1 is λ1, the largest eigenvalue,
and the variance of z p is λp, the smallest eigenvalue. If some of the eigenvalues are
small, we can neglect them and represent the points fairly well with fewer than p
dimensions. For example, if p = 3 and λ3 is small, then the swarm of points is an
“elliptical pancake,” and a two-dimensional representation will adequately portray
the configuration of points.

Because the eigenvalues are variances of the principal components, we can speak
of “the proportion of variance explained” by the first k components:
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Proportion of variance = λ1 + λ2 + · · · + λk

λ1 + λ2 + · · · + λp

= λ1 + λ2 + · · · + λk∑p
j=1 s j j

, (12.5)

since
∑p

i=1 λi = tr(S) by (2.107). Thus we try to represent the p-dimensional points
(yi1, yi2, . . . , yip) with a few principal components (zi1, zi2, . . . , zik) that account
for a large proportion of the total variance. If a few variables have relatively large
variances, they will figure disproportionately in

∑
j s j j and in the principal com-

ponents. For example, if s22 is strikingly larger than the other variances, then in
z1 = a11 y1 + a12 y2 + · · · + a1p yp, the coefficient a12 will be large and all other a1 j

will be small.
When a ratio analogous to (12.5) is used for discriminant functions and canonical

variates [see (8.13) and (11.9)], it is frequently referred to as percent of variance.
However, in the case of discriminant functions and canonical variates, the eigenval-
ues are not variances, as they are in principal components.

If the variables are highly correlated, the essential dimensionality is much smaller
than p. In this case, the first few eigenvalues will be large, and (12.5) will be close to
1 for a small value of k. On the other hand, if the correlations among the variables are
all small, the dimensionality is close to p and the eigenvalues will be nearly equal. In
this case, the principal components essentially duplicate the variables, and no useful
reduction in dimension is achieved.

Any two principal components zi = a′
i y and z j = a′

j y are orthogonal for i �= j ;
that is, a′

i a j = 0, because ai and a j are eigenvectors of the symmetric matrix S (see
Section 2.11.6). Principal components also have the secondary property of being
uncorrelated in the sample [see (12.2) and (3.63)]; that is, the covariance of zi and
z j is zero:

szi z j = a′
i Sa j = 0 for i �= j. (12.6)

Discriminant functions and canonical variates, on the other hand, have the weaker
property of being uncorrelated but not the stronger property of orthogonality. Thus
when we plot the first two discriminant functions or canonical variates on perpendic-
ular coordinate axes, there is some distortion of their true relationship because the
actual angle between their axes is not 90◦.

If we change the scale on one or more of the y’s, the shape of the swarm of points
will change, and we will need different components to represent the new points.
Hence the principal components are not scale invariant. We therefore need to be con-
cerned with the units in which the variables are measured. If possible, all variables
should be expressed in the same units. If the variables have widely disparate vari-
ances, we could standardize them before extracting eigenvalues and eigenvectors.
This is equivalent to finding principal components of the correlation matrix R and is
treated in Section 12.5.

If one variable has a much greater variance than the other variables, the swarm of
points will be elongated and will be nearly parallel to the axis corresponding to the
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variable with large variance. The first principal component will largely represent that
variable, and the other principal components will have negligibly small variances.
Such principal components (based on S) do not involve the other p − 1 variables,
and we may prefer to analyze the correlation matrix R.

Example 12.2.1. To illustrate principal components as a rotation when p = 2, we
use two variables from the sons data of Table 3.7: y1 is head length and y2 is head
width for the first son. The mean vector and covariance matrix are

y =
(

185.7
151.1

)
, S =

(
95.29 52.87
52.87 54.36

)
.

The eigenvalues and eigenvectors of S are

λ1 = 131.52, λ2 = 18.14,

a′
1 = (a11, a12) = (.825, .565), a′

2 = (a21, a22) = (−.565, .825).

The symmetric pattern in the eigenvectors is due to their orthogonality: a′
1a2 =

a11a21 + a12a22 = 0.
The observations are plotted in Figure 12.1, along with the (translated and) rotated

axes. The major axis is the line passing through y′ = (185.7, 151.1) in the direction
determined by a′

1 = (.825, .565); the slope is a12/a11 = .565/.825. Alternatively,
the equation of the major axis can be obtained by setting z2 = 0:

z2 = 0 = a21(y1 − y1)+ a22(y2 − y2)

= −.565(y1 − 185.7)+ .825(y2 − 151.1).

Figure 12.1. Principal component transformation for the sons data.
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The lengths of the semimajor and semiminor axes are proportional to
√
λ1 = 11.5

and
√
λ2 = 4.3, respectively.

Note that the line formed by the major axis can be considered to be a regression
line. It is fit to the points so that the perpendicular distance of the points to the line is
minimized, rather than the usual vertical distance (see Section 12.3).

12.2.2 Algebraic Approach

An algebraic approach to principal components can be briefly described as follows.
As noted in Section 12.1, we seek a linear combination with maximal variance. By
(3.55), the sample variance of z = a′y is a′Sa. Since a′Sa has no maximum if a is
unrestricted, we seek the maximum of

λ = a′Sa
a′a . (12.7)

By an argument similar to that used in (8.8)–(8.12), the maximum value of λ is given
by the largest eigenvalue in the expression

(S − λI)a = 0 (12.8)

(see Problem 12.1). The eigenvector a1 corresponding to the largest eigenvalue λ1 is
the coefficient vector in z1 = a′

1y, the linear combination with maximum variance.
Unlike discriminant analysis or canonical correlation, there is no inverse involved

before obtaining eigenvectors for principal components. Therefore, S can be singular,
in which case some of the eigenvalues are zero and can be ignored. A singular S
would arise, for example, when n < p, that is, when the sample size is less than the
number of variables.

This tolerance of principal component analysis for a singular S is important in
certain research situations. For example, suppose that one has a one-way MANOVA
with 10 observations in each of three groups and that p = 50, so that there are 50
variables in each of these 30 observation vectors. A MANOVA test involving E−1H
cannot be carried out directly in this case because E is singular, but we could reduce
the 50 variables to a small number of principal components and then do a MANOVA
test on the components. The principal components would be based on S obtained
from the 30 observations ignoring groups. For entry into the MANOVA program,
we would evaluate the principal components for each observation vector. If we are
retaining k components, we calculate

z1i = a′
1yi

z2i = a′
2yi

...

zki = a′
kyi (12.9)
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for i = 1, 2, . . . , 30. These are sometimes referred to as component scores. In vector
form, (12.9) can be rewritten as

zi = Akyi , (12.10)

where

zi =




z1i

z2i
...

zki


 and Ak =




a′
1

a′
2
...

a′
k


 .

We then use z1, z2, . . . , z30 as input to the MANOVA program.
Note that in this case with p > n, the k components would not likely be stable;

that is, they would be different in a new sample. However, this is of no concern here
because we are using the components only to extract information from the sample at
hand in order to compare the three groups.

Example 12.2.2. Consider the football data of Table 8.3. In Example 8.8, we saw
that high school football players (group 1) differed from the other two groups, college
football players and college-age nonfootball players. Therefore, to obtain a homoge-
neous group of observations, we delete group 1 and use groups 2 and 3 combined.
The covariance matrix is as follows:

S =




.370 .602 .149 .044 .107 .209

.602 2.629 .801 .666 .103 .377

.149 .801 .458 .011 −.013 .120

.044 .666 .011 1.474 .252 −.054

.107 .103 −.013 .252 .488 −.036

.209 .377 .120 −.054 −.036 .324



.

The total variance is

6∑
j=1

s j j =
6∑

i=1

λi = 5.743.

The eigenvalues of S are as follows:

Proportion Cumulative
Eigenvalue of Variance Proportion

3.323 .579 .579
1.374 .239 .818
.476 .083 .901
.325 .057 .957
.157 .027 .985
.088 .015 1.000
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The first two principal components account for 81.8% of the total variance. The
corresponding eigenvectors are as follows:

a1 a2

WDIM .207 −.142
CIRCUM .873 −.219
FBEYE .261 −.231
EYEHD .326 .891
EARHD .066 .222
JAW .128 −.187

Thus the first two principal components are

z1 = a′
1y = .207y1 + .873y2 + .261y3 + .326y4 + .066y5 + .128y6,

z2 = a′
2y = −.142y1 − .219y2 − .231y3 + .891y4 + .222y5 − .187y6.

Notice that the large coefficient in z1 and the large coefficient in z2, .873 and .891,
respectively, correspond to the two largest variances on the diagonal of S. The two
variables with large variances, y2 and y4, have a notable influence on the first two
principal components. However, z1 and z2 are still meaningful linear functions. If the
six variances were closer in size, the six variables would enter more evenly into the
first two principal components. On the other hand, if the variances of y2 and y4 were
substantially larger, z1 and z2 would be essentially equal to y2 and y4, respectively.

Note that y2 and y3 did not contribute at all when this data set was used to separate
groups in Examples 8.5, 8.9, 9.3.1, and 9.6(a). However, these two variables are very
useful here in the first two dimensions showing the spread of individual observations.

12.3 PRINCIPAL COMPONENTS AND
PERPENDICULAR REGRESSION

It was noted in Section 12.2.1 that principal components constitute a rotation of axes.
Another geometric property of the line formed by the first principal component is that
it minimizes the total sum of squared perpendicular distances from the points to the
line. This is easily demonstrated in the bivariate case. The first principal component
line is plotted in Figure 12.2 for the first two variables of the sons data, as in Exam-
ple 12.2.1. The perpendicular distance from each point to the line is simply z2, the
second coordinate in the transformed coordinates (z1, z2). Hence the sum of squares
of perpendicular distances is

n∑
i=1

z2
2i =

n∑
i=1

[a′
2(yi − y)]2, (12.11)
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Figure 12.2. The first principal component as a perpendicular regression line.

where a2 is the second eigenvector of S, and we use yi − y because the axes have
been translated to the new origin y. Since a′

2(yi − y) = (yi − y)′a2, we can write
(12.11) in the form

n∑
i=1

z2
2i =

n∑
i=1

a′
2(yi − y)(yi − y)′a2

= a′
2

[∑
i

(yi − y)(yi − y)′
]

a2 [by (2.44)]

= (n − 1)a′
2Sa2 = (n − 1)λ2 [by (3.27)], (12.12)

which is a minimum by a remark following (12.4).
For the two variables y1 and y2, as plotted in Figure 12.2, the ordinary regression

line of y2 on y1 minimizes the sum of squares of vertical distances from the points
to the line. Similarly, the regression of y1 on y2 minimizes the sum of squares of
horizontal distances from the points to the line. The first principal component line
represents a “perpendicular” regression line that lies between the other two. The
three lines are compared in Figure 12.3 for the partial sons data. The equation of the
first principal component line is easily obtained by setting z2 = 0:

z2 = a′
2(y − y) = 0,

a21(y1 − y1)+ a22(y2 − y2) = 0,

−.565(y1 − y1)+ .825(y2 − y2) = 0.
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Figure 12.3. Regression lines compared with first principal component line.

12.4 PLOTTING OF PRINCIPAL COMPONENTS

The plots in Figures 12.1 and 12.2 were illustrations of principal components as a
rotation of axes when p = 2. When p > 2, we can plot the first two components as a
dimension reduction device. We simply evaluate the first two components (z1, z2) for
each observation vector and plot these n points. The plot is equivalent to a projection
of the p-dimensional data swarm onto the plane that shows the greatest spread of the
points.

The plot of the first two components may reveal some important features of the
data set. In Example 12.4(a), we show a principal component plot that exhibits a pat-
tern typical of a sample from a multivariate normal distribution. One of the objectives
of plotting is to check for departures from normality, such as outliers or nonlinearity.
In Examples 12.4(b) and 12.4(c), we illustrate principal component plots showing a
nonnormal pattern characterized by the presence of outliers. Jackson (1980) provided
a test for adequacy of representation of observation vectors in terms of principal com-
ponents.

Gnanadesikan (1997, p. 308) pointed out that, in general, the first few principal
components are sensitive to outliers that inflate variances or distort covariances, and
the last few are sensitive to outliers that introduce artificial dimensions or mask sin-
gularities. We could examine the bivariate plots of at least the first two and the last
two principal components in a search for outliers that may exert undue influence.

Devlin, Gnanadesikan, and Kettenring (1981) recommended the extraction of
principal components from robust estimates of S or R that reduce the influence of
outliers. Campbell (1980) and Ruymgaart (1981) discussed direct robust estimation
of principal components. Critchley (1985) developed methods for detection of influ-
ential observations in principal component analysis.
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Figure 12.4. Plot of first two components for the modified football data.

Another feature of the data that a plot of the first two components may reveal is
a tendency of the points to cluster. The plot may reveal groupings of points; this is
illustrated in Example 12.4(d).

Example 12.4(a). For the modified football data in Example 12.2.2, the first two
principal components were given as follows:

z1 = a′
1y = .207y1 + .873y2 + .261y3 + .326y4 + .066y5 + .128y6,

z2 = a′
2y = −.142y1 − .219y2 − .231y3 + .891y4 + .222y5 − .187y6.

These are evaluated for each observation vector and plotted in Figure 12.4. (For
convenience in scaling, y − y was used in the computations.) The pattern is typical
of that from a multivariate normal distribution. Note that the variance along the z1
axis is greater than the variance in the z2 direction, as expected.

Example 12.4(b). In Figures 4.9 and 4.10, the Q–Q plot and bivariate scatter plots
for the ramus bone data of Table 3.6 exhibit a nonnormal pattern. A principal com-
ponent analysis using the covariance matrix is given in Table 12.1, and the first two

Table 12.1. Principal Components for the Ramus Bone Data of Table 3.6

Eigenvalues First Two Eigenvectors

Number Value Variable a1 a2

1 25.05 AGE 8 .474 .592
2 1.74 AGE 8.5 .492 .406
3 .22 AGE 9 .515 −.304
4 .11 AGE 9.5 .517 −.627
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Figure 12.5. First two principal components for the ramus bone data in Table 3.6.

principal components are plotted in Figure 12.5. The presence of three outliers that
cause a nonnormal pattern is evident. These outliers do not appear when the four
variables are examined individually.

Example 12.4(c). A rather extreme example of the effect of an outlier is given by
Devlin, Gnanadesikan, and Kettenring (1981). The data set involved p = 14 eco-
nomical variables for n = 29 chemical companies. The first two principal compo-
nents are plotted in Figure 12.6. The sample correlation rz1z2 is indeed zero for all
29 points, as it must be [see (12.6)], but if the apparent outlier is excluded from
the computation, then rz1z2 = .99 for the remaining 28 points. If the outlier were
deleted from the data set, the axes of the principal components would pass through
the natural extensions of the data swarm.

Example 12.4(d). Jeffers (1967) applied principal component analysis to a sample
of 40 alate adelges (winged aphids) on which the following 19 variables had been
measured:

LENGTH body length
WIDTH body width

FORWING forewing length
HINWING hind-wing length

SPIRAC number of spiracles
ANTSEG 1 length of antennal segment I
ANTSEG 2 length of antennal segment II
ANTSEG 3 length of antennal segment III
ANTSEG 4 length of antennal segment IV
ANTSEG 5 length of antennal segment V
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Figure 12.6. First two principal components for economics data.

ANTSPIN number of antennal spines
TARSUS 3 leg length, tarsus III

TIBIA 3 leg length, tibia III
FEMUR 3 leg length, femur III

ROSTRUM rostrum
OVIPOS ovipositor
OVSPIN number of ovipositor spines

FOLD anal fold
HOOKS number of hind-wing hooks

An objective in the study was to determine the number of distinct taxa present
in the habitat where the sample was taken. Since adelges are difficult to identify by
the usual taxonomic methods, principal component analysis was used to search for
groupings among the 40 individuals in the sample.

The correlation matrix is given in Table 12.2, and the eigenvalues and first four
eigenvectors are in Tables 12.3 and 12.4, respectively. The eigenvectors are scaled
so that the largest value in each is 1. The first principal component is largely an
index of size. The second component is associated with SPIRAC, OVIPOS, OVSPIN,
and FOLD.

The first two components were computed for each of the 40 individuals and
plotted in Figure 12.7. Since the first two components account for 85% of the total
variance, the plot represents the data with very little distortion. There are four major
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Table 12.2. Correlation Matrix for Winged Aphid Variables (Lower Triangle)

y1

y1 1.000 y2

y2 .934 1.000 y3

y3 .927 .941 1.000 y4

y4 .909 .944 .933 1.000 y5

y5 .524 .487 .543 .499 1.000 y6

y6 .799 .821 .856 .833 .703 1.000 y7

y7 .854 .865 .886 .889 .719 .923 1.000 y8

y8 .789 .834 .846 .885 .253 .699 .751 1.000 y9

y9 .835 .863 .862 .850 .462 .752 .793 .745 1.000 y10

y10 .845 .878 .863 .881 .567 .836 .913 .787 .805 1.000
y11 −.458 −.496 −.522 −.488 −.174 −.317 −.383 −.497 −.356 −.371
y12 .917 .942 .940 .945 .516 .846 .907 .861 .848 .902
y13 .939 .961 .956 .952 .494 .849 .914 .876 .877 .901
y14 .953 .954 .946 .949 .452 .823 .886 .878 .883 .891
y15 .895 .899 .882 .908 .551 .831 .891 .794 .818 .848
y16 .691 .652 .694 .623 .815 .812 .855 .410 .620 .712
y17 .327 .305 .356 .272 .746 .553 .567 .067 .300 .384
y18 .676 −.712 −.667 −.736 −.233 −.504 −.502 −.758 −.666 −.629
y19 .702 .729 .746 .777 .285 .499 .592 .793 .671 .668

y11

y11 1.000 y12

y12 −.465 1.000 y13

y13 −.447 .981 1.000 y14

y14 −.439 .971 .991 1.000 y15

y15 −.405 .908 .920 .921 1.000 y16

y16 −.198 .725 .714 .676 .720 1.000 y17

y17 −.032 .396 .360 .298 .378 .781 1.000 y18

y18 .492 −.657 −.655 −.678 −.633 −.186 .169 1.000 y19

y19 −.425 .696 .724 .731 .694 .287 .026 −.775 1.000

groups, apparently corresponding to species. The groupings form an interesting
S-shape.

12.5 PRINCIPAL COMPONENTS FROM THE CORRELATION MATRIX

Generally, extracting components from S rather than R remains closer to the spirit
and intent of principal component analysis, especially if the components are to be
used in further computations. However, in some cases, the principal components will
be more interpretable if R is used. For example, if the variances differ widely or if the
measurement units are not commensurate, the components of S will be dominated by
the variables with large variances. The other variables will contribute very little. For
a more balanced representation in such cases, components of R may be used (see,
for example, Problem 12.9).
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Table 12.3. Eigenvalues of the Correlation Matrix of the Winged Aphid Data

Component Eigenvalue Percent of Variance Cumulative Percent

1 13.861 73.0 73.0
2 2.370 12.5 85.4
3 .748 3.9 89.4
4 .502 2.6 92.0
5 .278 1.4 93.5
6 .266 1.4 94.9
7 .193 1.0 95.9
8 .157 .8 96.7
9 .140 .7 97.4

10 .123 .6 98.1
11 .092 .4 98.6
12 .074 .4 99.0
13 .060 .3 99.3
14 .042 .2 99.5
15 .036 .2 99.7
16 .024 .1 99.8
17 .020 .1 99.9
18 .011 .1 100.0
19 .003 .0 100.0

19.000

Table 12.4. Eigenvectors for the First Four Components of the Winged Aphid Data

Eigenvectors

Variable 1 2 3 4

LENGTH .96 −.06 .03 −.12
WIDTH .98 −.12 .01 −.16
FORWING .99 −.06 −.06 −.11
HINWING .98 −.16 .03 −.00
SPIRAC .61 .74 −.20 1.00
ANTSEG 1 .91 .33 .04 .02
ANTSEG 2 .96 .30 .00 −.04
ANTSEG 3 .88 −.43 .06 −.18
ANTSEG 4 .90 −.08 .18 −.01
ANTSEG 5 .94 .05 .11 .03
ANTSPIN −.49 .37 1.00 .27
TARSUS 3 .99 −.02 .03 −.29
TIBIA 3 1.00 −.05 .09 −.31
FEMUR 3 .99 −.12 .12 −.31
ROSTRUM .96 .02 .08 −.06
OVIPOS .76 .73 −.03 −.09
OVSPIN .41 1.00 −.16 −.06
FOLD −.71 .64 .04 −.80
HOOKS .76 −.52 .06 .72
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Figure 12.7. Plotted values of the first two components for individual insects.

As with any change of scale, when the variables are standardized in transforming
from S to R, the shape of the swarm of points will change. Note, however, that
after transforming to R, any further changes of scale on the variables would not
affect the components because changes of scale do not change R. Thus the principal
components from R are scale invariant.

To illustrate how the eigenvalues and eigenvectors change when converting from
S to R, we use a simple bivariate example in which one variance is substantially
larger than the other. Suppose that S and the corresponding R have the values

S =
(

1 4
4 25

)
, R =

(
1 .8
.8 1

)
.

The eigenvalues and eigenvectors from S are

λ1 = 25.65, a′
1 = (.160, .987),

λ2 = .35, a′
2 = (.987,−.160).

The patterns we see in λ1, λ2, a1, and a2 are quite predictable. The symmetry in
a1 and a2 is due to their orthogonality, a′

1a2 = 0. The large variance of y2 in S is
reflected in the first principal component z1 = .160y1+.987y2, where y2 is weighted
heavily. Thus the first principal component z1 essentially duplicates y2 and does not
show the mutual effect of y1 and y2. As expected, z1 accounts for virtually all of the
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total variance:

λ1

λ1 + λ2
= 25.65

26
= .9865.

The eigenvalues and eigenvectors of R are

λ1 = 1.8, a′
1 = (.707, .707),

λ2 = .2, a′
2 = (.707,−.707).

The first principal component of R,

z1 = .707
y1 − y1

1
+ .707

y2 − y2

5
,

accounts for a high proportion of variance,

λ1

λ1 + λ2
= 1.8

2
= .9,

because the variables are fairly highly correlated (r = .8). But the standardized
variables (y1 − y1)/1 and (y2 − y2)/5 are equally weighted in z1, due to the equality
of the diagonal elements (“variances”) of R.

We now list some general comparisons of principal components from R with those
from S:

1. The percent of variance in (12.5) accounted for by the components of R will
differ from the percent for S, as illustrated above.

2. The coefficients of the principal components from R differ from those obtained
from S, as illustrated above.

3. If we express the components from R in terms of the original variables, they
still will not agree with the components from S. By transforming the stan-
dardized variables back to the original variables in the above illustration, the
components of R become

z1 = .707
y1 − y1

1
+ .707

y2 − y2

5
= .707y1 + .141y2 + const,

z2 = .707
y1 − y1

1
− .707

y2 − y2

5
= .707y1 − .141y2 + const.

As expected, these are very different from the components extracted directly
from S. This problem arises, of course, because of the lack of scale invariance
of the components of S.
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4. The principal components from R are scale invariant, because R itself is scale
invariant.

5. The components from a given matrix R are not unique to that R. For example,
in the bivariate case, the eigenvalues of

R =
(

1 r
r 1

)

are given by

λ1 = 1 + r, λ2 = 1 − r, (12.13)

and the eigenvectors are a′
1 = (.707, .707) and a′

2 = (.707,−.707), which
give principal components

z1 = .707
y1 − y1

s1
+ .707

y2 − y2

s2
,

z2 = .707
y1 − y1

s1
− .707

y2 − y2

s2
.

(12.14)

The components in (12.14) do not depend on r . For example, they serve
equally well for r = .01 and for r = .99. For r = .01, the proportion of
variance explained by z1 is λ1/(λ1 + λ2) = (1 + .01)/(1 + .01 + 1 − .01) =
1.01/2 = .505. For r = .99, the ratio is 1.99/2 = .995. Thus the statement
that the first component from a correlation matrix accounts for, say, 90% of
the variance is not very meaningful. In general, for p > 2, the components
from R depend only on the ratios (relative values) of the correlations, not on
their actual values, and components of a given R matrix will serve for other R
matrices [see Rencher (1998, Section 9.4)].

12.6 DECIDING HOW MANY COMPONENTS TO RETAIN

In every application, a decision must be made on how many principal components
should be retained in order to effectively summarize the data. The following guide-
lines have been proposed:

1. Retain sufficient components to account for a specified percentage of the total
variance, say, 80%.

2. Retain the components whose eigenvalues are greater than the average of the
eigenvalues,

∑p
i=1 λi/p. For a correlation matrix, this average is 1.

3. Use the scree graph, a plot of λi versus i , and look for a natural break between
the “large” eigenvalues and the “small” eigenvalues.

4. Test the significance of the “larger” components, that is, the components cor-
responding to the larger eigenvalues.
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We now discuss these four criteria for choosing the components to keep. Note,
however, that the smallest components may carry valuable information that should
not be routinely ignored (see Section 12.7).

In method 1, the challenge lies in selecting an appropriate threshold percentage.
If we aim too high, we run the risk of including components that are either sample
specific or variable specific. By sample specific we mean that a component may
not generalize to the population or to other samples. A variable-specific component
is dominated by a single variable and does not represent a composite summary of
several variables.

Method 2 is widely used and is the default in many software packages. By
(2.107),

∑
i λi = tr(S), and the average eigenvalue is also the average variance of

the individual variables. Thus method 2 retains those components that account for
more variance than the average variance of the variables. In cases where the data
can be successfully summarized in a relatively small number of dimensions, there is
often a wide gap between the two eigenvalues that fall on both sides of the average.
In Example 12.2.2, the average eigenvalue (of S) for the football data is .957, which
is amply bracketed by λ2 = 1.37 and λ3 = .48. In the winged aphid data in Exam-
ple 12.4(d), the second and third eigenvalues (of R) are 2.370 and .748, leaving a
comfortable margin on both sides of 1. In some cases, one may wish to move the
cutoff point slightly to accommodate a visible gap in eigenvalues.

The scree graph in method 3 is named for its similarity in appearance to a cliff
with rocky debris at its bottom. The scree graph for the modified football data of
Example 12.2.2 exhibits an ideal pattern, as shown in Figure 12.8. The first two
eigenvalues form a steep curve followed by a bend and then a straight-line trend with
shallow slope. The recommendation is to retain those eigenvalues in the steep curve
before the first one on the straight line. Thus in Figure 12.8, two components would
be retained. In practice, the turning point between the steep curve and the straight
line may not be as distinct as this or there may be more than one discernible bend. In
such cases, this approach is not as conclusive. The scree graph for the winged aphid

Figure 12.8. Scree graph for eigenvalues of modified football data.
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Figure 12.9. Scree graph for eigenvalues of winged aphid data.

data in Example 12.4(d) is plotted in Figure 12.9. The plot would suggest that two
components be retained (possibly four).

The remainder of this section is devoted to method 4, tests of significance. The
tests assume multivariate normality, which is not required for estimation of principal
components.

It may be useful to make a preliminary test of complete independence of the
variables, as in Section 7.4.3: H0 : � = diag(σ11, σ22, . . . , σpp), or equivalently,
H0 : Pρ = I. The test statistic is given in (7.37) and (7.38). If the results indicate that
the variables are independent, there is no point in extracting principal components,
since (except for sampling fluctuation) the variables themselves already form the
principal components.

To test the significance of the “larger” components, we test the hypothesis that the
last k population eigenvalues are small and equal, H0k : γp−k+1 = γp−k+2 = · · · =
γp, where γ1, γ2, . . . , γp denote the population eigenvalues, namely, the eigenvalues
of �. The implication is that the first sample components capture all the essential
dimensions, whereas the last components reflect noise. If H0 is true, the last k sample
eigenvalues will tend to have the pattern shown by the straight line with small slope
in the ideal scree graph, such as in Figure 12.8 or 12.9.

To test H0k : γp−k+1 = · · · = γp using a likelihood ratio approach, we calculate
the average of the last k eigenvalues of S,

λ =
p∑

i=p−k+1

λi

k
,

and use the test statistic

u =
(

n − 2p + 11

6

)(
k lnλ−

p∑
i=p−k+1

lnλi

)
, (12.15)
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which has an approximate χ2-distribution. We reject H0 if u ≥ χ2
α,ν , where ν =

1
2 (k − 1)(k + 2).

To carry out this procedure, we could begin by testing H02 : γp−1 = γp. If this is
accepted, we could then test H03 : γp−2 = γp−1 = γp and continue testing in this
fashion until H0k is rejected for some value of k.

In practice, when the variables are fairly highly correlated and the data can be
successfully represented by a small number of principal components, the first three
methods will typically agree on the number of components to retain, and the test in
method 4 will often indicate a larger number of components.

Example 12.6. We apply the preceding four criteria to the modified football data of
Example 12.2.2.

For method 1, we simply examine the eigenvalues and their proportion of variance
explained, as obtained in Example 12.2.2:

Proportion Cumulative
Eigenvalue of Variance Proportion

3.323 .579 .579
1.374 .239 .818
.476 .083 .901
.325 .057 .957
.157 .027 .985
.088 .015 1.000

To account for 82% of the variance, we would keep two components. This percent
of variance is high enough for most descriptive purposes. For certain other applica-
tions, such as input to another analysis, we might wish to retain three components,
which would account for 90% of the variance.

To apply method 2, we find the average eigenvalue to be

λ =
6∑

i=1

λi

6
= 5.742824

6
= .957.

Since only λ1 and λ2 exceed .957, we would retain two components.
For method 3, the scree graph in Figure 12.8 indicates conclusively that two com-

ponents should be retained.
To implement method 4, we carry out the significance tests in (12.15). The values

of the test statistic u for k = 2, 3, . . . , 6 are as follows:

Eigenvalue k u df χ2
.05

3.32341 6 245.57 20 31.41
1.37431 5 123.93 14 23.68
.47607 4 44.10 9 16.92
.32468 3 23.84 5 11.07
.15650 2 4.62 2 5.99
.08785 1
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The tests indicate that only the last two (population) eigenvalues are equal, and
we should retain the first four. This differs from the results of the other three criteria,
which are in close agreement that two components should be retained.

12.7 INFORMATION IN THE LAST FEW PRINCIPAL COMPONENTS

Up to this point, we have focused on using the first few principal components to
summarize and simplify the data. However, the last few components may carry useful
information in some applications.

Since the eigenvalues serve as variances of the principal components, the last few
principal components have smaller variances. If the variance of a component is zero
or close to zero, the component represents a linear relationship among the variables
that is essentially constant; that is, the relationship holds for all yi ’s in the sample.
Thus if the last eigenvalue is near zero, it signifies the presence of a collinearity that
may provide new information for the researcher. Suppose, for example, that there are
five variables and y5 = ∑4

j=1 y j/4. Then S is singular, and barring round-off error,

λ5 will be zero. Thus s2
z5

= 0, and z5 is constant. As noted early in Section 12.2, the
yi ’s are centered, because the origin of the principal components is translated to y.
Hence the constant value of z5 is its mean, which is zero:

z5 = a′
5y = a51 y1 + a52 y2 + · · · + a55 y5 = 0.

Since this must reflect the dependency of y5 on y1, y2, y3, and y4, the eigenvector a′
5

will be proportional to (1, 1, 1, 1,−4).

12.8 INTERPRETATION OF PRINCIPAL COMPONENTS

In Section 12.5, we noted that principal components obtained from R are not compat-
ible with those obtained from S. Because of this lack of scale invariance of principal
components from S, the coefficients cannot be converted to standardized form, as
can be done with coefficients in discriminant functions in Chapter 8 and canoni-
cal variates in Chapter 11. Hence interpretation of principal components is not as
clear-cut as with previous linear functions that we have discussed. We must choose
between components of S or R, knowing they will have a different interpretation. If
the variables have widely disparate variances, we can use R instead of S to improve
interpretation.

For certain patterns of elements in S or R, the form of the principal components
can be predicted. This aid to interpretation is discussed in Section 12.8.1. As with
discriminant functions and canonical variates, some writers have advocated rotation
and the use of correlations between the variables and the principal components. We
argue against the use of these two approaches to interpretation in Sections 12.8.2 and
12.8.3.



402 PRINCIPAL COMPONENT ANALYSIS

12.8.1 Special Patterns in S or R

In the covariance or correlation matrix, we may recognize a distinguishing pattern
from which the structure of the principal components can be deduced. For example,
we noted in Section 12.2 that if one variable has a much larger variance than the
other variables, this variable will dominate the first component, which will account
for most of the variance. Another case in which a component will duplicate a variable
occurs when the variable is uncorrelated with the other variables. We now demon-
strate this by showing that if all p variables are uncorrelated, the variables them-
selves are the principal components. If the variables were uncorrelated (orthogonal),
S would have the form

S =




s11 0 · · · 0
0 s22 · · · 0
...

...
...

0 0 · · · spp


 , (12.16)

and the characteristic equation would be

0 = |S − λI| =
p∏

i=1

(sii − λ) [by (2.83)],

which has solutions

λi = sii , i = 1, 2, . . . , p. (12.17)

The corresponding normalized eigenvectors have a 1 in the i th position and 0’s else-
where:

a′
i = (0, . . . , 0, 1, 0, . . . , 0). (12.18)

Thus the i th component is

zi = a′
i y = yi .

In practice, the sample correlations (of continuous random variables) will not be zero,
but if the correlations are all small, the principal components will largely duplicate
the variables.

By the Perron–Forbenius theorem in Section 2.11.4, if all correlations or covari-
ances are positive, all elements of the first eigenvector a1 are positive. Since the
remaining eigenvectors a2, a3, . . . , ap are orthogonal to a1, they must have both
positive and negative elements. When all elements of a1 are positive, the first compo-
nent is a weighted average of the variables and is sometimes referred to as a measure
of size. Likewise, the positive and negative coefficients in subsequent components
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may be regarded as defining shape. This pattern is often seen when the variables are
various measurements of an organism.

Example 12.8.1. In the modified football data of Example 12.2.2, there are a few
negative covariances in S, but they are small, and all elements of the first eigen-
vector remain positive. The second eigenvector therefore has positive and negative
elements:

First Two Eigenvectors
a1 a2

WDIM .207 −.142
CIRCUM .873 −.219
FBEYE .261 −.231
EYEHD .326 .891
EARHD .066 .222
JAW .128 −.187

With all positive coefficients, the first component z1 is an overall measure of head
size (z1 increases if all six variables increase). The second component z2 is a shape
component that contrasts the vertical measurements EYEHD and EARHD with the
three lateral measurements and CIRCUM (z2 increases if EYEHD and EARHD
increase and the other four variables decrease).

12.8.2 Rotation

The principal components are initially obtained by rotating axes in order to line
up with the natural extensions of the system, whereupon the new variables become
uncorrelated and reflect the directions of maximum variance. If the resulting com-
ponents do not have a satisfactory interpretation, they can be further rotated, seeking
dimensions in which many of the coefficients of the linear combinations are near
zero to simplify interpretation.

However, the new rotated components are correlated, and they do not successively
account for maximum variance. They are, therefore, no longer principal components
in the usual sense, and their routine use is questionable. For improved interpretation,
you may wish to try factor analysis (Chapter 13), in which rotation does not destroy
any properties. (In factor analysis, the rotation does not involve the space of the
variables y1, y2, . . . , yp, but another space, that of the factor loadings.)

12.8.3 Correlations between Variables and Principal Components

The use of correlations between variables and principal components is widely rec-
ommended as an aid to interpretation. It was noted in Sections 8.7.3 and 11.5.2 that
analogous correlations for discriminant functions and canonical variates are not use-
ful in a multivariate context because they provide only univariate information about
how each variable operates by itself, ignoring the other variables. Rencher (1992b)
obtained a similar result for principal components.
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We denote the correlation between the i th variable yi and the j th principal com-
ponent z j by ryi z j . Because of the orthogonality of the z j ’s, we have the simple
relationship

r2
yi z1

+ r2
yi z2

+ · · · + r2
yi zk

= R2
yi |z1,... ,zk

, (12.19)

where k is the number of components retained and R2
yi |z1,... ,zk

is the squared multiple

correlation of yi with the z j ’s. Thus r2
yi z j

forms part of R2
yi |z1,... ,zk

, which shows how
yi relates to the z’s by itself, not what it contributes in the presence of the other y’s.
The correlations are, therefore, not informative about the joint contribution of the y’s
in a principal component.

Note that the simple partitioning of R2 into the sum of squares of correlations in
(12.19) does not happen in practice when the independent variables (x’s) are corre-
lated. However, here the z’s are principal components and are, therefore, orthogonal.

Since we do not recommend rotation or correlations for interpretation, we are left
with the coefficients themselves, obtained from the eigenvectors of either S or R.

Example 12.8.3. In Example 12.8.1, the eigenvectors of S from the modified foot-
ball data gave a satisfactory interpretation of the first two principal components as
head size and shape. We give these in Table 12.5, along with the correlations between
each of the variables y1, y2, . . . , y6 and the first two principal components z1 and
z2. For comparison we also give R2

yi |z1,z2
for each variable.

The correlations rank the variables somewhat differently in their contribution to
the components, since they form part of the univariate information provided by R2

for each variable by itself. For example, for the first component, the correlations rank
the variables in the order 2, 3, 1, 4, 6, 5, whereas the coefficients (first eigenvector)
from S rank them in the order 2, 4, 3, 1, 6, 5.

12.9 SELECTION OF VARIABLES

We have previously discussed subset selection in connection with Wilks’ � (Sec-
tion 6.11.2), discriminant analysis (Section 8.9), classification analysis (Section 9.6),

Table 12.5. Eigenvectors Obtained from S, Correlations between Variables and Princi-
pal Components, and R2 for the First Two Principal Components

Eigenvectors from S Correlations

Variable a1 a2 ryi z1 ryi z2 R2
yi |z1,z2

1 .21 −.14 .62 −.27 .46
2 .87 −.22 .98 −.16 .99
3 .26 −.23 .70 −.40 .66
4 .33 .89 .49 .86 .98
5 .07 .22 .17 .37 .17
6 .13 −.19 .41 −.39 .32
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and regression (Sections 10.2.7 and 10.7). In each case the criterion for selection of
variables was the relationship of the variables to some external factor, such as depen-
dent variable(s), separation of groups, or correct classification rates. In the context of
principal components, we have no dependent variable, as in regression, and no group-
ings among the observations, as in discriminant analysis. With no external influence,
we simply wish to find the subset that best captures the internal variation (and covari-
ation) of the variables.

Jolliffe (1972, 1973) discussed eight selection methods and referred to the process
as discarding variables. The eight methods were based on three basic approaches:
multiple correlation, clustering of variables, and principal components. One of the
correlation methods, for example, proceeds in a stepwise fashion, deleting at each
step the variable that has the largest multiple correlation with the other variables. The
clustering methods partition the variables into groups or clusters (see Chapter 14) and
select a variable from each cluster.

We describe Jolliffe’s principal component methods in the context of selecting a
subset of 10 variables out of 50 variables. One of his techniques associates a vari-
able with each of the first 10 principal components and retains these 10 variables.
Another approach is to associate a variable with each of the last 40 principal compo-
nents and delete the 40 variables. To associate a variable with a principal component,
we choose the variable corresponding to the largest coefficient (in absolute value) in
the component, providing the variable has not previously been selected. We can use
components extracted from either S or R. For example, in the two principal compo-
nents for the football data in Example 12.2.2, we would choose variables 2 and 4,
which clearly have the largest coefficients in the two components. Jolliffe’s methods
could also be applied iteratively, with the principal components being recomputed
after a variable is retained or deleted.

Jolliffe (1972) compared the eight methods using both real and simulated data and
found that the methods based on principal components performed well in comparison
to the regression and cluster-based methods. But he concluded that no single method
was uniformly best.

McCabe (1984) suggested several criteria for selection, most of which are based
on the conditional covariance matrix of the variables not selected, given those
selected. He denoted the selected variables as principal variables. Let y be parti-
tioned as

y =
(

y1
y2

)
,

where y1 contains the selected variables and y2 consists of the variables not selected.
The corresponding covariance matrix is

cov(y) = � =
(

�11 �12
�21 �22

)
.
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By (4.8), the conditional covariance matrix is given by (assuming normality)

cov(y2|y1) = �22 − �21�−1
11 �12,

which is estimated by S22 − S21S−1
11 S12. To find a subset y1 of size m, two of

McCabe’s criteria are to choose the subset y1 that

1. minimizes |S22 − S21S−1
11 S12| and

2. maximizes
∑m∗

i=1 r2
i , where ri , i = 1, 2, . . . ,m∗ = min(m, p − m) are the

canonical correlations between the m selected variables in y1 and the p − m
deleted variables in y2.

Ideally, these criteria would be evaluated for all possible subsets so as to obtain
the best subset of each size. McCabe suggested a regression approach for obtaining
a percent of variance explained by a subset of variables to be compared with the
percent of variance accounted for by the same number of principal components.

PROBLEMS

12.1 Show that the solutions to λ = a′Sa/a′a in (12.7) are given by the eigenvalues
and eigenvectors in (12.8), so that λ in (12.7) is maximized by the largest
eigenvalue of S.

12.2 Show that the eigenvalues of

R =
(

1 r
r 1

)

are 1 ± r , as in (12.13), and that the eigenvectors are as given in (12.14).

12.3 (a) Give a justification based on the likelihood ratio for the test statistic u in
(12.15).

(b) Give a justification for the degrees of freedom ν = 1
2 (k − 1)(k + 2) for

the test statistic in (12.15).

12.4 Show that when S is diagonal as in (12.16), the eigenvectors have the form
a′

i = (0, . . . , 0, 1, 0, . . . , 0), as given in (12.18).

12.5 Show that r2
yi z1

+ r2
yi z2

+ · · · + r2
yi zk

= R2
yi |z1,... ,zk

, as in (12.19).

12.6 Carry out a principal component analysis of the diabetes data of Table 3.4.
Use all five variables, including y’s and x’s. Use both S and R. Which do
you think is more appropriate here? Show the percent of variance explained.



PROBLEMS 407

Based on the average eigenvalue or a scree plot, decide how many components
to retain. Can you interpret the components of either S or R?

12.7 Do a principal component analysis of the probe word data of Table 3.5. Use
both S and R. Which do you think is more appropriate here? Show the percent
of variance explained. Based on the average eigenvalue or a scree plot, decide
how many components to retain. Can you interpret the components of either
S or R?

12.8 Carry out a principal component analysis on all six variables of the glucose
data of Table 3.8. Use both S and R. Which do you think is more appro-
priate here? Show the percent of variance explained. Based on the average
eigenvalue or a scree plot, decide how many components to retain. Can you
interpret the components of either S or R?

12.9 Carry out a principal component analysis on the hematology data of Table 4.3.
Use both S and R . Which do you think is more appropriate here? Show the
percent of variance explained. Based on the average eigenvalue or a scree
plot, decide how many components to retain. Can you interpret the compo-
nents of either S or R? Does the large variance of y3 affect the pattern of the
components of S?

12.10 Carry out a principal component analysis separately for males and females in
the psychological data of Table 5.1. Compare the results for the two groups.
Use S.

12.11 Carry out a principal component analysis separately for the two species in the
beetle data of Table 5.5. Compare the results for the two groups. Use S.

12.12 Carry out a principal component analysis on the engineer data of Table 5.6 as
follows:

(a) Use the pooled covariance matrix.
(b) Ignore groups and use a covariance matrix based on all 40 observations.
(c) Which of the approaches in (a) or (b) appears to be more successful?

12.13 Repeat the previous problem for the dystrophy data of Table 5.7.

12.14 Carry out a principal component analysis on all 10 variables of the Seishu data
of Table 7.1. Use both S and R. Which do you think is more appropriate here?
Show the percent of variance explained. Based on the average eigenvalue or
a scree plot, decide how many components to retain. Can you interpret the
components of either S or R?

12.15 Carry out a principal component analysis on the temperature data of Table 7.2.
Use both S and R. Which do you think is more appropriate here? Show the
percent of variance explained. Based on the average eigenvalue or a scree plot,
decide how many components to retain. Can you interpret the components of
either S or R?
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Factor Analysis

13.1 INTRODUCTION

In factor analysis we represent the variables y1, y2, . . . , yp as linear combinations
of a few random variables f1, f2, . . . , fm (m < p) called factors. The factors are
underlying constructs or latent variables that “generate” the y’s. Like the original
variables, the factors vary from individual to individual; but unlike the variables, the
factors cannot be measured or observed. The existence of these hypothetical variables
is therefore open to question.

If the original variables y1, y2, . . . , yp are at least moderately correlated, the basic
dimensionality of the system is less than p. The goal of factor analysis is to reduce
the redundancy among the variables by using a smaller number of factors.

Suppose the pattern of the high and low correlations in the correlation matrix is
such that the variables in a particular subset have high correlations among them-
selves but low correlations with all the other variables. Then there may be a single
underlying factor that gave rise to the variables in the subset. If the other variables
can be similarly grouped into subsets with a like pattern of correlations, then a few
factors can represent these groups of variables. In this case the pattern in the correla-
tion matrix corresponds directly to the factors. For example, suppose the correlation
matrix has the form 


1.00 .90 .05 .05 .05
.90 1.00 .05 .05 .05
.05 .05 1.00 .90 .90
.05 .05 .90 1.00 .90
.05 .05 .90 .90 1.00


 .

Then variables 1 and 2 correspond to a factor, and variables 3, 4, and 5 correspond
to another factor. In some cases where the correlation matrix does not have such a
simple pattern, factor analysis will still partition the variables into clusters.

Factor analysis is related to principal component analysis in that both seek a sim-
pler structure in a set of variables but they differ in many respects (see Section 13.8).
For example, two differences in basic approach are as follows:

408
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1. Principal components are defined as linear combinations of the original vari-
ables. In factor analysis, the original variables are expressed as linear combi-
nations of the factors.

2. In principal component analysis, we explain a large part of the total variance of
the variables,

∑
i sii . In factor analysis, we seek to account for the covariances

or correlations among the variables.

In practice, there are some data sets for which the factor analysis model does not
provide a satisfactory fit. Thus, factor analysis remains somewhat subjective in many
applications, and it is considered controversial by some statisticians. Sometimes a
few easily interpretable factors emerge, but for other data sets, neither the number
of factors nor the interpretation is clear. Some possible reasons for these failures are
discussed in Section 13.7.

13.2 ORTHOGONAL FACTOR MODEL

13.2.1 Model Definition and Assumptions

Factor analysis is basically a one-sample procedure [for possible applications to data
with groups, see Rencher (1998, Section 10.8)]. We assume a random sample y1,
y2, . . . , yn from a homogeneous population with mean vector � and covariance
matrix �.

The factor analysis model expresses each variable as a linear combination of
underlying common factors f1, f2, . . . , fm , with an accompanying error term to
account for that part of the variable that is unique (not in common with the other
variables). For y1, y2, . . . , yp in any observation vector y, the model is as follows:

y1 − µ1 = λ11 f1 + λ12 f2 + · · · + λ1m fm + ε1
y2 − µ2 = λ21 f1 + λ22 f2 + · · · + λ2m fm + ε2

...

yp − µp = λp1 f1 + λp2 f2 + · · · + λpm fm + εp.

(13.1)

Ideally, m should be substantially smaller than p; otherwise we have not achieved a
parsimonious description of the variables as functions of a few underlying factors.
We might regard the f ’s in (13.1) as random variables that engender the y’s. The
coefficients λi j are called loadings and serve as weights, showing how each yi indi-
vidually depends on the f ’s. (In this chapter, we defer to common usage in the factor
analysis literature and use the notation λi j for loadings rather than eigenvalues.) With
appropriate assumptions, λi j indicates the importance of the j th factor f j to the i th
variable yi and can be used in interpretation of f j . We describe or interpret f2, for
example, by examining its coefficients, λ12, λ22, . . . , λp2. The larger loadings relate
f2 to the corresponding y’s. From these y’s, we infer a meaning or description of f2.
After estimating the λi j ’s (and rotating them; see Sections 13.2.2 and 13.5), it is
hoped they will partition the variables into groups corresponding to factors.
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The system of equations (13.1) bears a superficial resemblance to the multiple
regression model (10.1), but there are fundamental differences. For example, (1) the
f ’s are unobserved and (2) the model in (13.1) represents only one observation vec-
tor, whereas (10.1) depicts all n observations.

It is assumed that for j = 1, 2, . . . ,m, E( f j ) = 0, var( f j ) = 1, and
cov( f j , fk) = 0, j �= k. The assumptions for εi , i = 1, 2, . . . , p, are similar,
except that we must allow each εi to have a different variance, since it shows the
residual part of yi that is not in common with the other variables. Thus we assume
that E(εi ) = 0, var(εi ) = ψi , and cov(εi , εk) = 0, i �= k. In addition, we assume
that cov(εi , f j ) = 0 for all i and j . We refer to ψi as the specific variance.

These assumptions are natural consequences of the basic model (13.1) and the
goals of factor analysis. Since E(yi −µi ) = 0, we need E( f j ) = 0, j = 1, 2, . . . ,m.
The assumption cov( f j , fk) = 0 is made for parsimony in expressing the y’s as
functions of as few factors as possible. The assumptions var( f j ) = 1, var(εi ) = ψi ,
cov( f j , fk) = 0, and cov(εi , f j ) = 0 yield a simple expression for the variance
of yi ,

var(yi) = λ2
i1 + λ2

i2 + · · · + λ2
im + ψi , (13.2)

which plays an important role in our development. Note that the assumption
cov(εi , εk) = 0 implies that the factors account for all the correlations among
the y’s, that is, all that the y’s have in common. Thus the emphasis in factor analysis
is on modeling the covariances or correlations among the y’s.

Model (13.1) can be written in matrix notation as

y − � = �f + �, (13.3)

where y = (y1, y2, . . . , yp)
′, � = (µ1, µ2, . . . , µp)

′, f = ( f1, f2, . . . , fm)
′, � =

(ε1, ε2, . . . , εp)
′, and

� =



λ11 λ12 · · · λ1m

λ21 λ22 · · · λ2m
...

...
...

λp1 λp2 · · · λpm


 . (13.4)

We illustrate the model in (13.1) and (13.3) with p = 5 and m = 2. The model for
each variable in (13.1) becomes
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y1 − µ1 = λ11 f1 + λ12 f2 + ε1

y2 − µ2 = λ21 f1 + λ22 f2 + ε2

y3 − µ3 = λ31 f1 + λ32 f2 + ε3

y4 − µ4 = λ41 f1 + λ42 f2 + ε4

y5 − µ5 = λ51 f1 + λ52 f2 + ε5.

In matrix notation as in (13.3), this becomes




y1 − µ1
y2 − µ2
y3 − µ3
y4 − µ4
y5 − µ5


 =



λ11 λ12
λ21 λ22
λ31 λ32
λ41 λ42
λ51 λ52



(

f1
f2

)
+



ε1
ε2
ε3
ε4
ε5


 , (13.5)

or y − � = �f + �.
The assumptions listed between (13.1) and (13.2) can be expressed concisely

using vector and matrix notation: E( f j ) = 0, j = 1, 2, . . . ,m, becomes

E(f) = 0, (13.6)

var( f j ) = 1, j = 1, 2, . . . ,m, and cov( f j , fk) = 0, j �= k, become

cov(f) = I, (13.7)

E(εi ) = 0, i = 1, 2, . . . , p, becomes

E(�) = 0, (13.8)

var(εi ) = ψi , i = 1, 2, . . . , p, and cov(εi , εk) = 0, i �= k, become

cov(�) = � =



ψ1 0 · · · 0
0 ψ2 · · · 0
...

...
...

0 0 · · · ψp


 , (13.9)

and cov(εi , f j ) = 0 for all i and j becomes

cov(f,�) = O. (13.10)

The notation cov(f,�) indicates a rectangular matrix containing the covariances of
the f ’s with the ε’s:
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cov(f,�) =



σ f1ε1 σ f1ε2 · · · σ f1εp

σ f2ε1 σ f2ε2 · · · σ f2εp
...

...
...

σ fmε1 σ fmε2 · · · σ fmεp


 .

It was noted following (13.2) that the emphasis in factor analysis is on modeling
the covariances among the y’s. We wish to express the 1

2 p(p−1) covariances (and the
p variances) of the variables y1, y2, . . . , yp in terms of a simplified structure involv-
ing the pm loadings λi j and the p specific variances ψi ; that is, we wish to express
� in terms of � and �. We can do this using the model (13.3) and the assumptions
(13.7), (13.9), and (13.10). Since � does not affect variances and covariances of y,
we have, from (13.3),

� = cov(y) = cov(�f + �).

By (13.10), �f and � are uncorrelated; therefore, the covariance matrix of their
sum is the sum of their covariance matrices:

� = cov(�f)+ cov(�)

= � cov(f)�′ + � [by (3.74) and (13.9)]

= �I�′ + � [by (13.7)]

= ��′ + �. (13.11)

If � has only a few columns, say two or three, then � = ��′ + � in (13.11)
represents a simplified structure for �, in which the covariances are modeled by the
λi j ’s alone since � is diagonal. For example, in the illustration in (13.5) with m = 2
factors, σ12 would be the product of the first two rows of �, that is,

σ12 = cov(y1, y2) = λ11λ21 + λ12λ22,

where (λ11, λ12) is the first row of � and (λ21, λ22) is the second row of �. If y1
and y2 have a great deal in common, they will have similar loadings on the common
factors f1 and f2; that is, (λ11, λ12) will be similar to (λ21, λ22). In this case, either
λ11λ21 or λ12λ22 is likely to be high. On the other hand, if y1 and y2 have little in
common, then their loadings λ11 and λ21 on f1 will be different and their loadings
λ12 and λ22 on f2 will likewise differ. In this case, the products λ11λ21 and λ12λ22
will tend to be small.

We can also find the covariances of the y’s with the f ’s in terms of the λ’s.
Consider, for example, cov(y1, f2). By (13.1), y1 − µ1 = λ11 f1 + λ12 f2 + · · ·
+ λ1m fm + ε1. From (13.7), f2 is uncorrelated with all other f j ’s, and by (13.10),
f2 is uncorrelated with ε1. Thus
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cov(y1, f2) = E[(y1 − µ1)( f2 − µ f2)]
= E[(λ11 f1 + λ12 f2 + · · · + λ1m fm) f2]
= E(λ11 f1 f2 + λ12 f 2

2 + · · · + λ1m fm f2)

= λ11 cov( f1, f2)+ λ12 var( f2)+ · · · + λ1m cov( fm, f2)

= λ12

since var( f2) = 1. Hence the loadings themselves represent covariances of the vari-
ables with the factors. In general,

cov(yi , f j ) = λi j , i = 1, 2, . . . , p, j = 1, 2, . . . ,m. (13.12)

Since λi j is the (i j)th element of �, we can write (13.12) in the form

cov(y, f) = �. (13.13)

If standardized variables are used, (13.11) is replaced by Pρ = ��′ + �, and the
loadings become correlations:

corr(yi , f j ) = λi j . (13.14)

In (13.2), we have a partitioning of the variance of yi into a component due to the
common factors, called the communality, and a component unique to yi , called the
specific variance:

σi i = var(yi) = (λ2
i1 + λ2

i2 + · · · + λ2
im)+ ψi

= h2
i + ψi

= communality + specific variance,

where

Communality = h2
i = λ2

i1 + λ2
i2 + · · · + λ2

im, (13.15)

Specific variance = ψi .

The communality h2
i is also referred to as common variance, and the specific variance

ψi has been called specificity, unique variance, or residual variance.
Assumptions (13.6)–(13.10) lead to the simple covariance structure of (13.11),

� = ��′ + �, which is an essential part of the factor analysis model. In schematic
form, � = ��′ + � has the following appearance:
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The diagonal elements of � can be easily modeled by adjusting the diagonal ele-
ments of �, but ��′ is a simplified configuration for the off-diagonal elements.
Hence the critical aspect of the model involves the covariances, and this is the major
emphasis of factor analysis, as noted in Section 13.1 and in comments following
(13.2) and (13.10).

It is a rare population covariance matrix � that can be expressed exactly as � =
��′ + �, where � is diagonal and � is p × m, with m relatively small. In practice,
many sample covariance matrices do not come satisfactorily close to this ideal pat-
tern. However, we do not relax the assumptions because the structure � = ��′ + �
is essential for estimation of �.

One advantage of the factor analysis model is that when it does not fit the data,
the estimate of � clearly reflects this failure. In such cases, there are two problems in
the estimates: (1) it is unclear how many factors there should be, and (2) it is unclear
what the factors are. In other statistical procedures, failure of assumptions may not
lead to such obvious consequences in the estimates or tests. In factor analysis, the
assumptions are essentially self-checking, whereas in other procedures, we typically
have to check the assumptions with residual plots, tests, and so on.

13.2.2 Nonuniqueness of Factor Loadings

The loadings in the model (13.3) can be multiplied by an orthogonal matrix without
impairing their ability to reproduce the covariance matrix in � = ��′ + �. To see
this, let T be an arbitrary orthogonal matrix. Then by (2.102), TT′ = I, and we can
insert TT′ into the basic model (13.3) to obtain

y − � = �TT′f + �.

We then associate T with � and associate T′ with f so that the model becomes

y − � = �∗f∗ + �, (13.16)

where

�∗ = �T, (13.17)

f∗ = T′f. (13.18)
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If � in � = ��′ + � is replaced by �∗ = �T, we have

� = �∗�∗′ + � = �T(�T)′ + �

= �TT′�′ + � = ��′ + �,

since TT′ = I. Thus the new loadings �∗ = �T in (13.17) reproduce the covariance
matrix, just as � does in (13.11):

� = �∗�∗′ + � = ��′ + �. (13.19)

The new factors f∗ = T′f in (13.18) satisfy the assumptions (13.6), (13.7), and
(13.10); that is, E(f∗) = 0, cov(f∗) = I, and cov(f∗,�) = O.

The communalitites h2
i = λ2

i1 + λ2
i2 + · · · + λ2

im , i = 1, 2, . . . , p, as defined in
(13.15), are also unaffected by the transformation �∗ = �T. This can be seen as
follows. The communality h2

i is the sum of squares of the i th row of �. If we denote
the i th row of � by � ′

i , then the sum of squares in vector notation is h2
i = � ′

i �i . The
i th row of �∗ = �T is �∗′

i = � ′
i T, and the corresponding communality is

h∗2
i = �∗′

i �∗
i = � ′

i TT′�i = � ′
i �i = h2

i .

Thus the communalities remain the same for the new loadings. Note that h2
i =

λ2
i1 + λ2

i2 + · · · + λ2
im = � ′

i �i is the distance from the origin to the point � ′
i =

(λi1, λi2, . . . , λim) in the m-dimensional space of the factor loadings. Since the dis-
tance � ′

i �i is the same as �∗′
i �∗

i , the points �∗
i are rotated from the points �i . [This

also follows because �∗′
i = � ′

i T, where T is orthogonal. Multiplication of a vector
by an orthogonal matrix is equivalent to a rotation of axes; see (2.103).]

The inherent potential to rotate the loadings to a new frame of reference without
affecting any assumptions or properties is very useful in interpretation of the factors
and will be exploited in Section 13.5.

Note that the coefficients (loadings) in (13.1) are applied to the factors, not to the
variables, as they are in discriminant functions and principal components. Thus in
factor analysis, the observed variables are not involved in the rotation, as they are in
discriminant functions and principal components.

13.3 ESTIMATION OF LOADINGS AND COMMUNALITIES

In the Sections 13.3.1–13.3.4, we discuss four approaches to estimation of the load-
ings and communalities.

13.3.1 Principal Component Method

The first technique we consider is commonly called the principal component method.
This name is perhaps unfortunate in that it adds to the confusion between factor



416 FACTOR ANALYSIS

analysis and principal component analysis. In the principal component method for
estimation of loadings, we do not actually calculate any principal components. The
reason for the name is given following (13.25).

From a random sample y1, y2, . . . , yn , we obtain the sample covariance matrix
S and then attempt to find an estimator �̂ that will approximate the fundamental
expression (13.11) with S in place of �:

S ∼= �̂�̂′ + �̂. (13.20)

In the principal component approach, we neglect �̂ and factor S into S = �̂�̂′.
In order to factor S, we use the spectral decomposition in (2.109),

S = CDC′, (13.21)

where C is an orthogonal matrix constructed with normalized eigenvectors (c′
i ci =

1) of S as columns and D is a diagonal matrix with the eigenvalues θ1, θ2, . . . , θp of
S on the diagonal:

D =



θ1 0 · · · 0
0 θ2 · · · 0
...

...
...

0 0 · · · θp


 . (13.22)

We use the notation θi for eigenvalues instead of the usual λi in order to avoid con-
fusion with the notation λi j used for the loadings.

To finish factoring CDC′ in (13.21) into the form �̂�̂′, we observe that since the
eigenvalues θi of the positive semidefinite matrix S are all positive or zero, we can
factor D into

D = D1/2D1/2,

where

D1/2 =




√
θ1 0 · · · 0
0

√
θ2 · · · 0

...
...

...

0 0 · · · √
θp


 .

With this factoring of D, (13.21) becomes

S = CDC′ = CD1/2D1/2C′

= (CD1/2)(CD1/2)′. (13.23)
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This is of the form S = �̂�̂′, but we do not define �̂ to be CD1/2 because CD1/2

is p × p, and we are seeking a �̂ that is p × m with m < p. We therefore define
D1 = diag(θ1, θ2, . . . , θm) with the m largest eigenvalues θ1 > θ2 > · · · > θm and
C1 = (c1, c2, . . . , cm) containing the corresponding eigenvectors. We then estimate
� by the first m columns of CD1/2,

�̂ = C1D1/2
1 = (

√
θ1c1,

√
θ2c2, . . . ,

√
θmcm) (13.24)

[see (2.56)], where �̂ is p × m, C1 is p × m, and D1/2
1 is m × m.

We illustrate the structure of the λ̂i j ’s in (13.24) for p = 5 and m = 2:


λ̂11 λ̂12

λ̂21 λ̂22

λ̂31 λ̂32

λ̂41 λ̂42

λ̂51 λ̂52


 =




c11 c12
c21 c22
c31 c32
c41 c42
c51 c52



( √

θ1 0

0
√
θ2

)

=




√
θ1c11

√
θ2c12√

θ1c21
√
θ2c22√

θ1c31
√
θ2c32√

θ1c41
√
θ2c42√

θ1c51
√
θ2c52


 [by (2.56)]. (13.25)

We can see in (13.25) the source of the term principal component solution. The
columns of �̂ are proportional to the eigenvectors of S, so that the loadings on the j th
factor are proportional to coefficients in the j th principal component. The factors are
thus related to the first m principal components, and it would seem that interpretation
would be the same as for principal components. But after rotation of the loadings, the
interpretation of the factors is usually different. The researcher will ordinarily prefer
the rotated factors for reasons to be treated in Section 13.5.

By (2.52), the i th diagonal element of �̂�̂′ is the sum of squares of the i th row of
�̂, or �̂ ′

i �̂i = ∑m
j=1 λ̂

2
i j . Hence to complete the approximation of S in (13.20), we

define

ψ̂i = sii −
m∑

j=1

λ̂2
i j (13.26)

and write

S ∼= �̂�̂′ + �̂, (13.27)

where �̂ = diag(ψ̂1, ψ̂2, . . . , ψ̂p). Thus in (13.27) the variances on the diagonal of
S are modeled exactly, but the off-diagonal covariances are only approximate. Again,
this is the challenge of factor analysis.
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In this method of estimation, the sums of squares of the rows and columns of �̂
are equal to communalities and eigenvalues, respectively. This is easily shown. By
(13.26) and by analogy with (13.15), the i th communality is estimated by

ĥ2
i =

m∑
j=1

λ̂2
i j , (13.28)

which is the sum of squares of the i th row of �̂. The sum of squares of the j th
column of �̂ is the j th eigenvalue of S:

p∑
i=1

λ̂2
i j =

p∑
i=1

(
√
θ j ci j )

2 [by (13.25)]

= θ j

p∑
i=1

c2
i j

= θ j , (13.29)

since the normalized eigenvectors (columns of C) have length 1.
By (13.26) and (13.28), the variance of the i th variable is partitioned into a part

due to the factors and a part due uniquely to the variable:

sii = ĥ2
i + ψ̂i

= λ̂2
i1 + λ̂2

i2 + · · · + λ̂2
im + ψ̂i . (13.30)

Thus the j th factor contributes λ̂2
i j to sii . The contribution of the j th factor to the

total sample variance, tr(S) = s11 + s22 + · · · + spp , is, therefore,

Variance due to j th factor =
p∑

i=1

λ̂2
i j = λ̂2

1 j + λ̂2
2 j + · · · + λ̂2

pj , (13.31)

which is the sum of squares of loadings in the j th column of �̂. By (13.29), this is
equal to the j th eigenvalue, θ j . The proportion of total sample variance due to the
j th factor is, therefore,

∑p
i=1 λ̂

2
i j

tr(S)
= θ j

tr(S)
. (13.32)

If the variables are not commensurate, we can use standardized variables and work
with the correlation matrix R. The eigenvalues and eigenvectors of R are then used
in place of those of S in (13.24) to obtain estimates of the loadings. In practice, R
is used more often than S and is the default in most software packages. Since the
emphasis in factor analysis is on reproducing the covariances or correlations rather
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than the variances, use of R is more appropriate in factor analysis than in principal
components. In applications, R often gives better results than S.

If we are factoring R, the proportion corresponding to (13.32) is

∑p
i=1 λ̂

2
i j

tr(R)
= θ j

p
, (13.33)

where p is the number of variables.
We can assess the fit of the factor analysis model by comparing the left and right

sides of (13.27). The error matrix

E = S − (�̂�̂′ + �̂)

has zeros on the diagonal but nonzero off-diagonal elements. The following inequal-
ity gives a bound on the size of the elements in E:

∑
i j

e2
i j ≤ θ2

m+1 + θ2
m+2 + · · · + θ2

p; (13.34)

that is, the sum of squared entries in the matrix E = S − (�̂�̂′ + �̂) is at most equal
to the sum of squares of the deleted eigenvalues of S. If the eigenvalues are small,
the residuals in the error matrix S − (�̂�̂′ + �̂) are small and the fit is good.

Example 13.3.1. To illustrate the principal component method of estimation, we use
a simple data set collected by Brown, Williams, and Barlow (1984). A 12-year-old
girl made five ratings on a 9-point semantic differential scale for each of seven of her
acquaintances. The ratings were based on the five adjectives kind, intelligent, happy,
likeable, and just. Her ratings are given in Table 13.1.

Table 13.1. Perception Data: Ratings on Five Adjectives for Seven People

People Kind Intelligent Happy Likeable Just

FSM1a 1 5 5 1 1
SISTER 8 9 7 9 8
FSM2 9 8 9 9 8
FATHER 9 9 9 9 9
TEACHER 1 9 1 1 9
MSMb 9 7 7 9 9
FSM3 9 7 9 9 7

aFemale schoolmate 1.
bMale schoolmate.
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The correlation matrix for the five variables (adjectives) is as follows, with the
larger values bolded:

R =




1.000 .296 .881 .995 .545
.296 1.000 −.022 .326 .837
.881 −.022 1.000 .867 .130
.995 .326 .867 1.000 .544
.545 .837 .130 .544 1.000


 . (13.35)

The boldface values indicate two groups of variables: {1, 3, 4} and {2, 5}. We would
therefore expect that the correlations among the variables can be explained fairly
well by two factors.

The eigenvalues of R are 3.263, 1.538, .168, .031, and 0. Thus R is singular, which
is possible in a situation such as this with only seven observations on five variables
recorded in a single-digit scale. The multicollinearity among the variables induced
by the fifth eigenvalue, 0, could be ascertained from the corresponding eigenvector,
as noted in Section 12.7 (see Problem 13.6).

By (13.33), the first two factors account for (3.263 + 1.538)/5 = .96 of the total
sample variance. We therefore extract two factors. The first two eigenvectors are

c1 =



.537
.288
.434
.537
.390


 and c2 =




−.186
.651

−.473
−.169
.538


 .

Table 13.2. Factor Loadings by the Principal Component Method for the Perception
Data of Table 13.1

Loadings

Variables λ̂1 j λ̂2 j Communalities, ĥ2
i Specific Variances, ψ̂i

Kind .969 −.231 .993 .007
Intelligent .519 .807 .921 .079
Happy .785 −.587 .960 .040
Likeable .971 −.210 .987 .013
Just .704 .667 .940 .060

Variance
accounted for 3.263 1.538 4.802

Proportion of
total variance .653 .308 .960

Cumulative
proportion .653 .960 .960
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When these are multiplied by the square roots of the respective eigenvalues 3.263
and 1.538 as in (13.25), we obtain the loadings in Table 13.2.

The communalities in Table 13.2 are obtained from the sum of squares of the rows
of the loadings, as in (13.28). The first one, for example, is (.969)2 + (−.231)2 =
.993. The specific variances are obtained from (13.26) as ψ̂i = 1 − ĥ2

i using 1 in
place of sii because we are factoring R rather than S. The variance accounted for by
each factor is the sum of squares of the corresponding column of the loadings, as
in (13.31). By (13.29), the variance accounted for is also equal to the eigenvalue in
each case. Notice that the variance accounted for by the two factors adds to the sum
of the communalities, since the latter is the sum of all squared loadings. By (13.33),
the proportion of total variance for each factor is the variance accounted for divided
by 5.

The two factors account for 96% of the total variance and therefore represent
the five variables very well. To see how well the two-factor model reproduces the
correlation matrix, we examine

�̂�̂′ + �̂ =



.969 −.231
.519 .807
.785 −.587
.971 −.210
.704 .667



(

.969 .519 .785 .971 .704
−.231 .807 −.587 −.210 .667

)

+



.007 0 0 0 0

0 .079 0 0 0
0 0 .040 0 0
0 0 0 .013 0
0 0 0 0 .060




=




1.000 .317 .896 .990 .528
.317 1.000 −.066 .335 .904
.896 −.066 1.000 .885 .161
.990 .335 .885 1.000 .543
.528 .904 .161 .543 1.000


 ,

which is very close to the original R. We will not attempt to interpret the factors at
this point but will wait until they have been rotated in Section 13.5.2.

13.3.2 Principal Factor Method

In the principal component approach to estimation of the loadings, we neglected
� and factored S or R. The principal factor method (also called the principal axis
method) uses an initial estimate �̂ and factors S − �̂ or R − �̂ to obtain

S − �̂ ∼= �̂�̂′, (13.36)

R − �̂ ∼= �̂�̂′, (13.37)
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where �̂ is p × m and is calculated as in (13.24) using eigenvalues and eigenvectors
of S − �̂ or R − �̂.

The i th diagonal element of S − �̂ is given by sii − ψ̂i , which is the i th commu-
nality, ĥ2

i = sii − ψ̂i [see (13.30)]. Likewise, the diagonal elements of R−�̂ are the
communalities ĥ2

i = 1 − ψ̂i . (Clearly, ψ̂i and ĥ2
i have different values for S than for

R.) With these diagonal values, S − �̂ and R − �̂ have the form

S − �̂ =




ĥ2
1 s12 · · · s1p

s21 ĥ2
2 · · · s2p

...
...

...

sp1 sp2 · · · ĥ2
p


 , (13.38)

R − �̂ =




ĥ2
1 r12 · · · r1p

r21 ĥ2
2 · · · r2p

...
...

...

rp1 rp2 · · · ĥ2
p


 . (13.39)

A popular initial estimate for a communality in R − �̂ is ĥ2
i = R2

i , the squared
multiple correlation between yi and the other p − 1 variables. This can be found as

ĥ2
i = R2

i = 1 − 1

r ii
, (13.40)

where r ii is the i th diagonal element of R−1.
For S − �̂, an initial estimate of communality analogous to (13.40) is

ĥ2
i = sii − 1

sii
, (13.41)

where sii is the i th diagonal element of S and sii is the i th diagonal element of S−1.
It can be shown that (13.41) is equivalent to

ĥ2
i = sii − 1

sii
= sii R2

i , (13.42)

which is a reasonable estimate of the amount of variance that yi has in common with
the other y’s.

To use (13.40) or (13.41), R or S must be nonsingular. If R is singular, we can use
the absolute value or the square of the largest correlation in the i th row of R as an
estimate of communality.

After obtaining communality estimates, we calculate eigenvalues and eigenvec-
tors of S − �̂ or R − �̂ and use (13.24) to obtain estimates of factor loadings, �̂.
Then the columns and rows of �̂ can be used to obtain new eigenvalues (variance
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explained) and communalities, respectively. The sum of squares of the j th column
of �̂ is the j th eigenvalue of S − �̂ or R − �̂, and the sum of squares of the i th
row of �̂ is the communality of yi . The proportion of variance explained by the j th
factor is

θ j

tr(S − �̂)
= θ j∑p

i=1 θi

or

θ j

tr(R − �̂)
= θ j∑p

i=1 θi
,

where θ j is the j th eigenvalue of S − �̂ or R − �̂. The matrices S − �̂ and R − �̂
are not necessarily positive semidefinite and will often have some small negative
eigenvalues. In such a case, the cumulative proportion of variance will exceed 1 and
then decline to 1 as the negative eigenvalues are added. [Note that loadings cannot
be obtained by (13.24) for the negative eigenvalues.]

Example 13.3.2. To illustrate the principal factor method, we use the perception
data from Table 13.1. The correlation matrix as given in Example 13.3.1 is singu-
lar. Hence in place of multiple correlations as communality estimates, we use (the
absolute value of) the largest correlation in each row of R. [The multiple correla-
tion of y with several variables is greater than the simple correlation of y with any
of the individual variables; see, for example, Rencher (2000, p. 240).] The diagonal
elements of R − �̂ as given by (13.39) are, therefore, .995, .837, .881, .995, and
.837, which are obtained from R in (13.35). The eigenvalues of R − �̂ are 3.202,
1.395, .030, −.0002, and −.080, whose sum is 4.546. The first two eigenvectors of
R − �̂ are

c1 =



.548
.272
.431
.549
.373


 and c2 =




−.178
.656

−.460
−.159
.549


 .

When these are multiplied by the square roots of the respective eigenvalues, we
obtain the principal factor loadings. In Table 13.3, these are compared with the load-
ings obtained by the principal component method in Example 13.3.1. The two sets
of loadings are very similar, as we would have expected because of the large size
of the communalities. The communalities in Table 13.3 are for the principal factor
loadings, as noted above. The proportion of variance in each case for the principal
factor loadings is obtained by dividing the variance accounted for (eigenvalue) by
the sum of the eigenvalues, 4.546; for example, 3.202/4.546 = .704.
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Table 13.3. Loadings Obtained by Two Different Methods for Perception Data of
Table 13.1

Principal Component Principal Factor
Loadings Loadings

Variables f1 f2 f1 f2 Communalities

Kind .969 −.231 .981 −.210 .995
Intelligent .519 .807 .487 .774 .837
Happy .785 −.587 .771 −.544 .881
Likeable .971 −.210 .982 −.188 .995
Just .704 .667 .667 .648 .837

Variance
accounted for 3.263 1.538 3.202 1.395

Proportion
of total variance .653 .308 .704 .307

Cumulative
proportion .653 .960 .704 1.01

13.3.3 Iterated Principal Factor Method

The principal factor method can easily be iterated to improve the estimates of com-
munality. After obtaining �̂ from S − �̂ or R − �̂ in (13.36) or (13.37) using initial
communality estimates, we can obtain new communality estimates from the loadings
in �̂ using (13.28),

ĥ2
i =

m∑
j=1

λ̂2
i j .

These values of ĥ2
i are substituted into the diagonal of S − �̂ or R − �̂, from

which we obtain a new value of �̂ using (13.24). This process is continued until the
communality estimates converge. (For some data sets, the iterative procedure does
not converge.) Then the eigenvalues and eigenvectors of the final version of S − �̂

or R − �̂ are used in (13.24) to obtain the loadings.
The principal factor method and iterated principal factor method will typically

yield results very close to those from the principal component method when either
of the following is true.

1. The correlations are fairly large, with a resulting small value of m.
2. The number of variables, p, is large.

A shortcoming of the iterative approach is that sometimes it leads to a commu-
nality estimate ĥ2

i exceeding 1 (when factoring R). Such a result is known as a Hey-
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wood case (Heywood 1931). If ĥ2
i > 1, then ψ̂i < 0 by (13.26) and (13.28), which

is clearly improper, since we cannot have a negative specific variance. Thus when a
communality exceeds 1, the iterative process should stop, with the program reporting
that a solution cannot be reached. Some software programs have an option of contin-
uing the iterations by setting the communality equal to 1 in all subsequent iterations.
The resulting solution with ψ̂i = 0 is somewhat questionable because it implies
exact dependence of a variable on the factors, a possible but unlikely outcome.

Example 13.3.3. We illustrate the iterated principal factor method using the Seishu
data in Table 7.1. The correlation matrix is as follows:

R =




1.00 .56 .22 .10 .20 −.04 .13 .03 −.07 .09
.56 1.00 −.09 .13 .20 −.17 .17 .24 .16 .06
.22 −.09 1.00 .16 .70 −.31 −.45 −.34 −.11 .68
.10 .13 .16 1.00 .49 −.03 −.16 .01 .42 .37
.20 .20 .70 .49 1.00 −.32 −.34 −.19 .30 .87

−.04 −.17 −.31 −.03 −.32 1.00 −.42 −.57 −.11 −.26
.13 .17 −.45 −.16 −.34 −.42 1.00 .82 .23 −.30
.03 .24 −.34 .01 −.19 −.57 .82 1.00 .45 −.17

−.07 .16 −.11 .42 .30 −.11 .23 .45 1.00 .29
.09 .06 .68 .37 .87 −.26 −.30 −.17 .29 1.00




.

The eigenvalues of R are 3.17, 2.56, 1.43, 1.28, .54, .47, .25, .12, .10, and .06. There
is a notable gap between 1.28 and .54, and we therefore extract four factors (see
Section 13.4). The first four eigenvalues account for a proportion

3.17 + 2.56 + 1.43 + 1.28

10
= .84

of tr(R).
For initial communality estimates, we use the squared multiple correlation

between each variable and the other nine variables. These are given in Table 13.4,
along with the final communalities after iteration. We multiply the first four eigen-
vectors of the final iterated version of R − �̂ by the square roots of the respec-
tive eigenvalues, as in (13.24), to obtain the factor loadings given in Table 13.4.
We will not attempt to interpret the factors until after they have been rotated in
Example 13.5.2(b).

13.3.4 Maximum Likelihood Method

If we assume that the observations y1, y2, . . . , yn constitute a random sample from
Np(�,�), then � and � can be estimated by the method of maximum likelihood. It

can be shown that the estimates �̂ and �̂ satisfy the following:

S�̂�̂ = �̂(I + �̂′�̂−1�̂), (13.43)
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Table 13.4. Iterated Principal Factor Loadings and Communalities for the Seishu Data

Loadings
Initial Final

Variable f1 f2 f3 f4 Communalities Communalities

Taste .22 .31 .92 .12 .57 1.00
Odor .07 .40 .43 −.20 .54 .38
pH .80 .04 .05 −.40 .78 .79
Acidity 1 .41 .22 −.11 .37 .40 .36
Acidity 2 .94 .28 −.07 .05 .88 .98
Sake-meter −.13 −.67 .10 .56 .77 .79
Reducing sugar −.55 .66 .03 −.11 .79 .75
Total sugar −.45 .88 −.14 −.07 .87 .99
Alcohol .13 .54 −.37 .54 .66 .74
Formyl-nitrogen .84 .21 −.17 −.02 .80 .78

Variance
accounted for 3.00 2.37 1.25 .96 7.06 7.57

�̂ = diag(S − �̂�̂′), (13.44)

�̂′�̂−1�̂ is diagonal. (13.45)

These equations must be solved iteratively, and in practice the procedure may fail to
converge or may yield a Heywood case (Section 13.3.3).

We note that the proportion of variance accounted for by the factors, as given by
(13.32) or (13.33), will not necessarily be in descending order for maximum likeli-
hood factors, as it is for factors obtained from the principal component or principal
factor method.

Example 13.3.4. We illustrate the maximum likelihood method with the Seishu data
of Table 7.1. The correlation matrix and its eigenvalues were given in
Example 13.3.3. We extract four factors, as in Example 13.3.3. The iterative solution
of (13.43), (13.44), and (13.45) yielded the loadings and communalities given in
Table 13.5.

The pattern of the loadings is different from that obtained using the iterated prin-
cipal factor method in Example 13.3.3, but we will not compare them until after
rotation in Example 13.5.2(b). Note that the four values of variance accounted for
are not in descending order.

13.4 CHOOSING THE NUMBER OF FACTORS, m

Several criteria have been proposed for choosing m, the number of factors. We con-
sider four criteria, which are similar to those given in Section 12.6 for choosing the
number of principal components to retain.
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Table 13.5. Maximum Likelihood Loadings and Communalities for the Seishu Data

Loadings

Variables f1 f2 f3 f4 Communalities

Taste 1.00 0 0 0 1.00
Odor .45 −.05 .22 .19 .29
pH .22 .68 −.20 −.40 .71
Acidity 1 .10 .47 .10 .37 .38
Acidity 2 .20 .98 .02 .00 1.00
Sake-meter −.04 −.31 −.68 .55 .86
Reducing sugar .13 −.39 .76 −.02 .75
Total sugar .03 −.22 .96 .02 .98
Alcohol −.07 .31 .52 .60 .72
Formyl-nitrogen .02 .79 −.05 −.10 .63

Variance
accounted for 1.33 2.66 2.34 1.00 7.32

1. Choose m equal to the number of factors necessary for the variance accounted
for to achieve a predetermined percentage, say 80%, of the total variance tr(S)
or tr(R).

2. Choose m equal to the number of eigenvalues greater than the average eigen-
value. For R the average is 1; for S it is

∑p
j=1 θ j/p.

3. Use the scree test based on a plot of the eigenvalues of S or R. If the graph
drops sharply, followed by a straight line with much smaller slope, choose m
equal to the number of eigenvalues before the straight line begins.

4. Test the hypothesis that m is the correct number of factors, H0 : � = ��′+�,
where � is p × m.

Method 1 applies particularly to the principal component method. By (13.32), the
proportion of total sample variance (variance accounted for) due to the j th factor
from S is

∑p
i=1 λ̂

2
i j/ tr(S). The corresponding proportion from R is

∑p
i=1 λ̂

2
i j/p, as

in (13.33). The contribution of all m factors to tr(S) or p is therefore
∑p

i=1

∑m
j=1 λ̂

2
i j ,

which is the sum of squares of all elements of �̂. For the principal component
method, we see by (13.28) and (13.29) that this sum is also equal to the sum of
the first m eigenvalues or to the sum of all p communalities:

p∑
i=1

m∑
j=1

λ̂2
i j =

p∑
i=1

ĥ2
i =

m∑
j=1

θ j . (13.46)

Thus we choose m sufficiently large so that the sum of the communalities or the sum
of the eigenvalues (variance accounted for) constitutes a relatively large portion of
tr(S) or p.
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Method 1 can be extended to the principal factor method, where prior estimates
of communalities are used to form S − �̂ or R − �̂. However, S − �̂ or R − �̂ will
often have some negative eigenvalues. Therefore, as values of m range from 1 to p,
the cumulative proportion of eigenvalues,

∑m
j=1 θ j/

∑p
j=1 θ j , will exceed 1.0 and

then reduce to 1.0 as the negative eigenvalues are added. Hence a percentage such as
80% will be reached for a lower value of m than would be the case for S or R, and a
better strategy might be to choose m equal to the value for which the percentage first
exceeds 100%.

In the iterated principal factor method, m is specified before iteration, and
∑

i ĥ2
i

is obtained after iteration as
∑

i ĥ2
i = tr(S − �̂). To choose m before iterating, one

could use a priori considerations or the eigenvalues of S or R, as in the principal
component method.

Method 2 is a popular criterion of long standing and is the default in many soft-
ware packages. Although heuristically based, it often works well in practice. A vari-
ation to method 2 that has been suggested for use with R − �̂ is to let m equal the
number of positive eigenvalues. (There will typically be some negative eigenvalues
of R − �̂.) However, this criterion will often result in too many factors, since the
sum of the positive eigenvalues will exceed the sum of the communalities.

The scree test in method 3 was named after the geological term scree, referring to
the debris at the bottom of a rocky cliff. It also performs well in practice.

In method 4 we wish to test

H0 : � = ��′ + � vs. H1 : � �= ��′ + �,

where � is p × m. The test statistic, a function of the likelihood ratio, is

(
n − 2p + 4m + 11

6

)
ln

(
|�̂�̂′ + �̂|

|S|

)
, (13.47)

which is approximately χ2
ν when H0 is true, where ν = 1

2 [(p − m)2 − p − m] and

�̂ and �̂ are the maximum likelihood estimators. Rejection of H0 implies that m is
too small and more factors are needed.

In practice, when n is large, the test in method 4 often shows more factors to be
significant than do the other three methods. We may therefore consider the value of
m indicated by the test to be an upper bound on the number of factors with practical
importance.

For many data sets, the choice of m will not be obvious. This indeterminacy leaves
many statisticians skeptical as to the validity of factor analysis. A researcher may
begin with one of the methods (say, method 2) for an initial choice of m, will inspect
the resulting percent of tr(R) or tr(S), and will then examine the rotated loadings
for interpretability. If the percent of variance or the interpretation does not seem
satisfactory, the experimenter will try other values of m in a search for an acceptable
compromise between percent of tr(R) and interpretability of the factors. Admittedly,
this is a subjective procedure, and for such data sets one could well question the
outcome (see Section 13.7).
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When a data set is successfully fitted by a factor analysis model, the first three
methods will almost always give the same value of m, and there will be little question
as to what this value should be. Thus for a “good” data set, the entire procedure
becomes much more objective.

Example 13.4(a). We compare the four methods of choosing m for the perception
data used in Examples 13.3.1 and 13.3.2.

Method 1 gives m = 2, because one eigenvalue accounts for 65% of tr(R), and
two eigenvalues account for 96%.

Method 2 gives m = 2, since λ2 = 1.54 and λ3 = .17.
For method 3, we examine the scree plot in Figure 13.1. It is clear that m = 2 is

indicated.
Method 4 is not available for the perception data because R is singular (fifth eigen-

value is zero), and the test involves |R|.
Hence for the perception data, all three available methods agree on m = 2.

Example 13.4(b). We compare the four methods of choosing m for the Seishu data
used in Examples 13.3.3 and 13.3.4.

Method 1 gives m = 4 for the principal component method, because four eigen-
values of R account for 82% of tr(R). For the principal factor method with initial
communality estimates R2

i , the eigenvalues of R−�̂ and corresponding proportions
are as follows:

Eigenvalues 2.86 2.17 .94 .88 .12 .08 .01 −.06 −.13 −.22
Proportions .43 .33 .14 .16 .02 .01 .00 −.01 −.02 −.03

Cumulative
proportions .43 .76 .90 1.03 1.05 1.06 1.06 1.06 1.03 1.00

Figure 13.1. Scree graph for the perception data.
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Figure 13.2. Scree graph for the Seishu data.

The proportions are obtained by dividing the eigenvalues by their sum, 6.63. Thus
the cumulative proportion first exceeds 1.00 for m = 4.

Method 2 gives m = 4, since λ4 = 1.31 and λ5 = .61, where λ4 and λ5 are
eigenvalues of R.

For method 3, we examine the scree plot in Figure 13.2. There is a discernible
bend in slope at the fifth eigenvalue.

For method 4, we use m = 4 in the approximate chi-squared statistic in (13.47)
and obtain χ2 = 9.039, with degrees of freedom

ν = 1
2 [(p − m)2 − p − m] = 1

2 [(10 − 4)2 − 10 − 4] = 11.

Since 9.039 < χ2
.05,11 = 19.68, we do not reject the hypothesis that four factors are

adequate.
Thus for the Seishu data, all four methods agree on m = 4.

13.5 ROTATION

13.5.1 Introduction

As noted in Section 13.2.2, the factor loadings (rows of �) in the population model
are unique only up to multiplication by an orthogonal matrix that rotates the loadings.
The rotated loadings preserve the essential properties of the original loadings; they
reproduce the covariance matrix and satisfy all basic assumptions. The estimated
loading matrix �̂ can likewise be rotated to obtain �̂∗ = �̂T, where T is orthogonal.
Since TT′ = I by (2.102), the rotated loadings provide the same estimate of the
covariance matrix as before:

S ∼= �̂∗�̂∗′ + �̂ = �̂TT′�̂′ + �̂ = �̂�̂′ + �̂. (13.48)
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Geometrically, the loadings in the i th row of �̂ constitute the coordinates of a
point in the loading space corresponding to yi . Rotation of the p points gives their
coordinates with respect to new axes (factors) but otherwise leaves their basic geo-
metric configuration intact. We hope to find a new frame of reference in which the
factors are more interpretable. To this end, the goal of rotation is to place the axes
close to as many points as possible. If there are clusters of points (corresponding to
groupings of y’s), we seek to move the axes in order to pass through or near these
clusters. This would associate each group of variables with a factor (axis) and make
interpretation more objective. The resulting axes then represent the natural factors.

If we can achieve a rotation in which every point is close to an axis, then each
variable loads highly on the factor corresponding to the axis and has small loadings
on the remaining factors. In this case, there is no ambiguity. Such a happy state of
affairs is called simple structure, and interpretation is greatly simplified. We merely
observe which variables are associated with each factor, and the factor is defined or
named accordingly.

In order to identify the natural groupings of variables, we seek a rotation to an
interpretable pattern for the loadings, in which the variables load highly on only one
factor. The number of factors on which a variable has moderate or high loadings is
called the complexity of the variable. In the ideal situation referred to previously as
simple structure, the variables all have a complexity of 1. In this case, the variables
have been clearly clustered into groups corresponding to the factors.

We consider two basic types of rotation: orthogonal and oblique. The rotation in
(13.48) involving an orthogonal matrix is an orthogonal rotation; the original per-
pendicular axes are rotated rigidly and remain perpendicular. In an orthogonal rota-
tion, angles and distances are preserved, communalities are unchanged, and the basic
configuration of the points remains the same. Only the reference axes differ. In an
oblique “rotation” (transformation), the axes are not required to remain perpendicu-
lar and are thus free to pass closer to clusters of points.

In Sections 13.5.2 and 13.5.3, we discuss orthogonal and oblique rotations, fol-
lowed by some guidelines for interpretation in Section 13.5.4.

13.5.2 Orthogonal Rotation

It was noted above in Section 13.5.1 that orthogonal rotations preserve communal-
ities. This is because the rows of �̂ are rotated, and the distance to the origin is
unchanged, which, by (13.28), is the communality. However, the variance accounted
for by each factor as given in (13.31) will change, as will the corresponding pro-
portion in (13.32) or (13.33). The proportions due to the rotated loadings will not
necessarily be in descending order.

In Sections 13.5.2a and 13.5.2b, we consider two approaches to orthogonal rota-
tion.

13.5.2a Graphical Approach
If there are only two factors (m = 2), we can use a graphical rotation based on a
visual inspection of a plot of factor loadings. In this case, the rows of �̂ are pairs of
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loadings, (λ̂i1, λ̂i2), i = 1, 2, . . . , p, corresponding to y1, y2, . . . , yp. We choose
an angle φ through which the axes can be rotated to move them closer to groupings
of points. The new rotated loadings (λ̂∗

i1, λ̂
∗
i2) can be measured directly on the graph

as coordinates of the axes or calculated from �̂∗ = �̂T using

T =
(

cosφ − sinφ
sinφ cosφ

)
. (13.49)

Example 13.5.2a. In Example 13.3.1, the initial factor loadings for the perception
data did not provide an interpretation consistent with the two groupings of variables
apparent in the pattern of correlations in R. The five pairs of loadings (λ̂i1, λ̂i2)

corresponding to the five variables are plotted in Figure 13.3. An orthogonal rotation
through −35◦ would bring the axes (factors) closer to the two clusters of points
(variables) identified in Example 13.3.1. With the rotation, each cluster of variables
corresponds much more closely to a factor. Using �̂ from Example 13.3.1 and −35◦
in T as given in (13.49), we obtain the following rotated loadings:

Figure 13.3. Plot of the two loadings for each of the five variables in the perception data of
Table 13.1.
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�̂∗ = �̂T =



.969 −.231
.519 .807
.785 −.587
.971 −.210
.704 .667



(

.819 .574
−.574 .819

)

=




.927 .367
−.037 .959
.980 −.031
.916 .385
.194 .950


 .

In Table 13.6, we compare the rotated loadings in �̂∗ with the original loadings in
�̂.

The interpretation of the rotated loadings is clear. As indicated by the boldface
loadings in Table 13.6, the first factor is associated with variables 1, 3, and 4: kind,
happy, and likeable. The second factor is associated with the other two variables:
intelligent and just. This same grouping of variables is indicated by the pattern in
the correlation matrix in (13.35) and can also be seen in the two clusters of points in
Figure 13.3. The first factor might be described as representing a person’s perceived
humanity or amiability, while the second involves more logical or rational practices.

Note that if the angle between the rotated axes is allowed to be less than 90◦
(an oblique rotation), the lower axis representing f ∗

1 could come closer to the points
corresponding to variables 1 and 4 so that the coordinates on f ∗

2 , .367 and .385, could
be reduced. However, the basic interpretation would not change; variables 1 and 4
would still be associated with f ∗

1 .

Table 13.6. Graphically Rotated Loadings for the Perception Data of Table 13.1

Principal Component Graphically Rotated
Loadings Loadings Communalities,

Variables f1 f2 f1 f2 ĥ2
i

Kind .969 −.231 .927 .367 .993
Intelligent .519 .807 −.037 .959 .921
Happy .785 −.587 .980 −.031 .960
Likeable .971 −.210 .916 .385 .987
Just .704 .667 .194 .950 .940

Variance
accounted for 3.263 1.538 2.696 2.106 4.802

Proportion of
total variance .653 .308 .539 .421 .960

Cumulative
proportion .653 .960 .539 .960 .960
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13.5.2b Varimax Rotation
The graphical approach to rotation is generally limited to m = 2. For m > 2, various
analytical methods have been proposed. The most popular of these is the varimax
technique, which seeks rotated loadings that maximize the variance of the squared
loadings in each column of �̂∗. If the loadings in a column were nearly equal, the
variance would be close to 0. As the squared loadings approach 0 and 1 (for factoring
R), the variance will approach a maximum. Thus the varimax method attempts to
make the loadings either large or small to facilitate interpretation.

The varimax procedure cannot guarantee that all variables will load highly on
only one factor. In fact, no procedure could do this for all possible data sets. The
configuration of the points in the loading space remains fixed; we merely rotate the
axes to be as close to as many points as possible. In many cases, the points are
not well clustered, and the axes simply cannot be rotated so as to be near all of them.
This problem is compounded by having to choose m. If m is changed, the coordinates
(λ̂i1, λ̂i2, . . . , λ̂im) change, and the relative position of the points is altered.

The varimax rotation is available in virtually all factor analysis software pro-
grams. The output typically includes the rotated loading matrix �̂∗, the variance
accounted for (sum of squares of each column of �̂∗), the communalities (sum of
squares of each row of �̂∗), and the orthogonal matrix T used to obtain �̂∗ = �̂T.

Example 13.5.2b(a). In Example 13.5.2a, a graphical rotation was devised visually
to achieve interpretable loadings for the perception data of Table 13.1. As we would
expect, the varimax method yields a similar result. The varimax rotated loadings
are given in Table 13.7. For comparison, we have included the original unrotated
loadings from Table 13.3 and the graphically rotated loadings from Table 13.6.

Table 13.7. Varimax Rotated Factor Loadings for the Perception Data of Table 13.1

Principal Graphically Varimax
Component Rotated Rotated
Loadings Loadings Loadings Communalities

Variables f1 f2 f1 f2 f1 f2 ĥ2
i

Kind .969 −.231 .927 .367 .951 .298 .993
Intelligent .519 .807 −.037 .959 .033 .959 .921
Happy .785 −.587 .980 −.031 .975 −.103 .960
Likeable .971 −.210 .916 .385 .941 .317 .987
Just .704 .667 .194 .950 .263 .933 .940

Variance
accounted for 3.263 1.538 2.696 2.106 2.811 1.991 4.802

Proportion of
total variance .653 .308 .539 .421 .562 .398 .960

Cumulative
proportion .653 .960 .539 .960 .562 .960 .960
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The orthogonal matrix T for the varimax rotation is

T =
(

.859 .512
−.512 .859

)
.

By (13.49), − sinφ = .512, and the angle of rotation is given by φ = − sin−1(.512) =
−30.8◦. Thus the varimax rotation chose an angle of rotation of −30.8◦ as compared
to the −35◦ we selected visually, but the results are very close and the interpretation
is exactly the same.

Example 13.5.2b(b). In Examples 13.3.3 and 13.3.4, we obtained the iterated prin-
cipal factor loadings and maximum likelihood loadings for the Seishu data. In
Table 13.8, we show the varimax rotation of these two sets of loadings. The similar-
ities in the two sets of rotated loadings are striking. The interpretation in each case
is the same. The variances accounted for are virtually identical.

The rotation in each case has achieved a satisfactory simple structure and most
variables show a complexity of 1. The boldface loadings indicate the variables asso-
ciated with each factor for interpretation purposes. These may be meaningful to the
researcher. For example, factor 2 is associated with sake-meter, reducing sugar, and
total sugar, whereas factor 3 is aligned with taste and odor.

13.5.3 Oblique Rotation

The term oblique rotation refers to a transformation in which the axes do not remain
perpendicular. Technically, the term oblique rotation is a misnomer, since rotation
implies an orthogonal transformation that preserves distances. A more accurate char-

Table 13.8. Varimax Rotated Loadings for the Seishu Data

Iterated Principal Factor Maximum Likelihood
Rotated Loadings Rotated Loadings

Variables f1 f2 f3 f4 f1 f2 f3 f4

Taste .16 −.01 .99 −.09 .16 −.00 .98 −.10
Odor −.11 .14 .48 .14 −.07 .14 .49 .17
pH .88 −.12 .02 −.13 .82 −.10 .08 −.15
Acidity 1 .26 −.09 .09 .54 .29 −.08 .11 .53
Acidity 2 .89 −.06 .10 .43 .91 −.06 .10 .39
Sake-meter −.43 −.76 .01 .07 −.46 −.80 .04 .10
Reducing sugar −.37 .76 .18 .03 −.37 .75 .20 .08
Total sugar −.26 .92 .10 .25 −.27 .91 .11 .26
Alcohol −.01 .25 .00 .80 −.00 .25 .01 .81
Formyl-nitrogen .74 −.07 −.08 .20 .76 −.07 −.08 .22

Variance
accounted for 2.62 2.12 1.27 1.27 2.61 2.14 1.29 1.28



436 FACTOR ANALYSIS

acterization would be oblique transformation, but the term oblique rotation is well
established in the literature.

Instead of the orthogonal transformation matrix T used in (13.16), (13.17), and
(13.18), an oblique rotation uses a general nonsingular transformation matrix Q to
obtain f∗ = Q′f, and by (3.74),

cov(f∗) = Q′IQ = Q′Q �= I. (13.50)

Thus the new factors are correlated. Since distances and angles are not preserved, the
communalities for f∗ are different from those for f. Some program packages report
communalities obtained from the original loadings, rather than the oblique loadings.

When the axes are not required to be perpendicular, they can more easily pass
through the major clusters of points in the loading space (assuming there are such
clusters). For example, in Figure 13.4, we have plotted the varimax rotated loadings
for two factors extracted from the sons data of Table 3.7 (see Example 13.5.3 at the
end of this section). Oblique axes with an angle of 38◦ would pass much closer to the
points, and the resulting loadings would be very close to 0 and 1. However, the inter-
pretation would not change, since the same points (variables) would be associated
with the oblique axes as with the orthogonal axes.

Various analytical methods for achieving oblique rotations have been proposed
and are available in program packages. Typically, the output of one of these pro-
cedures includes a pattern matrix, a structure matrix, and a matrix of correlations
among the oblique factors. For interpretation, we would usually prefer the pattern

Figure 13.4. Orthogonal and oblique rotations for the sons data.
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matrix rather than the structure matrix. The loadings in a row of the pattern matrix
are the natural coordinates of the point (variable) on the oblique axes and serve as
coefficients in the model relating the variable to the factors.

One use for an oblique rotation is to check on the orthogonality of the factors.
The orthogonality in the original factors is imposed by the model and maintained by
an orthogonal rotation. If an oblique rotation produces a correlation matrix that is
nearly diagonal, we can be more confident that the factors are indeed orthogonal.

Example 13.5.3. The correlation matrix for the sons data of Table 3.7 is

R =




1.000 .735 .711 .704
.735 1.000 .693 .709
.711 .693 1.000 .839
.704 .709 .839 1.000


 .

The varimax rotated loadings for two factors obtained by the principal component
method are given in Table 13.9 and plotted in Figure 13.4. An analytical oblique
rotation (Harris–Kaiser orthoblique method in SAS) produced oblique axes with an
angle of 38◦, the same as obtained by a graphical approach. The correlation between
the two factors is .79 [obtained from Q′Q in (13.50)], which is related to the angle
by (3.15), .79 = cos 38◦. The pattern loadings are given in Table 13.9.

The oblique loadings give a much cleaner simple structure than the varimax load-
ings, but the interpretation is essentially the same if we neglect loadings below .45
on the varimax rotation.

In Figure 13.4, it is evident that a single factor would be adequate since the angle
between axes is less than 45◦. The suggestion to let m = 1 is also supported by the
first three criteria in Section 13.4: the eigenvalues of R are 3.20, .38, .27, and .16. The
first accounts for 80%; the second for an additional 9%. The large correlation, .79,
between the two oblique factors constitutes additional evidence that a single-factor
model would suffice here. In fact, the pattern in R itself indicates the presence of only
one factor. The four variables form only one cluster, since all are highly correlated.
There are no small correlations between groupings of variables.

Table 13.9. Varimax and Orthoblique Loadings for the
Sons Data

Varimax Orthoblique
Loadings Pattern matrix

Variable f1 f2 f1 f2

1 .42 .82 .03 .90
2 .40 .85 −.03 .96
3 .87 .41 .97 −.01
4 .86 .43 .95 .01
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13.5.4 Interpretation

In Sections 13.5.1, 13.5.2, and 13.5.3, we have discussed the usefulness of rotation
as an aid to interpretation. Our goal is to achieve a simple structure in which each
variable loads highly on only one factor, with small loadings on all other factors. In
practice, we often fail to achieve this goal, but rotation usually produces loadings
that are closer to the desired simple structure.

We now suggest general guidelines for interpreting the factors by examination of
the matrix of rotated factor loadings. Moving horizontally from left to right across the
m loadings in each row, identify the highest loading (in absolute value). If the highest
loading is of a significant size (a subjective determination, see the next paragraph),
circle or underline it. This is done for each of the p variables. There may be other
significant loadings in a row besides the one circled. If these are considered, the
interpretation is less simple. On the other hand, there may be variables with such
small communalities that no significant loading appears on any factor. In this case,
the researcher may wish to increase the number of factors and run the program again
so that these variables might associate with a new factor.

To assess significance of factor loadings λ̂i j obtained from R, a threshold value of
.3 has been advocated by many writers. For most successful applications, however,
a critical value of .3 is too low and will result in variables of complexity greater
than 1. A target value of .5 or .6 is typically more useful. The .3 criterion is loosely
based on the critical value for significance of an ordinary correlation coefficient, r .
However, the distribution of the sample loadings is not the same as that of r arising
from the bivariate normal. In addition, the critical value should be increased because
mp values of λ̂i j are being tested. On the other hand, if m is large, the critical value
might possibly need to be reduced somewhat. Since ĥ2

i = ∑m
j=1 λ̂

2
i j is bounded by

1, an increase in m reduces the average squared loading in a row.
After identifying potentially significant loadings, the experimenter then attempts

to discover some meaning in the factors and, ideally, to label or name them. This can
readily be done if the group of variables associated with each factor makes sense to
the researcher. But in many situations, the groupings are not so logical, and a revision
can be tried, such as adjusting the size of loading deemed to be important, changing
m, using a different method of estimating the loadings, or employing another type of
rotation.

13.6 FACTOR SCORES

In many applications, the researcher wishes only to ascertain whether a factor anal-
ysis model fits the data and to identify the factors. In other applications, the exper-
imenter wishes to obtain factor scores, f̂i = ( f̂i1, f̂i2, . . . , f̂im)

′, i = 1, 2, . . . , n,
which are defined as estimates of the underlying factor values for each observation.
There are two potential uses for such scores: (1) the behavior of the observations in
terms of the factors may be of interest and (2) we may wish to use the factor scores
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as input to another analysis, such as MANOVA. The latter usage resembles a similar
application of principal components.

Since the f ’s are not observed, we must estimate them as functions of the
observed y’s. The most popular approach to estimating the factors is based on
regression (Thomson 1951). We will discuss this method and also briefly describe an
informal technique that can be used when R (or S) is singular. For other approaches
see Harman (1976, Chapter 16).

Since E( fi ) = 0, we relate the f ’s to the y’s by a centered regression model

f1 = β11(y1 − y1)+ β12(y2 − y2)+ · · · + β1p(yp − y p)+ ε1,

f2 = β21(y1 − y1)+ β22(y2 − y2)+ · · · + β2p(yp − y p)+ ε2,
...

fm = βm1(y1 − y1)+ βm2(y2 − y2)+ · · · + βmp(yp − y p)+ εm,

(13.51)

which can be written in matrix form as

f = B′
1(y − y)+ �. (13.52)

We have used the notation � to distinguish this error from � in the original factor
model y − � = �f + � given in (13.3). Our approach is to estimate B1 and use the
predicted value f̂ = B̂′

1(y − y) to estimate f.
The model (13.52) holds for each observation:

fi = B′
1(yi − y)+ �i , i = 1, 2, . . . , n.

In transposed form, the model becomes

f′i = (yi − y)′B1 + �′
i , i = 1, 2, . . . , n,

and these n equations can be combined into a single model,

F =




f′1
f′2
...

f′n


 =



(y1 − y)′B1
(y2 − y)′B1

...

(yn − y)′B1


+




�′
1

�′
2
...

�′
n




=



(y1 − y)′
(y2 − y)′

...

(yn − y)′


B1 + �

= YcB1 + � [by (10.11)]. (13.53)
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The model (13.53) has the appearance of a centered multivariate multiple regres-
sion model as in Section 10.4.5, with Yc in place of Xc. By (10.50), the estimate for
B1 would be

B̂1 = (Y′
cYc)

−1Y′
cF. (13.54)

However, F is unobserved. To evaluate B̂1 in spite of this, we first use (10.52) to
rewrite (13.54) in terms of covariance matrices,

B̂1 = S−1
yy Sy f . (13.55)

In the notation of the present chapter, Syy is represented by S; for Sy f we use �̂, since

�̂ estimates cov(y, f) = � in (13.13). Thus, based on the assumptions in Section
13.2.1, we can write (13.55) as

B̂1 = S−1�̂. (13.56)

Then from model (13.53), the estimated (predicted) fi values are given by

F̂ =




f̂′1
f̂′2
...

f̂′n


 = YcB̂1

= YcS−1�̂. (13.57)

If R is factored instead of S, (13.56) and (13.57) become

B̂1 = R−1�̂, (13.58)

F̂ = YsR−1�̂, (13.59)

respectively, where Ys is the observed matrix of standardized variables, (yi j−y j )/s j .
We would ordinarily obtain factor scores for the rotated factors rather than the

original factors. Thus �̂ in (13.57) or (13.59) would be replaced by �̂∗.
In order to obtain factor scores by (13.57) or (13.59), S or R must be nonsin-

gular. When R (or S) is singular, we can obtain factor scores by a simple method
based directly on the rotated loadings. We cluster the variables into groups (factors)
according to the loadings and find a score for each factor by averaging the vari-
ables associated with the factor. If the variables are not commensurate, the variables
should be standardized before averaging. An alternative approach would be to weight
the variables by their loadings when averaging.
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Example 13.6. The speaking rate of four voices was artificially manipulated by
means of a rate changer without altering the pitch (Brown, Strong, and Rencher
1973). There were five rates for each voice:

FF = 45% faster,

F = 25% faster,

N = normal rate,

S = 22% slower,

SS = 42% slower.

The resulting 20 voices were played to 30 judges, who rated them on 15 paired-
opposite adjectives (variables) with a 14-point scale between poles. The following
adjectives were used: intelligent, ambitious, polite, active, confident, happy, just,
likeable, kind, sincere, dependable, religious, good-looking, sociable, and strong.
The results were averaged over the 30 judges to produce 20 observation vectors of
15 variables each. The averaging produced very reliable data, so that even though
there were only 20 observations on 15 variables, the factor analysis model fit very
well. The correlation matrix is as follows:

R =




1.00 .90 −.17 .88 .92 .88 .15 .39 −.02 −.16 .52 −.15 −.79 −.78 .73
.90 1.00 −.46 .93 .87 .79 −.16 .10 −.35 −.42 .25 −.40 .68 −.60 .62

−.17 −.46 1.00 −.56 −.13 .07 .85 .75 .88 .91 .68 .88 .21 .31 .25
.88 .93 −.56 1.00 .85 .73 −.25 −.02 −.45 −.57 .10 −.53 .58 .84 .50
.92 .87 −.13 .85 1.00 .91 .20 .39 −.09 −.16 .49 −.10 .85 .80 .81
.88 .79 .07 .73 .91 1.00 .27 .53 .12 .06 .66 .08 .90 .85 .78
.15 −.16 .85 −.25 .20 .27 1.00 .85 .81 .79 .79 .81 .43 .54 .53
.39 .10 .75 −.02 .39 .53 .85 1.00 .84 .79 .93 .77 .71 .69 .76

−.02 −.35 .88 −.45 −.09 .12 .81 .84 1.00 .91 .76 .85 .28 .36 .35
−.16 −.42 .91 −.57 −.16 .06 .79 .79 .91 1.00 .72 .96 .26 .28 .29
.52 .25 .67 .10 .49 .66 .79 .93 .76 .72 1.00 .72 .75 .77 .78

−.15 −.40 .88 −.53 −.10 .08 .81 .77 .85 .96 .72 1.00 .33 .32 .34
.79 .68 .21 .58 .85 .90 .43 .71 .28 .26 .75 .33 1.00 .86 .92
.78 .60 .31 .54 .80 .85 .54 .69 .36 .28 .77 .32 .86 1.00 .82
.73 .62 .25 .50 .81 .78 .53 .76 .35 .29 .78 .34 .92 .82 1.00




The eigenvalues of R are 7.91, 5.85, .31, .26, . . . , .002, with the scree plot in Fig-
ure 13.5. Clearly, by any criterion for choosing m, there are two factors.

All four major methods of factor extraction discussed in Section 13.3 produced
nearly identical results (after rotation). We give the initial and rotated loadings
obtained from the principal component method in Table 13.10.

The two rotated factors were labeled competence and benevolence. The same two
factors emerged consistently in similar studies with different voices and different
judges.

The two groupings of variables can also be seen in the correlation matrix. For
example, in the first row, the large correlations correspond to the boldface rotated
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Figure 13.5. Scree graph for voice data.

Table 13.10. Initial and Varimax Rotated Loadings for the Voice Data

Initial Loadings Rotated Loadings

Variable f 1 f2 f1 f2 Communalities

Intelligent .71 −.65 .96 −.06 .93
Ambitious .48 −.84 .90 −.36 .94
Polite .50 .81 −.12 .95 .92
Active .37 −.91 .86 −.48 .97
Confident .73 −.64 .97 −.04 .95
Happy .83 −.47 .94 .15 .91
Just .71 .58 .20 .89 .84
Likeable .89 .39 .45 .87 .95
Kind .58 .75 −.02 .95 .89
Sincere .52 .82 −.11 .97 .95
Dependable .93 .27 .56 .79 .94
Religious .55 .79 −.07 .96 .92
Good looking .91 −.29 .89 .35 .91
Sociable .91 −.22 .84 .40 .87
Strong .91 −.21 .84 .41 .86

Variance 7.91 5.85 7.11 6.65 13.76
accounted for

Proportion of .53 .39 .47 .44 .92
total variance

Cumulative .53 .92 .47 .92 .92
proportion
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Figure 13.6. Factor scores of adjective rating of voices with five levels of manipulated rate.

loadings for f1, whereas in the third row, the large correlations correspond to the
boldface rotated loadings for f2.

The factor scores were of primary interest in this study. The goal was to ascertain
the effect of the rate manipulations on the two factors, that is, to determine the per-
ceived change in competence and benevolence when the speaking rate is increased
or decreased.

The two factor scores were obtained for each of the 20 voices; these are plotted
in Figure 13.6, where a consistent effect of the manipulation of speaking rate on
all four voices can clearly be seen. Decreasing the speaking rate causes the speaker
to be rated less competent; increasing the rate causes the speaker to be rated less
benevolent. The mean vectors (centroids) are also given in Figure 13.6 for the four
speakers.

13.7 VALIDITY OF THE FACTOR ANALYSIS MODEL

For many statisticians, factor analysis is controversial and does not belong in a toolkit
of legitimate multivariate techniques. The reasons for this mistrust include the fol-
lowing: the difficulty in choosing m, the many methods of extracting factors, the
many rotation techniques, and the subjectivity in interpretation. Some statisticians
also criticize factor analysis because of the indeterminacy of the factor loading matrix
� or �̂, first noted in Section 13.2.2. However, it is the ability to rotate that gives fac-
tor analysis its utility, if not its charm.
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The basic question is whether the factors really exist. The model (13.11) for the
covariance matrix is � = ��′ + � or � − � = ��′, where ��′ is of rank m.
Many populations have covariance matrices that do not approach this pattern unless
m is large. Thus the model will not fit data from such a population when we try
to impose a small value of m. On the other hand, for a population in which � is
reasonably close to ��′ + � for small m, the sampling procedure leading to S may
obscure this pattern. The researcher may believe there are underlying factors but has
difficulty collecting data that will reveal them. In many cases, the basic problem is
that S (or R) contains both structure and error, and the methods of factor analysis
cannot separate the two.

A statistical consultant in a university setting or elsewhere all too often sees the
following scenario. A researcher designs a long questionnaire, with answers to be
given in, say, a five-point semantic differential scale or Likert scale. The respon-
dents, who vary in attitude from uninterested to resentful, hurriedly mark answers
that in many cases are not even good subjective responses to the questions. Then the
researcher submits the results to a handy factor analysis program. Being disappointed
in the results, he or she appeals to a statistician for help. They attempt to improve the
results by trying different methods of extraction, different rotations, different values
of m, and so on. But it is all to no avail. The scree plot looks more like the foothills
than a steep cliff with gently sloping debris at the bottom. There is no clear value
of m. They have to extract 10 or 12 factors to account for, say, 60% of the variance,
and interpretation of this large number of factors is hopeless. If a few underlying
dimensions exist, they are totally obscured by both systematic and random errors in
marking the questionnaire. A factor analysis model simply does not fit such a data
set, unless a large value of m is used, which gives useless results.

It is not necessarily the “discreteness” of the data that causes the problem, but
the “noisiness” of the data. The specified variables are not measured accurately. In
some cases, discrete variables yield satisfactory results, such as in Examples 13.3.1,
13.3.2, 13.5.2a, and 13.5.2b(a), where a 12-year-old girl, responding carefully to a
semantic differential scale, produced data leading to an unambiguous factor analysis.
On the other hand, continuous variables do not guarantee good results [see Example
13.7(a)].

In cases in which some factors are found that provide a satisfactory fit to the
data, we should still be tentative in interpretation until we can independently estab-
lish the existence of the factors. If the same factors emerge in repeated sampling
from the same population or a similar one, then we can have confidence that appli-
cation of the model has uncovered some real factors. Thus it is good practice to
repeat the experiment to check the stability of the factors. If the data set is large
enough, it could be split in half and a factor analysis performed on each half. The
two solutions could be compared with each other and with the solution for the com-
plete set.

If there is replication in the data set, it may be helpful to average over the repli-
cations. This was done to great advantage in Example 13.6, where several judges
rated the same voices. Averaging over the judges produced variables that apparently
possessed very low noise. Similar experimentation with different judges always pro-
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duced the same factors. Unfortunately, replication of this type is unavailable in most
situations.

As with other techniques in this book, factor analysis assumes that the variables
are at least approximately linearly related to each other. We could make bivariate
scatter plots to check this assumption.

A basic prerequisite for a factor analysis application is that the variables not be
independent. To check this requirement, we could test H0 : Pρ = I by using the test
in Section 7.4.3.

Some writers have suggested that R−1 should be a near-diagonal matrix in order
to successfully fit a factor analysis model. To assess how close R−1 is to a diagonal
matrix, Kaiser (1970) proposed a measure of sampling adequacy,

MSA =
∑

i �= j r2
i j∑

i �= j r2
i j +∑

i �= j q2
i j

, (13.60)

where r2
i j is the square of an element from R and q2

i j is the square of an element
from Q = DR−1D, with D = [(diag R−1)1/2]−1. As R−1 approaches a diago-
nal matrix, MSA approaches 1. Kaiser and Rice (1974) suggest that MSA should
exceed .8 for satisfactory results to be expected. We show some results for MSA in
Example 13.7(b).

In summary, there are many data sets to which factor analysis should not be
applied. One indication that R is inappropriate for factoring is the failure of the
methods in Section 13.4 to clearly and rather objectively choose a value for m. If
the scree plot does not have a pronounced bend or the eigenvalues do not show a
large gap around 1, then R is likely to be unsuitable for factoring. In addition, the
communality estimates after factoring should be fairly large.

To balance the “good” examples in this chapter, we now give an example involv-
ing a data set that cannot be successfully modeled by factor analysis. Likewise, the
problems at the end of the chapter include both “good” and “bad” data sets.

Example 13.7(a). As an illustration of an application of factor analysis that is less
successful than previous examples in this chapter, we consider the diabetes data of
Table 3.6. The correlation matrix for the five variables is as follows:

R =




1.00 .05 −.13 .07 .21
.05 1.00 −0.1 .01 −.10

−.13 −.01 1.00 .29 .05
.07 .01 .29 1.00 .21
.21 −.10 .05 .21 1.00


 .

The correlations are all small and the variables do not appear to have much in
common. The MSA value is .49. The eigenvalues are 1.40, 1.21, 1.04, .71, and .65.
Three factors would be required to account for 73% of the variance and four factors
to reach 87%. This is not a useful reduction in dimensionality. The eigenvalues are
plotted in a scree graph in Figure 13.7. The lack of a clear value of m is apparent.
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Figure 13.7. Scree graph for diabetes data.

It is evident from the small correlations in R that the communalities of the vari-
ables will not be large. The principal component method, which essentially estimates
the initial communalities as 1, gave very different final communality estimates than
did the iterated principal factor method:

Communalities

Principal component method .71 .91 .71 .67 .64
Iterated principal factor method .31 .16 .35 .37 .33

The communalities obtained by the iterated approach reflect more accurately the
small correlations among the variables.

The varimax rotated factor loadings for three factors extracted by the iterated
principal factor method are given in Table 13.11. The first factor is associated with
variables 3 and 4, the second factor with variables 1 and 5, and the third with variable

Table 13.11. Varimax Rotated Factor Loadings for Iterated Principal Factors from the
Diabetes Data

Rotated Loadings

Variable f1 f2 f3 Communalities

1 −.08 .54 .12 .31
2 .01 .01 .40 .16
3 .57 −.15 −.03 .35
4 .57 .22 .02 .37
5 .19 .47 −.27 .33

Variance
accounted for .69 .59 .24 1.52
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2. This clustering of variables can be seen in R, where variables 1 and 5 have a
correlation of .21, variables 3 and 4 have a correlation of .29, and variable 2 has
very low correlations with all other variables. However, these correlations (.21 and
.29) are small, and in this case the collapsing of five variables to three factors is
not a useful reduction in dimensionality, especially since the first three eigenvalues
account for only 73% of tr(R). The 73% is not convincingly greater than 60%, which
we would expect from three original variables picked at random. This conclusion is
borne out by a test of H0 : Pρ = I. Using (7.37) and (7.38), we obtain

u = |R| = .80276, ν = 20 − 1 = 19, p = 5,

u′ = −[ν − 1
6 (2p + 5)

]
ln u = −(19 − 15

6

)
(−.2197) = 3.625.

With 1
2 p(p − 1) = 10 degrees of freedom, the .05 critical value for this approxi-

mate χ2-test is 18.31, and we have no basis to question the independence of the five
variables. Thus the three factors we obtained are very likely an artifact of the present
sample and would not reappear in another sample from the same population.

Example 13.7(b). For data sets used in previous examples in this chapter, the values
of MSA from (13.60) are calculated as follows:

Seishu data: MSA = .53,

Sons data: MSA = .82,

Voice data: MSA = .73,

Diabetes data: MSA = .49.

The MSA value cannot be computed for the perception data, because R is singular.
These results do not suggest great confidence in the MSA index as a sole guide

to the suitability of R for factoring. We see a wide disparity in the MSA values for
the first three data sets. Yet all three yielded successful factor analyses. These three
MSA values seem to be inversely related to the number of factors: In the sons data,
there were indications that one factor would suffice; the voice data clearly had two
factors; and for the Seishu data, there were four factors.

The MSA for the diabetes data is close to that of the Seishu data. Yet the dia-
betes data are totally unsuitable for factor analysis, whereas the factor analysis of the
Seishu data is very convincing.

13.8 THE RELATIONSHIP OF FACTOR ANALYSIS TO
PRINCIPAL COMPONENT ANALYSIS

Both factor analysis and principal component analysis have the goal of reducing
dimensionality. Because the objectives are similar, many authors discuss principal
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component analysis as another type of factor analysis. This can be confusing, and
we wish to underscore the distinguishing characteristics of the two techniques.

Two of the differences between factor analysis and principal component analysis
were mentioned in Section 13.1: (1) In factor analysis, the variables are expressed
as linear combinations of the factors, whereas the principal components are linear
functions of the variables, and (2) in principal component analysis, the emphasis is
on explaining the total variance

∑
i sii , as contrasted with the attempt to explain the

covariances in factor analysis.
Additional differences are that (3) principal component analysis requires essen-

tially no assumptions, whereas factor analysis makes several key assumptions; (4) the
principal components are unique (assuming distinct eigenvalues of S), whereas the
factors are subject to an arbitrary rotation; and (5) if we change the number of factors,
the (estimated) factors change. This does not happen in principal components.

The ability to rotate to improve interpretability is one of the advantages of factor
analysis over principal components. If finding and describing some underlying fac-
tors is the goal, factor analysis may prove more useful than principal components;
we would prefer factor analysis if the factor model fits the data well and we like
the interpretation of the rotated factors. On the other hand, if we wish to define a
smaller number of variables for input into another analysis, we would ordinarily pre-
fer principal components, although this can sometimes be accomplished with factor
scores. Occasionally, principal components are interpretable, as in the size and shape
components in Example 12.8.1.

PROBLEMS

13.1 Show that the assumptions lead to (13.2), var(yi) = λ2
i1+λ2

i2+· · ·+λ2
im +ψi .

13.2 Verify directly that cov(y, f) = � as in (13.13).

13.3 Show that f∗ = T′f in (13.18) satisfies the assumptions (13.6) and (13.7),
E(f∗) = 0 and cov(f∗) = I.

13.4 Show that
∑

i j e2
i j ≤ θ2

m+1 + θ2
m+2 + · · · + θ2

p as in (13.34), where the ei j ’s

are the elements of E = S − (�̂�̂′ + �̂) and the θi ’s are eigenvalues of S.

13.5 Show that
∑p

i=1

∑m
j=1 λ̂

2
i j is equal to the sum of the first m eigenvalues and

also equal to the sum of all p communalities, as in (13.46).

13.6 In Example 13.3.2, the correlation matrix for the perception data was shown
to have an eigenvalue equal to 0. Find the multicollinearity among the five
variables that this implies.

13.7 Use the words data of Table 5.9.

(a) Obtain principal component loadings for two factors.
(b) Do a graphical rotation of the two factors.
(c) Do a varimax rotation and compare the results with those in part (b).
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13.8 Use the ramus bone data of Table 3.6.

(a) Extract loadings by the principal component method and do a varimax
rotation. Use two factors.

(b) Do all variables have a complexity of 1? Carry out an oblique rotation to
improve the loadings.

(c) What is the angle between the oblique axes? Would a single factor (m =
1) be more appropriate here?

13.9 Carry out a factor analysis of the rootstock data of Table 6.2. Combine the six
groups into a single sample.

(a) Estimate the loadings for two factors by the principal component method
and do a varimax rotation.

(b) Did the rotation improve the loadings?

13.10 Use the fish data of Table 6.17. Combine the three groups into a single sample.

(a) Obtain loadings on two factors by the principal component method and
do a varimax rotation.

(b) Notice the similarity of loadings for y1 and y2. Is there any indication in
the correlation matrix as to why this is so?

(c) Compute factor scores.

(d) Using the factor scores, carry out a MANOVA comparing the three
groups.

13.11 Carry out a factor analysis of the flea data in Table 5.5. Combine the two
groups into a single sample.

(a) From an examination of the eigenvalues greater than 1, the scree plot, and
the percentages, is there a clear choice of m?

(b) Extract two factors by the principal component method and carry out a
varimax rotation.

(c) Is the rotation an improvement? Try an oblique rotation.

13.12 Use the engineer data of Table 5.6. Combine the two groups into a single
sample.

(a) Using a scree plot, the number of eigenvalues greater than 1, and the
percentages; is there a clear choice of m?

(b) Extract three factors by the principal component method and carry out a
varimax rotation.

(c) Extract three factors by the principal factor method and carry out a vari-
max rotation.

(d) Compare the results of parts (b) and (c).
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13.13 Use the probe word data of Table 3.5.

(a) Obtain loadings for two factors by the principal component method and
carry out a varimax rotation.

(b) Notice the near duplication of loadings for y2 and y4. Is there any indica-
tion in the correlation matrix as to why this is so?

(c) Is the rotation satisfactory? Try an oblique rotation.
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Cluster Analysis

14.1 INTRODUCTION

In cluster analysis we search for patterns in a data set by grouping the (multivariate)
observations into clusters. The goal is to find an optimal grouping for which the
observations or objects within each cluster are similar, but the clusters are dissimilar
to each other. We hope to find the natural groupings in the data, groupings that make
sense to the researcher.

Cluster analysis differs fundamentally from classification analysis (Chapter 9). In
classification analysis, we allocate the observations to a known number of prede-
fined groups or populations. In cluster analysis, neither the number of groups nor the
groups themselves are known in advance.

To group the observations into clusters, many techniques begin with similarities
between all pairs of observations. In many cases the similarities are based on some
measure of distance. Other cluster methods use a preliminary choice for cluster cen-
ters or a comparison of within- and between-cluster variability. It is also possible to
cluster the variables, in which case the similarity could be a correlation; see Sec-
tion 14.7.

We can search for clusters graphically by plotting the observations. If there are
only two variables (p = 2), we can be do this in a scatter plot (see Section 3.3).
For p > 2, we can plot the data in two dimensions using principal components (see
Section 12.4) or biplots (see Section 15.3). For an example of a principal component
plot, see Figure 12.7 in Section 12.4, in which four clear groupings of points can
be observed. Another approach to plotting is provided by projection pursuit, which
seeks two-dimensional projections that reveal clusters [see Friedman and Tukey
(1974); Huber (1985); Sibson (1984); Jones and Sibson (1987); Yenyukov (1988);
Posse (1990); Nason (1995); Ripley (1996, pp. 296–303)].

Cluster analysis has also been referred to as classification, pattern recognition
(specifically, unsupervised learning), and numerical taxonomy. The techniques
of cluster analysis have been extensively applied to data in many fields, such as
medicine, psychiatry, sociology, criminology, anthropology, archaeology, geology,
geography, remote sensing, market research, economics, and engineering.

451
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We shall concentrate largely on quantitative variables [for categorical variables,
see Gordon (1999) or Everitt (1993)]. The data matrix [see (3.17)] can be written as

Y =




y′
1

y′
2
...

y′
n


 = (y(1), y(2), . . . , y(p)), (14.1)

where y′
i is a row (observation vector) and y( j) is a column (corresponding to a

variable). We generally wish to group the n y′
i ’s (rows) into g clusters. We may also

wish to cluster the columns y( j), j = 1, 2, . . . , p (see Section 14.7).
Two common approaches to clustering the observation vectors are hierarchical

clustering and partitioning. In hierarchical clustering we typically start with n clus-
ters, one for each observation, and end with a single cluster containing all n obser-
vations. At each step, an observation or a cluster of observations is absorbed into
another cluster. We can also reverse this process, that is, start with a single cluster
containing all n observations and end with n clusters of a single item each (see Sec-
tion 14.3.10). In partitioning, we simply divide the observations into g clusters. This
can be done by starting with an initial partitioning or with cluster centers and then
reallocating the observations according to some optimality criterion. Other cluster-
ing methods that we will discuss are based on fitting mixtures of multivariate normal
distributions or searching for regions of high density sometimes called modes.

There is an abundant literature on cluster analysis. Useful monographs and
reviews have been given by Gordon (1999), Everitt (1993), Khattree and Naik
(2000, Chapter 6), Kaufman and Rousseuw (1990), Seber (1984, Chapter 7), Ander-
berg (1973), and Hartigan (1975a).

14.2 MEASURES OF SIMILARITY OR DISSIMILARITY

Since cluster analysis attempts to identify the observation vectors that are similar
and group them into clusters, many techniques use an index of similarity or proximity
between each pair of observations. A convenient measure of proximity is the distance
between two observations. Since a distance increases as two units become further
apart, distance is actually a measure of dissimilarity.

A common distance function is the Euclidean distance between two vectors x =
(x1, x2, . . . , x p)

′ and y = (y1, y2, . . . , yp)
′, defined as

d(x, y) = √
(x − y)′(x − y) =

√√√√ p∑
j=1

(x j − y j )2. (14.2)

To adjust for differing variances and covariances among the p variables, we could
use the statistical distance
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d(x, y) =
√
(x − y)′S−1(x − y) (14.3)

[see (3.79)], where S is the sample covariance matrix. After the clusters are formed,
S could be computed as the pooled within-cluster covariance matrix, but we do not
know beforehand what the clusters will be. If we compute S on the unpartitioned
sample, there will be distortion of the variances and covariances because of the
groups in the data (assuming there really are some natural clusters). We therefore
usually use the Euclidean distance given by (14.2). In some clustering procedures, it
is not necessary to take the square root in (14.2) or (14.3).

Other distance measures have been suggested, for example, the Minkowski metric

d(x, y) =
[

p∑
j=1

|x j − y j |r
]1/r

. (14.4)

For r = 2, d(x, y) in (14.4) becomes the Euclidean distance given in (14.2). For p =
2 and r = 1, (14.4) measures the “city block” distance between two observations.
There are distance measures for categorical data; see Gordon (1999, Chapter 2).

For the n observation vectors y1, y2, . . . , yn , we can compute an n × n matrix
D = (di j ) of distances (or dissimilarities), where di j = d(yi , y j ) is usually given
by (14.2), d(yi , y j ) = √

(yi − y j )′(yi − y j ). We sometimes use D = (d2
i j ), where

d2
i j = d2(yi , y j ) = (yi −y j )

′(yi −y j ) is the square of (14.2). The matrix D typically
is symmetric with diagonal elements equal to zero.

The scale of measurement of the variables is an important consideration when
using the Euclidean distance measure in (14.2). Changing the scale can affect the
relative distances among the items. For example, suppose three items have the fol-
lowing bivariate measurements (y1, y2): (2, 5), (4, 2), (7, 9). Using di j as given by
(14.2), the matrix D = (di j ) for these items is

D1 =

 0.0 3.6 6.4

3.6 0.0 7.6
6.4 7.6 0.0


 .

However, if we multiply y1 by 100 as, for example, in changing from meters to
centimeters, the matrix becomes

D2 =

 0 200 500

200 0 300
500 300 0


 ,

and the largest distance is now d13 instead of d23. The distance rankings have been
altered by scaling.

To counter this problem, each variable could be standardized in the usual way by
subtracting the mean and dividing by the standard deviation of the variable. However,
such scaling would ordinarily be based on the entire data set, that is, on all n values in
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each column of Y in (14.1). In this case, the variables that best separate clusters might
no longer do so after division by standard deviations that include between-cluster
variation. If we use standardized variables, the clusters could be less well separated.
The question of scaling is, therefore, not an easy one. However, standardization of
this type is recommended by many authors.

By (14.2), the squared Euclidean distance between two observations x =
(x1, x2, . . . , x p)

′ and y = (y1, y2, . . . , yp)
′ is d2(x, y) = ∑p

j=1(x j − y j)
2. This

can be expressed as

d2(x, y) = (vx − vy)
2 + p(x − y)2 + 2vxvy(1 − rxy), (14.5)

where v2
x = ∑p

j=1(x j − x)2 and x = ∑p
j=1 x j/p, with similar expressions for v2

y
and y. The correlation rxy in (14.5) is given by

rxy =
∑p

j=1(x j − x)(y j − y)√∑p
j=1(x j − x)2

∑p
j=1(y j − y)2

. (14.6)

In Figure 14.1, we illustrate the profile (see Sections 5.9 and 6.8) for each of two
observation vectors x and y. The squared Eulcidean distance in (14.5) can be used to
compare the profiles of x and y in terms of levels, variation, and shape, where x and
y are the levels of the two profiles, vx and vy are the variations of the profiles, and
the correlation rxy is a measure of the closeness of the shapes of the two profiles.
The closer rxy is to 1, the greater is the similarity in shape of the two profiles. Note
that x and vx are the mean and variation of the p variables within the observation
vector x, not over the n observations in the data set. A similar comment can be made
about y and vy . Likewise, the correlation rxy is between the two observation vectors
x and y, not between two variables. The use of rxy has been questioned by Jardine
and Sibson (1971) and Wishart (1971), but Strauss, Bartko, and Carpenter (1973)

Figure 14.1. Profiles for two observation vectors x and y.
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found the correlation to be superior to the Euclidean distance for finding the clusters
in a particular data set.

14.3 HIERARCHICAL CLUSTERING

14.3.1 Introduction

Hierarchical methods and other clustering algorithms represent an attempt to find
“good” clusters in the data using a computationally efficient technique. It is not gen-
erally feasible to examine all possible clustering possibilities for a data set, especially
a large one. The number of ways of partitioning a set of n items into g clusters is
given by

N (n, g) = 1

g!
g∑

k=1

(
g
k

)
(−1)g−kkn (14.7)

[see Duran and Odell (1974, Chapter 4), Jensen (1969), and Seber (1984, p. 379)].
This can be approximated by gn/g!, which is large even for moderate values of n
and g. For example, N (25, 10) ∼= 2.8 × 1018. The total possible number of clusters
for a set of n items is

∑n
g=1 N (n, g), which, for n = 25, is greater than 1019. Hence,

hierarchical methods and other approaches permit us to search for a reasonable solu-
tion without having to look at all possible arrangements.

As noted in Section 14.1, hierarchical clustering algorithms involve a sequential
process. In each step of the agglomerative hierarchical approach, an observation or
a cluster of observations is merged into another cluster. In this process, the number
of clusters shrinks and the clusters themselves grow larger. We start with n clus-
ters (individual items) and end with one single cluster containing the entire data
set. An alternative approach, called the divisive method, starts with a single cluster
containing all n items and partitions a cluster into two clusters at each step (see Sec-
tion 14.3.10). The end result of the divisive approach is n clusters of one item each.
Agglomerative methods are more commonly used than divisive methods. In either
type of hierarchical clustering, a decision must be made as to the optimal number of
clusters (see Section 14.5).

At each step of an agglomerative hierarchical approach, the two closest clusters
are merged into a single new cluster. The process is therefore irreversible in the sense
that any two items that are once lumped together in a cluster cannot be separated later
in the procedure; any early mistakes cannot be corrected. Similarly, in a divisive
hierarchical method, items cannot be moved to other clusters. An optional approach
is to carry out a hierarchical procedure followed by a partitioning procedure in which
items can be moved from one cluster to another (see Section 14.4.1).

Since an agglomerative hierarchical procedure combines the two closest clusters
at each step, we must consider the question of measuring the similarity or dissimi-
larity of two clusters. Different approaches to measuring distance between clusters
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give rise to different hierarchical methods. Agglomerative techniques are discussed
in Sections 14.3.2–14.3.9, and the divisive approach is considered in Section 14.3.10.

14.3.2 Single Linkage (Nearest Neighbor)

In the single linkage method, the distance between two clusters A and B is defined
as the minimum distance between a point in A and a point in B:

D(A, B) = min{d(yi , y j ), for yi in A and y j in B}, (14.8)

where d(yi , y j ) is the Euclidean distance in (14.2) or some other distance between
the vectors yi and y j . This approach is also called the nearest neighbor method.

At each step in the single linkage method, the distance (14.8) is found for every
pair of clusters, and the two clusters with smallest distance are merged. The number
of clusters is therefore reduced by 1. After two clusters are merged, the procedure is
repeated for the next step: the distances between all pairs of clusters are calculated
again, and the pair with minimum distance is merged into a single cluster.

The results of a hierarchical clustering procedure can be displayed graphically
using a tree diagram, also known as a dendrogram, which shows all the steps in the
hierarchical procedure, including the distances at which clusters are merged. Den-
drograms are shown in Figures 14.2 and 14.3 in Examples 14.3.2(a) and 14.3.2(b).

Example 14.3.2(a). Hartigan (1975a, p. 28) compared the crime rates per 100,000
population for various cities. The data are in Table 14.1 (taken from the 1970 U.S.

Table 14.1. City Crime Rates per 100,000 Population

City Murder Rape Robbery Assault Burglary Larceny Auto Theft

Atlanta 16.5 24.8 106 147 1112 905 494
Boston 4.2 13.3 122 90 982 669 954
Chicago 11.6 24.7 340 242 808 609 645
Dallas 18.1 34.2 184 293 1668 901 602
Denver 6.9 41.5 173 191 1534 1368 780
Detroit 13.0 35.7 477 220 1566 1183 788
Hartford 2.5 8.8 68 103 1017 724 468
Honolulu 3.6 12.7 42 28 1457 1102 637
Houston 16.8 26.6 289 186 1509 787 697
Kansas City 10.8 43.2 255 226 1494 955 765
Los Angeles 9.7 51.8 286 355 1902 1386 862
New Orleans 10.3 39.7 266 283 1056 1036 776
New York 9.4 19.4 522 267 1674 1392 848
Portland 5.0 23.0 157 144 1530 1281 488
Tucson 5.1 22.9 85 148 1206 756 483
Washington 12.5 27.6 524 217 1496 1003 793
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Statistical Abstract). In order to illustrate the use of the distance matrix in single
linkage clustering, we use the first six observations in Table 14.1 (Atlanta through
Detroit).

The distance matrix D is given by

City Distance between Cities

Atlanta 0 536.6 516.4 590.2 693.6 716.2
Boston 536.6 0 447.4 833.1 915.0 881.1
Chicago 516.4 447.4 0 924.0 1073.4 971.5
Dallas 590.2 833.1 924.0 0 527.7 464.5
Denver 693.6 915.0 1073.4 527.7 0 358.7
Detroit 716.2 881.1 971.5 464.5 358.7 0

The smallest distance is 358.7 between Denver and Detroit, and therefore these
two cities are joined at the first step to form C1 = {Denver, Detroit}. In the next step,
the distance matrix is calculated for Atlanta, Boston, Chicago, Dallas, and C1:

Atlanta 0 536.6 516.4 590.2 693.6
Boston 536.6 0 447.4 833.1 881.1
Chicago 516.4 447.4 0 924.0 971.5
Dallas 590.2 833.1 924.0 0 464.5
C1 693.6 881.1 971.5 464.5 0

Note that all elements of this distance matrix are contained in the original dis-
tance matrix. This same pattern will hold in subsequent distance matrices and is also
characteristic of the complete linkage method [see Example 14.3.3(a)]. The smallest
distance is 447.4 between Boston and Chicago. Therefore C2 = {Boston, Chicago}.
At the next step, the distance matrix is calculated for Atlanta, Dallas, C1, and C2:

Atlanta 0 516.4 590.2 693.6
C2 516.4 0 833.1 881.1
Dallas 590.2 833.1 0 464.5
C1 693.6 881.1 464.5 0

The smallest distance is 464.5 between Dallas and C1, so that C3 = {Dallas, C1}.
The distance matrix for Atlanta, C2, and C3 is given by

Atlanta 0 516.4 590.2
C2 516.4 0 833.1
C3 590.2 833.1 0

The smallest distance is 516.4, which defines C4 = {Atlanta, C2}. The distance
matrix for C3 and C4 is

C3 0 590.2
C4 590.2 0
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Figure 14.2. Dendrogram for single linkage of the first six observations in the city crime data
in Table 14.1 [See Example 14.3.2(a)].

The last cluster is given by C5 = {C3,C4}. The dendrogram for the steps in this
example is given in Figure 14.2. The order in which the clusters were formed and the
relative distances at which they formed can all be seen. Note that the distance scale
runs from right to left.

Example 14.3.2(b). To further illustrate the single linkage method of clustering, we
use the complete city crime data from Table 14.1. The dendrogram in Figure 14.3
shows the cluster groupings attained by the single linkage method.
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Figure 14.3. Dendrogram for single linkage of the complete city crime data from Table 14.1
[see Example 14.3.2(b)].

14.3.3 Complete Linkage (Farthest Neighbor)

In the complete linkage approach, also called the farthest neighbor method, the dis-
tance between two clusters A and B is defined as the maximum distance between a
point in A and a point in B:
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D(A, B) = max{d(yi , y j ) for yi in A and y j in B}. (14.9)

At each step, the distance (14.9) is found for every pair of clusters, and the two
clusters with the smallest distance are merged.

Example 14.3.3(a). As in Example 14.3.2(a) for single linkage clustering, we illus-
trate the use of the distance matrix in complete linkage clustering with the first six
observations of the city crime data in Table 14.1. The initial distance matrix is exactly
the same as in Example 14.3.2(a):

City Distance

Atlanta 0 536.6 516.4 590.2 693.6 716.2
Boston 536.6 0 447.4 833.1 915.0 881.1
Chicago 516.4 447.4 0 924.0 1073.4 971.5
Dallas 590.2 833.1 924.0 0 527.7 464.5
Denver 693.6 915.0 1073.4 527.7 0 358.7
Detroit 716.2 881.1 971.5 464.5 358.7 0

The smallest distance is 358.7 between Denver and Detroit, and these two there-
fore form the first cluster, C1 = {Denver,Detroit}. Note that since the first cluster is
based on the initial distance matrix, it will be the same regardless of which hierar-
chical clustering method is used.

In the next step, the distance matrix is calculated for Atlanta, Boston, Chicago,
Dallas, and C1:

Atlanta 0 536.6 516.4 590.2 716.2
Boston 536.6 0 447.4 833.1 915.0
Chicago 516.4 447.4 0 924.0 1073.4
Dallas 590.2 833.1 924.0 0 527.7
C1 716.2 915.0 1073.4 527.7 0

Note that this distance matrix differs from its analog for the second step in
Example 14.3.2(a) only in the distances between C1 and the other cities. All ele-
ments of this matrix and subsequent distance matrices below are contained in the
original distance matrix for the six cities. The smallest distance is 447.4 between
Boston and Chicago. Therefore, C2 = {Boston,Chicago}. At the next step, distances
are calculated for Atlanta, Dallas, C1, and C2:

Atlanta 0 536.6 590.2 716.2
C2 536.6 0 924.0 833.1
Dallas 590.2 924.0 0 527.7
C1 693.6 881.1 527.7 0

The smallest distance, 527.7, defines C3 = {Dallas,C1}. The distance matrix for
Atlanta, C2, and C3 is given by
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Atlanta 0 536.6 716.2
C2 536.6 0 1073.4
C3 590.2 1073.4 0

The smallest distance is 536.6 between Atlanta and C3, so that C4 = {Atlanta,
C2}. The distance matrix for C3 and C4 is

C3 0 1073.4
C4 1073.4 0

The last cluster is given by C5 = {C3,C4}. The dendrogram in Figure 14.4 shows
the steps in this example.
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Figure 14.4. Dendrogram for complete linkage of the first six observations in the city crime
data in Table 14.1 [see Example 14.3.3(a)].
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Example 14.3.3(b). To further illustrate the complete linkage method, we use the
complete crime data in Table 14.1. The dendrogram in Figure 14.5 shows the clusters
found for this data set by the complete linkage approach. There are some differences
between these groupings and the groupings from single linkage in Figure 14.3.
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Figure 14.5. Dendrogram for complete linkage of the complete city crime data of Table 14.1
[see Example 14.3.3(b)].
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14.3.4 Average Linkage

In the average linkage approach, the distance between two clusters A and B is
defined as the average of the n AnB distances between the n A points in A and the
nB points in B:

D(A, B) = 1

n AnB

n A∑
i=1

nB∑
j=1

d(yi , y j ), (14.10)

where the sum is over all yi in A and all y j in B. At each step, we join the two
clusters with the smallest distance, as measured by (14.10).

Example 14.3.4. Figure 14.6 shows the dendrogram resulting from the average link-
age method applied to the city crime data in Table 14.1. The solution is the same as
the complete linkage solution for this data set given in Example 14.3.3(b) and Fig-
ure 14.5.

14.3.5 Centroid

In the centroid method, the distance between two clusters A and B is defined as
the Euclidean distance between the mean vectors (often called centroids) of the two
clusters:

D(A, B) = d(yA, yB), (14.11)

where yA and yB are the mean vectors for the observation vectors in A and the
observation vectors in B, respectively, and d(yA, yB) is defined in (14.2). We define
yA and yB in the usual way, that is, yA = ∑n A

i=1 yi/n A. The two clusters with the
smallest distance between centroids are merged at each step.

After two clusters A and B are joined, the centroid of the new cluster AB is given
by the weighted average

yAB = n AyA + nByB

n A + nB
. (14.12)

Example 14.3.5. Figure 14.7 shows the dendrogram resulting from using the cen-
troid clustering method on the complete city crime data in Table 14.1.

Note the two crossovers in the dendrogram in Figure 14.7. Boston and Chicago
join at a distance of 447.4. Then that cluster joins with {Atlanta,Tucson,Hartford}
at a distance of 441.1. Finally, all five join with New Orleans at a distance of 393.8.
Crossovers are discussed in Section 14.3.8a.
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Figure 14.6. Dendrogram for average linkage clustering of the data in Table 14.1 (see Exam-
ple 14.3.4).
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Figure 14.7. Dendrogram for the centroid clustering of the complete city crime data in Table
14.1 (see Example 14.3.5).
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14.3.6 Median

If two clusters A and B are combined using the centroid method, and if A contains a
larger number of items than B, then the new centroid yAB = (n AyA + nByB)/(n A +
nB) may be much closer to yA than to yB . To avoid weighting the mean vectors
according to cluster size, we can use the median (midpoint) of the line joining A and
B as the point for computing new distances to other clusters:

mAB = 1
2 (yA + yB). (14.13)

The two clusters with the smallest distance between medians are merged at each step.
Note that the median in (14.13) is not the ordinary median in the statistical sense.

The terminology arises from a median of a triangle, namely, the line from a vertex to
the midpoint of the opposite side.

Example 14.3.6. Figure 14.8 shows the dendrogram resulting from using the
median distance clustering method on the complete city crime data in Table 14.1. In
Figure 14.8, we see the same two crossovers as in Figure 14.7.

14.3.7 Ward’s Method

Ward’s method, also called the incremental sum of squares method, uses the within-
cluster (squared) distances and the between-cluster (squared) distances (Ward 1963,
Wishart 1969a). If AB is the cluster obtained by combining clusters A and B, then
the sum of within-cluster distances (of the items from the cluster mean vectors) are

SSEA =
n A∑
i=1

(yi − yA)
′(yi − yA), (14.14)

SSEB =
nB∑
i=1

(yi − yB)
′(yi − yB), (14.15)

SSEAB =
n AB∑
i=1

(yi − yAB)
′(yi − yAB), (14.16)

where yAB = (n AyA + nByB)/(n A + nB), as in (14.12), and n A, nB , and n AB =
n A + nB are the numbers of points in A, B, and AB, respectively. Since these sums
of distances are equivalent to within-cluster sums of squares, they are denoted by
SSEA, SSEB , and SSEAB .

Ward’s method joins the two clusters A and B that minimize the increase in SSE,
defined as

IAB = SSEAB − (SSEA + SSEB). (14.17)
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Figure 14.8. Dendrogram for the median clustering method applied to the complete city crime
data in Table 14.1 (see Example 14.3.6).
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It can be shown that the increase IAB in (14.17) has the following two equivalent
forms:

IAB = n A(yA − yAB)
′(yA − yAB)+ nB(yB − yAB)

′(yB − yAB) (14.18)

= n AnB

n A + nB
(yA − yB)

′(yA − yB). (14.19)

Thus by (14.19), minimizing the increase in SSE is equivalent to minimizing the
between-cluster distances. If A consists only of yi and B consists only of y j , then
SSEA and SSEB are zero, and (14.17) and (14.19) reduce to

Ii j = SSEAB = 1
2 (yi − y j )

′(yi − y j ) = 1
2 d2(yi , y j ).

Ward’s method is related to the centroid method in Section 14.3.5. If the distance
d(yA, yB) in (14.11) is squared and compared to (14.19), the only difference is the
coefficient n AnB/(n A+nB) for Ward’s method. Thus the cluster sizes have an impact
on Ward’s method but not on the centroid method. Writing n AnB/(n A + nB) in
(14.19) as

n AnB

n A + nB
= 1

1/n A + 1/nB
,

we see that as n A and nB increase, n AnB/(n A+nB) increases. Writing the coefficient
as

n AnB

n A + nB
= n A

1 + n A/nB
,

we see that as nB increases with n A fixed, n AnB/(n A + nB) increases. Therefore,
compared to the centroid method, Ward’s method is more likely to join smaller clus-
ters or clusters of equal size.

Example 14.3.7. Figure 14.9 shows the dendrogram resulting from using Ward’s
clustering method on the complete city crime data in Table 14.1. The vertical axis is
IAB/

∑n
i=1(yi − y)′(yi − y), where y is the overall mean vector for the data.

14.3.8 Flexible Beta Method

Suppose clusters A and B have just been merged to form cluster AB. A general
formula for the distance between AB and any other cluster C was given by Lance
and Williams (1967):
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Figure 14.9. Dendrogram for Ward’s method applied to the complete city crime data in Table
14.1 (see Example 14.3.7).
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D(C, AB) = αA D(C, A)+ αB D(C, B)+ βD(A, B)+ γ |D(C, A)− D(C, B)|.
(14.20)

The distances D(C, A), D(C, B), and D(A, B) are from the distance matrix before
joining A and B. The distances from AB to other clusters as given by (14.20) would
be used (along with distances between other pairs of clusters) to form the next dis-
tance matrix for choosing the pair of clusters with smallest distance. This pair would
then be joined at the next step.

To simplify (14.20), Lance and Williams (1967) suggested the following con-
straints on the parameter values:

αA + αB + β = 1,

αA = αB,

γ = 0,

β < 1.

With αA = αB and γ = 0, we have 2αA = 1 − β or αA = αB = (1 − β)/2, and
we need only choose a value of β. The resulting hierarchical clustering procedure is
called the flexible beta method.

The choice of β determines the characteristics of the flexible beta clustering pro-
cedure. Lance and Williams (1967) suggested the use of a small negative value of β,
such as β = −.25. If there are (or might be) outliers in the data, the use of a smaller
value of β, such as β = −.5, may be more likely to isolate these outliers into simple
clusters.

The distances defined for the agglomerative hierarchical methods in Sections
14.3.2–14.3.7 can all be expressed as special cases of (14.20). The requisite parame-
ter values are given in Table 14.2. For the centroid, median, and Ward’s methods, the

Table 14.2. Parameter Values for (14.20)

Cluster Method αA αB β γ

Single linkage
1

2

1

2
0 −1

2

Complete linkage
1

2

1

2
0

1

2

Average linkage
n A

n A + nB

nB

n A + nB
0 0

Centroid
n A

n A + nB

nB

n A + nB

−n AnB

(n A + nB)2
0

Median
1

2

1

2
−1

4
0

Ward’s method
n A + nC

n A + nB + nC

nB + nC

n A + nB + nC

−nC

n A + nB + nC
0

Flexible beta (1 − β)/2 (1 − β)/2 β(< 1) 0
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distances in (14.20) must be squared distances (assuming Euclidean distances). For
the other methods in Table 14.2, the distances may be either squared or unsquared.

We illustrate the choice of parameter values in Table 14.2 for the single linkage
method. Using αA = αB = 1

2 , β = 0, and γ = − 1
2 as in the first row of Table 14.2,

(14.20) becomes

D(C, AB) = 1
2 D(C, A)+ 1

2 D(C, B)− 1
2 |D(C, A)− D(C, B)|. (14.21)

If D(C, A) > D(C, B), then |D(C, A) − D(C, B)| = D(C, A) − D(C, B), and
(14.21) reduces to

D(C, AB) = D(C, B). (14.22)

On the other hand, if D(C, A) < D(C, B), then |D(C, A)− D(C, B)| = D(C, B)−
D(C, A), and (14.21) reduces to

D(C, AB) = D(C, A). (14.23)

Thus, (14.21) can be written as

D(C, AB) = min[D(C, A), D(C, B)], (14.24)

which is equivalent to (14.8), the definition of distance for the single linkage method.

Example 14.3.8. Figures 14.10 and 14.11 show dendrograms produced when using
the flexible beta clustering method on the complete city crime data in Table 14.1,
with β = −.25 and β = −.75. The two results are similar.

14.3.9 Properties of Hierarchical Methods

14.3.9a Monotonicity
If an item or a cluster joins another cluster at a distance that is less than the distance
for the previous merger of two clusters, we say that an inversion or a reversal has
occurred. The reversal is represented by a crossover in the dendrogram. Examples of
crossovers can be found in Figures 14.7 and 14.8.

A hierarchical method in which reversals cannot occur is said to be monotonic,
because the distance at each step is greater than the distance at the previous step. A
distance measure or clustering method that is monotonic is also called ultrametric.

We now show that the single linkage and complete linkage methods are mono-
tonic. Let dk be the distance at which two clusters are joined at the kth step. We can
describe steps k and k+1 in terms of four clusters A, B, C , and D. Suppose D(A, B)
is less than the distance between any other pair among these four clusters, so that A
and B are joined at step k to form AB. Then

dk = D(A, B) < min{D(A,C), D(B,C), D(C, D)}. (14.25)
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Figure 14.10. Dendrogram for the flexible beta method with β = −.25 applied to the com-
plete city crime data in Table 14.1 (see Example 14.3.8).
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Figure 14.11. Dendrogram for the flexible beta method with β = −.75 applied to the com-
plete city crime data in Table 14.1 (see Example 14.3.8).
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[If D(A, B) is less than these three distances, it is less than the other two possible
distances, D(A, D) and D(B, D).] Suppose at step k+1 we join AB and C or we join
C and D. If we merge C and D, then by (14.25), dk = D(A, B) < D(C, D) = dk+1.
If we join AB and C , then for single linkage (14.24) gives

dk+1 = D(C, AB) = min{D(A,C), D(B,C)} > dk = D(A, B).

By (14.25), both of D(A,C) and D(B,C) exceed D(A, B), and this also holds
for complete linkage. Thus, the single linkage and complete linkage methods are
monotonic.

For the methods in Table 14.2 other than single linkage and complete linkage, we
have γ = 0; then by (14.20) and (14.25),

D(C, AB) > (αA + αB + β)D(A, B). (14.26)

Thus we need αA + αB + β ≥ 1 for monotonicity. Using this criterion, we see that
all methods in Table 14.1 (beyond the first two) are monotonic except the centroid
and median methods. (These two methods showed crossovers in the dendrograms
in Figures 14.7 and 14.8.) Because of lack of monotonicity, some authors do not
recommend the centroid and median methods.

14.3.9b Contraction or Dilation
We now consider the characteristics of the distances or proximities between the orig-
inal points. As clusters form, the properties of this space of distances may be altered
somewhat. A clustering method that does not alter the spatial properties is referred
to by Lance and Williams (1967) as space-conserving. A method that is not space-
conserving may either contract or dilate the space.

A method is space-contracting if newly formed clusters appear to move closer to
individual observations, so that an individual item tends to join an existing cluster
rather than join with another individual item to form a new cluster. This tendency is
also called chaining.

A method is space-dilating if newly formed clusters appear to move away from
individual observations, so that individual items tend to form new clusters rather than
join existing clusters. In this case, clusters appear to be more distinct than they are.

Dubien and Warde (1979) described the spatial properties as follows. Suppose
that the distances among three clusters satisfy

D(A, B) < D(A,C) < D(B,C).

Then a cluster method is space-conserving if

D(A,C) < D(AB,C) < D(B,C). (14.27)

A method is space-contracting if the first inequality in (14.27) does not hold and
space-dilating if the second inequality does not hold.
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The single linkage method is very space-contracting, with marked chaining ten-
dencies. For this reason, single linkage is not recommended by some authors. Com-
plete linkage on the other hand, is very space-dilating, with a tendency to artificially
impose cluster boundaries.

Other hierarchical methods fall in between the extremes represented by
single linkage and complete linkage. The centroid and average linkage methods
are largely space-conserving, whereas Ward’s method is space-contracting. When-
ever a method produces reversals for a particular data set, it can be considered to
be space-contracting. Thus, for example, the centroid method is space-conserving
unless it has reversals, whereupon it becomes space-contracting.

The flexible beta method is space-contracting for β > 0, space-conserving for
β = 0, and space-dilating for β < 0. A small degree of dilation may help define
cluster boundaries, but too much dilation may lead to too many clusters in the early
stages. Thus the recommended value of β = −.25 may represent a good compro-
mise.

Example 14.3.9b. To illustrate chaining in the single linkage method, consider the
data plotted in Figure 14.12 (similar to Everitt 1993, p. 68). There are two distinct
clusters, A and C , with intervening points labeled B that do not belong to A or C .

In Figure 14.13, the two-cluster solution for single linkage clustering places C1
and C11 into one cluster and all other points into another cluster. The three-cluster
solution has two clusters with C’s and a cluster with A’s and B’s.
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Figure 14.12. Two distinct clusters with intervening individuals.
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Figure 14.13. Single linkage clustering of the data in Figure 14.12.

A dendrogram for average linkage clustering of the data in Figure 14.12 is given in
Figure 14.14. For this data set, the average linkage method is more robust to chaining.
The two-cluster solution separates the C’s from the A’s and B’s. The three-cluster
solution completely separates the three groups, A, B, and C .



HIERARCHICAL CLUSTERING 477

8 6 2 0

Average distance between clusters

4

C10
C20
C8
C19
C9
C16
C7
C6
C15
C13
C5
C21
C3
C17
C14
C4
C12
C18
C2
C11
C1
B4
B3
B2
B1
A16
A14
A15
A5
A10
A4
A17
A13
A12
A9
A11
A6
A3
A8
A2
A7
A1

Group

Figure 14.14. Average linkage clustering of the data in Figure 14.12.
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14.3.9c Other Properties
The single linkage method has been criticized by many authors because of its chain-
ing tendencies and its sensitivity to errors in distances between observations. On the
other hand, the single linkage approach is better than the other methods at identify-
ing clusters that have curvy shapes instead of spherical or elliptical shapes, and it is
somewhat robust to outliers in the data.

Ward’s method and the average linkage method are also relatively insensitive to
outliers. For example, in the average linkage method, outliers tend to remain isolated
in the early stages and to join with other outliers rather than to join with large clusters
or with less compact clusters. This is due to two properties of the average linkage
method: (1) the average distance between two groups (squared Euclidean distance)
increases as the points in the groups are more spread out, and (2) the average distance
increases as the size of the groups increases.

These two properties of the average linkage method are illustrated in one dimen-
sion in Figure 14.15 (similar to Jobson 1992, pp. 524–525), where cluster A has one
point at z1 and cluster B has two points, b1 and b2, located at z2 − h and z2 + h. The
average squared distance between A and B is

d2 = 1
2 [(z1 − z2 + h)2 + (z1 − z2 − h)2]

= 1
2 [(z1 − z2)

2 + h2 + 2h(z1 − z2)+ (z1 − z2)
2 + h2 − 2h(z1 − z2)]

= (z1 − z2)
2 + h2.

Thus the average distance between A and B increases as the spread of b1 and b2
increases (that is, as h increases).

To illustrate the second property of the average linkage method, suppose cluster
B in Figure 14.15 consists of a single point located at z2. Then, the distance between
A and B is (z1 − z2)

2, and A is closer to B than it is if B consists of two points.

Figure 14.15. Clusters in a single dimension.
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The centroid method is fairly robust to outliers. Complete linkage is somewhat
sensitive to outliers and tends to produce clusters of the same size and shape. Ward’s
method tends to yield spherical clusters of the same size.

Many studies conclude that the best overall performers are Ward’s method and the
average linkage method. However, there seems to be an interaction between meth-
ods and data sets; that is, some methods work better for certain data sets, and other
methods work better for other data sets.

A good strategy is to try several methods. If the results agree to some extent, you
may have found some natural clusters in the data.

14.3.10 Divisive Methods

In the agglomerative hierarchical methods covered in Sections 14.3.2–14.3.9, we
begin with n items and end with a single cluster containing all n items. As noted in
the second paragraph of Section 14.3.1, a divisive hierarchical method starts with a
single cluster of n items and divides it into two groups. At each step thereafter, one of
the groups is divided into two subgroups. The ultimate result of a divisive algorithm
is n clusters of one item each. The results can be shown in a dendrogram.

Divisive methods suffer from the same potential drawback as the agglomerative
methods—namely, once a partition is made, an item cannot be moved into another
group it does not belong to at the time of the partitioning. However, if larger clus-
ters are of interest, then the divisive approach may sometimes be preferred over the
agglomerative approach, in which the larger clusters are reached only after a large
number of joinings of smaller groups.

Divisive algorithms are generally of two classes: monothetic and polythetic. In a
monothetic approach, the division of a group into two subgroups is based on a single
variable, whereas, the polythetic approach uses all p variables to make the split.

If the variables are binary (quantitative variables can be converted to binary vari-
ables), the monothetic approach can easily be applied. Division into two groups is
based on presence or absence of an attribute. The variable (attribute) is chosen that
maximizes a chi-square statistic or an information statistic; see Everitt (1993, pp. 87–
88) or Gordon (1999, pp. 130–134).

For a monothetic approach using a quantitative variable y, we seek to maximize
the between-group sum of squares,

SSB = n1(y1 − y)2 + n2(y2 − y)2,

where n1 and n2 are the two group sizes (with n1 + n2 = n), y1 and y2 are the group
means, and y is the overall mean based on all n observations. The sum of squares
SSB would be calculated for all possible splits into two groups of sizes n1 and n2
and for each of the p variables. The final division would be based on the variable
that maximizes SSB/

∑n
i=1(yi − y)2.

For a polythetic approach, we consider a technique proposed by MacNaughton-
Smith et al. (1964). To divide a group, we work with a splinter group and the remain-
der. We seek the item in the remainder whose average distance (dissimilarity) from
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other items in the remainder, minus its average distance from items in the splinter
group, is largest. If the largest difference is positive, the item is shifted to the splinter
group. If the largest difference is negative, the procedure stops, and the division is
complete. We can start the splinter group with the item that has the largest average
distance from the other items in the group.

Example 14.3.10. In Table 14.3 we have the track records of eight countries
(Dawkins 1989). Based on the distance matrix for these eight observations, the
average distance from each observation to the other seven observations is given
in Table 14.4. Since USA has the greatest average distance to the other countries,
USA becomes the first observation in the splinter group. Now, the average dis-
tance between each observation in the remainder to the other six observations in the
remainder is calculated. Then the (average) distance between USA and each item in
the remainder is calculated. (This may be found using the distance matrix since there
is only one observation in the splinter group.) Finally, the difference between the
average distance to the remainder and the average distance to the splinter group is
calculated. The results are in Table 14.5. Because Australia has a positive difference
in Table 14.5, it is added to the splinter group with USA. This process is repeated
for the six countries in the remainder; the results are given in Table 14.6. Since no
difference in Table 14.6 is positive, the process stops, giving the following clusters:

Table 14.3. Athletic Records for Eight Countries

Country 1 2 3 4 5 6 7 8

Australia 10.31 20.06 44.84 1.74 3.57 13,28 27.66 128.30
Belgium 10.34 20.68 45.04 1.73 3.60 13.22 27.45 129.95
Canada 10.17 20.22 45.68 1.76 3.63 13.55 28.09 130.15
GDR 10.12 20.33 44.87 1.73 3.56 13.17 27.42 129.92
GB 10.11 20.21 44.93 1.70 3.51 13.01 27.51 129.13
Kenya 10.46 20.66 44.92 1.73 3.55 13.10 27.80 129.75
USA 9.93 19.75 43.86 1.73 3.53 13.20 27.43 128.22
USSR 10.07 20.00 44.60 1.75 3.59 13.20 27.53 130.55

Event: (1) 100 m (s), (2) 200 m (s), (3) 400 m (s), (4) 800 m (min), (5) 1500 m (min), (6) 5000 m (min),
(7) 10000 m (min), (8) Marathon (min).

Table 14.4. Average Distance from Each Country to the
Other Seven

Average Average
Country Distance Country Distance

USA 2.068 USSR 1.513
Aust 1.643 Canada 1.594
GB 1.164 Kenya 1.156
GDR 1.083 Belgium 1.160
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Table 14.5. Average Distances to Remainder and Splinter Group for Seven Countries

Average Distance Average Distance Difference
Country to Remainder (1) to Splinter Group (2) (1) – (2)

Australia 1.729 1.126 .603
GB 1.108 1.504 −.396
GDR .918 2.070 −1.151
USSR 1.355 2.464 −1.111
Canada 1.392 2.808 −1.416
Kenya .986 2.173 −1.186
Belgium .975 2.329 −1.353

Table 14.6. Average Distances to Remainder and Splinter Group for Six Countries

Average Distance Average Distance Difference
Country to Remainder (1) to Splinter Group (2) (1) – (2)

GB 1.144 1.216 −.072
GDR .767 1.872 −1.105
USSR 1.169 2.373 −1.203
Canada 1.249 2.457 −1.208
Kenya .865 1.884 −1.019
Belgium .813 2.058 −1.245

C1 = {USA,Australia}, C2 = {GB,GDR,USSR,Canada,Kenya,Belgium}. We
could continue and divide C2 into two groups in the same way.

14.4 NONHIERARCHICAL METHODS

In this section, we discuss three nonhierarchical techniques: partitioning, mixtures
of distributions, and density estimation. Among these three methods, partitioning is
the most commonly used.

14.4.1 Partitioning

In the partitioning approach, the observations are separated into g clusters without
using a hierarchical approach based on a matrix of distances or similarities between
all pairs of points. The methods described in this section are sometimes called opti-
mization methods rather than partitioning.

An attractive strategy would be to examine all possible ways to partition n items
into g clusters and find the optimal clustering according to some criterion. However,
the number of possible partitions as given by (14.7) is prohibitively large for even
moderate values of n and g. Thus we seek simpler techniques.
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14.4.1a k-Means
We now consider an approach to partitioning that is usually called the k-means
method. (We will continue to use the notation g rather than k for the number of
clusters.) The method allows the items to be moved from one cluster to another, a
reallocation that is not available in the hierarchical methods.

We first select g items to serve as seeds. These are later replaced by the centroids
(mean vectors) of the clusters. There are various ways we can choose the seeds: select
g items at random (perhaps separated by a specified minimum distance), choose the
first g points in the data set (again subject to a minimum distance requirement), select
the g points that are mutually farthest apart, find the g points of maximum density,
or specify g regularly spaced points in a gridlike pattern (these would not be actual
data points).

For these methods of selecting seeds, the number of clusters, g, must be speci-
fied. Alternatively, a minimum distance between seeds may be specified, and then all
items that satisfy this criterion are chosen as seeds.

After the seeds are chosen, each remaining point in the data set is assigned to the
cluster with the nearest seed (based on Euclidean distance). As soon as a cluster has
more than one member, the cluster seed is replaced by the centroid.

After all items are assigned to clusters, each item is examined to see if it is closer
to the centroid of another cluster than to the centroid of its own cluster. If so, the item
is moved to the new cluster and the two cluster centroids are updated. This process
is continued until no further improvement is possible.

The k-means procedure is somewhat sensitive to the initial choice of seeds. It
might be advisable to try the procedure again with another choice of seeds. If differ-
ent initial choices of seeds produce widely different final clusters, or if convergence
is extremely slow, there may be no natural clusters in the data.

The k-means partitioning method can also be used as a possible improvement on
hierarchical techniques. We first cluster the items using a hierarchical method and
then use the centroids of these clusters as seeds for a k-means approach, which will
allow points to be reallocated from one cluster to another.

Example 14.4.1a. Protein consumption in 25 European countries for nine food
groups is given in Table 14.7 (Hand et al. 1994, p. 298). In order to illustrate the
sensitivity of the k-means clustering method to the initial choice of seeds, we use the
following four methods of choosing seeds:

1. Select at random g observations that are at least a distance r apart.

2. Select the first g observations that are at least a distance r apart.

3. Select the g observations that are mutually farthest apart.

4. Use the g centroids from the g-cluster solution from the average linkage (hier-
archical) clustering method.

To help choose g, the number of clusters, we plot the first two principal com-
ponents in Figure 14.16. It appears that there may be at least five clusters. For the
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Table 14.7. Protein Data

Red White Starchy
Country Meat Meat Eggs Milk Fish Cereals Foods Nuts Fruits/Veg.

Albania 10.1 1.4 .5 8.9 .2 42.3 .6 5.5 1.7
Austria 8.9 14.0 4.3 19.9 2.1 28.0 3.6 1.3 4.3
Belgium 13.5 9.3 4.1 17.5 4.5 26.6 5.7 2.1 4.0
Bulgaria 7.8 6.0 1.6 8.3 1.2 56.7 1.1 3.7 4.2
Czech. 9.7 11.4 2.8 12.5 2.0 34.3 5.0 1.1 4.0
Denmark 10.6 10.8 3.7 25.0 9.9 21.9 4.8 .7 2.4
E. Germany 8.4 11.6 3.7 11.1 5.4 24.6 6.5 .8 3.6
Finland 9.5 4.9 2.7 33.7 5.8 26.3 5.1 1.0 1.4
France 18.0 9.9 3.3 19.5 5.7 28.1 4.8 2.4 6.5
Greece 10.2 3.0 2.8 17.6 5.9 41.7 2.2 7.8 6.5
Hungary 5.3 12.4 2.9 9.7 .3 40.1 4.0 5.4 4.2
Ireland 13.9 10.0 4.7 25.8 2.2 24.0 6.2 1.6 2.9
Italy 9.0 5.1 2.9 13.7 3.4 36.8 2.1 4.3 6.7
Netherlands 9.5 13.6 3.6 23.4 2.5 22.4 4.2 1.8 3.7
Norway 9.4 4.7 2.7 23.3 9.7 23.0 4.6 1.6 2.7
Poland 6.9 10.2 2.7 19.3 3.0 36.1 5.9 2.0 6.6
Portugal 6.2 3.7 1.1 4.9 14.2 27.0 5.9 4.7 7.9
Romania 6.2 6.3 1.5 11.1 1.0 49.6 3.1 5.3 2.8
Spain 7.1 3.4 3.1 8.6 7.0 29.2 5.7 5.9 7.2
Sweden 9.9 7.8 3.5 24.7 7.5 19.5 3.7 1.4 2.0
Switzerland 13.1 10.1 3.1 23.8 2.3 25.6 2.8 2.4 4.9
UK 17.4 5.7 4.7 20.6 4.3 24.3 4.7 3.4 3.3
USSR 9.3 4.6 2.1 16.6 3.0 43.6 6.4 3.4 2.9
W. Germany 11.4 12.5 4.1 18.8 3.4 18.6 5.2 1.5 3.8
Yugosloslavia 4.4 5.0 1.2 9.5 .6 55.9 3.0 5.7 3.2

first method, we select five observations at random that are at least a distance r = 1
from each other. The five chosen seeds are Ireland, UK, Poland, Greece, and East
Germany. Using these seeds, the k-means method produced the clusters identified in
Table 14.8 along with the distance of each observation from its cluster centroid.

To view the clusters, we plot the first two discriminant functions (see Section
8.4.1) in Figure 14.17. The first two discriminant functions show good separation for
clusters 2, 3, and 4 but poor separation for clusters 1 and 5.

We now select the first five observations as clusters seeds. With these seeds, the
k-means clustering method produced the clusters in Table 14.9. The first two dis-
criminant functions are plotted in Figure 14.18. Good separation of clusters is seen
except for clusters 2 and 3.

We next choose as cluster seeds the five observations that are mutually farthest
apart. These seeds gave rise to the clusters in Table 14.10. The first two discriminant
functions are plotted in Figure 14.19. Clusters 1, 3, and 4 seem very well separated,
but clusters 2 and 5 show considerable overlap.
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Figure 14.16. First two principal components z1 and z2 for the protein data in Table 14.7.

Table 14.8. k-Means Cluster Solution for Seeds Chosen at Random

Distance Distance
Country Cluster from Centroid Country Cluster from Centroid

Portugal 1 1.466 Sweden 4 1.594
Spain 1 1.466 E. Germany 4 1.966
Netherlands 2 1.123 Norway 4 2.031
Austria 2 1.217 France 4 2.621
Czech. 2 1.385 Romania 5 1.066
Switzerland 2 1.657 Yugoslavia 5 1.701
Poland 2 1.914 Bulgaria 5 1.741
Ireland 3 1.334 Italy 5 2.092
UK 3 1.821 Hungary 5 2.443
Finland 3 2.261 USSR 5 2.613
Belgium 4 1.201 Albania 5 2.725
W. Germany 4 1.405 Greece 5 2.741
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Figure 14.17. First two discriminant functions z1 and z2 for the clusters in Table 14.8.

Table 14.9. k-Means Cluster Solution Using the First Five Observations as Seeds

Distance Distance
Country Cluster from Centroid Country Cluster from Centroid

Albania 1 .000 Romania 4 1.415
Netherlands 2 .648 Bulgaria 4 1.587
Austria 2 1.000 Yugoslavia 4 1.784
W. Germany 2 1.087 Italy 4 1.898
Switzerland 2 1.489 Greece 4 2.450
Belgium 3 1.368 Poland 5 1.709
Sweden 3 1.462 Czech. 5 1.956
Denmark 3 1.666 USSR 5 2.218
Ireland 3 1.832 E. Germany 5 2.285
Norway 3 1.927 Spain 5 2.344
UK 3 2.076 Hungary 5 2.558
Finland 3 2.341 Portugal 5 3.859
France 3 2.629
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Figure 14.18. First two discriminant functions z1 and z2 for the clusters in Table 14.9.

Table 14.10. k-Means Cluster Solution Using as Seeds the Five Observations Furthest
Apart

Distance Distance
Country Cluster from Centroid Country Cluster from Centroid

Romania 1 .601 France 2 2.358
Yugoslavia 1 1.159 Poland 2 2.405
Bulgaria 1 1.435 UK 2 2.537
Albania 1 2.421 Greece 3 1.075
Hungary 1 2.540 Italy 3 1.075
Belgium 2 .956 Portugal 4 1.466
W. Germany 2 1.012 Spain 4 1.466
Netherlands 2 1.416 Norway 5 1.054
Austria 2 1.663 Sweden 5 1.191
Czech. 2 1.706 Finland 5 1.545
Switzerland 2 1.713 Denmark 5 1.708
Ireland 2 1.839 USSR 5 2.780
E. Germany 2 2.042
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Figure 14.19. First two discriminant functions z1 and z2 for the clusters in Table 14.10.

Finally, we obtain a five-cluster solution from average linkage and use the cen-
troids of these clusters as the new seeds. The clusters in Table 14.11 result. The first
two discriminant functions are plotted in Figure 14.20. All five clusters are well sep-
arated in the first two discriminant functions. These clusters show some resemblance
to those in the principal component plot given in Figure 14.16.

Table 14.11. k-Means Cluster Solution Using Seeds from Average Linkage

Distance Distance
Country Cluster from Centroid Country Cluster from Centroid

Romania 1 .970 Norway 2 2.287
Yugoslavia 1 1.182 UK 2 2.354
Bulgaria 1 1.339 France 2 2.600
Albania 1 1.970 Finland 2 2.683
Belgium 2 1.152 Greece 3 1.075
W. Germany 2 1.245 Italy 3 1.075
Netherlands 2 1.547 Portugal 4 1.466
Sweden 2 1.604 Spain 4 1.466
Ireland 2 1.744 Czech. 5 1.337
Denmark 2 1.766 Poland 5 1.579
Switzerland 2 1.831 USSR 5 1.964
Austria 2 2.037 Hungary 5 2.023
E. Germany 2 2.251
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Figure 14.20. First two discriminant functions z1 and z2 for the clusters in Table 14.11.

14.4.1b Other Partitioning Criteria
We now consider three partitioning methods that are not based directly on the dis-
tance from a point to the centroid of a cluster. These methods are based on the
between-cluster and within-cluster sum of squares and products matrices H and E
defined in (6.9) and (6.10) for one-way MANOVA. For well defined clusters, we
would like E to be “small” and H to be “large.”

The three criteria are as follows:

1. Minimize tr(E).
2. Minimize |E|.
3. Maximize tr(E−1H).

Using criterion 1, for example, we would move an item with observation vector y to
the cluster for which tr(E) is minimized after the move.

We can express the first criterion in two alternative forms. By (6.10), we have

tr(E) = tr

[
g∑

i=1

n∑
j=1

(yi j − yi.)(yi j − yi.)
′
]

(14.28)

=
∑

i

tr

[∑
j

(yi j − yi.)(yi j − yi.)
′
]

[by (2.96)]
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=
∑

i

tr(Ei ), (14.29)

where Ei = ∑n
j=1(yi j − yi.)(yi j − yi.)

′ is the sum of squares and products matrix
of deviations of observations from the mean vector for the i th cluster. In (14.28) we
use the notation of Section 6.1.2 for a balanced design, in which n is the number of
observations in each cluster.

We can write tr(Ei ) in (14.29) in the form

tr(Ei ) = tr
∑

j

(yi j − yi.)(yi j − yi.)
′

=
∑

j

tr(yi j − yi.)(yi j − yi.)
′ [by (2.96)]

=
∑

j

(yi j − yi.)
′(yi j − yi.) [by (2.97)]. (14.30)

Thus tr(Ei ) is the sum of the (squared) Euclidean distances from the individual points
to the centroid of the i th cluster.

A second form of (14.28) was given by Seber (1984, p. 277) as

tr(E) = 1

n

∑
i

∑
k<m

(yik − yim)
′(yik − yim). (14.31)

Hence minimizing tr(E) is equivalent to minimizing the sum of squared Euclidean
distances between all pairs of points in a cluster.

The second criterion, minimizing |E|, is related to � = |E|/|E + H| in (6.13).
Minimizing |E| is equivalent to minimizing Wilks’ � for the clusters.

Another way to look at minimizing |E| is to consider the effect of adding a point
y to a cluster with centroid y. Let u = y − y. By (14.28), E is a sum of terms of the
form uu′ = (y − y)(y − y)′. Thus (ignoring the change in centroid with the added
observation y), the increase in |E| is

|E + uu′| − |E| = |E|(1 + u′E−1u)− |E| [by (2.95)]

= |E|u′E−1u.

Hence, the minimum increase in |E| is obtained by adding y to the cluster for which
the standardized distance u′E−1u of y from y is the smallest. By comparison, the
tr(E) criterion would add y to the cluster for which u′u is minimum [see (14.30)].

The third criterion, maximizing tr(E−1H), is related to the Lawley–Hotelling
statistic U (s) = tr(E−1H) = ∑s

i=1 λi in (6.28), where λ1, λ2, . . . , λs are the eigen-
values of E−1H and s = min(p, g − 1). Associated with each λi is the eigenvector
ai and the discriminant function zi = a′

i y (see Section 8.4). The largest eigenvalue,
λ1, and the accompanying first discriminant function, z1 = a′

1y, have the greatest
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influence on tr(E−1H). Maximizing tr(E−1H) has the inclination to produce ellipti-
cal clusters of the same size. These clusters would tend to follow a straight-line trend,
especially if the first eigenvalue dominates the others. If the initial clusters or seeds
are lined up in a different direction than the “true clusters,” maximizing tr(E−1H)
may not correct the error in subsequent iterations.

Since tr(E) involves only the diagonal elements, the first criterion ignores the
correlations and tends to yield spherical clusters. The second criterion, minimizing
|E|, takes correlations into account and tends to produce elliptical clusters. These
clusters have a tendency to be of the same shape because E/νE is a pooled estimator
of the covariance matrix. A modification that may be useful is

∏g
i=1 |Ei |, where Ei

is the error matrix for the i th cluster [see (14.29)].
Finally, we compare the three criteria in terms of invariance to nonsingular linear

transformations vi j = Ayi j + b, where A is a constant nonsingular matrix and b is
a vector of constants. The first criterion, minimizing tr(E), is not invariant to such
linear transformations, whereas the other two criteria are invariant to these transfor-
mations. Therefore, minimizing tr(E) will likely give different partitions for the raw
data and standardized data.

14.4.2 Other Methods

We discuss mixtures of distributions in Section 14.4.2a and density estimation in
Section 14.4.2b.

14.4.2a Mixtures of Distributions
In this method, we assume the existence of g distributions (usually multivariate nor-
mal), and we wish to assign each of the n items in the sample to the distribution it
most likely belongs to. Such an approach is related to classification analysis in Chap-
ter 9. Along with partitioning in Section 14.4.1, this method has the property that
points can be transferred from one cluster to another, but it requires more assump-
tions than partitioning.

We define the density of a mixture of g distributions as the weighted average

h(y) =
g∑

i=1

αi f (y,�i ,�i ), (14.32)

where 0 ≤ αi ≤ 1,
∑g

i=1 αi = 1, and f (y,�i ,�i ) is the multivariate normal distri-
bution Np(�i ,�i ) given in (4.2).

Clusters could be formed in two ways. The first approach is to assign an item with
observation vector y to the cluster Ci with largest value of the estimated posterior
probability

P̂(Ci |y) = α̂i f (y, �̂i , �̂i )

h(y)
(14.33)
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[see Rencher (1998, Sections 6.2.4 and 6.3.1)], where α̂i , �̂i , and �̂i are maximum
likelihood estimates and h(y) is given by (14.32) with estimates inserted for param-
eters. The posterior probability (14.33) is an estimate of the probability that an item
with observation vector y belongs to the i th cluster, Ci .

The second approach is to assign an item with observation vector y to the cluster
with largest value of

ln α̂i − 1
2 ln |�̂i | − 1

2 (y − �̂i )
′�̂−1

i (y − �̂i ) (14.34)

[see (9.14)]. For either of these approaches [based on (14.33) or (14.34)], we need the
estimates α̂i , �̂i , and �̂i . These estimates are obtained by maximizing the likelihood
function L = ∏n

j=1 h(y j ), where h(y j ) is given by (14.32). The results are

α̂i = 1

n

n∑
j=1

P̂(Ci |y j ), i = 1, 2, . . . , g − 1,

�̂i = 1

nα̂i

n∑
j=1

y j P̂(Ci |y j ), i = 1, 2, . . . , g,

�̂i = 1

nα̂i

n∑
j=1

(y j − �̂i )(y j − �̂i )
′ P̂(Ci |y j ), i = 1, 2, . . . , g

(Everitt 1993, p. 111), where P̂(Ci |y j ) is given by (14.33). These three equations
must be solved iteratively. For a given value of g, we can begin with initial estimates
or guesses for the parameters and adjust them by iteration (this approach is related
to the EM algorithm mentioned in Section 3.11). If g is not known, we can begin
with g = 1 and then successively try g = 2, g = 3, and so on, until the results are
satisfactory.

The total number of parameters to be estimated is large. There are p parameters
in each �i , 1

2 p(p + 1) unique parameters in each �i , and g − 1 values of αi (the
remaining α̂i is found by

∑g
i=1 α̂i = 1), for a total of

1
2 g(p + 1)(p + 2)− 1 (14.35)

parameters. If the sample size n is not sufficiently large to estimate all of these param-
eters, we could assume a common covariance matrix �, which reduces the number
of parameters by 1

2 (g − 1)p(p + 1).
The method of mixtures is invariant to full-rank linear transformations and is

somewhat robust to the assumption of normality. The technique works better if the g
densities are well separated or the sample sizes are large.

Example 14.4.2a. To illustrate the clustering method based on mixtures of distribu-
tions, we use the protein consumption data of Table 14.7. Because of the small num-
ber of countries in the data set, there are not enough degrees of freedom to estimate
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a different covariance matrix for each cluster. Hence we assume equal covariance
matrices and estimate a pooled covariance matrix �̂. For illustration purposes, we
choose g = 5, as in Example 14.4.1a.

We use the five clusters found by Ward’s method to obtain initial estimates of αi ,
�i , and �. Then the maximum likelihood equations are solved iteratively to find the
following estimates:

α̂1 = .2801, α̂2 = .3200, α̂3 = .1199,

α̂4 = .1600, α̂5 = .1200,

�̂1 =




8.64
6.87
2.39

14.04
2.54

39.27
3.74
4.21
4.66



, �̂2 =




13.21
10.64

3.99
21.16

3.38
24.70

4.65
2.06
4.18



, �̂3 =




6.13
5.77
1.43
9.63
.93

54.07
2.40
4.90
3.40



,

�̂4 =




9.85
7.05
3.15

26.68
8.22

22.68
4.55
1.18
2.12



, �̂5 =




7.23
6.23
2.63
8.20
8.87

26.93
6.03
3.80
6.23




�̂ =




4.250 −2.952 .021 −.047 1.001 .929 −.157 .287 .035
−2.952 9.411 .963 .265 −1.934 −4.250 1.245 −2.903 −.319
.021 .963 .471 .552 −.296 −.699 .301 −.256 −.008

−.047 .265 .552 9.706 −1.254 .011 1.313 −.801 .032
1.001 −1.934 −.296 −1.254 3.648 .167 .111 .839 1.653
.929 −4.250 −.699 −.011 .167 8.412 −.777 1.708 .137

−.157 1.245 .301 1.313 .111 −.777 1.634 −.845 −.208
.287 −2.903 −.256 −.801 .839 1.708 −.845 2.053 .503
.035 −.319 −.008 .032 1.653 .137 −.208 .503 1.808



.

Then assigning each country to the cluster for which it has the highest posterior
probability of membership as in (14.33) yields the following clusters:

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Albania, Czech., Austria, Bulgaria, Denmark, E. Germany,
Greece, Belgium, France, Romania, Finland, Portugal, Spain
Hungary, Italy, Ireland, Yugoslavia Norway,
Poland, USSR Netherlands, Sweden

Switzerland, UK,
W. Germany
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14.4.2b Density Estimation
In the method of density estimation, or density searching, we seek regions of high
density sometimes called modes. No assumption is made about the form of the den-
sity, as was done in Section 14.4.2a. We could estimate the density using a kernel
function as in Section 9.7.2. Alternatively, we simply attempt to separate regions
with a high concentration of points from regions with a low density.

To find regions of high density, we first choose a radius r and a value of k, the
number of points in a k–nearest neighbor scheme. For each of the n points in the
data, the number of points within a sphere of radius r is found. A point is called a
dense point if at least k other points are contained in its sphere.

If a dense point is more than a distance r from all other dense points, it becomes
the nucleus of a new cluster. If a dense point is within a distance r from at least one
dense point that belongs to a cluster, it is added to the cluster. If the dense point is
within a distance r of two or more clusters, these clusters are combined. Two clusters
are also combined if the smallest distance between their dense points is less than the
average of the 2k smallest distances between the original n points. The value of r
can be gradually increased so that more points become dense. Another option is to
begin with the specified value of r for each point and then gradually increase r until
k observations are contained in its sphere.

Example 14.4.2b. To illustrate the density estimation method, we use the protein
data. For each pair of values of k and r , the value of r was allowed to increase
if needed, as described above. For the following values of k and r , the number of
clusters obtained are given.

k/r 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

2 5 5 5 4 4 4 4 4 3 3 3 3 3
3 3 3 3 3 3 3 3 3 2 2 2 2 2
4 3 3 3 3 3 3 3 3 2 2 2 2 2

The five-cluster solution found by setting r = 1.8 and k = 2 is

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Austria, Belgium Denmark, Albania, Czech., Greece,
France, Finland, Bulgaria, E. Germany Italy,
Ireland, Norway, Hungary, Poland, Portugal,
Netherlands, Sweden Romania, USSR Spain
Switzerland, Yugoslavia
UK, W. Germany

This partitioning into five clusters is perhaps more reasonable than that found
in Example 14.4.2a. The first two discriminant functions for these five clusters are
plotted in Figure 14.21.



494 CLUSTER ANALYSIS

7

6

5

4

3

2

1

0

–1

–2

–3

–4

–5

z2

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5
z1

6 7 8 9 10

Figure 14.21. First two discriminant functions for the clusters found in Example 14.4.2b.

14.5 CHOOSING THE NUMBER OF CLUSTERS

In hierarchical clustering, we can select g clusters from the dendrogram by cutting
across the branches at a given level of the distance measure used by one of the axes.
This is illustrated in Figure 14.22, which is the dendrogram for the average linkage
method (Section 14.3.4) applied to the city crime data in Table 14.1 (see Figure
14.16). Cutting the dendrogram at a level of 700 yields two clusters. Cutting it at 535
gives three clusters.

We wish to determine the value of g that provides the best fit to the data. One
approach is to look for large changes in distances at which clusters are formed.
For example, in Figure 14.22, the largest change in levels occurs in going from two
clusters to a single cluster. The change in distance between the two-cluster solution
and the three-cluster solution is 82 units squared. The difference between the three-
cluster solution and the four-cluster solution is 73 units squared, and the change
between the four- and five-cluster solutions is only 26 units squared. In this case we
would choose two clusters.

A formalization of this procedure was proposed by Mojena (1977): choose the
number of groups given by the first stage in the dendrogram at which

α j > α + ksα, j = 1, 2, . . . , n, (14.36)

where α1, α2, . . . , αn are the distance values for stages with n, n −1, . . . , 1 clusters,
α and sα are the mean and standard deviation of the α’s, and k is a constant. Mojena
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Figure 14.22. Cutting the dendrogram to choose the number of clusters.

(1977) suggested using a value of k in the range 2.75 to 3.5, but Milligan and Cooper
(1985) recommended k = 1.25, based on a simulation study.

An index that can be used with either hierarchical or partitioning methods is

c = tr(H)/(g − 1)

tr(E)/(n − g)
. (14.37)
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The value of g that maximizes c is chosen. A related approach is to choose the value
of g that minimizes

d = g2|E|. (14.38)

To compare two cluster solutions with g1 and g2 clusters, where g2 > g1, we can
use the test statistic

F = tr(E1)− tr(E2)

tr(E2)

[(
n − g1

n − g2

)(
g2

g1

)2/p

− 1

] , (14.39)

which has an approximate F-distribution with p(g2 − g1) and p(n − g2) degrees of
freedom [Beale (1969)]. The matrices E1 and E2 are within-cluster sums of squares
and products matrices corresponding to g1 and g2. The hypothesis is that the cluster
solutions with g1 and g2 clusters are equally valid, and rejection implies that the
cluster solution with g2 clusters is better than the solution with g1 clusters (g2 > g1).
The F-approximation in (14.39) may not be sufficiently accurate to justify the use of
p-values.

14.6 CLUSTER VALIDITY

To check the validity of a cluster solution, it may be possible to test the hypothesis
that there are no clusters or groups in the population from which the sample at hand
was taken. For example, the hypothesis could be that the population represents a
single unimodal distribution such as the multivariate normal, or that the observations
arose from a uniform distribution. Formal tests of hypotheses of this type concerning
cluster validity are reviewed by Gordon (1999, Section 7.2).

A cross-validation approach can also be used to check the validity or stability of a
clustering result. The data are randomly divided into two subsets, say A and B, and
the cluster analysis is carried out separately on each of A and B. The results should
be similar if the clusters are valid. An alternative approach is the following (Gordon
1999, Section 7.1; Milligan 1996):

1. Use some clustering method to partition subset A into g clusters.

2. Partition subset B into g clusters in two ways:

(a) Assign each item in B to the cluster in A that it is closest to by using, for
example, the distance to cluster centroids.

(b) Use the same clustering method on B that was used on A.

3. Compare the results of (a) and (b) in step 2.
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14.7 CLUSTERING VARIABLES

In some cases, it may be of interest to cluster the p variables rather than the n obser-
vations. For a similarity measure between each pair of variables, we would usually
use the correlation. Since most clustering methods use dissimilarities (such as dis-
tances), we need to convert the correlation matrix R = (ri j ) to a dissimilarity matrix.
This can conveniently be done by replacing each ri j by 1 −|ri j | or 1 − r2

i j . Using the
resulting dissimilarity matrix, we can apply a clustering method such as a hierarchi-
cal technique to cluster the variables.

1.0 0.4 0.2 0.0

Average distance between clusters

Murder

Rape

Assault

Robbery

Auto theft

Burglary

Variables

0.8 0.6

Larceny

Figure 14.23. Dendrogram for clustering the variables of Table 14.1 using average linkage
(see Example 14.7).
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Figure 14.24. Dendrogram for clustering the variables of Table 14.1 using Ward’s method
(see Example 14.7).

Clustering of variables can sometimes be done successfully with factor analysis,
which groups the variables corresponding to each factor; see Sections 13.1 and 13.5.

Example 14.7. We illustrate clustering of variables using the city crime data in Table
14.1. We first calculate the correlation matrix R = (ri j ) and then transform R to a
dissimilarity matrix D = (1 − r2

i j ). The variables are then clustered using both aver-
age linkage and Ward’s clustering methods, and the dendrograms are given in Figures
14.23 and 14.24, respectively. Both clustering methods yield the same solution.
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Table 14.12. Rotated Factor Loadings for City
Crime Data

Variables Factor 1 Factor 2 Factor 3

Murder −.063 .734 .142
Rape .504 .659 .160
Robbery .133 .355 .726
Assault .298 .740 .398
Burglary .764 .221 .181
Larceny .847 −.014 .244
Auto theft .240 .097 .584

We next carry out a factor analysis of the data and compare the resulting groups
of variables with the clusters obtained with the average linkage and Ward’s methods.
The factor loadings are estimated using the principal factor method (Section 13.3.2)
with squared multiple correlations as initial communality estimates, and the loadings
are then rotated with a varimax rotation (Section 13.5.2b). The rotated factor pattern
is given in Table 14.12. The highest loading in each row is bolded. The first factor
deals with crimes associated with the home. The second factor involves crimes that
are violent in nature. The third factor consists of crimes of theft outside the home.
Note that the three-cluster solutions found by both average linkage and Ward’s meth-
ods are identical to the grouping of variables in the factor analysis solution, namely,
(1) murder, rape, and assault, (2) robbery and auto theft, and (3) burglary and larceny.
Since all three methods agree, we have some confidence in the validity of the solu-
tion.

PROBLEMS

14.1 Show that d2(x, y) = ∑p
j=1(x j − y j)

2 from (14.2) is equal to (14.5),

d2(x, y) = (vx − vy)
2 + p(x − y)2 + 2vxvy(1 − rxy), where v2

x =∑p
j=1(x j − x)2, x = ∑p

j=1 x j/p, and ryx is defined in (14.6).

14.2 (a) Show that IAB = n A(yA −yAB)
′(yA −yAB)+nB(yB −yAB)

′(yB −yAB)

as in (14.18).

(b) Show that (14.18) is equal to (14.19); that is,

n A(yA − yAB)
′(yA − yAB) + nB(yB − yAB)

′(yB − yAB)

= n AnB

n A + nB
(yA − yB)

′(yA − yB).

14.3 Using the hints provided in each case, show that the parameter values for
(14.20) in Table 14.2 produce appropriate distances for the following cluster
methods.



500 CLUSTER ANALYSIS

(a) Complete linkage. Use an approach analogous to that in Section 14.3.8
for the single linkage method.

(b) Average linkage. Write (14.20) in terms of parameter values for average
linkage in Table 14.2. Then use (14.9).

(c) Centroid method. Show that

(yC − yAB)
′(yC − yAB) = n A

n A + nB
(yC − yA)

′(yC − yA)

+ nB

n A + nB
(yC − yB)

′(yC − yB)

− n AnB

(n A + nB)2
(yA − yB)

′(yA − yB),

(14.40)

where yAB = (n AyA + nByB)/(n A + nB).
(d) Median method. Use n A = nB in (14.12) and (14.40) [see part (c)].

(e) Ward’s method. Show that

IC(AB) = n A + nC

n A + nB + nC
IAC+ nB + nC

n A + nB + nC
IBC− nC

n A + nB + nC
IAB,

where IAB is defined in (14.17).

14.4 Show that for all methods in Table 14.2 for which γ = 0, we have D(C, AB) >
(αA + αB + β)D(A, B) as in (14.26).

14.5 Verify the statement in the last paragraph of Section 14.4.1b, namely, that the
first criterion in Section 14.4.1b is not invariant to nonsingular linear trans-
formations vi j = Ayi j + b, where A is a p × p nonsingular matrix, and that
the other two criteria are invariant to such transformations. Use the following
approach:
(a) Show that Hv = AHyA′ and Ev = AEyA′.
(b) Show that minimizing tr(E) is not invariant.
(c) Show that minimizing |E| is invariant.

(d) Show that maximizing tr(E−1H) is invariant.

14.6 Verify the statement in Section 14.4.2a that in �i , i = 1, 2, . . . , g; �i ,
i = 1, 2, . . . , g; and αi , i = 1, 2, . . . , g − 1; the total number of param-
eters is given by 1

2 g(p + 1)(p + 2)− 1 as in (14.35).

14.7 Use the ramus bone date of Table 3.6. Carry out the following cluster methods
and compare to the principal component plot in Figure 12.5.
(a) Find a two-cluster solution using the single linkage method.
(b) Find a two-cluster solution using the average linkage method and com-

pare to the result in (a). Which seems better?
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(c) Carry out a cluster analysis using the Ward’s, complete linkage, centroid,
and median methods.

(d) Use the flexible beta method with β = −.25, β = −.5, and β = −.75.

14.8 Use the hematology data of Table 4.3.

(a) Carry out a cluster analysis using the centroid method and find the dis-
tance between the centroids of the two-cluster solution.

(b) Carry out a cluster analysis using the average linkage method. How many
clusters are indicated in the dendrogram?

(c) Using the two-cluster solution from part (b), label observations from one
cluster as group 1 and the observations from the other cluster as group 2.
Calculate and plot the discriminant function, as in Example 8.2. Do the
two clusters overlap?

14.9 Use all the variables of the Seishu data of Table 7.1.

(a) Find the three-cluster solution using the single linkage, complete linkage,
average linkage, centroid, median, and Ward’s methods. Which observa-
tion appears to be an outlier? Which cluster is the same in all six solu-
tions?

(b) Using the cluster found in part (a) to be common to all solutions as group
1 and the rest of the observations as group 2, calculate and plot the dis-
criminant function, as in Problem 14.8(c). Do the two clusters overlap?

14.10 Use the first 20 observations of the temperature data of Table 7.2. Standardize
the variables (columns) before doing the following:

(a) Carry out a k-means cluster analysis using as initial seeds the five obser-
vations that are mutually farthest apart. Plot the first two discriminant
functions using the five clusters as groups.

(b) Repeat part (a) using the first five observations as initial seeds.

(c) Repeat part (a) using as initial seeds the centroids of the five-cluster
solution found using Ward’s method. Plot the dendrogram resulting from
Ward’s method.

(d) Repeat part (c) using average linkage instead of Ward’s method. Compare
the results with those in part (c).

(e) Plot the first and second principal components and the second and third
components. Which cluster solutions found in parts (a)–(d) seem to agree
most with the principal component plots?

(f) Repeat parts (a) and (b) using three initial seeds instead of five. How do
the cluster solutions compare?

(g) Repeat part (c) using three initial seeds instead of five. How does the
cluster solution compare to your answer in part (f)?

14.11 Table 14.13 contains air pollution data from 41 U.S. cities (Sokal and Rohlf
1981, p. 619). The variables are as follows:
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Table 14.13. Air Pollution Levels in U.S. Cities

Cities y1 y2 y3 y4 y5 y6 y7

Phoenix 10 70.3 213 582 6.0 7.05 36
Little Rock 13 61.0 91 132 8.2 48.52 100
San Francisco 12 56.7 453 716 8.7 20.66 67
Denver 17 51.9 454 515 9.0 12.95 86
Hartford 56 49.1 412 158 9.0 43.37 127
Wilmington 36 54.0 80 80 9.0 40.25 114
Washington 29 57.3 434 757 9.3 38.89 111
Jacksonville 14 68.4 136 529 8.8 54.47 116
Miami 10 75.5 207 335 9.0 59.80 128
Atlanta 24 61.5 368 497 9.1 48.34 115
Chicago 110 50.6 3344 3369 10.4 34.44 122
Indianapolis 28 52.3 361 746 9.7 38.74 121
Des Moines 17 49.0 104 201 11.2 30.85 103
Wichita 8 56.6 125 277 12.7 30.58 82
Louisville 30 55.6 291 593 8.3 43.11 123
New Orleans 9 68.3 204 361 8.4 56.77 113
Baltimore 47 55.0 625 905 9.6 41.31 111
Detroit 35 49.9 1064 1513 10.1 30.96 129
Minneapolis–St. Paul 29 43.5 699 744 10.6 25.94 137
Kansas City 14 54.5 381 507 10.0 37.00 99
St. Louis 56 55.9 775 622 9.5 35.89 105
Omaha 14 51.5 181 347 10.9 30.18 98
Albuquerque 11 56.8 46 244 8.9 7.77 58
Albany 46 47.6 44 116 8.8 33.36 135
Buffalo 11 47.1 391 463 12.4 36.11 166
Cincinnati 23 54.0 462 453 7.1 39.04 132
Cleveland 65 49.7 1007 751 10.9 34.99 155
Columbus 26 51.5 266 540 8.6 37.01 134
Philadelphia 69 54.6 1692 1950 9.6 39.93 115
Pittsburgh 61 50.4 347 520 9.4 36.22 147
Providence 94 50.0 343 179 10.6 42.75 125
Memphis 10 61.6 337 624 9.2 49.10 105
Nashville 18 59.4 275 448 7.9 46.00 119
Dallas 9 66.2 641 844 10.9 35.94 78
Houston 10 68.9 721 1233 10.8 48.19 103
Salt Lake City 28 51.0 137 176 8.7 15.17 89
Norfolk 31 59.3 96 308 10.6 44.68 116
Richmond 26 57.8 197 299 7.6 42.59 115
Seattle 29 51.1 379 531 9.4 38.79 164
Charleston 31 55.2 35 71 6.5 40.75 148
Milwaukee 16 45.7 569 717 11.8 29.07 123
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y1 = SO2 content of air in micrograms per cubic meter

y2 = Average annual temperature in ◦F

y3 = Number of manufacturing enterprises employing 20 or more workers

y4 = Population size (1970 census) in thousands

y5 = Average annual wind speed in miles per hour

y6 = Average annual precipitation in inches

y7 = Average number of days with precipitation per year

Standardize each variable to mean 0 and standard deviation 1. Carry out a
cluster analysis using the density estimation method with k equal to 2, 3, 4, 5
and values of r ranging from .2 to 2 by increments of .2 for each value of k.
What is the maximum value of k that produces a two-cluster solution?

14.12 Table 14.14 gives the yields of winter wheat in each of the years 1970–1973
at 12 different sites in England (Hand et al. 1994, p. 31).

(a) Carry out a cluster analysis using the density estimation method with k =
2, 3, 4 and r = .2, .4, . . . , 2.0.

(b) Plot the first two discriminant functions from the three-cluster solution
obtained with k = 2 and r = 1.

(c) Plot the first two principal components and compare with the plot in
part (b).

(d) Repeat part (b) using a two-cluster solution obtained with k = 3 and
r = 1. Which two clusters of the three-cluster solution found in part (b)
merged into one cluster?

Table 14.14. Yields of Winter Wheat (kg per unit area)

Year

Site 1970 1971 1972 1973

Cambridge 46.81 39.40 55.64 32.61
Cockle Park 46.49 34.07 45.06 41.02
Harpers Adams 44.03 42.03 40.32 50.23
Headley Hall 52.24 36.19 47.03 34.56
Morley 36.55 43.06 38.07 43.17
Myerscough 34.88 49.72 40.86 50.08
Rosemaund 56.14 47.67 43.48 38.99
Seale-Hayne 45.67 27.30 45.48 50.32
Sparsholt 42.97 46.87 38.78 47.49
Sutton Bonington 54.44 49.34 24.48 46.94
Terrington 54.95 52.05 50.91 39.13
Wye 48.94 48.63 31.69 59.72
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Graphical Procedures

In Sections 15.1, 15.2, and 15.3, we consider three graphical techniques: multidimen-
sional scaling, correspondence analysis, and biplots. These methods are designed to
reduce dimensionality and portray relationships among observations or variables.

15.1 MULTIDIMENSIONAL SCALING

15.1.1 Introduction

In the dimension reduction technique called multidimensional scaling, we begin with
the distances δi j between each pair of items. We wish to represent the n items in a
low-dimensional coordinate system, in which the distances di j between items closely
match the original distances δi j , that is,

di j ∼= δi j for all i, j.

The final distances di j are usually Euclidean. The original distances δi j may be actual
measured distances between observations yi and y j in p dimensions, such as

δi j = [(yi − y j )
′(yi − y j )]1/2. (15.1)

On the other hand, the distances δi j may be only a proximity or similarity based on
human judgment—for example, the perceived degree of similarity between all pairs
of brands of a certain type of appliance (for a discussion of similarities and dissimi-
larities, see Section 14.2). The goal of multidimensional scaling is a plot that exhibits
information about how the items relate to each other or provides some other mean-
ingful interpretation of the data. For example, the aim may be seriation or ranking;
if the points lie close to a curve in two dimensions, then the ordering of points along
the curve is used to rank the points.

If the observation vectors yi , i = 1, 2, . . . , n, are available and we calculate
distances using (15.1) or a similar measure, or if the original yi ’s are not available,
but we have actual distances between items, then the process of reduction to a lower
dimensional geometric representation is called metric multidimensional scaling. If

504
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the original distances are only similarities based on judgment, the process is called
nonmetric multidimensional scaling, and the final spatial representation preserves
only the rank order among the similarities. We consider metric scaling in Section
15.1.2 and nonmetric scaling in Section 15.1.3. For useful discussions of various
aspects of multidimensional scaling, see Davidson (1983); Gordon (1999, Sections
6.2 and 6.3); Kruskal and Wish (1978); Mardia, Kent, and Bibby (1979, Chapter
14); Seber (1984, Section 5.5); Young (1987); Jobson (1992, Section 10.3); Shepard,
Romney, and Nerlove (1972); and Romney, Shepard, and Nerlove (1972).

15.1.2 Metric Multidimensional Scaling

In this section, we consider metric multidimensional scaling, which is also known as
the classical solution and as principal coordinate analysis. We begin with an n × n
distance matrix D = (δi j ). Our goal is to find n points in k dimensions such that the
interpoint distances di j in the k dimensions are approximately equal to the values of
δi j in D. Typically, we use k = 2 for plotting purposes, but k = 1 or 3 may also be
useful.

The points are found as follows:

1. Construct the n ×n matrix A = (ai j ) = (− 1
2 δ

2
i j ), where δi j is the i j th element

of D.

2. Construct the n ×n matrix B = (bi j ), with elements bi j = ai j −ai.−a. j +a..,
where ai. = ∑n

j=1 ai j/n, a. j = ∑n
i=1 ai j/n, a.. = ∑

i j ai j/n2. The matrix B
can be written as

B =
(

I − 1

n
J
)

A
(

I − 1

n
J
)
. (15.2)

It can be shown that there exists a q-dimensional configuration z1, z2, . . . , zn

with interpoint distances di j = (zi − z j )
′(zi − z j ) such that di j = δi j if

and only if B is positive semidefinite of rank q (Schoenberg 1935; Young and
Householder 1938; Gower 1966; Seber 1984, p. 236).

3. Since B is a symmetric matrix, we can use the spectral decomposition in
(2.109) to write B in the form

B = V�V′, (15.3)

where V is the matrix of eigenvectors of B and � is the diagonal matrix of
eigenvalues of B. If B is positive semidefinite of rank q, there are q pos-
itive eigenvalues, and the remaining n − q eigenvalues are zero. If �1 =
diag(λ1, λ2, . . . , λq) contains the positive eigenvalues and V1 = (v1, v2,

. . . , vq ) contains the corresponding eigenvectors, then we can express (15.3)
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in the form

B = V1�1V′
1

= V1�
1/2
1 �

1/2
1 V′

1

= ZZ′,

where

Z = V1�
1/2
1 = (

√
λ1v1,

√
λ2v2, . . . ,

√
λqvq) =




z′
1

z′
2
...

z′
n


 . (15.4)

4. The rows z′
1, z′

2, . . . , z′
n of Z in (15.4) are the points whose interpoint distances

di j = (zi − z j )
′(zi − z j ) match the δi j ’s in the original distance matrix D, as

noted following (15.2).
5. Since q in (15.4) will typically be too large to be of practical interest and

we would prefer a smaller dimension k for plotting, we can use the first k
eigenvalues and corresponding eigenvectors in (15.4) to obtain n points whose
interpoint distances di j are approximately equal to the corresponding δi j ’s.

6. If B is not positive semidefinite, but its first k eigenvalues are positive and
relatively large, then these eigenvalues and associated eigenvectors may be
used in (15.4) to construct points that give reasonably good approximations to
the δi j ’s.

Note that the method used to obtain Z from B closely resembles principal com-
ponent analysis. Note also that the solution Z in (15.4) is not unique, since a shift in
origin or a rotation will not change the distances di j . For example, if C is a q × q
orthogonal matrix producing a rotation [see (2.101)], then

(Czi − Cz j )
′(Czi − Cz j ) = (zi − z j )

′C′C(zi − z j )

= (zi − z j )
′(zi − z j ) [see (2.103)].

Thus the rotated points Czi have the same interpoint distances di j .

Example 15.1.2(a). To illustrate the first four steps of the above algorithm for metric
multidimensional scaling, consider the 5 × 5 distance matrix

D = (δi j ) =




0 2
√

2 2
√

2 2
√

2 2
√

2
2
√

2 0 4 4
√

2 4
2
√

2 4 0 4 4
√

2
2
√

2 4
√

2 4 0 4
2
√

2 4 4
√

2 4 0


 .
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The matrix A = (− 1
2δ

2
i j ) in step 1 is given by

A = −




0 4 4 4 4
4 0 8 16 8
4 8 0 8 16
4 16 8 0 8
4 8 16 8 0


 .

For the means, we have ā1. = ā.1 = −16/5, āi. = ā.i = −36/5, i = 2, . . . , 5,
ā.. = −32/5. With n = 5, the matrix B in step 2 is given by

B =
(

I − 1

5
J
)

A
(

I − 1

5
J
)

=




0 0 0 0 0
0 8 0 −8 0
0 0 8 0 −8
0 −8 0 8 0
0 0 −8 0 8


 .

The rank of B is clearly 2. For step 3, the (nonzero) eigenvalues and corresponding
eigenvectors of B are given by λ1 = 16, λ2 = 16,

v1 =




0
1
2

√
2
0

− 1
2

√
2
0


 , v2 =




0
0

1
2

√
2
0

− 1
2

√
2


 .

Then for step 3 we have, by (15.4),

Z =
(√
λ1v1,

√
λ2v2

)
=




0 0
2
√

2 0
0 2

√
2

−2
√

2 0
0 −2

√
2


 .

It can be shown (step 4) that the distance matrix for these five points is D. The five
points constitute a square with each side of length 4 and a center point at the origin.
The five points (rows of Z) are plotted in Figure 15.1.

Example 15.1.2(b). For another example of metric multidimensional scaling, we
use airline distances between 10 U.S. cities, as given in Table 15.1 (Kruskal and Wish
1978, pp. 7–9). The points given by metric multidimensional scaling are plotted in
Figure 15.2. Notice that north and south have been reversed; the eigenvectors vi in
(15.4) are normalized but are subject to multiplication by −1.
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Figure 15.1. Plot of the five points found in Example 15.1.2(a)

15.1.3 Nonmetric Multidimensional Scaling

Suppose the m = n(n − 1)/2 dissimilarities δi j cannot be measured as in (15.1) but
can be ranked in order,

δr1s1 < δr2s2 < · · · < δrmsm , (15.5)

Table 15.1. Airline Distances between Ten U.S. Cities

City 1 2 3 4 5 6 7 8 9 10

1 0 587 1212 701 1936 604 748 2139 2182 543
2 587 0 920 940 1745 1188 713 1858 1737 597
3 1212 920 0 879 831 1726 1631 949 1021 1494
4 701 940 879 0 1374 968 1420 1645 1891 1220
5 1936 1745 831 1374 0 2339 2451 347 959 2300
6 604 1188 1726 968 2339 0 1092 2594 2734 923
7 748 713 1631 1420 2451 1092 0 2571 2408 205
8 2139 1858 949 1645 347 2594 2571 0 678 2442
9 2182 1737 1021 1891 959 2734 2408 678 0 2329

10 543 597 1494 1220 2300 923 205 2442 2329 0

Cities: (1) Atlanta, (2) Chicago, (3) Denver, (4) Houston, (5) Los Angeles, (6) Miami, (7) New York,
(8) San Francisco, (9) Seattle, (10) Washington, D.C.
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Figure 15.2. Plot of the points found in Example 15.1.2(b).

where r1s1 indicates the pair of items with the smallest dissimilarity and rmsm rep-
resents the pair with greatest dissimilarity. In nonmetric multidimensional scaling,
we seek a low-dimensional representation of the points such that the rankings of the
distances

dr1s1 < dr2s2 < · · · < drmsm (15.6)

match exactly the ordering of dissimilarities in (15.5). Thus, although metric scaling
uses the magnitudes of the δi j ’s, nonmetric scaling is based only on the rank order of
the δi j ’s.

For a given set of points with distances di j , a plot of di j versus δi j may not be
monotonic; that is, the ordering in (15.6) may not match exactly the ordering in
(15.5). A lack of monotonicity of this type is illustrated in Figure 15.3.

In Figure 15.3, the dashed line and open circles show some values of d̂i j that
are estimated in such a way that the plot becomes monotonic. Suitable d̂i j ’s can be
estimated by monotonic regression, in which we seek values of d̂i j to minimize the
scaled sum of squared differences

S2 =
∑

i< j (di j − d̂i j )
2∑

i< j d2
i j

(15.7)
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Figure 15.3. Plot of distance d versus dissimilarity δ illustrating lack of monotonicity. The
dashed line represents best fit by monotonic regression.

subject to the constraint

d̂r1s1 ≤ d̂r2s2 ≤ · · · ≤ d̂rmsm ,

where r1s1, r2s2, . . . , rmsm are defined as in (15.5) and (15.6) (Kruskal 1964a,
1964b). The minimum value of S2 for a given dimension, k, is called the STRESS.
Note that the d̂i j ’s are not distances. They are merely numbers used as a reference to
assess the monotonicity of the di j ’s. The d̂i j ’s are sometimes called disparities.

The minimum value of the STRESS over all possible configurations of points can
be found using the following algorithm.

1. Rank the m = n(n − 1)/2 distances or dissimilarities δi j as in (15.5).
2. Choose a value of k and an initial configuration of points in k dimensions.

The initial configuration could be n points chosen at random from a uniform
or normal distribution, n evenly spaced points in k-dimensional space, or the
metric solution obtained by treating the ordinal measurements as continuous
and using the algorithm in Section 15.1.2.

3. For the initial configuration of points, find the interitem distances di j . Find the
corresponding d̂i j ’s by monotonic regression as defined above using (15.7).

4. Choose a new configuration of points whose distances di j minimize S2 in
(15.7) with respect to the d̂i j ’s found in step 3. One approach is to use an itera-
tive gradient technique such as the method of steepest descent or the Newton–
Raphson method.

5. Using monotonic regression, find new d̂i j ’s for the di j ’s found in step 4. This
gives a new value of STRESS.

6. Repeat steps 4 and 5 until STRESS converges to a minimum over all possible
k-dimensional configurations of points.



MULTIDIMENSIONAL SCALING 511

Figure 15.4. Ideal plot of minimum STRESS versus k.

7. Using the preceding six steps, calculate the minimum STRESS for values of k
starting at k = 1 and plot these. As k increases, the curve will decrease, with
occasional exceptions due to round off or numerical anomalies in the search
procedure for minimum STRESS. We look for a discernible bend in the plot,
following which the curve is low and relatively flat. An ideal plot is shown in
Figure 15.4. The curve levels off after k = 2, which is convenient for plotting
the resulting n points in 2 dimensions.

There is a possibility that the minimum value of STRESS found by the above
seven steps for a given value of k may be a local minimum rather than the global
minimum. Such an anomaly may show up in the plot of minimum STRESS versus
k. The possibility of a local minimum can be checked by repeating the procedure,
starting with a different initial configuration.

As was the case with metric scaling, the final configuration of points from a non-
metric scaling is invariant to a rotation of axes.

Example 15.1.3. The voting records for 15 congressmen from New Jersey on 19
environmental bills are given in Table 15.2 in the form of a dissimilarity matrix (Hand
et al. 1994, p. 235). The congressmen are identified by party: R1 for Republican 1,
D2 for Democrat 2, etc. Each entry shows how often the indicated congressman
voted differently from each of the other 14.

Using an initial configuration of points from a multivariate normal distribution
with mean vector � = 0 and � = I, we find an “optimal” configuration of points for
each of k = 1, 2, . . . , 5. A plot of the STRESS is given in Figure 15.5.

From the plot of STRESS vs. number of dimensions, we see that either two or
three dimensions will be sufficient. For plotting purposes, we choose two dimen-
sions, which has a STRESS value of .113. The plot of the first two dimensions is
given in Figure 15.6. It is apparent that the plot separates the Republicans from the
Democrats except for Republican 6, who voted much the same as the Democrats.
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Table 15.2. Dissimilarity Matrix for Voting Records of 15 Congressmen

R1 R2 D1 D2 R3 R4 R5 D3 D4 D5 D6 R6 R7 R8 D7

R1 0 8 15 15 10 9 7 15 16 14 15 16 7 11 13
R2 8 0 17 12 13 13 12 16 17 15 16 17 13 12 16
D1 15 17 0 9 16 12 15 5 5 6 5 4 11 10 7
D2 15 12 9 0 14 12 13 10 8 8 8 6 15 10 7
R3 10 13 16 14 0 8 9 13 14 12 12 12 10 11 11
R4 9 13 12 12 8 0 7 12 11 10 9 10 6 6 10
R5 7 12 15 13 9 7 0 17 16 15 14 15 10 11 13
D3 15 16 5 10 13 12 17 0 4 5 5 3 12 7 6
D4 16 17 5 8 14 11 16 4 0 3 2 1 13 7 5
D5 14 15 6 8 12 10 15 5 3 0 1 2 11 4 6
D6 15 16 5 8 12 9 14 5 2 1 0 1 12 5 5
R6 16 17 4 6 12 10 15 3 1 2 1 0 12 6 4
R7 7 13 11 15 10 6 10 12 13 11 12 12 0 9 13
R8 11 12 10 10 11 6 11 7 7 4 5 6 9 0 9
D7 13 16 7 7 11 10 13 6 5 6 5 4 13 9 0
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Figure 15.5. Plot of STRESS for each value of k for the voting data in Table 15.2.
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Figure 15.6. Plot of points found using initial points from a multivariate normal distribution.
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Figure 15.7. Plot of points found using initial points from a uniform distribution.
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Figure 15.8. Plot of points found using initial points from a metric solution.

We now use a different initial configuration of points drawn from a uniform dis-
tribution. The resulting plot is given in Figure 15.7. The results are very similar, with
the exception of R1 and R3.

We next use a third initial configuration of points resulting from the metric solu-
tion, as described in Section 15.1.2. The resulting plot is given in Figure 15.8. All
three plots are very similar, indicating a good fit.

15.2 CORRESPONDENCE ANALYSIS

15.2.1 Introduction

Correspondence analysis is a graphical technique for representing the information
in a two-way contingency table, which contains the counts (frequencies) of items
for a cross-classification of two categorical variables. With correspondence analysis,
we construct a plot that shows the interaction of the two categorical variables along
with the relationship of the rows to each other and of the columns to each other. In
Sections 15.2.2–15.2.4, we consider correspondence analysis for ordinary two-way
contingency tables. In Section 15.2.5 we consider multiple correspondence analysis
for three-way and higher-order contingency tables. Useful treatments of correspon-
dence analysis have been given by Greenacre (1984), Jobson (1992, Section 9.4),
Khattree and Naik (1999, Chapter 7), Gower and Hand (1996, Chapters 4 and 9),
and Benzécri (1992).
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To test for significance of association of the two categorical variables in a con-
tingency table, we could use a chi-square test or a log-linear model, both of which
represent an asymptotic approach. Since correspondence analysis is associated with
the chi-square approach, we will review it in Section 15.2.3. If a contingency table
has some cell frequencies that are small or zero, the chi-square approximation is not
very satisfactory. In this case, some categories can be combined to increase the cell
frequencies. Correspondence analysis may be useful in identifying the categories that
are similar, which we may thereby wish to combine.

In correspondence analysis, we plot a point for each row and a point for each
column of the contingency table. These points are, in effect, projections of the rows
and columns of the contingency table onto a two-dimensional Euclidean space. The
goal is to preserve as far as possible the relationship of the rows (or columns) to
each other in a two-dimensional space. If two row points are close together, the
profiles of the two rows (across the columns) are similar. Likewise, two column
points that are close together represent columns with similar profiles across the rows
(see Section 15.2.2 for a definition of profiles). If a row point is close to a column
point, this combination of categories of the two variables occurs more frequently
than would occur by chance if the two variables were independent. Another output
of a correspondence analysis is the inertia, or amount of information in each of the
two dimensions in the plot (see Section 15.2.4).

15.2.2 Row and Column Profiles

A contingency table with a rows and b columns is represented in Table 15.3. The
entries ni j are the counts or frequencies for every two-way combination of row and
column (every cell). The marginal totals are shown using the familiar dot notation:
ni. = ∑b

j=1 ni j and n. j = ∑a
i=1 ni j . The overall total frequency is denoted by n

instead of n.. for simplicity: n = ∑
i j ni j .

The frequencies ni j in a contingency table can be converted to relative frequencies
pi j by dividing by n: pi j = ni j/n. The matrix of relative frequencies is called the
correspondence matrix and is denoted by P:

Table 15.3. Contingency Table with a Rows and b Columns

Columns

1 2 · · · b Row Total

1 n11 n12 · · · n1b n1.

2 n21 n22 · · · n2b n2.
Rows

...
...

...
...

...

a na1 na2 · · · nab na.

Column Total n.1 n.2 · · · n.b n
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Table 15.4. Correspondence Matrix of Relative Frequencies

Columns

1 2 · · · b Row Total

1 p11 p12 · · · p1b p1.

2 p21 p22 · · · p2b p2.
Rows

...
...

...
...

...

a pa1 pa2 · · · pab pa.

Column Total p.1 p.2 · · · p.b 1

P = (pi j ) = (ni j/n). (15.8)

In Table 15.4 we show the contingency table in Table 15.3 converted to a correspon-
dence matrix.

The last column of Table 15.4 contains the row sums pi. = ∑b
j=1 pi j . This col-

umn vector is denoted by r and can be obtained as

r = Pj = (p1., p2., . . . , pa.)
′ = (n1./n, n2./n, . . . , na./n)′, (15.9)

where j is an a × 1 vector of 1’s. Similarly, the last row of Table 15.4 contains the
column sums p. j = ∑a

i=1 pi j . This row vector is denoted by c′ and can be obtained
as

c′ = j′P = (p.1, p.2, . . . , p.b) = (n.1/n, n.2/n, . . . , n.b/n), (15.10)

where j′ is a 1 × b vector of 1’s. The elements of the vectors r and c are sometimes
referred to as row and column masses. The correspondence matrix and marginal
totals in Table 15.4 can be expressed as

(
P r
c′ 1

)
=




p11 p12 · · · p1b p1.
p21 p22 · · · p2b p2.
...

...
...

...

pa1 pa2 · · · pab pa.

p.1 p.2 · · · p.b 1



. (15.11)

We now convert each row and column of P to a profile. The i th row profile r′
i ,

i = 1, 2, . . . , a, is defined by dividing the i th row of either Table 15.3 or 15.4 by its
marginal total:

r′
i =

(
pi1

pi.
,

pi2

pi.
, . . . ,

pib

pi.

)
=
(

ni1

ni.
,

ni2

ni.
, . . . ,

nib

ni.

)
. (15.12)
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The elements in each r′
i are relative frequencies, and therefore they sum to 1:

r′
i j =

b∑
j=1

ni j

ni.
= ni.

ni.
= 1. (15.13)

By defining

Dr = diag(r) =




p1. 0 · · · 0
0 p2. · · · 0
...

...
...

0 0 · · · pa.


 (15.14)

and using (2.55), the matrix R of row profiles can be expressed as

R = D−1
r P =




r′
1

r′
2
...

r′
a


 =




p11

p1.

p12

p1.
· · · p1b

p1.
p21

p2.

p22

p2.
· · · p2b

p2.
...

...
...

pa1

pa.

pa2

pa.
· · · pab

pa.



. (15.15)

Similarly, the j th column profile c j , j = 1, 2, . . . , b, is defined by dividing the
j th column of either Table 15.3 or Table 15.4 by its marginal total:

c j =
(

p1 j

p. j
,

p2 j

p. j
, . . . ,

paj

p. j

)′
=
(

n1 j

n. j
,

n2 j

n. j
, . . . ,

naj

n. j

)′
. (15.16)

The elements in each c j are relative frequencies, and therefore they sum to 1:

j′c j =
a∑

i=1

ni j

n. j
= n. j

n. j
= 1. (15.17)

By defining

Dc = diag(c) =




p.1 0 · · · 0
0 p.2 · · · 0
...

...
...

0 0 · · · p.b


 (15.18)

and using (2.56), the matrix C of column profiles can be expressed as
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C = PD−1
c = (c1, c2, . . . , cb) =




p11

p.1

p12

p.2
· · · p1a

p.a
p21

p.1

p22

p.2
· · · p2a

p.a
...

...
...

pa1

p.1

pa2

p.2
· · · pab

p.a



. (15.19)

The vector r is defined in (15.9) as the column vector of row sums of P. It can
also be expressed as a weighted average of the column profiles:

r =
b∑

j=1

p. j c j . (15.20)

Similarly, c′ in (15.10) is the row vector of column sums of P and can be expressed
as a weighted average of the row profiles:

c′ =
a∑

i=1

pi.r′
i . (15.21)

Note that
∑b

j=1 p. j = ∑a
i=1 pi. = 1, or

j′r = c′j = 1, (15.22)

where the first j is a × 1 and the second is b × 1. Therefore, the p. j ’s and pi.’s serve
as appropriate weights in the weighted averages (15.20) and (15.21).

Example 15.2.2. In Table 15.5 (Hand et al. 1994, p. 12) we have the number of
piston ring failures in each of three legs in four compressors found in the same
building (all four compressors are oriented in the same direction). We obtain the
correspondence matrix in Table 15.6 by dividing each element of Table 15.5 by
n = ∑

i j ni j = 166.

Table 15.5. Piston Ring Failures

Leg

Compressor North Center South Row Total

1 17 17 12 46
2 11 9 13 33
3 11 8 19 38
4 14 7 28 49

Column Total 53 41 72 166



CORRESPONDENCE ANALYSIS 519

Table 15.6. Correspondence Matrix Obtained from Table 15.5

Leg

Compressor North Center South Row Total

1 .102 .102 .072 .277
2 .066 .054 .078 .199
3 .066 .048 .114 .229
4 .082 .042 .169 .295

Column Total .319 .247 .434 1.000

The vectors of row and column sums (marginal totals) in Table 15.6 are given by
(15.9) and (15.10) as

r =



.277
.199
.229
.295


 ,

c′ = (.319, .247, .434).

The matrix of row profiles is given by (15.15) as

R = D−1
r P =



.370 .370 .261
.333 .273 .394
.290 .211 .500
.286 .143 .571


 .

The matrix of column profiles is given by (15.19) as

C = PD−1
c =



.321 .415 .167
.208 .220 .181
.208 .195 .264
.264 .171 .389


 .

15.2.3 Testing Independence

In Section 15.2.1, we noted that the data in a contingency table can be used to check
for association of two categorical variables. If the two variables are denoted by x and
y, then the assumption of independence can be expressed in terms of probabilities as

P(xi y j ) = P(xi )P(y j), i = 1, 2, . . . , a; j = 1, 2, . . . , b, (15.23)

where xi and y j correspond to the i th row and j th column of the contingency table.
Using the notation in Table 15.4, we can estimate (15.23) as

pi j = pi. p. j , i = 1, 2, . . . , a; j = 1, 2, . . . , b. (15.24)



520 GRAPHICAL PROCEDURES

The usual chi-square statistic for testing independence of x and y (comparing pi j

with pi. p. j for all i, j) is given by

χ2 = n
a∑

i=1

b∑
j=1

(pi j − pi. p. j )2

pi. p. j
, (15.25)

which is approximately (asymptotically) distributed as a chi-square random variable
with (a − 1)(b − 1) degrees of freedom. The statistic in (15.25) can also be written
in terms of the frequencies ni j rather than the relative frequencies pi j :

χ2 =
a∑

i=1

b∑
j=1

(
ni j − ni.n. j

n

)2

ni.n. j
n

. (15.26)

Two other alternative forms of (15.25) are

χ2 =
a∑

i=1

npi.

b∑
j=1

[(
pi j

pi.
− p. j

)2

/p. j

]
, (15.27)

χ2 =
b∑

j=1

np. j
a∑

i=1

[(
pi j

p. j
− pi.

)2

/pi.

]
. (15.28)

In vector and matrix form, (15.27) and (15.28) can be written as

χ2 =
a∑

i=1

npi.(ri − c)′D−1
c (ri − c), (15.29)

χ2 =
b∑

j=1

np. j (c j − r)′D−1
r (c j − r), (15.30)

where r, c, ri , c j , Dr , and Dc are defined in (15.9), (15.10), (15.12), (15.16), (15.14),
and (15.18), respectively. Thus, in (15.29) we compare ri to c for each i , and in
(15.30) we compare c j to r for each j . Either of these is equivalent to testing inde-
pendence by comparing pi j to pi. p. j for all i, j , since all the definitions of χ2 in
(15.25)–(15.30) are equal. Thus, the following three statements of independence are
equivalent (for simplicity, we express the three statements in terms of sample quan-
tities rather than their theoretical counterparts):

1. pi j = pi. p. j for all i, j (or P = rc′).
2. All rows r′

i of R in (15.15) are equal (and equal to their weighted average, c′).
3. All columns c j of C in (15.19) are equal (and equal to their weighted aver-

age, r).
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Thus, if the variables x and y were independent, we would expect the rows of the
contingency table to have similar profiles, or equivalently, the columns to have sim-
ilar profiles. We can compare the row profiles to each other by comparing each row
profile r′

i to the weighted average c′ of the row profiles defined in (15.21). This com-
parison is made in the χ2 statistic (15.29). Similarly, we compare column profiles in
(15.30).

The chi-square statistic in (15.25) can be expressed in vector and matrix terms as

χ2 = n tr[D−1
r (P − rc′)D−1

c (P − rc′)′] (15.31)

= n
k∑

i=1

λ2
i [by (2.107)], (15.32)

where λ2
1, λ2

2, . . . , λ
2
k are the nonzero eigenvalues of D−1

r (P− rc′)D−1
c (P− rc′)′ and

k = rank[D−1
r (P − rc′)D−1

c (P − rc′)′] = rank(P − rc′). (15.33)

The rank of P − rc′ is ordinarily k = min[(a − 1), (b − 1)]. It is clear that the rank
is less than min(a, b) since

(P − rc′)j = Pj − rc′j = r − r = 0 (15.34)

[see (15.9) and (15.22)].

Example 15.2.3. In order to test independence of the rows (compressors) and
columns (legs) of Table 15.5 in Example 15.2.2, we perform a chi-square test.
Using (15.25) or (15.26), we obtain χ2 = 11.722, with 6 degrees of freedom, for
which the p-value is .0685. There is some evidence of lack of independence between
leg and compressor.

15.2.4 Coordinates for Plotting Row and Column Profiles

We now obtain coordinates of the row points and column points for the best two-
dimensional representation of the data in a contingency table. As we will see, the
metric for the row points and column points is the same, and the two sets of points
can therefore be superimposed on the same plot.

In multidimensional scaling in Section 15.1, we transformed the distance matrix
and then factored it by a spectral decomposition to obtain coordinates for plotting. In
correspondence analysis, the matrix P − rc′ is not symmetric, and we therefore use
a singular value decomposition to obtain coordinates.

We first scale P − rc′ to obtain

Z = D−1/2
r (P − rc′)D−1/2

c , (15.35)
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whose elements are

zi j = pi j − pi. p. j√
pi. p. j

, (15.36)

as in (15.25). The a × b matrix Z has rank k = min(a − 1, b − 1), the assumed rank
of P − rc′. We factor Z using the singular value decomposition (2.117):

Z = U�V′. (15.37)

The columns of the a × k matrix U are (normalized) eigenvectors of ZZ′; the
columns of the b × k matrix V are (normalized) eigenvectors of Z′Z; and � =
diag(λ1, λ2, . . . , λk), where λ2

1, λ2
2, . . . , λ

2
k are the nonzero eigenvalues of Z′Z and

of ZZ′. The eigenvectors in U and V correspond to the eigenvalues λ2
1, λ2

2, . . . , λ
2
k .

Since the columns of U and V are orthonormal, U′U = V′V = I. The values λ1,
λ2, . . . , λk in � are called the singular values of Z. Note that, by (15.35),

ZZ′ = D−1/2
r (P − rc′)D−1/2

c D−1/2
c (P − rc′)′D−1/2

r

= D−1/2
r (P − rc′)D−1

c (P − rc′)′D−1/2
r . (15.38)

The (nonzero) eigenvalues of ZZ′ in (15.38) are the same as those of

D−1/2
r D−1/2

r (P − rc′)D−1
c (P − rc′)′ (15.39)

(see Section 2.11.5). The matrix expression in (15.39) is the same as that in (15.31).
We have therefore denoted the eigenvalues as λ2

1, λ2
2, . . . , λ

2
k as in (15.32).

We can obtain a decomposition of P − rc′ by equating the right-hand sides of
(15.35) and (15.37) and solving for P − rc′:

D−1/2
r (P − rc′)D−1/2

c = U�V′,

P − rc′ = D1/2
r U�V′D1/2

c

= A�B′ =
k∑

i=1

λi ai b′
i , (15.40)

where A = D1/2
r U, B = D1/2

c V, ai and bi are columns of A and B, and � =
diag(λ1, λ2, . . . , λk).

Since U′U = V′V = I, A and B in (15.40) are scaled so that A′D−1
r A =

B′D−1
c B = I. With this scaling, the decomposition in (15.40) is often called the

generalized singular value decomposition.
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In (15.40) the rows of P − rc′ are expressed as linear combinations of the rows of
B′, which are the columns of B = (b1,b2, . . . ,bk). The coordinates (coefficients)
for the i th row of P − rc′ are found in the i th row of A�. In like manner, the coordi-
nates for the columns of P − rc′ are given by the columns of �B′, since the columns
of �B′ provide coefficients for the columns of A = (a1, a2, . . . , ak) in (15.40).

To find coordinates for the row deviations r′
i − c′ in R − jc′ and the column

deviations c j − r in C − rj′, we express the two matrices as functions of P − rc′ (see
Problem 15.8):

R − jc′ = D−1
r (P − rc′), (15.41)

C − rj′ = D−1
c (P − rc′). (15.42)

Thus the coordinates for the row deviations in R − jc′ with respect to the axes pro-
vided by b1, b2, . . . ,bk are given by the columns of

X = D−1
r A�. (15.43)

Similarly, the coordinates for the column deviations in C − rj′ with respect to the
axes a1, a2, . . . , ak are given by the columns of

Y = D−1
c BΛ. (15.44)

Therefore, to plot the coordinates for the row profile deviations r′
i − c′, i = 1,

2, . . . , a, in two dimensions, we plot the rows of the first two columns of X:

X1 =




x11 x12
x21 x22
...

...

xa1 xa2


 .

Similarly, to plot the coordinates for the column profile deviations c j − r, j = 1,
2, . . . , b, in two dimensions, we plot the rows of the first two columns of Y:

Y1 =




y11 y12
y21 y22
...

...

yb1 yb2


 .

Both plots can be superimposed on the same graph because A and B in (15.40)
share the same singular values λ1, λ2, . . . , λk in �. Distances between row points
and distances between column points are meaningful. For example, the distance
between two row points is related to the chi-square metric implicit in (15.29). The
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chi-square distance between two row profiles ri and r j is given by

d2
i j = (ri − r j )

′D−1
c (ri − r j ).

If two row points (or two column points) are close, the two rows (or two columns)
could be combined into a single category if necessary to improve the chi-square
approximation.

The distance between a row point and a column point is not meaningful, but the
proximity of a row point and a column point has meaning as noted in Section 15.2.1,
namely, that these two categories of the two variables occur more frequently than
would be expected to happen by chance if the two variables were independent.

The weighted average (weighted by pi ) of the chi-square distances (ri −
c)′D−1

c (ri − c) between the row profiles ri and their mean c [see (15.21)] is called
the total inertia. By (15.29) this can be expressed as χ2/n:

Total inertia = χ2

n
=

a∑
i=1

pi.(ri − c)′D−1
c (ri − c). (15.45)

As noted following (15.21),
∑

i pi. = 1, and therefore the pi.’s serve as appropriate
weights.

By (15.32), we can write (15.45) as

χ2

n
=

k∑
i=1

λ2
i . (15.46)

Therefore, the contribution of each of the first two dimensions (axes) of our plot to
the total inertia in (15.45) is λ2

1/
∑

i λ
2
i and λ2

2/
∑

i λ
2
i . The combined contribution

of the two dimensions is

λ2
1 + λ2

2∑k
i=1 λ

2
i

. (15.47)

If (15.47) is large, then the points in the plane of the first two dimensions account
for nearly all the variation in the data, including the associations. The total inertia in
(15.45) and (15.46) can also be described in terms of the columns by using (15.30):

Total inertia = χ2

n
=

b∑
j=1

p. j (c j − r)′D−1
r (C j − r) =

k∑
i=1

λ2
i . (15.48)

Since the inertia associated with the axes for columns is the same as that for rows,
the row and column points can be plotted on the same axes.

Some computer programs use a singular value decomposition of P rather than of
P − rc′. The results are the same if the first singular value (which is 1) is discarded
along with the first column of A (which is r) and the first column of B (which is c).
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Figure 15.9. Row points (1, 2, 3, 4) and column points (center, north, south).

Example 15.2.4. We continue the analysis of the piston ring data of Table 15.5. A
correspondence analysis is performed and a plot of the row and column points is
given in Figure 15.9. Row points do not lie near other row points and columns points
do not lie near column points. However, compressor 1 seems to be closely associated
with the center leg, compressor 2 with the north leg, and compressor 4 with the south
leg. These associations illustrate the lack of independence between compressor and
leg position.

Singular values and inertias are given in Table 15.7. Most of the variation is due
to the first dimension, and the first two dimensions explain all the variation because
rank(Z) = min(a −1, b−1) = min(4−1, 3−1) = 2, where Z is defined in (15.35).

Table 15.7. Singular Values (λi), Inertia (λ2
i ), Chi-Square

(nλ2
i ), and Percent (λ2

i /
∑

j λ
2
j) for the Data in Table 15.5

Singular Value Inertia Chi-Square Percent

.26528 .07037 11.6819 99.66

.01560 .00024 .0404 .34

Total .07062 11.7223 100
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15.2.5 Multiple Correspondence Analysis

Correspondence analysis of a two-way contingency table can be extended to a three-
way or higher-order multiway table. By the method of multiple correspondence anal-
ysis, we obtain a two-dimensional graphical display of the information in the multi-
way contingency table. The method involves a correspondence analysis of an indi-
cator matrix G, in which there is a row for each item. Thus the number of rows of G
is the total number of items in the sample. The number of columns of G is the total
number of categories in all variables. The elements of G are 1’s and 0’s. In each row,
an element is 1 if the item belongs in the corresponding category of the variable;
otherwise, the element is 0. Thus the number of 1’s in a row of G is the number of
variables; for a four-way contingency table, for example, there would be four 1’s in
each row of G.

We illustrate a four-way classification with the (contrived) data in Table 15.8.
There are n = 12 items (people) and p = 4 categorical variables. The four variables
and their categories are listed in Table 15.9. The indicator matrix G for the data in
Table 15.8 is given in Table 15.10.

A correspondence analysis on G is equivalent to a correspondence analysis on
G′G, which is called the Burt matrix. This equivalence can be justified as follows.
In the singular value decomposition G = U�V′, the matrix V contains eigenvectors

Table 15.8. A List of 12 People and Their Categories on Four Variables

Person Gender Age Marital Status Hair Color

1 Male Young Single Brown
2 Male Old Single Red
3 Female Middle Married Blond
4 Male Old Single Black
5 Female Middle Married Black
6 Female Middle Single Brown
7 Male Young Married Red
8 Male Old Married Blond
9 Male Middle Single Brown

10 Female Young Married Black
11 Female Old Single Brown
12 Male Young Married Blond

Table 15.9. The Categories for the Four Variables in Table 15.8

Variable Levels

Gender Male, female
Age Young, middle-aged, old
Marital status Single, married
Hair color Blond, brown, black, red
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Table 15.10. Indicator Matrix G for the Data in Table 15.8

Person Gender Age Marital Status Hair Color

1 1 0 1 0 0 1 0 0 1 0 0
2 1 0 0 0 1 1 0 0 0 0 1
3 0 1 0 1 0 0 1 1 0 0 0
4 1 0 0 0 1 1 0 0 0 1 0
5 0 1 0 1 0 0 1 0 0 1 0
6 0 1 0 1 0 1 0 0 1 0 0
7 1 0 1 0 0 0 1 0 0 0 1
8 1 0 0 0 1 0 1 1 0 0 0
9 1 0 0 1 0 1 0 1 0 0 0

10 0 1 1 0 0 0 1 0 0 1 0
11 0 1 0 0 1 1 0 0 1 0 0
12 1 0 1 0 0 0 1 1 0 0 0

of G′G. The same matrix V would be used in the spectral decomposition of G′G.
Thus the columns of V are used in plotting coordinates for the columns of G or the
columns of G′G. If G is n× p with p < n, then G′G would be smaller in size than G.

The Burt matrix G′G has a square block on the diagonal for each variable and
a rectangular block off-diagonal for each pair of variables. Each diagonal block is
a diagonal matrix showing the frequencies for the categories in the corresponding
variable. Each off-diagonal block is a two-way contingency table for the correspond-
ing pair of variables. In Table 15.11, we show the G′G matrix for the G matrix in
Table 15.10.

A correspondence analysis of G′G yields only column coordinates. A point is
plotted for each column of G (or of G′G). Thus each point represents a category
(attribute) of one of the variables.

Table 15.11. Burt Matrix G′G for the Matrix G in Table 15.10

Gender Age Marital Status Hair Color

7 0 3 1 3 4 3 3 1 1 2
0 5 1 3 1 2 3 1 2 2 0

3 1 4 0 0 1 3 1 1 1 1
1 3 0 4 0 2 2 2 1 1 0
3 1 0 0 4 3 1 1 1 1 1

4 2 1 2 3 6 0 1 3 1 1
3 3 3 2 1 0 6 3 0 2 1

3 1 1 2 1 1 3 4 0 0 0
1 2 1 1 1 3 0 0 3 0 0
1 2 1 1 1 1 2 0 0 3 0
2 0 1 0 1 1 1 0 0 0 2
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Table 15.12. Singular Values (λi), Inertia (λ2
i ), and Chi-square (nλ2

i ) for the Burt Matrix
G′G in Table 15.11

Singular Value Inertia Chi-Square Percent

.68803 .47338 31.551 27.05

.67451 .45497 30.324 26.00

.51492 .26515 17.672 15.15

.50000 .25000 16.663 14.29

.41941 .17590 11.724 10.05

.33278 .11074 7.381 6.33

.14091 .01986 1.323 1.13

Total 1.75000 116.638 100.00

Distances between points are not as meaningful as in correspondence analysis,
but points in the same quadrant or approximate vicinity indicate an association. If
two close points represent attributes of the same variable, the two attributes may be
combined into a single attribute.

Since the Burt matrix G′G has only two-way contingency tables, three-way and
higher-order interactions are not represented in the plot. The various two-way tables
are analyzed simultaneously, however.

2

1

0

–1

–2

–2 –1 0 1 2

Dimension 1

D
im

en
si

on
 2

Figure 15.10. Plot of points representing the 11 columns of Table 15.10 or 15.11.



CORRESPONDENCE ANALYSIS 529

Example 15.2.5(a). We continue the illustration in this section. A correspondence
analysis of the Burt matrix G′G in Table 15.11 yields the singular values, inertia,
and chi-squared values in Table 15.12. The first two singular values account for only
53.05% of the total variation. A plot of the first two dimensions for the 11 columns
in Table 15.10 or 15.11 is given in Figure 15.10. It appears that married and blond
hair have a greater association that would be expected by chance alone. Another
association is that between female and middle age.

Example 15.2.5(b). Table 15.13 (Edwards and Kreiner 1983) is a five-way con-
tingency table of employed men between the ages of 18 and 67 who were asked
whether they themselves carried out repair work on their home, as opposed to hiring
a craftsperson to do the job. The five categorical variables are as follows:

Work of respondent: skilled, unskilled, office,

Tenure: rent, own,

Age: under 30, 31–45, over 45,

Accommodation type: apartment, house,

Response to repair question: yes, no.

A multiple correspondence analysis produced the intertia and singular values in
Table 15.14. The plot of the first two dimensions is given in Figure 15.11.

Table 15.13. Do-It-Yourself Data

Accommodation Type

Apartment House

Age Age

Work Tenure Response ≤30 31–45 ≥46 ≤30 31–45 ≥46

Yes 18 15 6 34 10 2Rent
No 15 13 9 28 4 6

Skilled
Yes 5 3 1 56 56 35Own
No 1 1 1 12 21 8

Yes 17 10 15 29 3 7Rent
No 34 17 19 44 13 16

Unskilled
Yes 2 0 3 23 52 49Own
No 3 2 0 9 31 51

Yes 30 23 21 22 13 21Rent
No 25 19 40 25 16 12

Office
Yes 8 5 1 54 191 102Own
No 4 2 2 19 76 61
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Table 15.14. Singular Values (λi), Inertia (λ2
i ), and Chi-Square (nλ2

i ) for the Do-It-
Yourself Data in Table 15.13

Singular Value Inertia Chi-Square Percent

.60707 .36853 3,446.5 26.32

.49477 .24480 2,289.4 17.49

.45591 .20785 1,943.9 14.85

.42704 .18237 1,705.5 13.03

.40516 .16415 1,535.2 11.73

.39392 .15517 1,451.2 11.08

.27771 .07713 721.3 5.51

Total 1.40000 13,092.9 100
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Figure 15.11. Plot of points representing the 12 categories in Table 15.13.

Unskilled employment has a high association with not doing one’s own repairs.
Doing one’s own repairs is associated with owning a house, age between 31 and 45,
and doing office work. Living in an apartment is associated with renting.
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15.3 BIPLOTS

15.3.1 Introduction

A biplot is a two-dimensional representation of a data matrix Y [see (3.17)] showing
a point for each of the n observation vectors (rows of Y) along with a point for each
of the p variables (columns of Y). The prefix bi refers to the two kinds of points;
not to the dimensionality of the plot. The method presented here could, in fact, be
generalized to a three-dimensional (or higher-order) biplot. Biplots were introduced
by Gabriel (1971) and have been discussed at length by Gower and Hand (1996); see
also Khattree and Naik (2000), Jacoby (1998, Chapter 7), and Seber (1984, pp. 204–
212).

If p = 2, a simple scatter plot, as in Section 3.3, has both kinds of information,
namely, a point for each observation and the two axes representing the variables. We
can see at a glance the placement of the points relative to each other and relative to
the variables.

When p > 2, we can obtain a two-dimensional plot of the observations by plot-
ting the first two principal components of S as in Section 12.4. We can then add
a representation of the p variables to the plot of principal components to obtain a
biplot. The principal component approach is discussed in Section 15.3.2. A method
based on the singular value decomposition is presented in Section 15.3.3, and other
methods are reviewed in Section 15.3.5.

15.3.2 Principal Component Plots

A principal component is given by z = a′y, where a is an eigenvector of S, the sample
covariance matrix, and y is a p × 1 observation vector (see Section 12.2). There
are p eigenvectors a1, a2, . . . , ap, and thus there are p principal components z1,
z2, . . . , z p for each observation vector yi , i = 1, 2, . . . , n. Hence (using the centered
form) the observation vectors are transformed to zi j = a′

j (yi − y) = (yi − y)′a j ,
i = 1, 2, . . . , n; j = 1, 2, . . . , p. Each p × 1 observation vector yi is transformed
to a p × 1 vector of principal components,

z′
i = [(yi − y)′a1, (yi − y)′a2, . . . , (yi − y)′ap]
= (yi − y)′(a1, a2, . . . , ap) = (yi − y)′A, i = 1, 2, . . . , n, (15.49)

where A = (a1, a2, . . . , ap) is the p × p matrix whose columns are (normalized)
eigenvectors of S. [Note that the matrix A in (15.49) is the transpose of A in (12.3)].
With Z and Yc defined as

Z =




z′
1

z′
2
...

z′
n


 , Yc =



(y1 − y)′
(y2 − y)′

...

(yn − y)′


 (15.50)
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[see (10.13)], we can express the principal components in (15.49) as

Z = YcA. (15.51)

Since the eigenvectors a j of the symmetric matrix S are mutually orthogonal (see
Section 2.11.6), A = (a1, a2, . . . , ap) is an orthogonal matrix and AA′ = I. Multi-
plying (15.51) on the right by A′, we obtain

Yc = ZA′. (15.52)

The best two-dimensional representation of Yc is given by taking the first two
columns of Z and the first two columns of A. If the resulting matrices are denoted by
Z2 and A2, we have

Yc ∼= Z2A′
2. (15.53)

The fit in (15.53) is best in a least squares sense. If the left side of (15.53) is rep-
resented by Yc = B = (bi j ) and the right side by Z2A′

2 = C = (ci j ), then∑n
i=1

∑p
j=1(bi j − ci j )

2 is minimized (Seber 1984, p. 206).
The coordinates for the n observations are the rows of Z2, and the coordinates for

the p variables are the rows of A2 (columns of A′
2). The coordinates are discussed

further in Section 15.3.4.
The adequacy of the fit in (15.53) can be evaluated by examining the first two

eigenvalues λ1 and λ2 of S. Thus a large value (close to 1) of

λ1 + λ2∑p
i=1 λi

would indicate that Yc is represented well visually in the plot.

15.3.3 Singular Value Decomposition Plots

We can also obtain Yc = ZA′ in (15.52) by means of the singular value decomposi-
tion of Yc. By (2.117), we have

Yc = U�V′, (15.54)

where � = diag(λ1, λ2, . . . , λp) is a diagonal matrix containing square roots of the
(nonzero) eigenvalues λ2

1, λ2
2, . . . , λ

2
p of Y′

cYc (and of YcY′
c), the columns of U are

the corresponding eigenvectors of YcY′
c, and the columns of V are the corresponding

eigenvectors of Y′
cYc.

The product U� in (15.54) is equal to Z, the matrix of principal component
scores in (15.51). To see this we multiply (15.54) by V, which is orthogonal because
it contains the (normalized) eigenvectors of the symmetric matrix Y′

cYc (see Sec-
tion 2.11.6). This gives

YcV = U�V′V = U�. (15.55)
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By (10.17), Y′
cYc is equal to (n − 1)S. By (2.106), eigenvectors of (n − 1)S are also

eigenvectors of S. Thus V is the same as A in (15.51), which contains eigenvectors
of S. Hence, YcV in (15.55) becomes

YcV = YcA

= Z [by (15.51)]

= U� [by (15.55)].

We can therefore write (15.54) as

Yc = U�V′ = ZV′ = ZA′. (15.56)

Thus the singular value decomposition of Yc gives the same factoring as the expres-
sion in (15.52) based on principal components.

15.3.4 Coordinates

In this section, we consider the coordinates for the methods of Sections 15.3.2 and
15.3.3. Let us return to (15.53), the two-dimensional representation of Yc based on
principal components (which is the same representation as that based on the singular
value decomposition):

Yc ∼= Z2A′
2 =




z11 z12
z21 z22
...

...

zn1 zn2



(

a11 a21 · · · ap1
a12 a22 · · · ap2

)
. (15.57)

The elements of (15.57) are of the form

yi j − ȳ j ∼= zi1a j1 + zi2a j2, i = 1, 2, . . . , n; j = 1, 2, . . . , p.

Thus each observation is represented as a linear combination, the coordinates (coef-
ficients) being the elements of the vector (zi1, zi2) and the axes being the elements
of the vector (a j1, a j2). We therefore plot the points (zi1, zi2), i = 1, 2, . . . , n, and
the points (a j1, a j2), j = 1, 2, . . . , p. To distinguish them and to show relation-
ship of the points to the axes, the points (a j1, a j2) are connected to the origin with
a straight line forming an arrow. If necessary, the scale of the points (a j1, a j2) could
be adjusted to be compatible with that of the principal components (zi1, zi2).

The Euclidean distance between two points (zi1, zi2) and (zk1, zk2) is approxi-
mately equal to the distance between the corresponding points (rows) y′

i and y′
k in

the data matrix Y. If all of the principal components were used, as in (15.51) and
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(15.52), the distance would be the same, but with only two principal components,
the distance is an approximation.

The cosine of the angle between the arrows (lines) drawn to each pair of axis
points (a j1, a j2) and (ak1, ak2) shows the correlation between the two corresponding
variables [see (3.14) and (3.15)]. Thus a small angle between two vectors indicates
that the two variables are highly correlated, two variables whose vectors form a 90◦
angle are uncorrelated, and an angle greater than 90◦ indicates that the variables are
negatively correlated.

The values of the p variables in the i th observation vector yi (corrected for means)
are related to the perpendicular projection of the point (z1i , z2i ) on the p vectors from
the origin to the points (a j1, a j2) representing variables. The further from the origin
a projection falls on an arrow, the larger the value of the observation on that variable.
Hence the vectors will be oriented toward the observations that have larger values on
the corresponding variables.

Example 15.3.4. Using the city crime data of Table 14.1, we illustrate the principal
component approach. The first two eigenvectors of the sample covariance matrix S
are given by

A2 =




.002 .008

.017 .014

.182 .689

.104 .221

.747 −.240

.612 −.109

.153 .638



.

The matrix of the first two principal components is given by

Z2 = YcA2 =




−317.2 −156.1
−491.8 192.4
−650.0 227.6

141.7 −133.8
342 −69.3

312.2 164.1
−514.7 −166.4

58.6 −239.7
−24.5 25.9

75.7 40.1
678.2 7.1

−192.4 163.4
542.7 194.8
233.1 −266.8

−343.8 −184.3
150.4 200.9




.
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Figure 15.12. Principal components biplot for city crime data in Table 14.1.

The coordinates for the 16 cities are found in Z2, and the coordinates for the 7 vari-
ables are found in A2. The plot of the city and variable points is given in Figure 15.12.
The observation points are spread out, whereas the variable points are clustered
tightly around the origin. Suitable scaling of the eigenvectors in A2 would enable the
arrows representing the variables to pass through the points (see Example 15.3.5).

15.3.5 Other Methods

The singular value decomposition of Yc is given in (15.54) as

Yc = U�V′. (15.58)

In Section 15.3.3, it was shown that U� = Z and V = A [see (15.56)], so that
(15.58) can be written as

Yc = (U�)V′ = ZA′,

which is equivalent to the principal component solution Yc = ZA′ in (15.52). Alter-
native factorings may be of interest. Two that have been considered are
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Yc = U(�V′), (15.59)

Yc = (U�1/2)(�1/2V′). (15.60)

If we denote the submatrices consisting of the first two columns of U and V as
U2 and V2, respectively, and define �2 = diag(λ1, λ2), then the two-dimensional
representations of (15.59) and (15.60) are

Yc ∼= U2(�2V′
2)

=




u11 u12
u21 u22
...

...

un1 un2



(
λ1v11 λ1v21 · · · λ1vp1
λ2v12 λ2v22 · · · λ2vp2

)
, (15.61)

Yc ∼= (U2�
1/2
2 )(�

1/2
2 V′)

=




√
λ1u11

√
λ2u12√

λ1u21
√
λ2u22

...
...√

λ1un1
√
λ2un2



( √

λ1v11
√
λ1v21 · · · √

λ1vp1√
λ2v12

√
λ2v22 · · · √

λ2vp2

)
. (15.62)

For the biplot corresponding to (15.61), we plot the set of points (ui1, ui2), i = 1,
2, . . . , n, and the set of points (λ1v j1, λ2v j2), j = 1, 2, . . . , p, with the latter points
connected to the origin by an arrow to show the axes. For the biplot arising from
(15.62), we plot the set of points (

√
λ1ui1,

√
λ2ui2), i = 1, 2, . . . , n, and the set of

points (
√
λ1v j1,

√
λ2v j2), j = 1, 2, . . . , p, with the latter points connected to the

origin with an arrow.
The presence of λ1 and λ2 in (15.61) and (15.62) provides scaling that is absent

in (15.57). For many data sets the scaling in (15.62) will be adequate with no further
adjustment.

If we write (15.59) in the form

Yc = U(�V′) = U(V�)′ = UH′, (15.63)

then

UU′ =
(

1

n − 1

)
YcS−1Y′

c, (15.64)

HH′ = (n − 1)S (15.65)

(see Problem 15.10). With suitable scaling of the eigenvectors in U and V, we could
eliminate the coefficients involving n − 1 from (15.64) and (15.65).
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By (15.64) (with scaling to eliminate n − 1), the (Euclidean) distance (ui −
uk)

′(ui − uk) between two points ui and uk is equal to the Mahalanobis distance
(yi −yk)

′S−1(yi −yk) between the corresponding points yi and yk in the data matrix
Y:

(ui − uk)
′(ui − uk) = (yi − yk)

′S−1(yi − yk) (15.66)

(see Problem 15.11). By (15.65), the covariance s jk between the j th and kth variables
(columns of Y) is given by

s jk = h′
j hk, (15.67)

where h′
j and h′

k are rows of H. By (3.14) and (3.15), this can be converted to the
correlation

r jk = cos θ = h′
j hk√

(h′
j h j )(h′

khk)
, (15.68)

so that the angle between the two vectors h j and hk is related to the correlation
between the j th and kth variables.

The two-dimensional representation of ui and h j in (15.61) has the approximate
Mahalanobis distance and correlation properties discussed earlier.

Example 15.3.5. Using the city crime data of Table 14.1, we illustrate the singular
value decomposition method with the factorings in (15.61) and (15.62). The matrices
U2, �2, and V2 are

U2 =




−.211 −.230
−.327 .284
−.432 .335
.094 −.197
.227 −.102
.208 .242

−.342 −.245
.039 −.353

−.016 .038
.050 .059
.451 .010

−.128 .241
.361 .287
.155 −.393
.229 −.272
.100 .296




, V2 =




.002 .008

.017 .014

.182 .689

.104 .221

.747 −.240

.612 −.109

.153 .639



,

�2 = diag(1503.604, 678.615).
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By (15.61), the two-dimensional representation is given by plotting the rows of U2
and the rows of V2�2 (or the columns of �2V′

2). For V2�2 we have

V2�2 =




3.0 5.2
25.4 9.5

273.6 467.5
156.3 150.1

1123.4 −162.6
920.0 −74.1
229.3 432.9



.

The plot of the observation points and variable points is given in Figure 15.13.
For (15.62), we obtain

U2�
1/2
2 =




−8.18 −5.99
−12.68 7.39
−16.76 8.74

3.65 −5.14
8.82 −2.66
8.05 6.30

−13.27 −6.39
1.51 −9.20
−.63 .99
1.95 1.54

17.49 .27
−4.96 6.27
13.99 7.48
6.01 −10.24

−8.87 −7.08
3.88 7.71




, V2�
1/2
2 =




.08 .20

.66 .37
7.06 17.95
4.03 5.76

28.97 −6.24
23.73 −2.85
5.91 16.62



.

The plot of these coordinates is given in Figure 15.14. For this data set, the factoring
given by (15.62) in Figure 15.14 is preferred because it plots both observation and
variable points on the same scale. The factorings shown in Figures 15.12 and 15.13
would need an adjustment in scaling.

PROBLEMS

15.1 In step 2 of the algorithm for metric scaling in Section 15.1.2, the matrix B =
(bi j ) is defined in terms of A = (ai j ) as bi j = ai j −āi.−ā. j +ā... Show that bi j

in B = (I− 1
n J)A(I− 1

n J) in (15.2) is equivalent to bi j = ai j − āi.− ā. j + ā...

15.2 Verify the result stated in step 2 of the algorithm in Section 15.1.2, namely,
that there exists a q-dimensional configuration z1, z2, . . . , zn such that di j =
δi j if and only if B is positive semidefinite of rank q. Use the following
approach.
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Figure 15.13. Plot of U2 and V2�2 for the city crime data in Table 14.1.
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2 for the city crime data in Table 14.1.
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(a) Assuming the existence of z1, z2, . . . , zn such that δ2
i j = d2

i j = (zi −
z j )

′(zi − z j ), show that B is positive semidefinite.
(b) Assuming B is positive semidefinite, show that there exist z1, z2, . . . , zn

such that d2
i j = (zi − z j )

′(zi − z j ) = δ2
i j .

15.3 (a) Show that r = ∑b
j=1 p. j c j in (15.20) is the same as r = (p1., p2., . . . ,

pa.)
′ in (15.9).

(b) Show that c′ = ∑a
i=1 pi.r′

i in (15.21) is equivalent to c′ = (p.1, p.2,
. . . , p.b) in (15.10).

15.4 Show that j′r = c′j = 1 as in (15.22).

15.5 Show that the chi-square statistic in (15.26) is equal to that in (15.25).

15.6 (a) Show that the chi-square statistic in (15.27) is equal to that in (15.25).
(b) Show that the chi-square statistic in (15.28) is equal to that in (15.25).

15.7 (a) Show the chi-square statistic in (15.29) is equal to that in (15.27).
(b) Show the chi-square statistic in (15.30) is equal to that in (15.28).

15.8 (a) Show that R − jc′ = D−1
r (P − rc′) as in (15.41).

(b) Show that C − rj′ = D−1
c (P − rc′) as in (15.42).

15.9 Show that if all the principal components were used, the distance between zi

and zk would be the same as between yi and yk , as noted in Section 15.3.4.

15.10 (a) Show that UU′ = YcS−1Y′
c/(n − 1) as in (15.64).

(b) Show that HH′ = (n − 1)S as in (15.65).

15.11 Show that (ui − uk)
′(ui − uk) = (yi − yk)

′S−1(yi − yk) as in (15.66).

15.12 In Table 15.15, we have road distances between major UK towns (Hand et al.
1994, p. 346). The towns are as follows:
A = Aberdeen, B = Birmingham, C = Brighton, D = Bristol, E = Cardiff,
F = Carlisle, G = Dover, H = Edinburgh, I = Fort William, J = Glasgow,
K = Holyhead, L = Hull, M = Inverness, N = Leeds, O = Liverpool,
P = London, Q = Manchester, R = Newcastle, S = Norwich, T = Notting-
ham, U = Penzance, V = Plymouth, W = Sheffield.

(a) Find the matrix B as in (15.2).
(b) Using the spectral decomposition, find the first two columns of the matrix

Z as in (15.4).
(c) Create a metric multidimensional scaling plot of the first two dimensions.

What do you notice about the positions of the cities?

15.13 Zhang, Helander, and Drury (1996) analyzed a 43×43 similarity matrix for 43
descriptors of comfort, such as calm, tingling, restful, etc. For the similarity
matrix, see the Wiley ftp site (Appendix C).

(a) Carry out a metric multidimensional scaling analysis and plot the first two
dimensions. What pattern is seen in the plot?
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Table 15.16. Dissimilarity Matrix for World War II Politicians

Person Hitler Mussolini Churchill Eisenhower

Hitler 0 5 11 15
Mussolini 5 0 14 16
Churchill 11 14 0 7
Eisenhower 15 16 7 0

Stalin 8 13 11 16
Attlee 17 18 11 16
Franco 5 3 12 14
De Gaulle 10 11 5 8

Mao Tse 16 18 16 17
Truman 17 18 8 6
Chamberlain 12 14 10 7
Tito 16 17 8 12

Stalin Attlee Franco De Gaulle

Hitler 8 17 5 10
Mussolini 13 18 3 11
Churchill 11 11 12 5
Eisenhower 16 16 14 8

Stalin 0 15 13 11
Attlee 15 0 16 12
Franco 13 16 0 9
De Gaulle 11 12 9 0

Mao Tse 12 16 17 13
Truman 14 12 16 9
Chamberlain 16 9 10 11
Tito 12 13 12 7

Mao Tse Truman Chamberlain Tito

Hitler 16 17 12 16
Mussolini 18 18 14 17
Churchill 16 8 10 8
Eisenhower 17 6 7 12

Stalin 12 14 16 12
Attlee 16 12 9 13
Franco 17 16 10 12
De Gaulle 13 9 11 7

Mao Tse 0 12 17 10
Truman 12 0 9 11
Chamberlain 17 9 0 15
Tito 10 11 15 0
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(b) For an alternative approach, carry out a cluster analysis of the configura-
tion of points found in part (a), using Ward’s method. Create a dendro-
gram of the cluster solution. How many clusters are indicated?

15.14 Use the politics data of Table 15.16 (Everitt 1987, Table 6.7). Two subjects
assessed the degree of dissimilarity between World War II politicians. The
data matrix represents the sum of the dissimilarities between the two subjects.

(a) For k = 6, create an initial configuration of points by choosing 12 random
observations taken from a multivariate normal distribution with mean
vector 0 and covariance matrix I6.

(b) Carry out a nonmetric multidimensional scaling analysis using the seeds
found in part (a). Find the value of the STRESS statistic.

(c) Repeat parts (a) and (b) for k = 1, . . . , 5. Plot the STRESS values against
the values of k. How many dimensions should be kept? Plot the final
configuration of points with two dimensions.

(d) Repeat parts (a)–(c) using an initial configuration of points from a mul-
tivariate normal with different mean vector and covariance matrix from
those in part (a). How many dimensions should be kept? Plot the final
configuration of points with two dimensions. How does this solution com-
pare to that in part (c)?

(e) Repeat parts (a)–(c) using an initial configuration of points from a uni-
form distribution over (0, 1). How many dimensions should be kept? Plot
the final configuration of points with two dimensions.

(f) Repeat part (e) using as initial configuration of points the metric multi-
dimensional scaling solution found by treating the ordinal measurements
as continuous. How many dimensions should be kept? Plot the final con-
figuration of points with two dimensions.

Table 15.17. Birth and Death Months of 1281 People
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15.15 In Table 15.17 we have the months of birth and death for 1281 people
(Andrews and Herzberg 1985, Table 71.2).

(a) Find the correspondence matrix P as in (15.8).
(b) Find the matrices R and C, as in (15.15) and (15.19).
(c) Perform a chi-square test for independence between birth and death

months.
(d) Plot the row and column deviations as in Example 15.2.5(a).

15.16 In Table 15.18, we have a cross-classification of crimes in Norway in 1984
categorized by type and site (Clausen 1998, p. 9).

Table 15.18. Crimes by Type and Site

Part of Country Burglary Fraud Vandalism Total

Oslo area 395 2456 1758 4609
Mid Norway 147 153 916 1216
North Norway 694 327 1347 2368

Total 1236 2936 4021 8193

(a) Find the correspondence matrix P as in (15.8).
(b) Find the matrices R and C as in (15.15) and (15.19).
(c) Perform a chi-square test for independence between type of crime and

site.
(d) Plot the row and column deviations as in Example 15.2.4.

15.17 In Table 15.19, we have a six-way contingency table (Andrews and Herzberg
1985, Table 34.1). Carry out a multiple correspondence analysis.

(a) Set up an indicator matrix G and find the Burt matrix G′G.
(b) Perform a correspondence analysis on the Burt matrix found in part (a)

and plot the coordinates.
(c) What associations are present?

15.18 Use the protein consumption data of Table 14.7.
(a) Create a biplot using the principal component approach in (15.53) or

(15.57).
(b) Create a biplot using the singular value decomposition approach with the

factoring as in (15.61).
(c) Create a biplot using the singular value decomposition approach with the

factoring as in (15.62).
(d) Which of the three biplots best represents the data?

15.19 Use the perception data of Table 13.1.



Table 15.19. Byssinosis Data

(continued)
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(a) Create a biplot using the principal component approach in (15.53) or
(15.57).

(b) Create a biplot using the singular value decomposition approach with the
factoring as in (15.61).

(c) Create a biplot using the singular value decomposition approach with the
factoring as in (15.62).

(d) Which of the three biplots best represents the data?

15.20 Use the cork data of Table 6.21.
(a) Create a biplot using the principal component approach in (15.53) or

(15.57).
(b) Create a biplot using the singular value decomposition approach with the

factoring as in (15.61).
(c) Create a biplot using the singular value decomposition approach with the

factoring as in (15.62).
(d) Which of the three biplots best represents the data?
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Tables

Table A.1. Upper Percentiles for
√

b1

√
b1 =

√
n
∑n

i=1(yi − y)3[∑n
i=1(yi − y)2

]3/2

The sampling distribution of
√

b1 is symmetric about zero, and lower percentage points cor-
responding to negative skewness are given by the negative of the table values. Reject the
hypothesis of normality if

√
b1 is greater than the table value or less than the negative of the

table value.

Upper Percentiles

n 10 5 2.5 1 .5 .1

4 .831 .987 1.070 1.120 1.137 1.151
5 .821 1.049 1.207 1.337 1.396 1.464
6 .795 1.042 1.239 1.429 1.531 1.671
7 .782 1.018 1.230 1.457 1.589 1.797
8 .765 .998 1.208 1.452 1.605 1.866
9 .746 .977 1.184 1.433 1.598 1.898

10 .728 .954 1.159 1.407 1.578 1.906
11 .710 .931 1.134 1.381 1.553 1.899
12 .693 .910 1.109 1.353 1.526 1.882
13 .677 .890 1.085 1.325 1.497 1.859
14 .662 .870 1.061 1.298 1.468 1.832
15 .648 .851 1.039 1.272 1.440 1.803
16 .635 .834 1.018 1.247 1.412 1.773
17 .622 .817 .997 1.222 1.385 1.744
18 .610 .801 .978 1.199 1.359 1.714
19 .599 .786 .960 1.176 1.334 1.685
20 .588 .772 .942 1.155 1.310 1.657
21 .578 .758 .925 1.134 1.287 1.628
22 .568 .746 .909 1.114 1.265 1.602
23 .559 .733 .894 1.096 1.243 1.575
24 .550 .722 .880 1.078 1.223 1.550
25 .542 .710 .866 1.060 1.203 1.526

549
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Table A.2. Coefficients for Transforming
√

b1 to a Standard Normal

n δ 1/λ n δ 1/λ

62 3.389 1.0400
64 3.420 1.0449

8 5.563 .3030 66 3.450 1.0495
9 4.260 .4080 68 3.480 1.0540

10 3.734 .4794 70 3.510 1.0581
11 3.447 .5339 72 3.540 1.0621
12 3.270 .5781 74 3.569 1.0659
13 3.151 .6153 76 3.599 1.0695
14 3.069 .6473 78 3.628 1.0730
15 3.010 .6753 80 3.657 1.0763
16 2.968 .7001 82 3.686 1.0795
17 2.937 .7224 84 3.715 1.0825
18 2.915 .7426 86 3.744 1.0854
19 2.900 .7610 88 3.772 1.0882
20 2.890 .7779 90 3.801 1.0909
21 2.884 .7934 92 3.829 1.0934
22 2.882 .8078 94 3.857 1.0959
23 2.882 .8211 86 3.885 1.0983
24 2.884 .8336 98 3.913 1.1006
25 2.889 .8452 100 3.940 1.1028
26 2.895 .8561 105 4.009 1.1080
27 2.902 .8664 110 4.076 1.1128
28 2.910 .8760 115 4.142 1.1172
29 2.920 .8851 120 4.207 1.1212
30 2.930 .8938 125 4.272 1.1250
31 2.941 .9020 130 4.336 1.1285
32 2.952 .9097 135 4.398 1.1318
33 2.964 .9171 140 4.460 1.1348
34 2.977 .9241 145 4.521 1.1377
35 2.990 .9308 150 4.582 1.1403
36 3.003 .9372 155 4.641 1.1428
37 3.016 .9433 160 4.700 1.1452
38 3.030 .9492 165 4.758 1.1474
39 3.044 .9548 170 4.816 1.1496
40 3.058 .9601 175 4.873 1.1516
41 3.073 .9653 180 4.929 1.1535
42 3.087 .9702 185 1.985 1.1553
43 3.102 .9750 190 5.040 1.1570
44 3.117 .9795 195 5.094 1.1586
45 3.131 .9840 200 5.148 1.1602
46 3.146 .9882 205 5.202 1.1616
47 3.161 .9923 210 5.255 1.1631
48 3.176 .9963 215 5.307 1.1644
49 3.192 1.0001 220 5.359 1.1657
50 3.207 1.0038 225 5.410 1.1669
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Table A.2. (Continued)

52 3.237 1.0108 230 5.461 1.1681
54 3.268 1.0174 235 5.511 1.1693
56 3.298 1.0235 240 5.561 1.1704
58 3.329 1.0293 245 5.611 1.1714
60 3.359 1.0348 250 5.660 1.1724

Values of δ and 1/λ are such that g(
√

b1) = δ sinh−1(
√

b1/λ) is approximately N (0, 1).

Table A.3. Percentiles for b2

Upper and lower percentiles for

b2 = n
∑n

i=1(yi − y)4[∑n
i=1(yi − y)2

]2 ,

the sample coefficient of kurtosis. Reject the hypothesis of normality if b2 is greater than an
upper percentile or less than a lower percentile.

Sample
Percentiles

size 1 2 2.5 5 10 20 80 90 95 97.5 98 99

7 1.25 1.30 1.34 1.41 1.53 1.70 2.78 3.20 3.55 3.85 3.93 4.23
8 1.31 1.37 1.40 1.46 1.58 1.75 2.84 3.31 3.70 4.09 4.20 4.53
9 1.35 1.42 1.45 1.53 1.63 1.80 2.98 3.43 3.86 4.28 4.41 4.82

10 1.39 1.45 1.49 1.56 1.68 1.85 3.01 3.53 3.95 4.40 4.55 5.00
12 1.46 1.52 1.56 1.64 1.76 1.93 3.06 3.55 4.05 4.56 4.73 5.20
15 1.55 1.61 1.64 1.72 1.84 2.01 3.13 3.62 4.13 4.66 4.85 5.30
20 1.65 1.71 1.74 1.82 1.95 2.13 3.21 3.68 4.17 4.68 4.87 5.36
25 1.72 1.79 1.83 1.91 2.03 2.20 3.23 3.68 4.16 4.65 4.82 5.30
30 1.79 1.86 1.90 1.98 2.10 2.26 3.25 3.68 4.11 4.59 4.75 5.21
35 1.84 1.91 1.95 2.03 2.14 2.31 3.27 3.68 4.10 4.53 4.68 5.13
40 1.89 1.96 1.98 2.07 2.19 2.34 3.28 3.67 4.06 4.46 4.61 5.04
45 1.93 2.00 2.03 2.11 2.22 2.37 3.28 3.65 4.00 4.39 4.52 4.94
50 1.95 2.03 2.06 2.15 2.25 2.41 3.28 3.62 3.99 4.33 4.45 4.88
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Table A.4. Percentiles for D’Agostino’s Test for Normality

Upper and lower percentiles for the statistic

Y =
√

n[D − (2
√
π)−1]

.02998598
,

where

D =
∑n

i=1

[
i − 1

2 (n + 1)
]

y(i)√
n3
∑n

i=1(yi − y)2

and the observations y1, y2, . . . , yn are ordered as y(1) ≤ y(2) ≤ · · · ≤ y(n). Reject the hypoth-
esis of normality if Y is greater than an upper percentile or less than a lower percentile.

Percentiles of Y

n .5 1.0 2.5 5 10 90 95 97.5 99 99.5

10 −4.66 −4.06 −3.25 −2.62 −1.99 .149 .235 .299 .356 .385
12 −4.63 −4.02 −3.20 −2.58 −1.94 .237 .329 .381 .440 .479
14 −4.57 −3.97 −3.16 −2.53 −1.90 .308 .399 .460 .515 .555
16 −4.52 −3.92 −3.12 −2.50 −1.87 .367 .459 .526 .587 .613
18 −4.47 −3.87 −3.08 −2.47 −1.85 .417 .515 .574 .636 .667
20 −4.41 −3.83 −3.04 −2.44 −1.82 .460 .565 .628 .690 .720
22 −4.36 −3.78 −3.01 −2.41 −1.81 .497 .609 .677 .744 .775
24 −4.32 −3.75 −2.98 −2.39 −1.79 .530 .648 .720 .783 .822
26 −4.27 −3.71 −2.96 −2.37 −1.77 .559 .682 .760 .827 .867
28 −4.23 −3.68 −2.93 −2.35 −1.76 .586 .714 .797 .868 .910
30 −4.19 −3.64 −2.91 −2.33 −1.75 .610 .743 .830 .906 .941
32 −4.16 −3.61 −2.88 −2.32 −1.73 .631 .770 .862 .942 .983
34 −4.12 −3.59 −2.86 −2.30 −1.72 .651 .794 .891 .975 1.02
36 −4.09 −3.56 −2.85 −2.29 −1.71 .669 .816 .917 1.00 1.05
38 −4.06 −3.54 −2.83 −2.28 −1.70 .686 .837 .941 1.03 1.08
40 −4.03 −3.51 −2.81 −2.26 −1.70 .702 .857 .964 1.06 1.11
42 −4.00 −3.49 −2.80 −2.25 −1.69 .716 .875 .986 1.09 1.14
44 −3.98 −3.47 −2.78 −2.24 −1.68 .730 .892 1.01 1.11 1.17
46 −3.95 −3.45 −2.77 −2.23 −1.67 .742 .908 1.02 1.13 1.19
48 −3.93 −3.43 −2.75 −2.22 −1.67 .754 .923 1.04 1.15 1.22
50 −3.91 −3.41 −2.74 −2.21 −1.66 .765 .937 1.06 1.18 1.24
60 −3.81 −3.34 −2.68 −2.17 −1.64 .812 .997 1.13 1.26 1.34
70 −3.73 −3.27 −2.64 −2.14 −1.61 .849 1.05 1.19 1.33 1.42
80 −3.67 −3.22 −2.60 −2.11 −1.59 .878 1.08 1.24 1.39 1.48
90 −3.61 −3.17 −2.57 −2.09 −1.58 .902 1.12 1.28 1.44 1.54

100 −3.57 −3.14 −2.54 −2.07 −1.57 .923 1.14 1.31 1.48 1.59
150 −3.409 −3.009 −2.452 −2.004 −1.520 .990 1.233 1.423 1.623 1.746
200 −3.302 −2.922 −2.391 −1.960 −1.491 1.032 1.290 1.496 1.715 1.853
250 −3.227 −2.861 −2.348 −1.926 −1.471 1.060 1.328 1.545 1.779 1.927



Table A.5. Upper Percentiles for b1,p and Upper and Lower Percentiles for b2,p.

Reject the hypothesis of multivariate normality if b1,p is greater than table value. Reject if b2,p is greater than upper percentile or if b2,p is less than
lower percentile. The statistics b1,p and b2,p are defined in Section 4.4.2.

p = 2 p = 2
Upper Percentiles for b1,p Upper and Lower Percentiles for b2,p

Percentiles Percentiles

n 90 92.5 95 97.5 99 99.9 n 1 2.5 5 10 90 95 97.5 99

10 2.994 3.263 3.694 4.294 5.194 6.994 10 4.580 4.722 4.887 5.057 8.606 9.203 9.781 10.378
12 2.681 2.944 3.319 3.931 4.938 6.744 12 4.732 4.899 5.053 5.232 8.947 9.593 10.150 10.881
14 2.419 2.669 3.031 3.619 4.581 6.419 14 4.842 5.015 5.179 5.358 9.162 9.769 10.375 11.159
16 2.219 2.444 2.775 3.337 4.231 6.062 16 4.977 5.149 5.318 5.482 9.331 9.941 10.562 11.387
18 2.050 2.256 2.556 3.100 3.962 5.737 18 5.045 5.219 5.382 5.555 9.403 10.005 10.628 11.478
20 1.894 2.081 2.356 2.881 3.669 5.425 20 5.175 5.262 5.533 5.717 9.469 10.114 10.691 11.609
25 1.581 1.744 1.969 2.438 3.106 4.719 25 5.351 5.525 5.689 5.871 9.503 10.159 10.584 11.628
30 1.363 1.513 1.687 2.094 2.681 4.238 30 5.518 5.692 5.855 6.038 9.516 10.156 10.556 11.594
40 1.050 1.181 1.319 1.606 2.087 3.369 40 5.703 5.871 6.139 6.229 9.497 10.109 10.563 11.453
50 .862 .969 1.069 1.306 1.744 2.706 50 5.909 6.083 6.239 6.403 9.453 9.987 10.372 11.181
60 .731 .819 .906 1.094 1.444 2.200 60 6.015 6.189 6.335 6.505 9.401 9.889 10.250 10.994
70 .631 .725 .794 .937 1.244 1.863 70 6.139 6.290 6.437 6.602 9.356 9.781 10.106 10.753
80 .544 .637 .694 .812 1.056 1.587 80 6.223 6.372 6.539 6.683 9.309 9.694 9.981 10.537
90 .487 .569 .638 .725 .919 1.400 90 6.332 6.475 6.622 6.749 9.256 9.688 9.885 10.325

100 .438 .506 .581 .656 .831 1.231 100 6.389 6.521 6.665 6.793 9.210 9.556 9.806 10.188
150 .281 .344 .400 .444 .531 .794 150 6.615 6.749 6.858 6.972 9.027 9.300 9.475 10.253
200 .219 .269 .300 .331 .394 .569 200 6.761 6.889 6.979 7.083 8.919 9.141 9.269 9.506
300 .144 .169 .209 .225 .256 .369 300 6.949 7.052 7.142 7.245 8.776 8.916 9.031 9.219
400 .116 .129 .141 .166 .197 .275 400 7.079 7.171 7.252 7.342 8.664 8.787 8.917 9.061
600 .077 .085 .094 .110 .131 .183 600 7.232 7.295 7.369 7.464 8.547 8.647 8.749 8.874

(continued)
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Table A.5. (Continued)

p = 2 p = 2
Upper Percentiles for b1,p Upper and Lower Percentiles for b2,p

Percentiles Percentiles

n 90 92.5 95 97.5 99 99.9 n 1 2.5 5 10 90 95 97.5 99

800 .058 .064 .071 .083 .099 .137 800 7.304 7.372 7.451 7.536 8.472 8.562 8.641 8.747
1000 .046 .051 .057 .066 .079 .110 1000 7.367 7.433 7.504 7.585 8.419 8.497 8.569 8.656
1500 .031 .034 .038 .044 .053 .074 1500 7.460 7.537 7.595 7.661 8.339 8.405 8.463 8.532
2500 .019 .021 .023 .027 .032 .044 2000 7.535 7.599 7.649 7.707 8.293 8.351 8.401 8.461
3000 .016 .017 .019 .022 .027 .037 2500 7.588 7.641 7.686 7.738 8.262 8.314 8.359 8.412
4000 .012 .013 .014 .017 .020 .028 3000 7.624 7.673 7.714 7.760 8.240 8.286 8.327 8.376
5000 .009 .010 .011 .013 .016 .022 4000 7.674 7.716 7.752 7.793 8.207 8.248 8.284 8.326

5000 7.709 7.746 7.778 7.714 8.186 8.222 8.254 8.291

p = 3 p = 3
Upper Percentiles for b1,p Upper and Lower Percentiles for b2,p

Percentiles Percentiles

n 90 92.5 95 97.5 99 99.9 n 1 2.5 5 10 90 95 97.5 99

10 6.0 6.5 6.9 7.7 8.8 11.5 10 10.0 10.2 10.4 10.7 14.0 14.4 15.0 15.6
12 5.5 5.9 6.4 7.1 8.1 10.5 12 10.2 10.4 10.7 11.0 14.7 15.2 15.9 16.4
14 5.0 5.4 5.9 6.5 7.4 9.7 14 10.4 10.6 10.9 11.3 15.1 15.8 16.5 17.1
16 4.6 4.9 5.4 6.1 6.8 8.9 16 10.5 10.8 11.1 11.5 15.4 16.1 16.8 17.5
18 4.2 4.6 5.1 5.6 6.4 8.3 18 10.7 11.0 11.3 11.6 15.5 16.4 17.1 17.8
20 3.9 4.2 4.7 5.3 6.0 7.7 20 10.8 11.1 11.4 11.8 15.7 16.5 17.2 18.0
25 3.3 3.5 3.9 4.5 5.2 6.5 25 11.1 11.4 11.8 12.1 15.9 16.7 17.4 18.2
30 2.8 3.0 3.3 3.9 4.4 5.6 30 11.3 11.6 12.0 12.3 16.0 16.7 17.5 18.3
40 2.2 2.4 2.7 3.0 3.5 4.2 40 11.7 12.0 12.4 12.7 16.1 16.7 17.4 18.2
50 1.7 1.9 2.2 2.4 2.8 3.4 50 11.9 12.3 12.6 12.9 16.1 16.7 17.3 18.0

(continued)
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Table A.5. (Continued)

p = 3 p = 3
Upper Percentiles for b1,p Upper and Lower Percentiles for b2,p

Percentiles Percentiles

n 90 92.5 95 97.5 99 99.9 n 1 2.5 5 10 90 95 97.5 99

60 1.5 1.6 1.8 2.0 2.4 2.9 60 12.1 12.5 12.8 13.1 16.1 16.6 17.2 17.9
70 1.3 1.4 1.5 1.7 2.0 2.5 70 12.3 12.6 13.0 13.2 16.1 16.6 17.1 17.7
80 1.13 1.2 1.3 1.5 1.7 2.2 80 12.4 12.8 13.1 13.3 16.1 16.5 17.0 17.6
90 1.01 1.08 1.16 1.3 1.5 1.9 90 12.5 12.9 13.2 13.5 16.0 16.5 16.9 17.5

100 .92 .97 1.05 1.18 1.3 1.7 100 12.6 13.0 13.3 13.5 16.0 16.4 16.8 17.4
150 .62 .66 .71 .80 .90 1.15 150 13.0 13.3 13.6 13.8 15.9 16.2 16.5 17.0
200 .47 .50 .54 .60 .68 .87 200 13.2 13.5 13.8 14.0 15.8 16.1 16.3 16.8
300 .32 .33 .36 .40 .46 .58 300 13.6 13.8 14.0 14.2 15.7 15.9 16.1 16.5
400 .237 .252 .272 .30 .34 .44 400 13.7 13.9 14.1 14.3 15.6 15.8 16.0 16.3
600 .159 .168 .182 .203 .230 .294 600 13.9 14.1 14.3 14.4 15.51 15.67 15.81 15.97
800 .119 .127 .137 .153 .173 .221 800 14.1 14.2 14.3 14.5 15.45 15.59 15.71 15.85

1000 .095 .010 .109 .122 .139 .177 1000 14.17 14.30 14.41 14.53 15.41 15.53 15.64 15.77
1500 .064 .068 .073 .082 .093 .118 1500 14.33 14.43 14.52 14.62 15.34 15.44 15.53 15.63
2000 .048 .051 .055 .061 .069 .089 2000 14.42 14.51 14.58 14.67 15.30 15.39 15.46 15.55
3000 .032 .034 .037 .041 .046 .059 3000 14.53 14.60 14.66 14.73 15.25 15.32 15.38 15.45
4000 .024 .025 .027 .031 .035 .044 4000 14.59 14.65 14.71 14.77 15.21 15.28 15.33 15.39
5000 .019 .020 .022 .025 .028 .035 5000 14.63 14.69 14.74 14.80 15.19 15.25 15.30 15.35

p = 4 p = 4
Upper Percentiles for b1,p Upper and Lower Percentiles for b2,p

Percentiles Percentiles

n 90 92.5 95 97.5 99 99.9 n 1 2.5 5 10 90 95 97.5 99

10 11.1 11.6 12.2 13.3 15.3 17.9 10 17.0 17.3 17.6 17.8 21.5 22.4 23.0 24.0
12 10.1 10.6 11.2 12.2 13.9 16.2 12 17.4 17.7 18.0 18.3 22.3 23.3 24.2 25.4

(continued)
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Table A.5. (Continued)

p = 4 p = 4
Upper Percentiles for b1,p Upper and Lower Percentiles for b2,p

Percentiles Percentiles

n 90 92.5 95 97.5 99 99.9 n 1 2.5 5 10 90 95 97.5 99

14 9.2 9.7 10.2 11.2 12.7 14.8 14 17.7 18.0 18.3 18.6 23.0 24.0 25.0 26.1
16 8.4 8.8 9.4 10.3 11.6 13.6 16 18.0 18.2 18.6 18.9 23.4 24.4 25.4 26.6
18 7.7 8.0 8.7 9.5 10.7 12.6 18 18.2 18.4 18.8 19.2 23.8 24.7 25.8 26.9
20 7.0 7.4 8.0 8.8 9.9 11.6 20 18.4 18.6 19.0 19.4 24.0 25.0 26.1 27.1
25 5.9 6.2 6.6 7.1 8.1 9.7 25 18.8 19.1 19.5 19.8 24.5 25.4 26.4 27.3
30 5.0 5.3 5.6 6.0 6.8 8.1 30 19.1 19.4 19.8 20.2 24.7 25.5 26.6 27.4
40 3.9 4.1 4.3 4.6 5.2 6.2 40 19.6 19.9 20.3 21.0 25.0 25.7 26.7 27.4
50 3.1 3.3 3.5 3.8 4.2 5.0 50 20.0 20.3 20.6 21.0 25.1 25.7 26.6 27.3
60 2.7 2.8 2.9 3.2 3.5 4.2 60 20.2 20.5 20.9 21.3 25.14 25.7 26.6 27.2
70 2.3 2.4 2.5 2.8 3.0 3.7 70 20.4 20.7 21.0 21.5 25.15 25.7 26.5 27.0
80 2.0 2.1 2.2 2.4 2.7 3.2 80 20.6 21.0 21.2 21.7 25.15 25.6 26.4 26.9
90 1.81 1.89 2.0 2.2 2.4 2.9 90 20.8 21.1 21.4 21.8 25.14 25.6 26.3 26.8

100 1.64 1.71 1.81 1.97 2.2 2.6 100 20.9 21.2 21.5 21.9 25.12 25.6 26.2 26.7
150 1.11 1.16 1.22 1.33 1.46 1.76 150 21.4 21.7 22.0 22.33 25.03 25.42 25.9 26.3
200 .84 .87 .92 1.00 1.10 1.33 200 21.7 22.0 22.2 22.57 24.95 25.29 25.6 26.0
300 .56 .59 .62 .67 .74 .89 300 22.1 22.33 22.57 22.85 24.83 25.11 25.3 25.7
400 .42 .44 .47 .51 .56 .67 400 22.3 22.56 22.77 23.02 24.75 24.99 25.20 25.46
600 .282 .295 .31 .34 .37 .45 600 22.63 22.83 23.01 23.21 24.63 24.83 25.01 25.21
800 .212 .222 .234 .255 .280 .34 800 22.82 22.99 23.15 23.32 24.56 24.74 24.89 25.06

1000 .170 .177 .188 .204 .224 .271 1000 22.94 23.10 23.24 23.40 24.51 24.67 24.80 24.96
1500 .113 .118 .125 .136 .150 .181 1500 23.14 23.27 23.38 23.51 24.42 24.55 24.66 24.79
2000 .085 .089 .094 .102 .112 .136 2000 23.26 23.37 23.47 23.58 24.37 24.48 24.58 24.69
3000 .057 .059 .063 .068 .075 .091 3000 23.40 23.49 23.57 23.66 24.31 24.40 24.48 24.57
4000 .043 .045 .047 .051 .056 .068 4000 23.48 23.56 23.63 23.71 24.27 24.35 24.42 24.50
5000 .034 .039 .038 .041 .045 .054 5000 23.54 23.61 23.67 23.74 24.24 24.31 24.37 24.45
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Table A.6. Upper Percentiles for Test of Single Multivariate Normal Outlier

Upper percentage points for the test statistic

D2
(n) = max

1≤i≤n
(yi − y)′S−1(yi − y).

This tests for a single outlier in a sample of size n from a multivariate normal distribution.
Reject and conclude that the outlier is significant if D2

(n) exceeds the table value.

p = 2 p = 3 p = 4 p = 5

n α = .05 α = .01 α = .05 α = .01 α = .05 α = .01 α = .05 α = .01

5 3.17 3.19
6 4.00 4.11 4.14 4.16
7 4.71 4.95 5.01 5.10 5.12 5.14
8 5.32 5.70 5.77 5.97 6.01 6.09 6.11 6.12
9 5.85 6.37 6.43 6.76 6.80 6.97 7.01 7.08

10 6.32 6.97 7.01 7.47 7.50 7.79 7.82 7.98
12 7.10 8.00 7.99 8.70 8.67 9.20 9.19 9.57
14 7.74 8.84 8.78 9.71 9.61 10.37 10.29 10.90
16 8.27 9.54 9.44 10.56 10.39 11.36 11.20 12.02
18 8.73 10.15 10.00 11.28 11.06 12.20 11.96 12.98
20 9.13 10.67 10.49 11.91 11.63 12.93 12.62 13.81
25 9.94 11.73 11.48 13.18 12.78 14.40 13.94 15.47
30 10.58 12.54 12.24 14.14 13.67 15.51 14.95 16.73
35 11.10 13.20 12.85 14.92 14.37 16.40 15.75 17.73
40 11.53 13.74 13.36 15.56 14.96 17.13 16.41 18.55
45 11.90 14.20 13.80 16.10 15.46 17.74 16.97 19.24
50 12.23 14.60 14.18 16.56 15.89 18.27 17.45 19.83

100 14.22 16.95 16.45 19.26 18.43 21.30 20.26 23.17
200 15.99 18.94 18.42 21.47 20.59 23.72 22.59 25.82
500 18.12 21.22 20.75 23.95 23.06 26.37 25.21 28.62



Table A.7. Upper Percentage Points of Hotelling’s T2 Distribution

Degrees of
Freedom, ν p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

α = .05
2 18.513
3 10.128 57.000
4 7.709 25.472 114.986
5 6.608 17.361 46.383 192.468
6 5.987 13.887 29.661 72.937 289.446
7 5.591 12.001 22.720 44.718 105.157 405.920
8 5.318 10.828 19.028 33.230 62.561 143.050 541.890
9 5.117 10.033 16.766 27.202 45.453 83.202 186.622 697.356

10 4.965 9.459 15.248 23.545 36.561 59.403 106.649 235.873 872.317
11 4.844 9.026 14.163 21.108 31.205 47.123 75.088 132.903 290.806 1066.774
12 4.747 8.689 13.350 19.376 27.656 39.764 58.893 92.512 161.967 351.421
13 4.667 8.418 12.719 18.086 25.145 34.911 49.232 71.878 111.676 193.842
14 4.600 8.197 12.216 17.089 23.281 31.488 42.881 59.612 86.079 132.582
15 4.543 8.012 11.806 16.296 21.845 28.955 38.415 51.572 70.907 101.499
16 4.494 7.856 11.465 15.651 20.706 27.008 35.117 45.932 60.986 83.121
17 4.451 7.722 11.177 15.117 19.782 25.467 32.588 41.775 54.041 71.127
18 4.414 7.606 10.931 14.667 19.017 24.219 30.590 38.592 48.930 62.746
19 4.381 7.504 10.719 14.283 18.375 23.189 28.975 36.082 45.023 56.587
20 4.351 7.415 10.533 13.952 17.828 22.324 27.642 34.054 41.946 51.884
21 4.325 7.335 10.370 13.663 17.356 21.588 26.525 32.384 39.463 48.184
22 4.301 7.264 10.225 13.409 16.945 20.954 25.576 30.985 37.419 45.202
23 4.279 7.200 10.095 13.184 16.585 20.403 24.759 29.798 35.709 42.750
24 4.260 7.142 9.979 12.983 16.265 19.920 24.049 28.777 34.258 40.699
25 4.242 7.089 9.874 12.803 15.981 19.492 23.427 27.891 33.013 38.961
26 4.225 7.041 9.779 12.641 15.726 19.112 22.878 27.114 31.932 37.469
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α = .05

27 4.210 6.997 9.692 12.493 15.496 18.770 22.388 26.428 30.985 36.176
28 4.196 6.957 9.612 12.359 15.287 18.463 21.950 25.818 30.149 35.043
29 4.183 6.919 9.539 12.236 15.097 18.184 21.555 25.272 29.407 34.044
30 4.171 6.885 9.471 12.123 14.924 17.931 21.198 24.781 28.742 33.156
35 4.121 6.744 9.200 11.674 14.240 16.944 19.823 22.913 26.252 29.881
40 4.085 6.642 9.005 11.356 13.762 16.264 18.890 21.668 24.624 27.783
45 4.057 6.564 8.859 11.118 13.409 15.767 18.217 20.781 23.477 26.326
50 4.034 6.503 8.744 10.934 13.138 15.388 17.709 20.117 22.627 25.256
55 4.016 6.454 8.652 10.787 12.923 15.090 17.311 19.600 21.972 24.437
60 4.001 6.413 8.577 10.668 12.748 14.850 16.992 19.188 21.451 23.790
70 3.978 6.350 8.460 10.484 12.482 14.485 16.510 18.571 20.676 22.834
80 3.960 6.303 8.375 10.350 12.289 14.222 16.165 18.130 20.127 22.162
90 3.947 6.267 8.309 10.248 12.142 14.022 15.905 17.801 19.718 21.663

100 3.936 6.239 8.257 10.167 12.027 13.867 15.702 17.544 19.401 21.279
110 3.927 6.216 8.215 10.102 11.934 13.741 15.540 17.340 19.149 20.973
120 3.920 6.196 8.181 10.048 11.858 13.639 15.407 17.172 18.943 20.725
150 3.904 6.155 8.105 9.931 11.693 13.417 15.121 16.814 18.504 20.196
200 3.888 6.113 8.031 9.817 11.531 13.202 14.845 16.469 18.083 19.692
400 3.865 6.052 7.922 9.650 11.297 12.890 14.447 15.975 17.484 18.976
1000 3.851 6.015 7.857 9.552 11.160 12.710 14.217 15.692 17.141 18.570
∞ 3.841 5.991 7.815 9.488 11.070 12.592 14.067 15.507 16.919 18.307

(continued)
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Table A.7. (Continued)

Degrees of
Freedom, ν p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

α = .01
2 98.503
3 34.116 297.000
4 21.198 82.177 594.997
5 16.258 45.000 147.283 992.494
6 13.745 31.857 75.125 229.679 1489.489
7 12.246 25.491 50.652 111.839 329.433 2085.984
8 11.259 21.821 39.118 72.908 155.219 446.571 2781.978
9 10.561 19.460 32.598 54.890 98.703 205.293 581.106 3577.472

10 10.044 17.826 28.466 44.838 72.882 128.067 262.076 733.045 4472.464
11 9.646 16.631 25.637 38.533 58.618 93.127 161.015 325.576 902.392 5466.956
12 9.330 15.722 23.588 34.251 49.739 73.969 115.640 197.555 395.797 1089.149
13 9.074 15.008 22.041 31.171 43.745 62.114 90.907 140.429 237.692 472.742
14 8.862 14.433 20.834 28.857 39.454 54.150 75.676 109.441 167.499 281.428
15 8.683 13.960 19.867 27.060 36.246 48.472 65.483 90.433 129.576 196.853
16 8.531 13.566 19.076 25.626 33.672 44.240 58.241 77.755 106.391 151.316
17 8.400 13.231 18.418 24.458 31.788 40.975 52.858 68.771 90.969 123.554
18 8.285 12.943 17.861 23.487 30.182 38.385 48.715 62.109 80.067 105.131
19 8.185 12.694 17.385 22.670 28.852 36.283 45.435 56.992 71.999 92.134
20 8.096 12.476 16.973 21.972 27.734 34.546 42.779 52.948 65.813 82.532
21 8.017 12.283 16.613 21.369 26.781 33.088 40.587 49.679 60.932 75.181
22 7.945 12.111 16.296 20.843 25.959 31.847 38.750 46.986 56.991 69.389
23 7.881 11.958 16.015 20.381 25.244 30.779 37.188 44.730 53.748 64.719
24 7.823 11.820 15.763 19.972 24.616 29.850 35.846 42.816 51.036 60.879
25 7.770 11.695 15.538 19.606 24.060 29.036 34.680 41.171 48.736 57.671
26 7.721 11.581 15.334 19.279 23.565 28.316 33.659 39.745 46.762 54.953
27 7.677 11.478 15.149 18.983 23.121 27.675 32.756 38.496 45.051 52.622
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α = .01

28 7.636 11.383 14.980 18.715 22.721 27.101 31.954 37.393 43.554 50.604
29 7.598 11.295 14.825 18.471 22.359 26.584 31.236 36.414 42.234 48.839
30 7.562 11.215 14.683 18.247 22.029 26.116 30.589 35.538 41.062 47.283
35 7.419 10.890 14.117 17.366 20.743 24.314 28.135 32.259 36.743 41.651
40 7.314 10.655 13.715 16.750 19.858 23.094 26.502 30.120 33.984 38.135
45 7.234 10.478 13.414 16.295 19.211 22.214 25.340 28.617 32.073 35.737
50 7.171 10.340 13.181 15.945 18.718 21.550 24.470 27.504 30.673 33.998
55 7.119 10.228 12.995 15.667 18.331 21.030 23.795 26.647 29.603 32.682
60 7.077 10.137 12.843 15.442 18.018 20.613 23.257 25.967 28.760 31.650
70 7.011 9.996 12.611 15.098 17.543 19.986 22.451 24.957 27.515 30.139
80 6.963 9.892 12.440 14.849 17.201 19.536 21.877 24.242 26.642 29.085
90 6.925 9.813 12.310 14.660 16.942 19.197 21.448 23.710 25.995 28.310

100 6.895 9.750 12.208 14.511 16.740 18.934 21.115 23.299 25.496 27.714
110 6.871 9.699 12.125 14.391 16.577 18.722 20.849 22.972 25.101 27.243
120 6.851 9.657 12.057 14.292 16.444 18.549 20.632 22.705 24.779 26.862
150 6.807 9.565 11.909 14.079 16.156 18.178 20.167 22.137 24.096 26.054
200 6.763 9.474 11.764 13.871 15.877 17.819 19.720 21.592 23.446 25.287
400 6.699 9.341 11.551 13.569 15.473 17.303 19.080 20.818 22.525 24.209
1000 6.660 9.262 11.426 13.392 15.239 17.006 18.743 20.376 22.003 23.600
∞ 6.635 9.210 11.345 13.277 15.086 16.812 18.475 20.090 21.666 23.209

Note: p = number of variables.
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562 TABLES

Table A.8. Bonferonni t-Values, tα/2k,ν, α = .05

k

1 2 3 4 5 6 7 8 9 10
100α/k

ν 5.0000 2.5000 1.6667 1.2500 1.0000 .8333 .7143 .6250 .5556 .5000

2 4.3027 6.2053 7.6488 8.8602 9.9248 10.8859 11.7687 12.5897 13.3604 14.0890
3 3.1824 4.1765 4.8567 5.3919 5.8409 6.2315 6.5797 6.8952 7.1849 7.4533
4 2.7764 3.4954 3.9608 4.3147 4.6041 4.8510 5.0675 5.2611 5.4366 5.5976
5 2.5706 3.1634 3.5341 3.8100 4.0321 4.2193 4.3818 4.5257 4.6553 4.7733
6 2.4469 2.9687 3.2875 3.5212 3.7074 2.8630 3.9971 4.1152 4.2209 4.3168
7 2.3646 2.8412 3.1276 3.3353 3.4995 3.6358 3.7527 3.8552 3.9467 4.0293
8 2.3060 2.7515 3.0158 3.2060 3.3554 3.4789 3.5844 3.6766 3.7586 3.8325
9 2.2622 2.6850 2.9333 3.1109 3.2498 3.3642 3.4616 3.5465 3.6219 3.6897

10 2.2281 2.6338 2.8701 3.0382 3.1693 3.2768 3.3682 3.4477 3.5182 3.5814
11 2.2010 2.5931 2.8200 2.9809 3.1058 3.2081 3.2949 3.3702 3.4368 3.4966
12 2.1788 2.5600 2.7795 2.9345 3.0545 3.1527 3.2357 3.3078 3.3714 3.4284
13 2.1604 2.5326 2.7459 2.8961 3.0123 3.1070 3.1871 3.2565 3.3177 3.3725
14 2.1448 2.5096 2.7178 2.8640 2.9768 3.0688 3.1464 3.2135 3.2727 3.3257
15 2.1314 2.4899 2.6937 2.8366 2.9467 3.0363 3.1118 3.1771 3.2346 3.2860
16 2.1199 2.4729 2.6730 2.8131 2.9208 3.0083 3.0821 3.1458 3.2019 3.2520
17 2.1098 2.4581 2.6550 2.7925 2.8982 2.9840 3.0563 3.1186 3.1735 3.2224
18 2.1009 2.4450 2.6391 2.7745 2.8784 2.9627 3.0336 3.0948 3.1486 3.1966
19 2.0930 2.4334 2.6251 2.7586 2.8609 2.9439 3.0136 3.0738 3.1266 3.1737
20 2.0860 2.4231 2.6126 2.7444 2.8453 2.9271 2.9958 3.0550 3.1070 3.1534
21 2.0796 2.4138 2.6013 2.7316 2.8314 2.9121 2.9799 3.0382 3.0895 3.1352
22 2.0739 2.4055 2.5912 2.7201 2.8188 2.8985 2.9655 3.0231 3.0737 3.1188
23 2.0687 2.3979 2.5820 2.7097 2.8073 2.8863 2.9525 3.0095 3.0595 3.1040
24 2.0639 2.3909 2.5736 2.7002 2.7969 2.8751 2.9406 2.9970 3.0465 3.0905
25 2.0595 2.3846 2.5660 2.6916 2.7874 2.8649 2.9298 2.9856 3.0346 3.0782
26 2.0555 2.3788 2.5589 2.6836 2.7787 2.8555 2.9199 2.9752 3.0237 3.0669



TABLES 563

Table A.8. (Continued)

k

1 2 3 4 5 6 7 8 9 10
100α/k

ν 5.0000 2.5000 1.6667 1.2500 1.0000 .8333 .7143 .6250 .5556 .5000

27 2.0518 2.3734 2.5525 2.6763 2.7707 2.8469 2.9107 2.9656 3.0137 3.0565
28 2.0484 2.3685 2.5465 2.6695 2.7633 2.8389 2.9023 2.9567 3.0045 3.0469
29 2.0452 2.3638 2.5409 2.6632 2.7564 2.8316 2.8945 2.9485 2.9959 3.0380
30 2.0423 2.3596 2.5357 2.6574 2.7500 2.8247 2.8872 2.9409 2.9880 3.0298
35 2.0301 2.3420 2.5145 2.6334 2.7238 2.7966 2.8575 2.9097 2.9554 2.9960
40 2.0211 2.3289 2.4989 2.6157 2.7045 2.7759 2.8355 2.8867 2.9314 2.9712
45 2.0141 2.3189 2.4868 2.6021 2.6896 2.7599 2.8187 2.8690 2.9130 2.9521
50 2.0086 2.3109 2.4772 2.5913 2.6778 2.7473 2.8053 2.8550 2.8984 2.9370
55 2.0040 2.3044 2.4694 2.5825 2.6682 2.7370 2.7944 2.8436 2.8866 2.9247
60 2.0003 2.2990 2.4630 2.5752 2.6603 2.7286 2.7855 2.8342 2.8768 2.9146
70 1.9944 2.2906 2.4529 2.5639 2.6479 2.7153 2.7715 2.8195 2.8615 2.8987
80 1.9901 2.2844 2.4454 2.5554 2.6387 2.7054 2.7610 2.8086 2.8502 2.8870
90 1.9867 2.2795 2.4395 2.5489 2.6316 2.6978 2.7530 2.8002 2.8414 2.8779

100 1.9840 2.2757 2.4349 2.5437 2.6259 2.6918 2.7466 2.7935 2.8344 2.8707
110 1.9818 2.2725 2.4311 2.5394 2.6213 2.6868 2.7414 2.7880 2.8287 2.8648
120 1.9799 2.2699 2.4280 2.5359 2.6174 2.6827 2.7370 2.7835 2.8240 2.8599
250 1.9695 2.2550 2.4102 2.5159 2.5956 2.6594 2.7124 2.7577 2.7972 2.8322
500 1.9647 2.2482 2.4021 2.5068 2.5857 2.6488 2.7012 2.7460 2.7850 2.8195

1000 1.9623 2.2448 2.3980 2.5022 2.5808 2.6435 2.6957 2.7402 2.7790 2.8133
∞ 1.9600 2.2414 2.3940 2.4977 2.5758 2.6383 2.6901 2.7344 2.7729 2.8070

(continued)
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Table A.8. (Continued)

k

11 12 13 14 15 16 17 18 19
100α/k

ν .4545 .4167 .3846 .3571 .3333 .3125 .2941 .2778 .2632

2 14.7818 15.4435 16.0780 16.6883 17.2772 17.8466 18.3984 18.9341 19.4551
3 7.7041 7.9398 8.1625 8.3738 8.5752 8.7676 8.9521 9.1294 9.3001
4 5.7465 5.8853 6.0154 6.1380 6.2541 6.3643 6.4693 6.5697 6.6659
5 4.8819 4.9825 5.0764 5.1644 5.2474 5.3259 5.4005 5.4715 5.5393
6 4.4047 4.4858 4.5612 4.6317 4.6979 4.7604 4.8196 4.8759 4.9295
7 4.1048 4.1743 4.2388 4.2989 4.3553 4.4084 4.4586 4.5062 4.5514
8 3.8999 3.9618 4.0191 4.0724 4.1224 4.1693 4.2137 4.2556 4.2955
9 3.7513 3.8079 3.8602 3.9088 3.9542 3.9969 4.0371 4.0752 4.1114

10 3.6388 3.6915 3.7401 3.7852 3.8273 3.8669 3.9041 3.9394 3.9728
11 3.5508 3.6004 3.6462 3.6887 3.7283 3.7654 3.8004 3.8335 3.8648
12 3.4801 3.5274 3.5709 3.6112 3.6489 3.6842 3.7173 3.7487 3.7783
13 3.4221 3.4674 3.5091 3.5478 3.5838 3.6176 3.6493 3.6793 3.7076
14 3.3736 3.4173 3.4576 3.4949 3.5296 3.5621 3.5926 3.6214 3.6487
15 3.3325 3.3749 3.4139 3.4501 3.4837 3.5151 3.5447 3.5725 3.5989
16 3.2973 3.3386 3.3765 3.4116 3.4443 3.4749 3.5036 3.5306 3.5562
17 3.2667 3.3070 3.3440 3.3783 3.4102 3.4400 3.4680 3.4944 3.5193
18 3.2399 3.2794 3.3156 3.3492 3.3804 3.4095 3.4369 3.4626 3.4870
19 3.2163 3.2550 3.2906 3.3235 3.3540 3.3826 3.4094 3.4347 3.4585
20 3.1952 3.2333 3.2683 3.3006 3.3306 3.3587 3.3850 3.4098 3.4332
21 3.1764 3.2139 3.2483 3.2802 3.3097 3.3373 3.3632 3.3876 3.4106
22 3.1595 3.1965 3.2304 3.2618 3.2909 3.3181 3.3436 3.3676 3.3903
23 3.1441 3.1807 3.2142 3.2451 3.2739 3.3007 3.3259 3.3495 3.3719
24 3.1302 3.1663 3.1994 3.2300 3.2584 3.2849 3.3097 3.3331 3.3552
25 3.1175 3.1532 3.1859 3.2162 3.2443 3.2705 3.2950 3.3181 3.3400
26 3.1058 3.1412 3.1736 3.2035 3.2313 3.2572 3.2815 3.3044 3.3260



TABLES 565

Table A.8. (Continued)

k

11 12 13 14 15 16 17 18 19
100α/k

ν .4545 .4167 .3846 .3571 .3333 .3125 .2941 .2778 .2632

27 3.0951 3.1301 3.1622 3.1919 3.2194 3.2451 3.2691 3.2918 3.3132
28 3.0852 3.1199 3.1517 3.1811 3.2084 3.2339 3.2577 3.2801 3.3013
29 3.0760 3.1105 3.1420 3.1712 3.1982 3.2235 3.2471 3.2694 3.2904
30 3.0675 3.1017 3.1330 3.1620 3.1888 3.2138 3.2373 3.2594 3.2802
35 3.0326 3.0658 3.0962 3.1242 3.1502 3.1744 3.1971 3.2185 3.2386
40 3.0069 3.0393 3.0690 3.0964 3.1218 3.1455 3.1676 3.1884 3.2081
45 2.9872 3.0191 3.0482 3.0751 3.1000 3.1232 3.1450 3.1654 3.1846
50 2.9716 3.0030 3.0318 3.0582 3.0828 3.1057 3.1271 3.1472 3.1661
55 2.9589 2.9900 3.0184 3.0446 3.0688 3.0914 3.1125 3.1324 3.1511
60 2.9485 2.9792 3.0074 3.0333 3.0573 3.0796 3.1005 3.1202 3.1387
70 2.9321 2.9624 2.9901 3.0156 3.0393 3.0613 3.0818 3.1012 3.1194
80 2.9200 2.9500 2.9773 3.0026 3.0259 3.0476 3.0679 3.0870 3.1050
90 2.9106 2.9403 2.9675 2.9924 3.0156 3.0371 3.0572 3.0761 3.0939

100 2.9032 2.9327 2.9596 2.9844 3.0073 3.0287 3.0487 3.0674 3.0851
110 2.8971 2.9264 2.9532 2.9778 3.0007 3.0219 3.0417 3.0604 3.0779
120 2.8921 2.9212 2.9479 2.9724 2.9951 3.0162 3.0360 3.0545 3.0720
250 2.8635 2.8919 2.9178 2.9416 2.9637 2.9842 3.0034 3.0213 3.0383
500 2.8505 2.8785 2.9041 2.9276 2.9494 2.9696 2.9885 3.0063 3.0230

1000 2.8440 2.8719 2.8973 2.9207 2.9423 2.9624 2.9812 2.9988 3.0154
∞ 2.8376 2.8653 2.8905 2.9137 2.9352 2.9552 2.9738 2.9913 3.0078



Table A.9. Lower Critical Values of Wilks Λ, α = .05

� = |E|
|E + H| =

s∏
i=1

1

1 + λi
,

where λ1, λ2, . . . , λs are eigenvalues of E−1H. Reject H0 if � ≤ table value. a Multiply entry
by 10−3.

νH

νE 1 2 3 4 5 6 7 8 9 10 11 12

p = 1
1 6.16a 2.50a 1.54a 1.11a .868a .712a .603a .523a .462a .413a .374a .341a

2 .098 .050 .034 .025 .020 .017 .015 .013 .011 .010 9.28a 8.51a

3 .229 .136 .097 .076 .062 .053 .046 .041 .036 .033 .030 .028
4 .342 .224 .168 .135 .113 .098 .086 .076 .069 .063 .058 .053
5 .431 .302 .236 .194 .165 .144 .128 .115 .104 .096 .088 .082
6 .501 .368 .296 .249 .215 .189 .169 .153 .140 .129 .119 .111
7 .556 .425 .349 .298 .261 .232 .209 .190 .175 .161 .150 .140
8 .601 .473 .396 .343 .303 .271 .246 .225 .208 .193 .180 .169
9 .638 .514 .437 .382 .341 .308 .281 .258 .239 .223 .209 .196

10 .668 .549 .473 .418 .376 .341 .313 .289 .269 .251 .236 .222
11 .694 .580 .505 .450 .407 .372 .343 .318 .297 .278 .262 .247
12 .717 .607 .534 .479 .436 .400 .370 .345 .323 .304 .286 .271
13 .736 .631 .560 .506 .462 .426 .396 .370 .347 .327 .310 .294
14 .753 .652 .583 .529 .486 .450 .420 .393 .370 .350 .332 .315
15 .768 .671 .603 .551 .508 .473 .442 .415 .392 .371 .352 .336
16 .781 .688 .622 .571 .529 .493 .462 .436 .412 .391 .372 .355
17 .792 .703 .639 .589 .548 .512 .482 .455 .431 .410 .390 .373
18 .803 .717 .655 .606 .565 .530 .499 .473 .449 .427 .408 .390
19 .813 .730 .669 .621 .581 .546 .516 .490 .466 .444 .425 .407
20 .821 .741 .683 .636 .596 .562 .532 .505 .482 .460 .440 .423
21 .829 .752 .695 .649 .610 .576 .547 .520 .497 .475 .455 .437
22 .836 .762 .706 .661 .623 .590 .561 .534 .511 .489 .470 .452
23 .843 .771 .717 .673 .635 .603 .574 .548 .524 .503 .483 .465
24 .849 .779 .727 .684 .647 .615 .586 .560 .537 .516 .496 .478
25 .855 .787 .736 .694 .658 .626 .598 .572 .549 .528 .508 .490
26 .860 .794 .744 .703 .668 .637 .609 .583 .560 .539 .520 .502
27 .865 .801 .752 .712 .677 .647 .619 .594 .571 .551 .531 .513
28 .870 .807 .760 .721 .686 .656 .629 .604 .582 .561 .542 .524
29 .874 .813 .767 .729 .695 .665 .638 .614 .592 .571 .552 .535
30 .878 .819 .774 .736 .703 .674 .647 .623 .601 .581 .562 .544
40 .907 .861 .824 .793 .766 .741 .718 .696 .677 .658 .641 .625
60 .938 .905 .879 .856 .835 .816 .798 .781 .766 .751 .736 .723
80 .953 .928 .907 .889 .873 .858 .843 .829 .816 .804 .792 .780

100 .962 .942 .925 .910 .897 .884 .872 .860 .849 .838 .828 .818
120 .968 .951 .937 .925 .913 .902 .891 .882 .872 .863 .854 .845
140 .973 .958 .946 .935 .925 .915 .906 .897 .889 .881 .873 .865
170 .978 .965 .955 .946 .937 .929 .922 .914 .907 .900 .893 .887
200 .981 .970 .962 .954 .947 .940 .933 .926 .920 .914 .908 .902
240 .984 .975 .968 .961 .955 .949 .944 .938 .933 .928 .923 .918
320 .988 .981 .976 .971 .966 .962 .957 .953 .949 .945 .941 .937
440 .991 .986 .982 .979 .975 .972 .969 .966 .963 .960 .957 .954
600 .994 .990 .987 .984 .982 .979 .977 .975 .972 .970 .968 .966
800 .995 .993 .990 .988 .986 .984 .983 .981 .979 .977 .976 .974

1000 .996 .994 .992 .991 .989 .988 .986 .985 .983 .982 .981 .979
(continued)
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Table A.9. (Continued)

νH

νE 1 2 3 4 5 6 7 8 9 10 11 12

p = 2
1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
2 2.50a .641a .287a .162a .104a .072a .053a .041a .032a .026a .022a .018a

3 .050 .018 9.53a 5.84a 3.95a 2.85a 2.15a 1.68a 1.35a 1.11a .928a .787a

4 .136 .062 .036 .023 .017 .012 9.56a 7.62a 6.21a 5.17a 4.36a 3.73a

5 .224 .117 .074 .051 .037 .028 .023 .018 .015 .013 .011 .009
6 .302 .175 .116 .084 .063 .049 .040 .033 .027 .023 .020 .017
7 .368 .230 .160 .119 .092 .074 .060 .050 .042 .036 .032 .028
8 .4256 .280 .203 .155 .122 .099 .082 .069 .059 .051 .045 .040
9 .473 .326 .243 .190 .153 .126 .106 .090 .078 .068 .060 .053

10 .514 .367 .281 .223 .183 .152 .129 .111 .097 .085 .075 .067
11 .549 .404 .316 .255 .212 .179 .153 .133 .116 .102 .091 .082
12 .580 .437 .348 .286 .240 .204 .176 .154 .136 .120 .108 .097
13 .607 .467 .378 .314 .266 .229 .199 .175 .155 .138 .124 .112
14 .631 .495 .405 .340 .291 .252 .221 .195 .174 .156 .141 .128
15 .652 .519 .431 .365 .315 .275 .242 .215 .193 .174 .157 .143
16 .671 .542 .454 .389 .337 .296 .263 .235 .211 .191 .174 .159
17 .688 .562 .476 .410 .359 .317 .282 .254 .229 .208 .190 .174
18 .703 .581 .496 .431 .379 .337 .301 .272 .246 .225 .206 .189
19 .717 .598 .515 .450 .398 .355 .320 .289 .263 .241 .221 .204
20 .730 .614 .532 .468 .416 .373 .337 .306 .279 .256 .236 .218
21 .741 .629 .548 .485 .433 .390 .354 .322 .295 .271 .251 .232
22 .752 .643 .564 .501 .449 .406 .370 .338 .310 .286 .265 .246
23 .762 .656 .578 .516 .465 .422 .385 .353 .325 .300 .279 .259
24 .771 .668 .591 .530 .479 .436 .399 .367 .339 .314 .292 .272
25 .779 .679 .604 .544 .493 .450 .413 .381 .353 .328 .305 .285
26 .787 .689 .616 .556 .506 .464 .427 .395 .366 .341 .318 .297
27 .794 .699 .627 .568 .519 .477 .440 .407 .379 .353 .330 .309
28 .801 .708 .638 .580 .531 .489 .452 .420 .391 .365 .342 .321
29 .807 .717 .648 .591 .542 .501 .464 .432 .403 .377 .354 .332
30 .813 .725 .657 .601 .553 .512 .475 .443 .414 .388 .365 .344
40 .858 .786 .730 .682 .640 .602 .568 .537 .509 .484 .460 .439
60 .903 .853 .811 .774 .741 .710 .682 .656 .632 .609 .588 .568
80 .927 .888 .854 .825 .798 .772 .749 .727 .706 .686 .667 .649

100 .941 .909 .882 .857 .834 .813 .793 .774 .755 .738 .721 .705
120 .951 .924 .900 .879 .860 .841 .823 .807 .791 .775 .760 .746
140 .958 .934 .914 .895 .878 .862 .846 .831 .817 .803 .790 .777
170 .965 .946 .929 .913 .898 .885 .871 .859 .846 .834 .823 .812
200 .970 .954 .939 .926 .913 .901 .889 .878 .867 .857 .847 .837
240 .975 .961 .949 .938 .927 .917 .907 .897 .888 .879 .870 .862
320 .981 .971 .962 .953 .945 .937 .929 .922 .914 .907 .901 .894
440 .986 .979 .972 .965 .959 .953 .948 .942 .937 .932 .926 .921
600 .990 .984 .979 .975 .970 .966 .961 .957 .953 .949 .945 .942
800 .993 .988 .984 .981 .977 .974 .971 .968 .965 .962 .959 .956

1000 .994 .991 .987 .985 .982 .979 .977 .974 .972 .969 .967 .964

a Multiply entry by 10−3. (continued)



568 TABLES

Table A.9. (Continued)

νH

νE 1 2 3 4 5 6 7 8 9 10 11 12

p = 3
1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
2 .000 .000 .000 .000 .000 .001a .002a .004a .005a .008a .010a .013a

3 1.70a .354a .179a .127a .105a .095a .091a .090a .091a .092a .095a .098a

4 .034 .010 .004 .002 .001 .001 .809a .659a .562a .496a .449a .416a

5 .097 .036 .018 .010 6.36a 4.37a 3.20a 2.46a 1.97a 1.64a 1.40a 1.22a

6 .168 .074 .040 .024 .016 .011 .008 .006 .004 3.94a 3.28a 2.79a

7 .236 .116 .068 .043 .029 .021 .016 .012 9.49a 7.67a 6.35a 5.35a

8 .296 .160 .099 .066 .046 .034 .026 .020 .016 .013 .011 9.00a

9 .349 .203 .131 .091 .066 .049 .038 .030 .024 .020 .016 .014
10 .396 .243 .164 .117 .086 .066 .052 .041 .034 .028 .023 .020
11 .437 .281 .196 .143 .108 .084 .067 .054 .044 .037 .031 .026
12 .473 .316 .226 .169 .130 .103 .083 .067 .056 .047 .040 .034
13 .505 .348 .255 .194 .152 .122 .099 .082 .068 .058 .049 .042
14 .534 .378 .283 .219 .174 .141 .116 .096 .081 .069 .059 .051
15 .560 .405 .309 .243 .195 .160 .133 .111 .095 .081 .070 .061
16 .583 .431 .334 .266 .216 .179 .149 .127 .108 .093 .081 .071
17 .603 .454 .357 .288 .236 .197 .166 .142 .122 .106 .092 .081
18 .622 .476 .379 .309 .256 .215 .183 .157 .136 .118 .104 .092
19 .639 .496 .399 .329 .275 .233 .199 .172 .149 .131 .115 .102
20 .655 .515 .419 .348 .293 .250 .215 .187 .163 .144 .127 .113
21 .669 .532 .437 .366 .310 .266 .230 .201 .177 .156 .139 .124
22 .683 .548 .454 .383 .327 .282 .246 .215 .190 .169 .150 .135
23 .695 .564 .470 .399 .343 .298 .260 .229 .203 .181 .162 .146
24 .706 .578 .486 .415 .359 .313 .275 .243 .216 .193 .173 .156
25 .717 .591 .500 .430 .374 .327 .289 .256 .229 .205 .185 .167
26 .727 .604 .514 .444 .388 .341 .302 .269 .241 .217 .196 .178
27 .736 .616 .527 .458 .401 .355 .315 .282 .253 .229 .207 .188
28 .744 .627 .540 .471 .415 .368 .328 .294 .265 .240 .218 .199
29 .752 .638 .552 .483 .427 .380 .340 .306 .277 .251 .229 .209
30 .760 .648 .563 .495 .439 .392 .352 .318 .288 .262 .239 .219
40 .816 .724 .651 .591 .539 .494 .454 .419 .387 .359 .334 .311
60 .875 .808 .752 .704 .661 .623 .587 .555 .526 .498 .473 .449
80 .905 .853 .808 .769 .733 .700 .670 .641 .615 .590 .566 .544

100 .924 .881 .844 .810 .780 .751 .725 .700 .676 .654 .632 .612
120 .936 .900 .868 .839 .813 .788 .764 .742 .721 .700 .681 .663
140 .945 .913 .886 .861 .837 .815 .794 .774 .755 .736 .719 .702
170 .955 .928 .905 .884 .864 .845 .827 .809 .792 .776 .761 .746
200 .961 .939 .919 .900 .883 .866 .850 .835 .820 .806 .792 .779
240 .968 .949 .932 .916 .901 .887 .873 .860 .848 .835 .823 .811
320 .976 .961 .948 .936 .925 .914 .903 .893 .883 .873 .864 .854
440 .982 .972 .962 .953 .945 .937 .929 .921 .913 .906 .899 .891
600 .987 .979 .972 .966 .959 .953 .947 .941 .936 .930 .924 .919
800 .990 .984 .979 .974 .969 .965 .960 .956 .951 .947 .943 .939

1000 .992 .987 .983 .979 .975 .972 .968 .964 .961 .957 .954 .950

a Multiply entry by 10−3. (continued)



TABLES 569

Table A.9. (Continued)

νH

νE 1 2 3 4 5 6 7 8 9 10 11 12

p = 4
1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
2 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
3 .000 .000 .000 .000 .000 .001a .001a .001a .002a .002a .002a .003a

4 1.38a .292a .127a .075a .052a .040a .033a .029a .026a .025a .023a .022a

5 .026 6.09a 2.31a 1.13a .647a .416a .292a .218a .172a .141a .120a .105a

6 .076 .024 .010 5.07a 2.90a 1.82a 1.22a .872a .652a .508a .409a .338a

7 .135 .051 .024 .013 7.74a 4.94a 3.34a 2.36a 1.74a 1.33a 1.05a .848a

8 .194 .084 .043 .025 .015 .010 6.98a 4.99a 3.70a 2.82a 2.21a 1.77a

9 .249 .119 .066 .040 .026 .017 .012 8.91a 6.66a 5.11a 4.01a 3.21a

10 .298 .155 .091 .057 .038 .027 .019 .014 .011 8.29a 6.54a 5.25a

11 .343 .190 .117 .077 .053 .037 .027 .021 .016 .012 9.84a 7.95a

12 .382 .223 .143 .097 .068 .049 .037 .028 .022 .017 .014 .011
13 .418 .255 .169 .117 .085 .063 .047 .037 .029 .023 .019 .015
14 .450 .286 .194 .138 .102 .077 .059 .046 .037 .030 .024 .020
15 .479 .314 .219 .159 .119 .091 .071 .056 .045 .037 .030 .025
16 .506 .340 .243 .180 .136 .106 .083 .067 .054 .044 .037 .031
17 .529 .365 .266 .200 .154 .121 .096 .078 .064 .053 .044 .037
18 .551 .389 .288 .219 .171 .136 .109 .089 .074 .061 .051 .044
19 .571 .410 .309 .239 .188 .151 .123 .101 .084 .070 .059 .051
20 .589 .431 .329 .257 .205 .166 .136 .113 .094 .079 .068 .058
21 .606 .450 .348 .275 .221 .181 .149 .124 .105 .089 .076 .065
22 .621 .468 .366 .292 .237 .195 .162 .136 .115 .098 .085 .073
23 .636 .485 .383 .309 .253 .210 .175 .148 .126 .108 .093 .081
24 .649 .501 .399 .325 .268 .224 .188 .160 .137 .118 .102 .089
25 .661 .516 .415 .340 .283 .237 .201 .172 .148 .128 .111 .097
26 .673 .530 .430 .355 .297 .251 .214 .183 .158 .138 .120 .106
27 .684 .544 .444 .369 .311 .264 .226 .195 .169 .147 .129 .114
28 .694 .556 .458 .383 .324 .277 .238 .206 .180 .157 .138 .122
29 .703 .568 .471 .396 .337 .289 .250 .217 .190 .167 .147 .131
30 .712 .580 .483 .409 .349 .301 .261 .228 .200 .177 .157 .139
40 .779 .668 .583 .513 .455 .406 .364 .327 .295 .267 .243 .221
60 .849 .767 .700 .643 .592 .547 .507 .471 .438 .409 .382 .357
80 .885 .821 .766 .718 .675 .636 .600 .567 .536 .508 .482 .457

100 .908 .854 .809 .768 .730 .696 .664 .634 .606 .580 .555 .532
120 .923 .877 .838 .802 .770 .739 .711 .684 .658 .634 .611 .590
140 .934 .894 .860 .828 .799 .772 .746 .721 .698 .676 .655 .635
170 .945 .912 .883 .856 .831 .808 .785 .764 .743 .724 .705 .687
200 .953 .925 .900 .876 .855 .834 .814 .795 .777 .759 .742 .726
240 .961 .937 .916 .896 .877 .859 .842 .826 .810 .795 .780 .765
320 .971 .952 .936 .921 .907 .893 .879 .866 .854 .841 .829 .818
440 .979 .965 .953 .942 .931 .921 .911 .901 .891 .882 .872 .863
600 .984 .974 .966 .957 .949 .941 .934 .926 .919 .912 .905 .898
800 .988 .981 .974 .968 .961 .956 .950 .944 .938 .933 .927 .922

1000 .991 .985 .979 .974 .969 .964 .960 .955 .950 .946 .941 .937

a Multiply entry by 10−3. (continued)



570 TABLES

Table A.9. (Continued)

νH

νE 1 2 3 4 5 6 7 8 9 10 11 12

p = 5
1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
2 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
3 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
4 .000 .000 .000 .000 .001a .001a .001a .001a .001a .001a .001a .001a

5 1.60a .291a .105a .052a .031a .021a .015a .012a .010a .008a .007a .007a

6 .021 4.39a 1.48a .647a .335a .197a .126a .087a .064a .049a .039a .032a

7 .063 .017 6.36a 2.90a 1.51a .872a .544a .361a .253a .185a .141a .110a

8 .114 .037 .016 7.74a 4.21a 2.48a 1.56a 1.03a .716a .516a .385a .296a

9 .165 .063 .029 .015 8.79a 5.35a 3.43a 2.30a 1.61a 1.16a .861a .657a

10 .215 .092 .046 .026 .015 9.64a 6.34a 4.34a 3.06a 2.22a 1.66a 1.27a

11 .261 .122 .066 .038 .024 .015 .010 7.22a 5.17a 3.80a 2.86a 2.19a

12 .303 .153 .086 .053 .034 .022 .015 .011 7.99a 5.95a 4.51a 3.49a

13 .341 .183 .108 .068 .045 .031 .022 .016 .012 8.68a 6.66a 5.19a

14 .376 .212 .130 .085 .057 .040 .029 .021 .016 .012 9.31a 7.32a

15 .407 .239 .152 .102 .070 .050 .037 .027 .021 .016 .012 9.88a

16 .436 .266 .174 .119 .084 .061 .045 .034 .026 .020 .016 .013
17 .462 .291 .195 .136 .098 .072 .054 .042 .032 .025 .020 .016
18 .486 .315 .216 .154 .113 .084 .064 .050 .039 .031 .025 .020
19 .508 .337 .236 .171 .127 .096 .074 .058 .046 .037 .030 .024
20 .529 .359 .256 .188 .142 .109 .085 .067 .053 .043 .035 .029
21 .548 .379 .275 .205 .156 .121 .095 .076 .061 .050 .041 .034
22 .565 .398 .293 .221 .171 .134 .106 .085 .069 .057 .047 .039
23 .581 .416 .310 .237 .185 .146 .117 .095 .077 .064 .053 .044
24 .596 .433 .327 .253 .199 .159 .128 .104 .086 .071 .060 .050
25 .610 .449 .343 .268 .213 .171 .139 .114 .094 .079 .066 .056
26 .623 .465 .359 .283 .226 .183 .150 .124 .103 .087 .073 .062
27 .635 .479 .374 .297 .239 .195 .161 .134 .112 .094 .080 .068
28 .647 .493 .388 .311 .252 .207 .172 .143 .121 .102 .087 .075
29 .658 .506 .401 .324 .265 .219 .182 .153 .130 .110 .094 .081
30 .668 .519 .415 .337 .277 .230 .193 .163 .138 .118 .102 .088
40 .744 .617 .522 .446 .384 .333 .291 .255 .224 .198 .176 .156
60 .825 .729 .652 .587 .531 .482 .438 .400 .366 .336 .308 .284
80 .867 .791 .727 .672 .623 .578 .538 .502 .469 .438 .410 .385

100 .893 .830 .776 .728 .685 .645 .609 .576 .544 .516 .489 .464
120 .910 .856 .810 .768 .730 .694 .661 .631 .602 .575 .549 .525
140 .923 .876 .835 .798 .763 .731 .701 .673 .647 .621 .598 .575
170 .936 .897 .862 .830 .801 .773 .747 .722 .698 .675 .654 .633
200 .945 .912 .882 .854 .828 .803 .780 .758 .736 .716 .696 .677
240 .954 .926 .900 .877 .855 .833 .813 .793 .775 .757 .739 .722
300 .966 .944 .925 .906 .889 .872 .856 .841 .825 .811 .797 .783
440 .975 .959 .945 .931 .918 .905 .893 .881 .870 .858 .847 .836
600 .982 .970 .959 .949 .939 .930 .920 .911 .903 .894 .885 .877
800 .986 .977 .969 .961 .954 .947 .940 .933 .926 .919 .913 .906

1000 .989 .982 .975 .969 .963 .957 .951 .946 .940 .935 .929 .924

a Multiply entry by 10−3. (continued)



TABLES 571

Table A.9. (Continued)

νH

νE 1 2 3 4 5 6 7 8 9 10 11 12

p = 6
1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
2 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
3 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
4 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
5 .007a .002a .001a .001a .001a .000 .000 .000 .000 .000 .000 .000
6 2.04a .315a .095a .040a .021a .012a .008a .006a .004a .003a .003a .002a

7 .019 3.48a 1.05a .416a .197a .106a .063a .040a .027a .020a .015a .011a

8 .054 .013 4.37a 1.82a .872a .465a .270a .168a .111a .076a .055a .041a

9 .098 .029 .011 4.94a 2.48a 1.36a .798a .497a .325a .222a .157a .115a

10 .144 .050 .021 .010 5.35a 3.04a 1.83a 1.16a .762a .521a .369a .269a

11 .189 .074 .034 .017 9.64a 5.67a 3.51a 2.26a 1.51a 1.05a .744a .543a

12 .232 .099 .049 .027 .015 9.35a 5.94a 3.92a 2.66a 1.86a 1.34a .983a

13 .271 .126 .066 .037 .022 .014 9.17a 6.17a 4.27a 3.03a 2.20a 1.63a

14 .308 .152 .084 .049 .031 .020 .013 9.07a 6.38a 4.59a 3.37a 2.52a

15 .341 .179 .103 .063 .040 .026 .018 .013 9.00a 6.57a 4.88a 3.68a

16 .372 .204 .122 .077 .050 .034 .024 .017 .012 8.97a 6.74a 5.14a

17 .400 .229 .141 .091 .061 .042 .030 .021 .016 .012 8.97a 6.90a

18 .426 .252 .160 .106 .072 .051 .037 .027 .020 .015 .012 8.97a

19 .450 .275 .179 .121 .084 .060 .044 .033 .025 .019 .015 .011
20 .473 .296 .197 .136 .096 .070 .052 .039 .030 .023 .018 .014
21 .493 .317 .215 .151 .109 .080 .060 .045 .035 .027 .021 .017
22 .512 .337 .233 .166 .121 .090 .068 .052 .041 .032 .025 .020
23 .530 .355 .250 .181 .134 .101 .077 .060 .047 .037 .030 .024
24 .546 .373 .266 .195 .146 .111 .086 .067 .053 .042 .034 .028
25 .562 .390 .282 .210 .159 .122 .095 .075 .060 .048 .039 .032
26 .576 .406 .298 .224 .171 .133 .104 .083 .066 .054 .044 .036
27 .590 .422 .313 .237 .183 .143 .113 .091 .073 .060 .049 .040
28 .603 .436 .327 .251 .195 .154 .123 .099 .080 .066 .054 .045
29 .615 .450 .341 .264 .207 .165 .132 .107 .088 .072 .060 .050
30 .626 .464 .355 .277 .219 .175 .142 .116 .095 .079 .066 .055
40 .711 .570 .467 .387 .324 .273 .232 .198 .170 .147 .127 .110
60 .802 .693 .608 .536 .476 .424 .379 .340 .305 .275 .249 .225
80 .849 .762 .690 .629 .574 .526 .483 .445 .410 .378 .350 .324

100 .878 .806 .745 .691 .642 .599 .559 .523 .489 .458 .430 .404
120 .898 .836 .783 .735 .692 .652 .616 .582 .551 .521 .494 .468
140 .912 .858 .811 .769 .730 .694 .660 .629 .599 .572 .546 .521
170 .927 .882 .842 .806 .772 .740 .710 .682 .656 .630 .607 .584
200 .938 .899 .864 .832 .803 .774 .748 .722 .698 .675 .653 .632
240 .948 .915 .886 .858 .833 .808 .785 .763 .741 .721 .701 .682
320 .961 .936 .913 .892 .872 .852 .834 .816 .799 .782 .766 .750
440 .972 .953 .936 .920 .905 .890 .876 .862 .849 .836 .823 .811
600 .979 .965 .953 .941 .930 .918 .908 .897 .887 .877 .867 .857
800 .984 .974 .964 .955 .947 .938 .930 .922 .914 .906 .898 .891

1000 .987 .979 .971 .964 .957 .950 .944 .937 .930 .924 .918 .912

a Multiply entry by 10−3. (continued)



572 TABLES

Table A.9. (Continued)

νH

νE 1 2 3 4 5 6 7 8 9 10 11 12

p = 7
1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
2 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
3 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
4 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
5 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
6 .043a .006a .002a .001a .001a .000 .000 .000 .000 .000 .000 .000
7 2.62a .350a .091a .033a .015a .008a .005a .003a .002a .002a .001a .001a

8 .018 2.95a .809a .292a .126a .063a .034a .020a .013a .009a .006a .005a

9 .048 .010 3.20a 1.22a .543a .270a .147a .086a .053a .035a .024a .017a

10 .087 .023 8.07a 3.34a 1.56a .798a .440a .259a .160a .104a .070a .049a

11 .128 .040 .016 6.97a 3.43a 1.83a 1.04a .619a .387a .252a .170a .119a

12 .170 .060 .026 .012 6.34a 3.51a 2.05a 1.25a .796a .525a .357a .249a

13 .209 .083 .038 .019 .010 5.94a 3.57a 2.23a 1.45a .967a .665a .468a

14 .246 .106 .052 .027 .015 9.17a 5.67a 3.63a 2.40a 1.62a 1.13a .804a

15 .281 .129 .067 .037 .022 .013 8.37a 5.48a 3.68a 2.54a 1.79a 1.28a

16 .313 .153 .083 .047 .029 .018 .012 7.80a 5.34a 3.73a 2.66a 1.94a

17 .343 .176 .099 .059 .037 .024 .016 .011 7.38a 5.24a 3.78a 2.78a

18 .370 .199 .116 .071 .045 .030 .020 .014 9.81a 7.06a 5.16a 3.83a

19 .396 .221 .133 .083 .054 .037 .025 .018 .013 9.20a 6.80a 5.10a

20 .420 .242 .149 .096 .064 .044 .031 .022 .016 .012 8.72a 6.60a

21 .442 .263 .166 .109 .074 .052 .037 .026 .019 .014 .011 8.34a

22 .462 .283 .183 .123 .085 .060 .043 .031 .023 .018 .013 .010
23 .482 .301 .199 .136 .095 .068 .050 .037 .028 .021 .016 .013
24 .499 .320 .215 .149 .106 .077 .057 .042 .032 .025 .019 .015
25 .516 .337 .230 .162 .117 .086 .064 .048 .037 .029 .022 .018
26 .532 .354 .246 .175 .128 .095 .071 .055 .042 .033 .026 .020
27 .547 .370 .260 .188 .139 .104 .079 .061 .047 .037 .029 .024
28 .561 .385 .275 .201 .150 .113 .087 .068 .053 .042 .033 .027
29 .574 .399 .289 .214 .161 .123 .095 .074 .059 .047 .037 .030
30 .586 .413 .302 .226 .172 .132 .103 .081 .064 .052 .042 .034
40 .679 .526 .417 .335 .273 .224 .185 .154 .128 .108 .091 .077
60 .779 .660 .566 .490 .426 .373 .327 .288 .254 .225 .200 .178
80 .832 .735 .656 .588 .530 .479 .434 .394 .358 .326 .298 .272

100 .864 .783 .715 .656 .603 .556 .513 .475 .439 .408 .378 .352
120 .886 .817 .757 .704 .657 .613 .574 .537 .504 .473 .444 .418
140 .902 .841 .788 .741 .698 .658 .621 .587 .556 .526 .498 .472
170 .919 .868 .823 .782 .744 .709 .676 .645 .616 .589 .563 .539
200 .931 .887 .848 .812 .778 .747 .717 .689 .662 .637 .613 .590
240 .942 .905 .871 .841 .812 .784 .758 .733 .709 .687 .665 .644
320 .957 .928 .902 .878 .855 .833 .812 .792 .773 .754 .736 .719
440 .968 .947 .928 .910 .893 .876 .860 .844 .829 .814 .800 .786
600 .977 .961 .947 .933 .920 .908 .895 .883 .872 .860 .849 .838
800 .982 .971 .960 .950 .940 .930 .920 .911 .902 .893 .884 .876

1000 .986 .977 .968 .959 .951 .943 .936 .928 .921 .914 .906 .899

a Multiply entry by 10−3. (continued)



TABLES 573

Table A.9. (Continued)

νH

νE 1 2 3 4 5 6 7 8 9 10 11 12

p = 8
1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
2 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
3 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
4 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
5 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
6 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
7 .138a .015a .004a .001a .001a .000 .000 .000 .000 .000 .000 .000
8 3.30a .393a .090a .029a .012a .006a .003a .002a .001a .001a .001a .000
9 .017 2.63a .659a .218a .087a .040a .020a .011a .007a .004a .003a .002a

10 .044 8.63a 2.46a .872a .361a .168a .086a .047a .028a .017a .011a .008a

11 .078 .019 6.15a 2.36a 1.03a .497a .259a .144a .085a .052a .034a .023a

12 .116 .033 .012 4.99a 2.30a 1.16a .619a .351a .209a .130a .084a .056a

13 .154 .051 .020 8.91a 4.34a 2.26a 1.25a .727a .441a .278a .181a .122a

14 .190 .070 .030 .014 7.22a 3.92a 2.23a 1.33a .824a .527a .347a .235a

15 .225 .090 .041 .021 .011 6.17a 3.63a 2.22a 1.40a .910a .608a .416a

16 .258 .111 .054 .028 .016 9.06a 5.48a 3.42a 2.20a 1.46a .987a .683a

17 .289 .133 .067 .037 .021 .013 7.80a 4.98a 3.27a 2.20a 1.51a 1.06a

18 .318 .154 .082 .046 .027 .017 .011 6.92a 4.62a 3.15a 2.19a 1.56a

19 .345 .175 .096 .056 .034 .021 .014 9.23a 6.26a 4.34a 3.06a 2.19a

20 .370 .195 .111 .067 .042 .027 .018 .012 8.22a 5.77a 4.12a 2.99a

21 .393 .215 .127 .078 .050 .033 .022 .015 .010 7.46a 5.39a 3.95a

22 .415 .235 .142 .089 .058 .039 .026 .018 .013 9.40a 6.86a 5.08a

23 .436 .254 .157 .101 .067 .045 .031 .022 .016 .012 8.56a 6.39a

24 .455 .272 .172 .113 .076 .052 .037 .026 .019 .014 .010 7.88a

25 .473 .289 .187 .124 .085 .060 .042 .031 .023 .017 .013 9.56a

26 .490 .306 .201 .136 .095 .067 .048 .035 .026 .020 .015 .011
27 .505 .322 .215 .148 .104 .075 .055 .040 .030 .023 .017 .013
28 .520 .338 .229 .160 .114 .083 .061 .045 .034 .026 .020 .016
29 .534 .353 .243 .172 .124 .091 .068 .051 .039 .030 .023 .018
30 .548 .367 .256 .183 .134 .099 .074 .056 .043 .034 .026 .021
40 .649 .485 .372 .290 .229 .182 .146 .118 .096 .079 .065 .054
60 .758 .627 .527 .447 .381 .327 .282 .244 .212 .184 .161 .141
80 .815 .709 .623 .551 .489 .435 .389 .348 .313 .281 .253 .229

100 .851 .761 .687 .622 .566 .516 .471 .431 .395 .362 .333 .306
120 .875 .798 .732 .675 .623 .577 .535 .496 .461 .429 .399 .372
140 .892 .825 .767 .715 .667 .625 .585 .549 .515 .484 .455 .428
170 .911 .854 .804 .759 .717 .679 .644 .610 .579 .550 .523 .497
200 .924 .875 .831 .791 .755 .720 .688 .657 .629 .602 .576 .551
240 .936 .895 .858 .823 .791 .761 .732 .705 .679 .655 .631 .609
320 .952 .920 .891 .865 .839 .815 .792 .770 .748 .728 .708 .689
440 .965 .942 .920 .900 .880 .862 .844 .827 .810 .794 .778 .762
600 .974 .957 .941 .926 .911 .897 .883 .870 .857 .844 .831 .819
800 .981 .968 .955 .944 .933 .922 .911 .901 .890 .880 .871 .861

1000 .985 .974 .964 .955 .946 .937 .928 .920 .911 .903 .895 .887

a Multiply entry by 10−3.
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Table A.10. Upper Critical Values for Roy’s Test, α = .05

Roy’s test statistic is given by

θ = λ1

1 + λ1
,

where λ1 is the largest eigenvalue of E−1H. The parameters are

s = min(νH , p), m = |νH − p| − 1

2
, N = νE − p − 1

2
.

Reject H0 if θ > table value.

m

N 0 1 2 3 4 5 7 10 15

s = 2
5 .565 .651 .706 .746 .776 .799 .834 .868 .901

10 .374 .455 .514 .561 .598 .629 .679 .732 .789
15 .278 .348 .402 .446 .483 .515 .567 .627 .696
20 .221 .281 .329 .369 .404 .434 .486 .546 .620
25 .184 .236 .278 .314 .346 .375 .424 .484 .558
30 .157 .203 .241 .274 .303 .330 .376 .433 .507
40 .122 .159 .190 .218 .243 .266 .306 .359 .428
50 .099 .130 .157 .180 .202 .222 .259 .306 .370
60 .084 .110 .133 .154 .173 .191 .223 .266 .326
80 .064 .085 .103 .119 .135 .149 .176 .211 .263

120 .043 .058 .070 .082 .093 .104 .123 .150 .190
240 .022 .030 .036 .042 .048 .054 .065 .080 .103

s = 3
5 .669 .729 .770 .800 .822 .840 .867 .894 .920

10 .472 .537 .586 .625 .656 .683 .725 .770 .819
15 .362 .422 .469 .508 .541 .569 .616 .669 .730
20 .293 .346 .390 .427 .458 .486 .533 .589 .656
25 .246 .294 .333 .367 .397 .424 .470 .525 .594
30 .212 .255 .291 .322 .350 .375 .419 .473 .543
40 .166 .201 .232 .259 .283 .305 .345 .395 .462
50 .136 .167 .192 .216 .237 .257 .292 .339 .402
60 .116 .142 .164 .185 .204 .221 .254 .296 .355
80 .089 .109 .127 .144 .160 .174 .201 .237 .288

120 .061 .075 .088 .100 .111 .122 .142 .169 .209
240 .031 .039 .046 .052 .058 .064 .075 .090 .114
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Table A.10. (Continued)

m

N 0 1 2 3 4 5 7 10 15

s = 4
5 .739 .782 .813 .836 .854 .868 .889 .911 .933

10 .547 .601 .641 .674 .700 .723 .759 .798 .840
15 .431 .482 .523 .558 .587 .612 .654 .701 .756
20 .354 .402 .441 .474 .503 .529 .572 .623 .684
25 .301 .344 .380 .412 .440 .464 .507 .559 .624
30 .261 .301 .334 .364 .390 .414 .455 .507 .572
40 .207 .240 .269 .294 .318 .339 .377 .426 .490
50 .171 .199 .224 .247 .268 .287 .322 .367 .428
60 .145 .170 .193 .213 .232 .249 .280 .322 .380
80 .112 .132 .150 .167 .182 .196 .223 .259 .309

120 .077 .091 .104 .116 .127 .138 .158 .185 .226
240 .040 .047 .054 .061 .067 .073 .084 .100 .124

s = 5
5 .788 .821 .845 .863 .877 .888 .906 .924 .942

10 .607 .651 .685 .713 .735 .755 .786 .820 .857
15 .488 .533 .569 .599 .625 .648 .685 .728 .777
20 .407 .449 .485 .515 .542 .565 .604 .651 .708
25 .349 .388 .422 .451 .477 .500 .540 .588 .648
30 .305 .341 .373 .400 .425 .448 .487 .535 .597
40 .243 .275 .302 .327 .349 .370 .406 .453 .514
50 .202 .230 .254 .276 .296 .315 .348 .392 .451
60 .173 .197 .219 .238 .257 .274 .304 .345 .401
80 .134 .154 .171 .188 .203 .217 .243 .278 .329

120 .093 .107 .120 .132 .143 .154 .174 .201 .241
240 .048 .056 .063 .069 .076 .082 .093 .109 .134

(continued)
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Table A.10. (Continued)

m

N 0 1 2 3 4 5 7 10 15

s = 6
5 .825 .850 .869 .883 .895 .904 .918 .934 .949

10 .655 .692 .721 .744 .764 .781 .808 .838 .871
15 .537 .576 .608 .635 .658 .678 .711 .750 .795
20 .454 .491 .523 .551 .575 .596 .632 .676 .728
25 .392 .428 .458 .485 .509 .531 .568 .613 .669
30 .345 .378 .407 .433 .457 .478 .514 .560 .618
40 .278 .307 .333 .356 .378 .397 .432 .477 .536
50 .232 .258 .281 .302 .322 .340 .372 .414 .472
60 .200 .223 .243 .262 .280 .297 .327 .366 .421
80 .156 .174 .192 .208 .222 .236 .262 .297 .346

120 .108 .122 .134 .146 .157 .168 .188 .215 .255
240 .056 .064 .071 .078 .084 .090 .101 .118 .142

s = 7
5 .852 .872 .887 .899 .908 .917 .929 .941 .955

10 .695 .726 .750 .771 .788 .802 .826 .853 .882
15 .579 .613 .641 .665 .686 .704 .734 .769 .810
20 .494 .528 .557 .582 .604 .624 .657 .697 .745
25 .431 .463 .491 .516 .538 .558 .593 .635 .688
30 .381 .412 .439 .463 .485 .505 .540 .583 .638
40 .309 .337 .362 .384 .404 .423 .456 .499 .555
60 .224 .246 .266 .285 .302 .318 .347 .386 .439
80 .176 .194 .211 .226 .241 .255 .280 .314 .363

100 .145 .160 .175 .188 .200 .212 .235 .265 .310
200 .077 .085 .093 .101 .109 .116 .129 .148 .175
300 .052 .058 .064 .069 .074 .079 .089 .103 .125
500 .032 .036 .039 .042 .046 .049 .055 .064 .078

1000 .016 .018 .020 .022 .023 .025 .028 .033 .041
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Table A.10. (Continued)

m

N 0 1 2 3 4 5 7 10 15

s = 8
5 .874 .890 .902 .912 .920 .927 .937 .948 .959

10 .728 .754 .775 .793 .808 .821 .842 .865 .892
15 .615 .645 .670 .692 .710 .727 .754 .786 .824
20 .531 .561 .587 .610 .630 .648 .679 .716 .761
25 .466 .495 .521 .544 .565 .583 .616 .655 .705
30 .414 .443 .468 .491 .511 .530 .563 .603 .655
40 .339 .365 .388 .409 .428 .446 .478 .519 .573
60 .248 .269 .288 .306 .323 .338 .367 .404 .456
80 .195 .213 .229 .244 .259 .272 .297 .330 .378

100 .161 .176 .190 .203 .216 .228 .250 .279 .323
200 .086 .094 .103 .110 .118 .125 .138 .157 .185
300 .058 .065 .070 .076 .081 .086 .096 .109 .130
500 .036 .040 .043 .047 .050 .053 .059 .068 .081

1000 .018 .020 .022 .024 .025 .027 .030 .035 .042

s = 9
5 .891 .904 .914 .922 .929 .935 .944 .953 .963

10 .756 .778 .797 .812 .825 .837 .855 .876 .901
15 .647 .674 .696 .715 .732 .747 .771 .801 .835
20 .563 .591 .614 .635 .654 .670 .698 .733 .775
25 .497 .525 .549 .570 .589 .606 .636 .673 .720
30 .445 .471 .495 .516 .535 .552 .583 .622 .671
40 .366 .391 .413 .433 .451 .468 .499 .538 .590
60 .270 .291 .309 .326 .343 .358 .385 .421 .472
80 .214 .231 .247 .262 .276 .289 .313 .346 .392

100 .177 .192 .206 .219 .231 .242 .264 .293 .336
200 .095 .104 .112 .119 .127 .134 .147 .166 .194
300 .065 .071 .077 .082 .087 .092 .102 .115 .136
500 .040 .043 .047 .051 .054 .057 .063 .072 .086

1000 .020 .022 .024 .026 .028 .029 .032 .037 .044

s = 10
5 .905 .916 .924 .931 .937 .941 .949 .958 .967

10 .780 .799 .815 .829 .840 .851 .867 .886 .908
15 .675 .699 .719 .736 .751 .764 .787 .814 .846
20 .592 .617 .639 .658 .675 .690 .716 .748 .787
25 .526 .551 .573 .593 .611 .627 .655 .690 .734
30 .473 .497 .519 .539 .557 .573 .603 .639 .686
40 .392 .415 .436 .455 .473 .489 .518 .555 .605
60 .292 .311 .329 .346 .361 .376 .402 .438 .487
80 .232 .249 .264 .278 .292 .305 .329 .361 .406

100 .193 .207 .220 .233 .245 .256 .278 .306 .348
200 .104 .112 .120 .128 .135 .142 .156 .174 .202
300 .071 .077 .083 .088 .093 .098 .108 .122 .143
500 .044 .047 .051 .054 .058 .061 .067 .076 .090

1000 .022 .024 .026 .028 .030 .031 .034 .039 .047



Table A.11. Upper Critical Values of Pillai’s Statistic V(s), α = .05

V (s) =
s∑

i=1

λi

1 + λi

where λ1, λ2, . . . , λs are eigenvalues of E−1H. Reject H0 if V (s) exceeds table value. The parameters s, m, and N are defined in Table A.10.

N

m 0 1 2 3 4 5 6 7 8 9 10 15 20 25

s = 2
0 1.536 1.232 1.031 .890 .782 .698 .629 .573 .526 .485 .451 .333 .263 .218
1 1.706 1.452 1.258 1.109 .991 .896 .817 .751 .694 .646 .604 .455 .364 .304
2 1.784 1.573 1.397 1.254 1.137 1.039 .956 .886 .825 .772 .725 .556 .451 .379
3 1.829 1.649 1.492 1.358 1.245 1.149 1.065 .993 .930 .875 .825 .643 .526 .445
4 1.859 1.703 1.560 1.436 1.329 1.235 1.153 1.081 1.018 .961 .910 .719 1.594 .506
5 1.880 1.742 1.613 1.497 1.395 1.305 1.226 1.155 1.091 1.034 .983 .786 .655 .561
6 1.895 1.772 1.654 1.546 1.450 1.364 1.286 1.217 1.154 1.098 1.046 .846 .710 .612
7 1.907 1.796 1.687 1.586 1.495 1.413 1.338 1.270 1.209 1.153 1.102 .901 .761 .658
8 1.917 1.815 1.714 1.620 1.534 1.455 1.383 1.317 1.257 1.202 1.151 .950 .808 .702
9 1.924 1.831 1.737 1.649 1.567 1.491 1.422 1.358 1.299 1.245 1.195 .995 .851 .743

10 1.931 1.844 1.757 1.673 1.595 1.523 1.456 1.394 1.337 1.284 1.235 1.036 .891 .781
15 1.951 1.888 1.822 1.758 1.695 1.636 1.580 1.527 1.477 1.430 1.386
20 1.963 1.913 1.860 1.807 1.756 1.706 1.658 1.612 1.568 1.527 1.487
25 1.969 1.929 1.885 1.840 1.796 1.753 1.711 1.671 1.632 1.595 1.559
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s = 3
0 2.037 1.710 1.473 1.294 1.153 1.040 .947 .869 .803 .746 .697 .524 .420 .350
1 2.297 1.988 1.751 1.564 1.412 1.287 1.183 1.094 1.017 .950 .892 .682 .552 .453
2 2.447 2.168 1.943 1.759 1.606 1.477 1.367 1.273 1.190 1.117 1.053 .818 .668 .565
3 2.544 2.294 2.084 1.907 1.757 1.628 1.517 1.420 1.334 1.258 1.190 .937 .772 .656
4 2.612 2.386 2.191 2.023 1.878 1.752 1.641 1.543 1.456 1.378 1.308 1.042 .866 .740
5 2.662 2.457 2.276 2.117 1.978 1.854 1.745 1.648 1.561 1.482 1.411 1.137 .952 .818
6 2.701 2.514 2.345 2.194 2.061 1.941 1.835 1.739 1.652 1.573 1.502 1.222 1.030 .890
7 2.732 2.559 2.402 2.259 2.131 2.016 1.912 1.818 1.732 1.654 1.582 1.300 1.103 .957
8 2.757 2.597 2.449 2.314 2.192 2.081 1.979 1.887 1.803 1.726 1.655 1.371 1.170 1.020
9 2.777 2.629 2.490 2.362 2.244 2.137 2.039 1.949 1.866 1.790 1.720 1.436 1.23

10 2.795 2.656 2.525 2.403 2.291 2.187 2.092 2.004 1.923 1.848 1.779 1.496 1.3
15 2.853 2.748 2.646 2.549 2.457 2.370 2.288 2.211 21.39 2.071 2.007
20 2.885 2.802 2.718 2.637 2.560 2.485 2.414 2.347 2.283 2.222 2.163
25 2.906 2.836 2.766 2.697 2.630 2.565 2.503 2.443 2.385

(continued)
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Table A.11. (Continued)

N

m 0 1 2 3 4 5 6 7 8 9 10 15 20 25

s = 4
0 2.549 2.194 1.926 1.717 1.548 1.410 1.294 1.196 1.112 1.038 .974 .744 .602
1 2.852 2.510 2.241 2.023 1.844 1.693 1.566 1.456 1.360 1.277 1.203 .932 .761
2 3.052 2.733 2.472 2.256 2.074 1.919 1.786 1.670 1.567 1.477 1.396 1.097 .903
3 3.193 2.898 2.650 2.440 2.260 2.104 1.969 1.849 1.743 1.649 1.564 1.243 1.032
4 3.298 3.025 2.791 2.589 2.413 2.259 2.123 2.002 1.895 1.798 1.710 1.375 1.149
5 3.378 3.126 2.905 2.711 2.541 2.390 2.255 2.135 2.027 1.929 1.840 1.494
6 3.442 3.208 2.999 2.814 2.649 2.502 2.370 2.251 2.143 2.044 1.955 1.602
7 3.494 3.276 3.079 2.902 2.743 2.600 2.470 2.353 2.246 2.148 2.058 1.70
8 3.537 3.333 3.146 2.977 2.824 2.685 2.559 2.444 2.338 2.241 2.151 1.8
9 3.574 3.382 3.205 3.043 2.896 2.761 2.638 2.525 2.421 2.325 2.236

10 3.605 3.424 3.256 3.101 2.959 2.829 2.708 2.598 2.496 2.401 2.313
15 3.710 3.570 3.436 3.310 3.191 3.079 2.974 2.876 2.783 2.696 2.615
20 3.771 3.657 3.546 3.440 3.338 3.241 3.149
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Table A.11. (Continued)

N

m 0 1 2 3 4 5 6 7 8 9 10 15 20 25

s = 5
0 3.055 2.681 2.389 2.155 1.962 1.801 1.664 1.547 1.445 1.356 1.277
1 3.390 3.025 2.731 2.488 2.285 2.122 1.964 1.835 1.722 1.622 1.533
2 3.628 3.281 2.993 2.751 2.545 2.367 2.213 2.077 1.957 1.850 1.754
3 3.805 3.478 3.201 2.964 2.759 2.580 2.423 2.284 2.160 2.048 1.948
4 3.941 3.635 3.370 3.140 2.938 2.761 2.604 2.463 2.337 2.222 2.119
5 4.050 3.762 3.510 3.288 3.091 2.916 2.760 2.619 2.492 2.377 2.271
6 4.138 3.868 3.627 3.414 3.223 3.052 2.897 2.758 2.630 2.514 2.408
7 4.212 3.957 3.728 3.522 3.337 3.170 3.018 2.880
8 4.274 4.033 3.815 3.617 3.438 3.275 3.126
9 4.327 4.099 3.890 3.700 3.527 3.369

10 4.372 4.156 3.957 3.774 3.607 3.45
s = 6

0 3.559 3.171 2.859 2.604 2.390 2.209 2.053 1.918 1.799 1.694 1.601
1 3.917 3.535 3.221 2.958 2.734 2.542 2.375 2.229 2.099 1.984 1.881
2 4.185 3.817 3.508 3.245 3.018 2.821 2.647 2.494 2.358 2.235 2.125
3 4.391 4.041 3.741 3.482 3.256 3.057 2.881 2.724 2.583 2.456 2.341
4 4.556 4.223 3.934 3.681 3.458 3.260 3.084 2.925 2.782 2.652 2.534
5 4.690 4.375 4.097 3.851 3.633 3.438 3.262 3.103 2.959 2.827 2.706
6 4.802 4.502 4.236 3.998 3.785
7 4.896 4.611 4.356 4.126 3.919
8 4.976 4.706 4.461 4.239
9 5.045 4.788 4.553

10 5.106 4.860 4.635
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Table A.12. Upper Critical Values for the Lawley–Hotelling Test Statistic, α = .05

The test statistic is νEU (s)/νH , where U (s) is the Lawley–Hotelling statistic. Reject H0 if νEU (s)/νH > table value.

νH

νE 2 3 4 5 6 8 10 12 15 20 25 40 60

p = 2
2a 9.8591 10.659 11.098 11.373 11.562 11.952 11.804 12.052 12.153 12.254 12.316 12.409 12.461
3 58.428 58.915 59.161 59.308 59.407 59.531 59.606 59.655 59.705 59.755 59.785 59.830 59.855
4 23.999 23.312 22.918 22.663 22.484 22.250 22.104 22.003 21.901 21.797 21.733 21.636 21.582
5 15.639 14.864 14.422 14.135 13.934 13.670 13.504 13.391 13.275 13.156 13.083 12.972 12.909
6 12.175 11.411 10.975 10.691 10.491 10.228 10.063 9.9489 9.8320 9.7118 9.6381 9.5251 9.4610
7 10.334 9.5937 9.1694 8.8927 8.6975 8.4396 8.2765 8.16399 8.0480 7.9285 7.8549 7.7417 7.6773
8 9.2069 8.4881 8.0752 7.8054 7.6145 7.3614 7.2008 7.0896 6.9748 6.8560 6.7826 6.6694 6.6048

10 7.9095 7.2243 6.8294 6.5702 6.3860 6.1405 5.9837 5.8745 5.7612 5.6433 5.5701 5.4564 5.3910
12 7.1902 6.5284 6.1461 5.8942 5.7147 5.4744 5.3200 5.2122 5.0997 4.9820 4.9085 4.7938 4.7274
14 6.7350 6.0902 4.7168 5.4703 5.2941 5.0574 4.9048 4.7977 4.6856 4.5678 4.4939 4.3780 4.3105
16 6.4217 5.7895 5.4230 5.1804 5.0067 4.7727 4.6213 4.5147 4.4028 4.2846 4.2102 4.0930 4.0243
18 6.1932 5.5708 5.2095 4.9700 4.7982 4.5663 4.4157 4.3094 4.1976 4.0791 4.0042 3.8855 3.8158
20 6.0192 5.4046 5.0475 4.8105 4.6402 4.4099 4.2600 4.1539 4.0420 3.9231 3.8477 3.7278 3.6569
25 5.7244 5.1237 4.7741 2.5415 4.3740 4.1465 3.9977 3.8919 3.7798 3.6598 3.5832 3.4605 3.3868
30 5.5401 4.9487 4.6040 4.3743 4.2086 3.9829 3.8347 3.7291 3.6166 3.4957 3.4181 3.2926 3.2168
35 5.4140 4.8291 4.8880 4.2604 4.0959 3.8715 3.7237 3.6181 3.5054 3.3836 3.3051 3.1774 3.1000
40 5.3224 4.7424 4.4039 4.1778 4.0143 3.7908 3.6433 3.5377 3.4247 3.3022 3.2230 3.0933 3.0140
50 5.1981 4.6249 4.2900 4.0661 3.9039 3.6817 3.5346 3.4289 3.3154 3.1919 3.1115 2.9787 2.8965
60 5.1178 4.5490 4.2166 3.9941 3.8328 3.6114 3.4646 3.3588 3.2450 3.1206 3.0392 2.9041 2.8196
70 5.0616 4.4960 4.1653 3.9439 3.7831 3.5624 3.4157 3.3099 3.1957 3.0706 2.9886 2.8516 2.7652
80 5.0200 4.4569 4.1275 3.9068 3.7465 3.5262 3.3796 3.2737 3.1594 3.0338 2.9512 2.8126 2.7247

100 4.9628 4.4030 4.0754 3.8557 3.6961 3.4764 3.3300 3.2240 3.1093 2.9829 2.8994 2.7586 2.6683
200 4.8514 4.2982 3.9742 3.7567 3.5983 3.3798 3.2336 3.1275 3.0120 2.8838 2.7984 2.6520 2.5559
∞ 4.7442 4.1973 3.8769 3.6614 3.5044 3.2870 3.1410 3.0346 2.9182 2.7879 2.7002 2.5470 2.4428
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p = 3
3a 25.930 26.996 27.665 28.125 28.712 29.073 29.316 29.561 29.809 29.959 30.19 30.31
4a 1.1880 1.1929 1.1959 1.1978 1.2003 1.2018 1.2028 1.2038 1.2048 1.2054 1.2063 1.2068
5 42.474 41.764 1.305 40.983 40.562 40.300 40.120 39.937 39.750 39.635 39.462 39.366
6 25.456 24.715 24.235 23.899 23.458 23.182 22.992 22.799 22.600 22.479 22.294 22.190
7 18.752 18.056 17.605 17.288 16.870 16.608 16.427 16.241 16.051 15.934 15.755 15.653
8 15.308 14.657 14.233 13.934 13.540 13.290 13.118 12.941 12.758 12.646 12.473 12.375

10 11.893 11.306 10.921 10.649 10.287 10.057 9.8974 9.7320 9.5603 9.4541 9.2897 9.1955
12 10.229 9.6825 9.3234 9.0680 8.7271 8.5088 8.3566 8.1982 8.0330 7.9301 7.7700 7.6777
14 9.2550 8.7356 8.3935 8.1495 7.8225 7.6122 7.4649 7.3110 7.1497 7.0488 6.8908 6.7991
16 8.6180 8.1183 7.7884 7.5526 7.2355 7.0307 6.8868 6.7360 6.5772 6.4774 6.3204 6.2287
18 8.1701 7.6851 7.3644 7.1347 6.8251 6.6244 6.4830 6.3343 6.1771 6.0780 5.9212 5.8292
20 7.8384 7.3649 7.0513 6.8263 6.5224 6.3249 6.1853 6.0383 5.8822 5.7834 5.6266 5.5341
25 7.2943 6.8407 6.5394 6.3227 6.0287 5.8365 5.7001 5.5555 5.4010 5.3025 5.1446 5.0503
30 6.9654 6.5245 6.2311 6.0196 5.7319 5.5431 5.4085 5.2654 5.1116 5.0129 4.8535 4.7575
35 6.7453 6.3132 6.0253 5.8175 5.5341 5.3476 5.2143 5.0720 4.9185 4.8195 4.6586 4.5608
40 6.5877 6.1621 5.8783 5.6732 5.3929 5.2081 5.0757 4.9340 4.7806 4.6813 4.5189 4.4195
50 6.3773 5.9606 5.6823 5.4809 5.2050 5.0224 4.8911 4.7502 4.5967 4.4968 4.3319 4.2297
60 6.2433 5.8324 5.5577 5.3587 5.0856 4.9044 4.7739 4.6334 4.4798 4.3793 4.2123 4.1078
70 6.1504 5.7436 5.4715 5.2742 5.0031 4.8229 4.6929 4.5526 4.3988 4.2979 4.1292 4.0227
80 6.0823 5.6786 5.4084 5.2122 4.9426 4.7632 4.6336 4.4935 4.3395 4.2381 4.0680 3.9600

100 5.9891 5.5896 5.3220 5.1276 4.8601 4.6817 4.5525 4.4126 4.2583 4.1563 3.9840 3.8734
200 5.8099 5.4186 5.1562 4.9653 4.7017 4.5252 4.3970 4.2574 4.1023 3.9988 3.8212 3.7042
∞ 5.6397 5.2565 4.9992 4.8116 4.5519 4.3773 4.2499 4.1104 3.9541 3.8487 3.6642 3.5384

(continued)
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Table A.12. (Continued)

νH

νE 4 5 6 8 10 12 15 20 25 40 60

p = 4
4a 49.964 51.204 52.054 53.142 53.808 54.258 54.71 55.17 55.46 — —
5a 1.9964 2.0013 2.0046 2.0087 2.0112 2.0128 2.0145 2.0171 2.0171 2.019 —
6 65.715 64.999 64.497 63.841 63.432 63.151 62.866 62.573 62.396 62.13 —
7 37.343 36.629 36.129 35.474 35.064 34.782 34.495 34.200 34.019 33.75 —
8 26.516 25.868 25.413 24.814 24.437 24.178 23.912 23.639 23.471 23.214 23.072

10 17.875 17.326 16.938 16.424 16.098 15.872 15.640 15.399 15.250 15.021 14.891
12 14.338 13.848 13.500 13.037 12.741 12.535 12.321 12.099 11.961 11.747 11.624
14 12.455 12.002 11.680 11.248 10.972 10.778 10.577 10.366 10.234 10.029 9.9103
16 11.295 10.868 10.563 10.154 9.8904 9.7054 9.5119 9.3085 9.1810 8.9808 8.8644
18 10.512 10.104 9.8121 9.4190 9.1647 8.9857 8.7978 8.5996 8.4748 8.2778 8.1626
20 9.9500 9.5560 9.2736 8.8926 8.6453 8.4708 8.2871 8.0926 7.9696 7.7748 7.6601
25 9.0585 8.6884 8.4223 8.0616 7.8261 7.6590 7.4821 7.2933 7.1730 6.9805 6.8659
30 8.5377 8.1825 7.9265 7.5784 7.3502 7.1876 7.0147 6.8291 6.7101 6.5181 6.4026
35 8.1968 7.8517 7.6026 7.2631 7.0397 6.8801 6.7099 6.5262 6.4079 6.2156 6.0989
40 7.9566 7.6188 7.3746 7.0413 6.8214 6.6640 6.4955 6.3131 6.1952 6.0023 5.8844
50 7.6404 7.3125 7.0751 6.7501 6.5350 6.3804 6.2143 6.0334 5.9157 5.7214 5.6011
60 7.4417 7.1202 6.8872 6.5676 6.3555 6.2027 6.0381 5.8581 5.7403 5.5446 5.4222
70 7.3054 6.9884 6.7584 6.4426 6.2325 6.0809 5.9173 5.7378 5.6200 5.4230 5.2987
80 7.2061 6.8924 6.6646 6.3515 6.1430 5.9924 5.8294 5.6503 5.5323 5.3343 5.2084

100 7.0711 6.7619 6.5372 6.2279 6.0215 5.8721 5.7101 5.5313 5.4131 5.2133 5.0849
200 6.8143 6.5139 6.2952 5.9933 5.7910 5.6439 5.4836 5.3053 5.1863 4.9819 4.8471
∞ 6.5741 6.2821 6.0692 5.7743 5.5758 5.4309 5.2721 5.0940 4.9737 4.7629 4.6190
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p = 5
5a 81.991 83.352 85.093 86.160 86.88 — — — — —
6a 3.0093 3.0142 3.0204 3.0241 3.0266 3.0291 3.032 — — —
7 93.762 93.042 92.102 91.515 91.113 90.705 90.29 90.04 — —
8 51.339 50.646 49.739 49.170 48.780 48.382 47.973 47.723 47.35 —

10 27.667 27.115 26.387 25.927 25.610 25.284 24.947 24.740 24.422 —
12 20.169 19.701 19.079 18.683 18.409 18.124 17.830 17.647 17.365 17.20
14 16.643 16.224 15.666 15.309 15.059 14.800 14.530 14.361 14.100 13.95
16 14.624 14.239 13.722 13.389 13.157 12.914 12.659 12.499 12.250 12.105
18 13.326 12.963 12.476 12.161 11.939 11.708 11.463 11.310 11.068 10.928
20 12.424 12.078 11.612 11.310 11.097 10.874 10.637 10.488 10.252 10.113
25 11.046 10.728 10.297 10.016 9.8168 9.6061 9.3814 9.2386 9.0102 8.8745
30 10.270 9.9689 9.5592 9.2907 9.0995 8.8964 8.6785 8.5389 8.3141 8.1790
35 9.7739 9.4836 9.0879 8.8277 8.6419 8.4437 8.2301 8.0926 7.8693 7.7339
40 9.4292 9.1469 8.7613 8.5070 8.3250 8.1303 7.9195 7.7833 7.5607 7.4247
50 8.9825 8.7107 8.3385 8.0921 7.9150 7.7248 7.5177 7.3829 7.1605 7.0229
60 8.7057 8.4406 8.0769 7.8355 7.6615 7.4741 7.2692 7.1351 6.9124 6.7730
70 8.5174 8.2570 7.8991 7.6612 7.4894 7.3039 7.1004 6.9667 6.7434 6.6024
80 8.3811 8.1241 7.7705 7.5351 7.3648 7.1807 6.9782 6.8448 6.6208 6.4785

100 8.1969 7.9446 7.5969 7.3649 7.1968 7.0145 6.8133 6.6801 6.4550 6.3103
200 7.8505 7.6070 7.2706 7.0451 6.8811 6.7023 6.5032 6.3702 6.1416 5.9908
∞ 7.5305 7.2955 6.9698 6.7505 6.5902 6.4144 6.2171 6.0838 5.8499 5.6899

(continued)
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Table A.12. (Continued)

νH

νE 6 8 10 12 15 20 25 30 35

p = 6
10 45.722 44.677 44.019 43.567 43.103 42.626 42.334 42.136 41.993
12 28.959 28.121 27.590 27.223 26.843 26.451 26.209 26.044 25.925
14 22.321 21.600 21.141 20.821 20.489 20.144 19.929 19.783 19.677
16 18.858 18.210 17.795 17.505 17.202 16.886 16.688 16.553 16.455
18 16.755 16.157 15.772 15.501 15.218 14.921 14.735 14.607 14.513
20 15.351 14.788 14.424 14.168 13.899 13.615 13.436 13.313 13.223
25 13.293 12.786 12.456 12.222 11.975 11.711 11.544 11.428 11.343
30 12.180 11.705 11.395 11.173 10.939 10.687 10.526 10.414 10.331
35 11.484 11.031 10.733 10.520 10.293 10.049 9.8921 9.7820 9.7003
40 11.009 10.571 10.282 10.075 9.8535 9.6142 9.4596 9.3508 9.2699
50 10.402 9.9832 9.7060 9.5067 9.2927 9.0598 8.9082 8.8009 8.7207
60 10.031 9.6246 9.3547 9.1602 8.9507 8.7215 8.5717 8.4651 8.3851
70 9.7813 9.3830 9.1182 8.9269 8.7204 8.4938 8.3450 8.2388 8.1589
80 9.6014 9.2093 8.9480 8.7591 8.5548 8.3300 8.1819 8.0759 7.9959

100 9.3598 8.9760 8.7197 8.5340 8.3326 8.1102 7.9629 7.8572 7.7771
200 8.9099 8.5419 8.2950 8.1153 7.9193 7.7011 7.5552 7.4494 7.3685
∞ 8.4997 8.1463 7.9082 7.7340 7.5430 7.3284 7.1832 7.0768 6.9945

aMultiply each entry in this row by 100.
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Table A.13. Orthogonal Polynomial Contrasts

Variable

p Polynomial 1 2 3 4 5 6 7 8 9 10 c′
i ci

3 Linear −1 0 1 2
Quadratic 1 −2 1 6

4 Linear −3 −1 1 3 20
Quadratic 1 −1 −1 1 4
Cubic −1 3 −3 1 20

5 Linear −2 −1 0 1 2 10
Quadratic 2 −1 −2 −1 2 14
Cubic −1 2 0 −2 1 10
Quartic 1 −4 6 −4 1 70

6 Linear −5 −3 −1 1 3 5 70
Quadratic 5 −1 −4 −4 −1 5 84
Cubic −5 7 4 −4 −7 5 180
Quartic 1 −3 2 2 −3 1 28
Quintic −1 5 −10 10 −5 1 252

7 Linear −3 −2 −1 0 1 2 3 28
Quadratic 5 0 −3 −4 −3 0 5 84
Cubic −1 1 1 0 −1 −1 1 6
Quartic 3 −7 1 6 1 −7 3 154
Quintic −1 4 −5 0 5 −4 1 84
Sextic 1 −6 15 −20 15 −6 1 924

8 Linear −7 −5 −3 −1 1 3 5 7 168
Quadratic 7 1 −3 −5 −5 −3 1 7 168
Cubic −7 5 7 3 −3 −7 −5 7 264
Quartic 7 −13 −3 9 9 −3 −13 7 616
Quintic −7 23 −17 −15 15 17 −23 7 2,184
Sextic 1 −5 9 −5 −5 9 −5 1 264
Septic −1 7 −21 35 −35 21 −7 1 3,432

9 Linear −4 −3 −2 −1 0 1 2 3 4 60
Quadratic 28 7 −8 −17 −20 −17 −8 7 28 2,772
Cubic −14 7 13 9 0 −9 −13 −7 14 990
Quartic 14 −21 −11 9 18 9 −11 −21 14 2,002
Quintic −4 11 −4 −9 0 9 4 −11 4 468
Sextic 4 −17 22 1 −20 1 22 −17 4 1,980
Septic −1 6 −14 14 0 −14 14 −6 1 858
Octic 1 −8 28 −56 70 −56 28 −8 1 12,870

10 Linear −9 −7 −5 −3 −1 1 3 5 7 9 330
Quadratic 6 2 −1 −3 −4 −4 −3 −1 2 6 132
Cubic −42 14 35 31 12 −12 −31 −35 −14 42 8,580
Quartic 18 −22 −17 3 18 18 3 −17 −22 18 2,860
Quintic −6 14 −1 −11 −6 6 11 1 −14 6 780
Sextic 3 −11 10 6 −8 −8 6 10 11 3 660
Septic −9 47 −86 92 56 −56 −42 86 −47 9 29,172
Octic 1 −7 20 −28 14 14 −28 20 −7 1 2,860
Novic −1 9 −36 84 −126 126 −84 36 −9 1 48,620

Note: Entries are rows c′
i of the (p − 1)× p matrix C illustrated in (6.91) in Section 6.10.1.
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Table A.14. Test for Equal Covariance Matrices, α = .05

ν k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

p = 2
3 12.18 18.70 24.55 30.09 35.45 40.68 45.81 50.87 55.86
4 10.70 16.65 22.00 27.07 31.97 36.75 41.45 46.07 50.64
5 9.97 15.63 20.73 25.57 30.23 34.79 39.26 43.67 48.02
6 9.53 15.02 19.97 24.66 29.19 33.61 37.95 42.22 46.45
7 9.24 14.62 19.46 24.05 28.49 32.83 37.08 41.26 45.40
8 9.04 14.33 19.10 23.62 27.99 32.26 36.44 40.57 44.64
9 8.88 14.11 18.83 23.30 27.62 31.84 35.98 40.05 44.08

10 8.76 13.94 18.61 23.05 27.33 31.51 35.61 39.65 43.64
11 8.67 13.81 18.44 22.85 27.10 31.25 35.32 39.33 43.29
12 8.59 13.70 18.30 22.68 26.90 31.03 35.08 39.07 43.00
13 8.52 13.60 18.19 22.54 26.75 30.85 34.87 38.84 42.76
14 8.47 13.53 18.10 22.42 26.61 30.70 34.71 38.66 42.56
15 8.42 13.46 18.01 22.33 26.50 30.57 34.57 38.50 42.38
16 8.38 13.40 17.94 22.24 26.40 30.45 34.43 38.36 42.23
17 8.35 13.35 17.87 22.17 26.31 30.35 34.32 38.24 42.10
18 8.32 13.30 17.82 22.10 26.23 30.27 34.23 38.13 41.99
19 8.28 13.26 17.77 22.04 26.16 30.19 34.14 38.04 41.88
20 8.26 13.23 17.72 21.98 26.10 30.12 34.07 37.95 41.79
25 8.17 13.10 17.55 21.79 25.87 29.86 33.78 37.63 41.44
30 8.11 13.01 17.44 21.65 25.72 29.69 33.59 37.42 41.21

p = 3
4 22.41 35.00 46.58 57.68 68.50 79.11 89.60 99.94 110.21
5 19.19 30.52 40.95 50.95 60.69 70.26 79.69 89.03 98.27
6 17.57 28.24 38.06 47.49 56.67 65.69 74.58 83.39 92.09
7 16.59 26.84 36.29 45.37 54.20 62.89 71.44 79.90 88.30
8 15.93 25.90 35.10 43.93 52.54 60.99 69.32 77.57 85.73
9 15.46 25.22 34.24 42.90 51.33 59.62 67.78 75.86 83.87

10 15.11 24.71 33.59 42.11 50.42 58.57 66.62 74.58 82.46
11 14.83 24.31 33.08 41.50 49.71 57.76 65.71 73.57 81.36
12 14.61 23.99 32.67 41.00 49.13 57.11 64.97 72.75 80.45
13 14.43 23.73 32.33 40.60 48.65 56.56 64.36 72.09 79.72
14 14.28 23.50 32.05 40.26 48.26 56.11 63.86 71.53 79.11
15 14.15 23.32 31.81 39.97 47.92 55.73 63.43 71.05 78.60
16 14.04 23.16 31.60 39.72 47.63 55.40 63.06 70.64 78.14
17 13.94 23.02 31.43 39.50 47.38 55.11 62.73 70.27 77.76
18 13.86 22.89 31.26 39.31 47.16 54.86 62.45 69.97 77.41
19 13.79 22.78 31.13 39.15 46.96 54.64 62.21 69.69 77.11
20 13.72 22.69 31.01 39.00 46.79 54.44 61.98 69.45 76.84
25 13.48 22.33 30.55 38.44 46.15 53.70 61.16 68.54 75.84
30 13.32 22.10 30.25 38.09 45.73 53.22 60.62 67.94 75.18
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Table A.14. (Continued)

ν k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

p = 4
5 35.39 56.10 75.36 93.97 112.17 130.11 147.81 165.39 182.80
6 30.06 48.62 65.90 82.60 98.93 115.03 130.94 146.69 162.34
7 27.31 44.69 60.89 76.56 91.88 106.98 121.90 136.71 151.39
8 25.61 42.24 57.77 72.77 87.46 101.94 116.23 130.43 144.50
9 24.45 40.57 55.62 70.17 84.42 98.46 112.32 126.08 139.74

10 23.62 39.34 54.04 68.26 82.19 95.90 109.46 122.91 136.24
11 22.98 38.41 52.84 66.81 80.48 93.95 107.27 120.46 133.57
12 22.48 37.67 51.90 65.66 79.14 92.41 105.54 118.55 131.45
13 22.08 37.08 51.13 64.73 78.04 91.15 104.12 116.98 129.74
14 21.75 36.59 50.50 63.95 77.13 90.12 102.97 115.69 128.32
15 21.47 36.17 49.97 63.30 76.37 89.26 101.99 114.59 127.14
16 21.24 35.82 49.51 62.76 75.73 88.51 101.14 113.67 126.10
17 21.03 35.52 49.12 62.28 75.16 87.87 100.42 112.87 125.22
18 20.86 35.26 48.78 61.86 74.68 87.31 99.80 112.17 124.46
19 20.70 35.02 48.47 61.50 74.25 86.82 99.25 111.56 123.79
20 20.56 34.82 48.21 61.17 73.87 86.38 98.75 111.02 123.18
25 20.06 34.06 47.23 59.98 72.47 84.78 96.95 109.01 120.99
30 19.74 33.59 46.61 59.21 71.58 83.74 95.79 107.71 119.57

p = 5
6 51.11 81.99 110.92 138.98 166.54 193.71 220.66 247.37 273.88
7 43.40 71.06 97.03 122.22 146.95 171.34 195.49 219.47 243.30
8 39.29 65.15 89.45 113.03 136.18 159.04 181.65 204.14 226.48
9 36.71 61.39 84.62 107.17 129.30 151.17 172.80 194.27 215.64

10 34.93 58.78 81.25 103.06 124.48 145.64 166.56 187.37 208.02
11 33.62 56.85 78.75 100.02 120.92 141.54 161.98 182.24 202.37
12 32.62 55.37 76.83 97.68 118.15 138.38 158.38 178.23 198.03
13 31.83 54.19 75.30 95.82 115.96 135.86 155.54 175.10 194.51
14 31.19 53.23 74.05 94.29 114.16 133.80 153.21 172.49 191.68
15 30.66 52.44 73.01 93.02 112.66 132.07 151.29 170.36 189.38
16 30.22 51.76 72.14 91.94 111.41 130.61 149.66 166.53 187.32
17 29.83 51.19 71.39 91.03 110.34 129.38 148.25 166.99 185.61
18 29.51 50.69 70.74 90.23 109.39 128.29 147.03 165.65 184.10
19 29.22 50.26 70.17 89.54 108.57 127.36 145.97 164.45 182.81
20 28.97 49.88 69.67 88.93 107.85 126.52 145.02 163.38 181.65
25 28.05 48.48 67.86 86.70 105.21 123.51 141.62 159.60 177.49
30 27.48 47.61 66.71 85.29 103.56 121.60 139.47 157.22 174.87

Note: Table contains upper percentage points for

−2 ln M = ν

(
k ln |S| −

k∑
i=1

ln |Si |
)

for k samples, each with ν degrees of freedom. Reject H0 : �1 = �2 = · · · = �k if −2 ln M > table
value.
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Table A.15. Test for Independence of p Variables

Upper percentage points for

u′ = −
(
ν − 2p + 5

6

)
ln

( |S|
s11 · · · spp

)
= −

(
ν − 2p + 5

6

)
ln |R|,

where ν is the degrees of freedom of S or R. Reject hypothesis of independence if u′ is greater
than table value. The χ2

α values are shown for comparison, since u′ is approximately χ2 dis-
tributed with f = 1

2 p(p − 1) degrees of freedom.

n p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10
α = .05

4 8.020
5 7.834 15.22
6 7.814 13.47 24.01
7 7.811 13.03 20.44 34.30
8 7.811 12.85 19.45 28.75 46.05
9 7.811 12.76 19.02 27.11 38.41 59.25

10 7.812 12.71 18.80 26.37 36.03 49.42 73.79
11 7.812 12.68 18.67 25.96 34.91 46.22 61.76 89.92
12 7.813 12.66 18.58 25.71 34.28 44.67 57.68 75.45
13 7.813 12.65 18.52 25.55 33.89 43.78 55.65 70.43
14 7.813 12.64 18.48 25.44 33.63 43.21 54.46 67.87
15 7.813 12.63 18.45 25.36 33.44 42.82 53.69 66.34
16 7.814 12.62 18.43 25.30 33.31 42.55 53.15 65.33
17 7.814 12.62 18.41 25.25 33.20 42.34 52.77 64.63
18 7.814 12.62 18.40 25.21 33.12 42.19 52.48 64.12
19 7.814 12.61 18.38 25.19 33.06 42.06 52.26 63.73
20 7.814 12.61 18.37 25.16 33.01 41.97 52.08 63.43

χ2
.05 7.815 12.59 18.31 25.00 32.67 41.34 51.00 61.66

α = .01
4 11.79
5 11.41 21.18
6 11.36 18.27 32.16
7 11.34 17.54 26.50 44.65
8 11.34 17.24 24.95 36.09 58.61
9 11.34 17.10 24.29 33.63 47.05 74.01

10 11.34 17.01 23.95 32.54 43.59 59.36 90.87
11 11.34 16.96 23.75 31.95 42.00 54.83 73.03 109.53
12 11.34 16.93 23.62 31.60 41.13 52.70 67.37 88.05
13 11.34 16.90 23.53 31.36 40.59 51.49 64.64 81.20
14 11.34 16.89 23.47 31.20 40.23 50.73 63.06 77.83
15 11.34 16.87 23.42 31.09 39.97 50.22 62.05 75.84
16 11.34 16.86 23.39 31.00 39.79 49.85 61.36 74.56
17 11.34 16.86 23.36 30.94 39.65 49.59 60.86 73.66
18 11.34 16.85 23.34 30.88 39.54 49.38 60.49 73.01
19 11.34 16.85 23.32 30.84 39.46 49.22 60.21 72.52
20 11.34 16.84 23.31 30.81 39.39 49.09 59.99 72.15

χ2
.01 11.34 16.81 23.21 30.58 38.93 48.28 58.57 69.92



A P P E N D I X B

Answers and Hints to Problems

CHAPTER 2

2.1 (a) A + B =
(

7 0 7
13 14 3

)
, A − B =

(
1 4 −1
1 −4 13

)

(b) A′A =

 65 43 68

43 29 46
68 46 73


 , AA′ =

(
29 62
62 138

)

2.2 (a) (A + B)′ =

 7 13

0 14
7 3


 , A′ + B′ =


 7 13

0 14
7 3




(b) A′ =

 4 7

2 5
3 8


 , (A′)′ =

(
4 2 3
7 5 8

)
= A

2.3 (a) AB =
(

5 15
3 −5

)
, BA =

(
2 6

11 −2

)
(b) |AB| = −70, |A| = −7, |B| = 10

2.4 (a) A + B =
(

3 3
3 4

)
, tr(A + B) = 7

(b) tr(A) = 0, tr(B) = 7

2.5 (a) AB =
(

4 1
3 −3

)
, BA =


 −1 8 7

2 4 6
1 −3 −2




(b) tr(AB) = 1, tr(BA) = 1
2.6 (b) x = ( 1 1 −1 )′
2.7 (a) Bx = (13, 6, 9)′ (b) y′B = (25,−1, 17) (c) x′Ax = 16

(d) x′Ay = 43 (e) x′x = 6 (f) x′y = 3

(g) xx′ =

 1 −1 2

−1 1 −2
2 −2 4
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(h) xy′ =

 3 2 1

−3 −2 −1
6 4 2




(i) B′B =

 62 7 22

7 14 7
22 7 41




2.8 (a) x + y = (4, 1, 3)′, x − y = (−2,−3, 1)′
(b) (x − y)′A(x − y) = −31

2.9 Bx = b1x1 + b2x2 + b3x3

= (1)




3

7

2


+ (−1)




−2

1

3


+ (2)




4

0

5


 =




13

6

9




2.10 (a) (AB)′ =

 7 16

8 4
7 11


 , B′A′ =


 7 16

8 4
7 11


 (c) |A| = 5

2.11 (a) a′b = 5, (a′b)2 = 25

(b) bb′ =

 4 2 6

2 1 3
6 3 9


 , a′(bb′)a = 25

2.12 DA =

 a 2a 3a

4b 5b 6b
7c 8c 9c


 , AD =


 a 2b 3c

4a 5b 6c
7a 8b 9c


,

DAD =

 a2 2ab 3ac

4ab 5b2 6bc
7ac 8bc 9c2




2.13 AB =



8 9 5 6
7 5 5 4

3 4 2 2




2.14 AB =
(

3 5
1 4

)
, CB =

(
3 5
1 4

)
2.15 (a) tr(A) = 5, tr(B) = 5

(b) A + B =

 6 4 5

2 −2 1
4 9 6


 , tr(A + B) = 10

(c) |A| = 0, |B| = 2

(d) AB =

 9 12 17

3 −1 5
6 13 12


 , det(AB) = 0
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2.16 (a) |A| = 36 (b) T =

 1.7321 2.3094 1.7321

0.0 1.6330 1.2247
0.0 0.0 2.1213




2.17 (a) det(A) = 1 (b) T =

 1.7321 −2.8868 −.5774

0.0 2.1602 −.7715
0.0 0.0 .2673




2.18 (a) C =

 .4082 −.5774 .7071
.8165 .5774 .0000
.4082 −.5774 −.7071




2.19 (a) Eigenvalues: 2, 1, −1

Eigenvectors:


 .3015
.9045
.3015


 ,


 .7999
.5368
.2684


 ,


 .7071

0
.7071




(b) tr(A) = 2, |A| = −2

2.20 (a) C =

 .0000 .5774 −.8165

−.7071 −.5774 −.4082
.7071 −.5774 −.4082




(b) C′AC =

 −2 0 0

0 1 0
0 0 4


 (c) CDC′ =


 3 1 1

1 0 2
1 2 0


 = A

2.21 Eigenvalues: 1, 3, C =
( −.7071 −.7071

−.7071 .7071

)
,

A1/2 = CD1/2C′ =
(

1.3660 −.3660
−.3660 1.3660

)

2.22 (a) The spectral decomposition of A is given by A = CDC′, where

C =

 .455 −.580 .675
.846 .045 −.531
.278 .813 .511


 and D = diag(13.542, 3.935,−2.477).

(b) The spectral decomposition of A2 is given by A2 = CDC′, where C is the
same as in part (a) and D = diag(183.378, 15.486, 6.135). Note that the
diagonal elements of D are the squares of the diagonal elements of D in
part (a).

(c) The spectral decomposition of A−1 is given by A−1 = CDC′, where

C =

 −.580 .455 .675

.045 .846 −.531

.813 .278 .511


 and D = diag(.254, .074,−.404).
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The diagonal elements of D are the reciprocals of those of D in part (a).
The first two columns of C have been interchanged to match the inter-
change of the corresponding elements of D; that is, D = (1/λ2, 1/λ1,
1/λ3).

2.23 A = UDV′, where D = diag(13.161, 7, 000, 3.433),

U =




.282 −.730 .424

.591 −.146 .184
−.225 .404 .886
.721 .531 −.040


 , V =


 .856 −.015 .517

−.156 .946 .284
.494 .324 −.807




2.24 (a) j′a = (1)a1 + (1)a2 + · · · + (1)an =∑i ai = a′j

(b) j′A = [(1)a11 + (1)a21 + · · · + (1)an1, . . . , (1)a1p

+(1)a2p + · · · + (1)anp]
= (
∑

i ai1,
∑

i ai2, . . . ,
∑

i aip)

(c) Aj =



(1)a11 + (1)a12 + · · · + (1)a1p

(1)a21 + (1)a22 + · · · + (1)a2p
...

...
...

(1)an1 + (1)an2 + · · · + (1)anp


 =



∑

j a1 j∑
j a2 j
...∑
j anj




2.25 (x − y)′(x − y) = (x′ − y′)(x − y) = x′x − x′y − y′x + y′y

= x′x − 2x′y + y′y
2.26 By (2.27), (A′A)′ = A′(A′)′. By (2.6), (A′)′ = A. Thus, (A′A)′ = A′A.

2.27 (a)
∑

i a′xi = a′x1 + a′x2 + · · · + a′xn

= a′(x1 + x2 + · · · + xn) [by (2.21)]

= a′∑
i xi

(b)
∑

i Axi = Ax1 + Ax2 + · · · + Axn

= A(x1 + x2 + · · · + xn) [by (2.21)]

= A
∑

i xi

(c)
∑

i (a
′xi )

2 =∑i a′(xi x′
i )a [by (2.40)]

= a′(
∑

i xi x′
i )a [by (2.29)]

(d)
∑

i Axi (Axi )
′ =∑i Axi x′

i A
′ = A(

∑
i xi x′

i )A
′ [by (2.29)]

2.28 (a) Ax =
(

a′
1

a′
2

)
x =

(
a′

1x
a′

2x

)
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(b) ASA′ =
(

a′
1

a′
2

)
S(a1, a2) =

(
a′

1
a′

2

)
(Sa1,Sa2) [by (2.48)]

=
(

a′
1Sa1 a′

1Sa2
a′

2Sa1 a′
2Sa2

)

2.29 (a) If A =




a′
1

a′
2
...

a′
n


, then by (2.68), A′ = (a1, a2, . . . , an) and

A′A = (a1, a2, . . . , an)




a′
1

a′
2
...

a′
n


 = a1a′

1 + a2a′
2 + · · · + ana′

n [by (2.66)].

2.30 A−1A = I
(A−1A)′ = I′ = I
A′(A−1)′ = I
(A′)−1A′(A−1)′ = (A′)−1I = (A′)−1

(A−1)′ = (A′)−1

2.31
1

b

(
bA−1

11 + A−1
11 a12a′

12A−1
11 −A−1

11 a12

−a′
12A−1

11 1

)(
A11 a12
a′

12 a22

)

= 1

b

(
bI + A−1

11 a12a′
12 − A−1

11 a12a′
12 bA−1

11 a12 + A−1
11 a12a′

12A−1
11 a12 − A−1

11 a12a22

−a′
12 + a′

12 −a′
12A−1

11 a12 + a22

)

= 1

b

(
bI 0
0′ b

)
, where b = a22 − a′

12A−1
11 a12

=
(

I 0
0′ 1

)

2.32 (B + cc′)
(

B−1 − B−1cc′B−1

1 + c′B−1c

)

= I − cc′B−1

1 + c′B−1c
+ cc′B−1 − c(c′B−1c)c′B−1

1 + c′B−1c
[by (2.26)]

= I − cc′B−1

(
1 + c′B−1c

1 + c′B−1c

)
+ cc′B−1 = I
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2.33 |cA| = |cIA|
= |cI||A| [by (2.89)]
= cn|A| [by (2.84)]

2.34 AA−1 = I

|AA−1| = |I|
|A‖A−1| = 1 [by (2.83)]

|A−1| = 1

|A|
2.35 In (2.93) and (2.94), let A11 = B,A12 = c,A21 = −c′, and A22 = 1. Then

equate the right-hand sides of (2.93) and (2.94) to obtain (2.95).

2.36 By (2.52), tr(AA′) =∑n
i=1 a′

i ai =∑n
i=1(a

2
i1 + a2

i2 + · · · + a2
in)

=∑n
i=1
∑n

j=1 a2
i j .

2.37 Show that |C| 
= 0 by taking the determinant of both sides of C′C = I. Thus
C is nonsingular and C−1 exists. Multiply C′C = I on the right by C−1 and
on the left by C.

2.38 Multiply ABx = λx on the left by B. Then λ is an eigenvalue of BA, and Bx
is an eigenvector.

2.39 (a) (A1/2)2 = (CD1/2C′)2 = CD1/2C′CD1/2C′

= CDC′ [by (2.101)]

= A [by (2.109)]

(b) By (2.114), A1/2A1/2 = A. By (2.89),

|A1/2A1/2| = |A|
|A1/2||A1/2| = |A|

|A1/2|2 = |A|

(c) Since A is positive definite, we have, from part (b), |A1/2| = |A|1/2.

CHAPTER 3

3.1 z = ∑n
i=1 zi/n = ∑i ayi/n = (ay1 + · · · + ayn)/n. Now factor a out of the

sum.
3.2 The numerator of s2

z is
∑n

i=1(zi − z)2 =∑i (ayi − ay)2 =∑i [a(yi − y)]2.
3.3 x = 4, y = 4:
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x y x − x y − y (x − x)(y − y)

2 2 −2 −2 4
2 4 −2 0 0
2 6 −2 2 −4
4 2 0 −2 0
4 4 0 0 0
4 6 0 2 0
6 2 2 −2 −4
6 4 2 0 0
6 6 2 2 4

Sum = 0

3.4 x − xj =




x1
x2
...

xn


− x




1
1
...

1


 =




x1
x2
...

xn


−




x
x
...

x


 =




x1 − x
x2 − x
...

xn − x




3.5 yi − y =

 yi1

yi2
yi3


−


 y1

y2
y3


 =


 yi1 − y1

yi2 − y2
yi3 − y3




n∑
i=1

(yi − y)(yi − y)′ =
n∑

i=1


 yi1 − y1

yi2 − y2
yi3 − y3


 (yi1 − y1, yi2 − y2, yi3 − y3)

=
n∑

i=1


 (yi1 − y1)

2 (yi1 − y1)(yi2 − y2) (yi1 − y1)(yi3 − y3)

(yi2 − y2)(yi1 − y1) (yi2 − y2)
2 (yi2 − y2)(yi3 − y3)

(yi3 − y3)(yi1 − y1) (yi3 − y3)(yi2 − y2) (yi3 − y3)
2




3.6 z = ∑n
i=1 zi/n = ∑i a′yi/n = (a′y1 + · · · + a′yn)/n. Now factor out a′ on

the left. See also (2.42).
3.7 The numerator of s2

z is
∑n

i=1(zi − z)2 = ∑
i (a

′yi − a′y)2 = ∑
i (a

′yi −
a′y)(a′yi − a′y). The scalar a′yi is equal to its transpose, as in (2.39). Thus
a′yi = (a′yi )

′ = y′
i a, and

∑
i (a

′yi − a′y)(a′yi − a′y) =∑i (a
′yi − a′y)(y′

i a −
y′a). By (2.22) and (2.24), this becomes

∑
i a′(yi − y)(yi − y)′a. Now factor

out a′ on the left and a on the right. See also (2.44).
3.8 By (3.63) and (3.64),

ASA′ =




a′
1Sa1 a′

1Sa2 · · · a′
1Sak

a′
2Sa1 a′

2Sa2 · · · a′
2Sak

...
...

...

a′
kSa1 a′

kSa2 · · · a′
kSak


 ,

from which the result follows immediately.
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3.9 cov(z) = cov[(�1/2)−1y − (�1/2)−1�]
= (�1/2)−1 cov(y)[(�1/2)−1]′ [by (3.76)]

= (�1/2)−1
(

�

n

)
(�1/2)−1

= 1

n
(�1/2)−1�1/2�1/2(�1/2)−1 [by (2.114)]

= 1

n
I

3.10 Answers are given in Examples 3.6 and 3.7.
3.11 (a) |S| = 459.956 (b) tr(S) = 213.043
3.12 (a) |S| = 27, 236, 586 (b) tr(S) = 292.891

3.13 R =




1.000 .614 .757 .575 .413
.614 1.000 .547 .750 .548
.757 .547 1.000 .605 .692
.575 .750 .605 1.000 .524
.413 .548 .692 .524 1.000




3.14 z = 83.298, s2
z = 1048.659

3.15 rzw = −.6106
3.16 y1 = (1, 0, 0)y = a′y, 1

2 (y2 + y3) = (0, 1
2 ,

1
2 )y = b′y. Use (3.57) to obtain

rzw = .4873.

3.17 (a) z =

 38.369

40.838
−51.727


 , Sz =


 323.64 19.25 −460.98

19.25 588.67 104.07
−460.98 104.07 686.27




(b) Rz =

 1.0000 .0441 −.9781

.0441 1.0000 .1637
−.9781 .1637 1.0000




3.18 (a) y =




48.655
49.625
50.570
51.445


 , S =




6.3300 6.1891 5.7770 5.5348
6.1891 6.4493 6.1534 5.9057
5.7770 6.1534 6.9180 6.9267
5.5348 5.9057 6.9267 7.4331


 ,

R =




1.0000 .9687 .8730 .8069
.9687 1.0000 .9212 .8530
.8730 .9212 1.0000 .9659
.8069 .8530 .9659 1.0000




(b) |S| = 1.0865, tr(S) = 27.1304

3.19 (a) z = 44.1400, s2
z = 21.2309, w = 103.8850, s2

w = 30.8161
(b) szw = 6.5359, rzw = .2555
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3.20 z =

 401.40

−47.55
150.48


 , Sz =


 398.33 −44.35 148.35

−44.35 12.36 −16.90
148.35 −16.90 59.46


 ,

Rz =

 1.00 −.63 .96

−.63 1.00 −.62
.96 −.62 1.00




3.21 (a)
(

y
x

)
=




185.72
151.12

183.84
149.24




(b) S =




95.29 52.87 69.66 46.11
52.87 54.36 51.31 35.05

69.66 51.31 100.81 56.54
46.11 35.05 56.54 45.02




3.22
(

y
x

)
=




70.08
73.54
75.10

109.68
104.24
109.98



,

S =




95.54 17.61 12.18 60.52 23.00 62.84
17.61 73.19 14.25 5.73 61.28 −1.66
12.18 14.25 76.17 46.75 32.77 69.84

60.52 5.73 46.75 808.63 320.59 227.36
23.00 61.28 32.77 320.59 505.86 167.35
62.84 −1.66 69.84 227.36 167.35 508.71




CHAPTER 4

4.1 |�1| = 1, tr(�1) = 20, |�2| = 4, tr(�2) = 15. Thus tr(�1) > tr(�2),
but |�1| < |�2|. When converted to correlations, we have

Pρ1 =

 1.00 .96 .80

.96 1.00 .89

.80 .89 1.00


 , Pρ2 =


 1.00 .87 .41

.87 1.00 .71

.41 .71 1.00


 .

As noted at the end of Section 4.1.3, a decrease in intercorrelations or an
increase in the variances will lead to a larger |�|. In this case, the decrease
in correlations from �1 to �2 outweighed the increase in the variances (the
increase in trace).
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4.2 E(z) = (T′)−1[E(y)− �] [by (3.75)]

= (T′)−1[� − �] = 0,

cov(z) = (T′)−1�[(T′)−1]′ [by (3.76)]

= (T′)−1T′TT−1 [by (2.75) and (2.79)]

= I

4.3 By the last expression in Section 2.3.1,

n∏
i=1

1

(
√

2π)p|�|1/2 = 1

(
√

2π)np|�|n/2 .

The sum in the exponent of (4.13) follows from the basic algebra of exponents.
4.4 Since (y − �)′�−1(y − �) is a scalar, we have E[(y − �)′�−1(y − �)] =

E{tr[(y − �)′�−1(y − �)]} = E{tr[�−1(y − �)(y − �)′]} = tr[�−1 E(y −
�)(y − �)′] = tr(�−1�) = tr(Ip) = p.

4.5 The other two terms are of the form 1
2

∑n
i=1(y − �)′�−1(yi − y), which is

equal to 1
2 [(y−�)′�−1]∑n

i=1(yi −y). This vanishes because
∑n

i=1(yi −y) =
ny − ny = 0.

4.6 We replace yi in
√

b1 by zi = ayi + b. By an extension of (3.3), z = ay + b.
Then (4.18) becomes

√
n
∑n

i=1(zi − z)3

[∑n
i=1(zi − z)2]3/2

=
√

n
∑

i (ayi + b − ay − b)3

[∑i (ayi + b − ay − b)2]3/2

=
√

na3∑
i (yi − y)3

[a2
∑

i (yi − y)2]3/2
=

√
n
∑

i (yi − y)3

[∑i (yi − y)2]3/2
= √b1.

Similarly, if (4.19) is expressed in terms of zi = ayi + b, it reduces to b2 in
terms of yi .

4.7 β2,p = E[(y − �)′�−1(y − �)]2 by (4.33). But when y is Np(�,�), v =
(y−�)′�−1(y−�) is distributed as χ2(p) by property 3 in Section 4.2. Then
E(v2) = var(v)+ [E(v)]2.

4.8 To show that b1,p and b2,p are invariant under the transformation z = Ayi +b,

where A is nonsingular, it is sufficient to show that gi j (z) = (yi −y)′�̂−1(y j −
y). By (3.67) and (3.68), z = Ay + b and �̂z = A�̂A′. Then gi j for z becomes

gi j (z) = (zi − z)′�̂−1
z (z j − z)

= (Ayi + b − Ay − b)′(A�̂A′)−1(Ay j + b − Az − b)

= (yi − y)′A′(A′)−1�̂−1A−1A(y j − y)

= (yi − y)′�̂−1(y j − y) = gi j (y).
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4.9 Let i = (n) in (4.44); then solve for D2
(n) in (4.43) and substitute into (4.44) to

obtain F(n) in terms of w, as in (4.45).
4.10 (a) a′ = (2,−1, 3), z = a′y is N (17, 21)

(b) A =
(

1 1 1
1 −1 2

)
, z = Ay is N2

[(
8

10

)
,

(
29 −1
−1 9

)]
(c) By property 4b in Section 4.2, y2 is N (1, 13).

(d) By property 4a in Section 4.2,

(
y1
y3

)
is N2

[(
3
4

)
,

(
6 −2

−2 4

)]
.

(e) A =

 1 0 0

0 0 1
1
2

1
2 0


 , Ay is N3




 3

4
2


 ,

 6 −2 3.5

−2 4 1
3.5 1 5.25






4.11 (a) z =

 .408 0 0

−.047 .279 0
.285 −.247 .731




 y − 3

y − 1
y − 4




(b) z =

 .465 −.070 .170

−.070 .326 −.166
.170 −.166 .692




 y − 3

y − 1
y − 4




(c) By (4.6), (y − �)′�−1(y − �) is distributed as χ2
3 .

4.12 (a) a′ = (4,−2, 1,−3), z = a′y is N (−30, 153)

(b) A =
(

1 1 1 1
−2 3 1 −2

)
, z = Ay is N2

[(
5
2

)
,

(
27 −79

−79 361

)]

(c) A =

 3 1 −4 −1

−1 −3 1 −2
2 2 4 −5


 ,

z = Ay is N3




 −4

−18
−27


 ,

 35 −18 −6

−18 46 14
−6 14 93






(d) By property 4b in Section 4.2, y3 is N (−1, 2).

(e) By property 4a in Section 4.2,

(
y2
y4

)
is N2

[(
3
5

)
,

(
9 −6

−6 9

)]
.

(f) A =




1 0 0 0
1
2

1
2 0 0

1
3

1
3

1
3 0

1
4

1
4

1
4

1
4


,

Ay is N4






−2
.5
0

1.25


 ,



11 1.5 2 3.75
1.5 1 .67 .875
2 .67 .67 1
3.75 .875 1 1.688
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4.13 (a) z =




.302 0 0 0

.408 .561 0 0
−.087 .261 1.015 0
−.858 −.343 −.686 .972






y + 2
y − 3
y + 1
y − 5




(b) z =




.810 .305 .143 −.479

.305 .582 .249 −.083

.143 .249 1.153 −.298
−.480 −.083 −.298 .787






y + 2
y − 3
y + 1
y − 5




(c) (y − �)′�−1(y − �) = (y − �)′�−1/2�−1/2(y − �) = z′z, which is
χ2(p) = χ2(4).

4.14 The variables in (b), (c), and (d) are independent.
4.15 The variables in (a), (c), (d), (f), (i), (j), and (n) are independent.
4.16 (a) E(y|x) = �y + �yx�−1

xx (x − �x)

=
(

2
−1

)
+
( −3 2

0 4

)(
5 −2

−2 4

)−1 ( x1 − 3
x2 − 1

)

=
(

2
−1

)
+
( −.5 .25

.5 1.25

)(
x1 − 3
x2 − 1

)

=
(

3.25
−3.75

)
+
( −.5 .25

.5 1.25

)(
x1
x2

)
(b) cov(y|x) = �yy − �yx�−1

xx �xy

=
(

7 3
3 6

)
−
( −3 2

0 4

)(
5 −2

−2 4

)−1 ( −3 0
2 4

)

=
(

7 3
3 6

)
−
(

2 1
1 5

)
=
(

5 2
2 1

)
4.17 (a) E(y|x) = �y + �yx�−1

xx (x − �x)

=
(

3
−2

)
+
(

15 0 3
8 6 −2

) 50 8 5
8 4 0
5 0 1




−1
 x1 − 4

x2 + 3
x3 − 5




=
(

3
−2

)
−
(

15
−24.5

)
+
(

0 0 3
.67 .167 −5.33

) x1
x2
x3




=
( −12

22.5

)
+
(

0 0 3
.67 .167 −5.33

) x1
x2
x3




(b) cov(y|x) = �yy − �yx�−1
xx �xy

=
(

14 −8
−8 18

)
−
(

15 0 3
8 6 −2

) 50 8 5
8 4 0
5 0 1




−1
 15 8

0 6
3 −2




=
(

14 −8
−8 18

)
−
(

9 −6
−6 17

)
=
(

5 −2
−2 1

)
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4.18 (a) By the central limit theorem in Section 4.3.2,
√

n(y−�) is approximately
Np(0,�).

(b) y is approximately Np(�,�/n).
4.19 (a) The plots show almost no deviation from normality.

(b) Variable y1 y2 y3 y4

√
b1 .3069 .3111 .0645 .0637

b2 1.932 2.107 1.792 1.570

The values of
√

b1 show a small amount of positive skewness, but none
exceeds the upper 2.5% critical value for

√
b1 given in Table A.1 as .942.

The values of b2 show negative kurtosis. For y4, the kurtosis is significant,
since b2 < 1.74, the lower 2.5 percentile in Table A.3.

(c) Variable y1 y2 y3 y4

D .2848 .2841 .2866 .2851
Y .4021 .2934 .6730 .4491

From Table A.4, the lower 2.5 percentile for Y is −3.04 and the upper
97.5 percentile is .628. We reject the hypothesis of normality only for y3.

(d) z defined in (4.24) is approximately N (0, 3/n). To obtain a N (0,1) statis-
tic, we calculate z∗ = z/

√
3/n.

Variable y1 y2 y3 y4

z∗ −.3366 −.3095 −.0737 −.0856

4.20 (a) i 1 2 3 4 5 6 7 8 9 10

D2
i 1.06 1.60 7.54 3.54 4.61 .63 .81 2.47 .95 3.78

(b) The .05 critical value from Table A.6 is 7.01. D2
(10) = 7.54 > 7.01.

(c) i 1 2 3 4 5 6 7 8 9 10

u(i) .08 .10 .12 .13 .20 .30 .44 .47 .57 .93

vi .07 .13 .18 .23 .28 .34 .40 .47 .55 .68

The plot of (vi , u(i)) shows some evidence of nonlinearity and an outlier.
(d) b1,p = 7.255, b2,p = 14.406. Both (barely) exceed upper .05 critical

values in Table A.5.
4.21 (b) Variable y1 y2 y3 y4 y5

√
b1 .2176 .5857 .7461 −.3327 −.1772

b2 2.079 1.681 2.583 1.774 2.456

None of the values of
√

b1 exceeds 1.134 (from Table A.1) or is less
than −1.134. None of the values of b2 is less than 1.53 (from Table A.3).
Thus there is no significant departure from normality.
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(c) Variable y1 y2 y3 y4 y5

D .279 .269 .275 .281 .276
Y −.305 −1.399 −.805 −.114 −.669

(d) z∗ = z/
√

3/n, where z is defined in (4.24).

Variable y1 y2 y3 y4 y5

z∗ −.4848 −1.7183 −1.3627 .8091 .3686

4.22 (a) i 1 2 3 4 5 6 7 8 9 10 11

D2
i 5.20 2.15 7.63 5.34 5.54 1.73 5.21 5.90 2.72 6.02 2.56

(c) i 1 2 3 4 5 6 7 8 9 10 11

u(i) .19 .24 .28 .30 .57 .57 .59 .61 .65 .66 .84

vi .18 .27 .34 .39 .45 .50 .55 .61 .66 .73 .82

The plot shows a sharp break from the fourth to the fifth points.
(d) b1,p = 12.985, b2,p = 29.072

4.23 (a) The Q–Q plots for y1 and y5 show little departure from normality. The Q–
Q plots for y2 and y3 show some evidence of heavier tails than the normal.
The Q–Q plots for y4 and y6 show some evidence of positive skewness.

(b) Variable y1 y2 y3 y4 y5 y6

√
b1 .5521 .0302 .7827 1.4627 .2219 .9974

b2 3.160 3.275 2.772 6.675 2.176 4.528

(c) Variable y1 y2 y3 y4 y5 y6

D .276 .274 .275 .260 .286 .271
Y −1.469 −1.845 −1.675 −5.249 .889 −2.741

(d) Variable y1 y2 y3 y4 y5 y6

z∗ −1.640 −.062 −2.803 −2.961 −.870 −2.456

4.24 (a) D2
i = 7.816, 3.640, 5.730, . . . , 6.433

(b) D2
(51) = 25.628. By extrapolation in Table A.6, the .05 critical value for

p = 6 is approximately 19. Thus we reject the hypothesis of multivariate
normality.

(c) (vi , u(i)) = (.021, .024), (.029, .028), . . . , (.306, .523). The plot shows
nonlinearity for the last 4 points.

(d) b1,p = 16.287, b2,p = 58.337. By extrapolation to p = 6 in Table A.5,
both appear to exceed their critical values.
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CHAPTER 5

5.1 By (5.6), we have

(y − �0)
′
(

S
n

)−1

(y − �0) = (y − �0)
′
(

1

n

)−1

S−1(y − �0)

= n(y − �0)
′S−1(y − �0).

5.2 From (5.9), we have

n1n2

n1 + n2
(y1 − y2)

′S−1
pl (y1 − y2) = (y1 − y2)

′
(

n1 + n2

n1n2

)−1

S−1
pl (y1 − y2)

= (y1 − y2)
′
(

n1 + n2

n1n2
Sp1

)−1

(y1 − y2)

= (y1 − y2)
′
[(

1

n1
+ 1

n2

)
Spl

]−1

(y1 − y2).

5.3 By (5.13) and (5.14),

t2(a) = [a′(y1 − y2)]2

[(n1 + n2)/n1n2]a′Spla
= n1n2

n1 + n2

[(y1 − y2)
′S−1

pl (y1 − y2)]2

(y1 − y2)
′S−1

pl SplS
−1
pl (y1 − y2)

.

5.4 It is assumed that y and x have a bivariate normal distribution. Let yi = ( yi
xi

)
.

Then di can be expressed as di = yi − xi = a′yi , where a′ = (1,−1). By
property 1a in Section 4.2, di is N (a′�, a′�a). Show that a′y = y − x , a′Sa =
s2

y − 2syx + s2
x = s2

d , and that T 2 = n(a′y)′(a′Sa)−1(a′y) is the square of

t = d/(sd/
√

n).

5.5 d = 1
n

∑n
i=1 di = 1

n

∑n
i=1(yi − xi ) = 1

n

∑
i yi − 1

n

∑
i xi = y − x,

s2
d = 1

n−1

∑n
i=1(di − d)2 = 1

n−1

∑
i (yi − xi − y + x)2

= 1
n−1

∑
i [(yi − y)− (xi − x)]2

When this is expanded, we obtain s2
d = s2

y + s2
x − 2syx .

5.6 The solution is similar to that for Problem 5.1.
5.7 By (5.7), [(ν − p + 1)/νp]T 2

p,ν = Fp,ν−p+1. By (5.29), (ν − q)(T 2
p+q −

T 2
p )/(ν+ T 2) is T 2

q,ν−p . Replacing p by q and ν by ν− p in (5.7), we see that
(ν−p)−q+1
(ν−p)q (ν − p)

T 2
p+q −T 2

p

ν+T 2
p

is Fq,(ν−p)−q+1.

5.9 Under H03, we have C�1 = 0 and C�2 = 0. Then

E(Cy) = CE(y) = CE

(
n1y1 + n2y2

n1 + n2

)
= n1C�1 + n2C�2

n1 + n2
= 0.
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Since y1 and y2 are independent,

cov(y) = cov

(
n1y1 + n2y2

n1 + n2

)
= n2

1�/n1 + n2
2�/n2

(n1 + n2)2

= (n1 + n2)�

(n1 + n2)2
.

5.10 CSplC′/(n1 + n2) is the sample covariance matrix of Cy. Hence the equa-
tion immediately above (5.39) exhibits the characteristic form of the T 2-
distribution.

5.11 T 2 = .061
5.12 (a) T 2 = 85.3327

(b) t1 = 2.5039, t2 = .2665, t3 = −2.5157, t4 = .9510, t5 = .3161
5.13 T 2 = 30.2860
5.14 (a) T 2 = 1.8198

(b) t1 = 1.1643, t2 = 1.1006, t3 = .9692, t4 = .7299. None of these is
significant. In fact, ordinarily they would not have been examined because
the T 2-test in part (a) did not reject H0.

5.15 T 2 = 79.5510

5.16 (a) T 2 = 133.4873
(b) t1 = 3.8879, t2 = −3.8652, t3 = −5.6911, t4 = −5.0426
(c) a′ = (.345,−.130,−.106,−.143)
(d) T 2 = 133.4873
(e) R2 = .782975, T 2 = 133.4873
(f) By (5.32), t2(y1|y2, y3, y4) = 35.9336, t2(y2|y1, y3, y4) = 5.7994,

t2(y3|y1, y2, y4) = 1.7749, t2(y4|y1, y2, y3) = 8.2592

(g) By (5.29), T 2(y3, y4|y1, y2) = 12.5206, F(y3, y4|y1, y2) = 6.0814
5.17 By (5.34), the test for parallelism gives T 2 = 132.6863. The discriminant

function coefficient vector is given by (5.35) as a′ = (−.362,−.223,−.137).
5.18 (a) T 2 = 66.6604

(b) t1 = −.6556, t2 = 2.6139, t3 = −3.2884, t4 = −4.6315, t5 = 1.8873,
t6 = −3.2205

(c) By (5.32),

t2(y1|y2, y3, y4, y5, y6) = .0758, t2(y2|y1, y3, y4, y5, y6) = 6.4513,

t2(y3|y1, y2, y4, y5, y6) = 6.9518, t2(y4|y1, y2, y3, y5, y6) = 6.0309,

t2(y5|y1, y2, y3, y4, y6) = 3.7052, t2(y6|y1, y2, y3, y4, y5) = 6.2619.

(d) By (5.29), T 2(y4, y5, y6|y1, y2, y3) = 27.547.
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5.19 (a) T 2 = 70.5679 (b) T 2(y5, y6|y3, y4) = 13.1517
(c) T 2(y1, y2|y3, y4, y5, y6) = 8.5162

5.20 (a) T 2 = 18.4625 (b) a′ = (−.057,−.010,−.242,−.071)
(c) By (5.32),

t2(y1|y2, y3, y4) = 3.3315, t2(y2|y1, y3, y4) = .0102,

t2(y3|y1, y2, y4) = 1.4823, t2(y4|y1, y2, y3) = .0013.

5.21 (a) T 2 = 15.1912 (b) a′ = (−.036, .048)
(c) t1 = −3.8371, t2 = −2.4362

5.22 T 2 = 22.3238
5.23 (a) T 2 = 206.1188

(b) t2(d1|d2, d3) = 59.0020, t2(d2|d1, d3) = 53.4507, t2(d3|d1, d2) =
80.9349

CHAPTER 6

6.1 (a) Using yi. = yi./n, we have

k∑
i=1

n∑
j=1

(yi j − yi.)
2 =

∑
i j

(y2
i j − 2yi j yi. + y2

i.)

=
∑

i j

y2
i j −

∑
i

yi.

∑
j

yi j + n
∑

i

y2
i.

=
∑

i j

y2
i j − 2

∑
i

yi.

n
yi. + n

∑
i

( yi.

n

)2

=
∑

i j

y2
i j − 2

∑
i

y2
i.

n
+
∑

i

y2
i.

n
.

6.2
|E−1||E|

|E−1||E + H| = |E−1E|
|E−1(E + H)| = |I|

|I + E−1H| = 1∏s
i=1(1 + λi )

;

see Section 2.11.2.
6.3 (E−1H − λI)a = 0

[(E1/2E1/2)−1H − λI]a = 0
[(E1/2)−1(E1/2)−1H − λI]a = 0
[(E1/2)−1H − λE1/2]a = 0
[(E1/2)−1H − λE1/2](E1/2)−1E1/2a = 0
[(E1/2)−1H(E1/2)−1 − λI]E1/2a = 0

6.4 We need to show that (2N + s + 1)/(2m + s + 1) = (νE − p + s)/d. Using
the definitions N = 1

2 (νE − p − 1), m = 1
2 (|νH − p| − 1), d = max(p, νH ),
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and s = min(p, νH ), we have 2N + s + 1 = 2( 1
2 )(νE − p − 1) + s +

1 = νE − p − 1 + s + 1 = νE − p + s. For the denominator, we have
2m + s + 1 = 2( 1

2 )(|νH − p| − 1)+ s + 1 = |νH − p| + s. Suppose νH > p.
Then |νH − p| + s = νH − p + p = νH = d. On the other hand, if νH < p,
then |νH − p| + s = p − νH + νH = p = d.

6.5 If p ≤ νH , we have s = p and |νH − p| = νH − p. Then (6.30) becomes

2(s N + 1)U (s)

s2(2m + s + 1)
=

2
[

p
(

1
2

)
(νE − p − 1)+ 1

]
U (s)

p2
[
2
(

1
2

)
(νH − p − 1)+ p + 1

]

= [p(νE − p − 1)+ 2]U (s)

p2(νH − p − 1 + p + 1)

= [p(νE − p − 1)+ 2]U (s)

p2νH
,

which is the same as (6.31) because p = s.
6.6 When s = 1, we have V (1) = λ1/(1 + λ1), U (1) = λ1, � = 1/(1 + λ1), and

θ = λ1/(1 + λ1). Solving the last of these for λ1 gives λ1 = θ/(1 − θ), and
the results in (6.34), (6.35), and (6.36) follow immediately.

6.7 With T 2 = (n1 + n2 − 2)U (1) and U (1) = θ/(1 − θ), we obtain (5.19). We
obtain (5.18) from (5.19) by V (1) = θ . A similar argument leads to (5.16).

6.8 (a) With yi. = yi./ni and y.. = y../N , we obtain

H =
k∑

i=1

ni (yi. − y..)(yi. − y..)
′

=
∑

i

ni (yi.y
′
i. − yi.y

′
.. − y..y

′
i. + y..y

′
..)

=
∑

i

ni yi.y
′
i. −

(∑
i

ni yi.

)
y′
.. − y..

∑
i

ni y′
i. + y..y

′
..

∑
i

ni

=
∑

i

ni
yi.y′

i.

n2
i

−
(∑

i yi.
)

y′
..

N
− y..

N

∑
i

y′
i. +

Ny..y′
..

N 2

=
∑

i

yi.y′
i.

ni
− y..y′

..

N
− y..y′

..

N
+ y..y′

..

N
.

6.9 y1. − y.. becomes

y1. −
n1y1. + n2y2.

n1 + n2
= n1y1. + n2y1. − n1y1. − n2y2.

n1 + n2
= n2(y1. − y2.)

n1 + n2
.
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The first term in the sum is

n1n2
2

(n1 + n2)2
(y1. − y2.)(y1. − y2.)

′.

The second term in the sum is

n2
1n2

(n1 + n2)2
(y1. − y2.)(y1. − y2.)

′.

6.10 θ = λ1

1 + λ1
= SSH(z)/SSE(z)

1 + SSH(z)/SSE(z)
= SSH(z)

SSE(z)+ SSH(z)
6.11 From r2

i = λi/(1+λi), obtain λi = r2
i /(1−r2

i ). Substitute this into 1/(1+λi)

to obtain the result.
6.12 Substitute AP = V (s)/s into (6.50) to obtain (6.26).
6.13 When s = 1, (6.51) becomes

ALH = U (1)

1 + U (1)
.

By (6.34), U (1) = λ1.
6.14 Substitute ALH = U (s)/(s + U (s)) from (6.51) into (6.52) to obtain F3 in

(6.31).
6.15 To show cov(ci yi.) = c2

i �/n, use (3.74), cov(Ay) = A�A′, with A = ci I.
6.16 By (6.9),

Hz = n
k∑

i=1

(zi. − z..)(zi. − z..)′

= n
∑

i

(Cyi. − Cy..)(Cyi. − Cy..)′

= n
∑

i

[C(yi. − y..)][C(yi. − y..)]′

= nC

[∑
i

(yi. − y..)(yi. − y..)′
]

C′ [by (2.45)]

6.17 C is not square.

6.18 E(Cy..) = CE(y..) = CE(
∑k

i=1 yi./k)

= C
∑

i E(yi.)/k = C
∑

i �i/k

= 0 [by H03 in (6.83)]

cov(Cy..) = C�C′/kn if there are no differences in the group means, C�1,
C�2, . . . ,C�k . This condition is assured by H01 in (6.78).
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6.19 For our purposes, it will suffice to show that T 2 has the characteristic form of
the T 2-distribution in (5.6).

6.20 If � = σ 2I, (6.89) becomes

ε = [tr(σ 2I − Jσ 2I/p)]2

(p − 1) tr(σ 2I − Jσ 2I/p)2
= [σ 2 tr(I − J/p)]2

σ 4(p − 1) tr(I − J/p)2
.

Show that (I − J/p)2 = I − J/p. Then

ε = σ 4(p − p/p)2

σ 4(p − 1)(p − p/p)
= (p − 1)2

(p − 1)2
= 1.

6.21 The (univariate) expected mean square corresponding to µ. in a one-way
ANOVA is σ 2 + Nµ2. Thus the mean square for µ. is tested with MSE. The
corresponding multivariate test therefore uses H∗ and E.

6.22 From (6.105) we have

� = |AEA′|
|A(E + H∗)A′| = |AEA′|

|AEA′ + AH∗A′| .

Substitute H∗ = kny..y′.. to obtain

� = |AEA′|
|AEA′ + √

knAy..(
√

knAy..)′| .

Now use (2.95) with B = AEA′ and c = √
knAy.. to obtain

� = 1

1 + kn(Ay..)′(AEA′)−1(Ay..)
.

Multiply and divide by νE and use (6.101) to obtain (6.106).
6.23 Solve for T 2 in (6.106).
6.24 In C1B′ the rows of C1 are multiplied by the rows of B. Show that C1B′ = O.
6.25 As noted, the function (y−A�̂)′S−1(y−A�̂) is similar to SSE = (y−X�̂)′(y−

X�̂) in (10.4) and (10.6). By an argument similar to that used in Section 10.2.2
to obtain �̂ = (X′X)−1X′y, it follows that �̂ = (A′S−1A)−1A′S−1y. An alter-
native approach (for those familiar with differentiation with respect to a vector)
is to expand (y − A�̂)′S−1(y − A�̂) to four terms, differentiate with respect
to �̂, and set the result equal to 0.

6.26 Expand n(y − A�̂)′S−1(y − A�̂) to four terms and substitute

�̂ = (A′S−1A)−1A′S−1y

into the last one.
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6.27 (a) E =




13.41 7.72 8.68 5.86
7.72 8.48 7.53 6.21
8.68 7.53 11.61 7.04
5.86 6.21 7.04 10.57


,

H =




1.05 2.17 −1.38 −.76
2.17 4.88 −2.37 −1.26

−1.38 −2.37 2.38 1.38
−.76 −1.26 1.38 .81


,

� = .224, V (s) = .860,U (s) = 3.08, and θ = .747. All four are signifi-
cant.

(b) η2
� = 1−� = .776, η2

θ = θ = .747, A� = 1−�1/s = .526, ALH = .606,
AP = V (s)/s = .430

(c) The eigenvalues of E−1H are 2.9515 and .1273. The essential dimension-
ality of the space of the mean vectors is 1.

(d) For 1, 2 vs. 3 we have � = .270, V (s) = .730,U (s) = 2.702, and θ =
.730. All four are significant. For 1 vs. 2 we obtain � = .726, V (s) =
.274,U (s) = .377, and θ = .274. All four are significant.

(e) Variable y1 y2 y3 y4

F 1.29 9.50 3.39 1.27

The F’s for y2 and y3 are significant. For the discriminant func-
tion z = a′y, where a is the first eigenvector of E−1H, we have a′ =
(−.032,−.820, .533, .208). Again y2 and y3 contribute most to separa-
tion of groups.

(f) By (6.127),�(y3, y4|y1, y2) = �(y1, y2, y3, y4)/�(y1, y2) = .224/.568 =
.395 < �.05 = .725.

(g) By (6.128),

�(y1|y2, y3, y4) = �(y1, y2, y3, y4)/�(y2, y3, y4)

= .224/.240 = .934 > �.05 = .819,

�(y2|y1, y3, y4) = .224/.538 = .417 < .819,

�(y3|y1, y2, y4) = .224/.369 = .609 < .819,

�(y4|y1, y2, y3) = .224/.243 = .924 > .819.

6.28 (a) S effect: � = .00065, V (s) = 2.357,U (s) = 142.304, θ = .993. All are
significant.
V effect: � = .065, V (s) = 1.107,U (s) = 11.675, θ = .920. All are
significant.
SV interaction:� = .138, V (s) = 1.321,U (s) = 3.450, θ = .726. All are
significant.
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(b) Contrast on V comparing 2 vs. 1, 3: � = .0804, V (s) = .920,U (s) =
11.445, θ = .920. All are significant.

(c) Linear contrast for S: � = .0073, V (S) = .993, U (s) = 135.273, θ =
.993. All are significant.
Quadratic contrast for S:� = .168, V (s) = .832, U (s) = 4.956, θ = .832.
All are significant.
Cubic contrast for S: � = .325, V (s) = .675, U (s) = 2.076, θ = .675.
All are significant.

(d) The ANOVA F’s for each variable are as follows:

Source y1 y2 y3 y4

S 980.21 214.24 876.13 73.91
V 251.22 9.47 14.77 27.12

SV 20.37 2.84 3.44 2.08

All F’s are significant except the last one, 2.08.
(e) Test of significance of y3 and y4 adjusted for y1 and y2:

S V SV

�(y3, y4|y1, y2) .1226 .9336 .6402

(f) Test of significance of each variable adjusted for the other three:

S V SV

�(y1|y2, y3, y4) .1158 .2099 .3082
�(y2|y1, y3, y4) .5586 .8134 .7967
�(y3|y1, y2, y4) .2271 .9627 .7604
�(y4|y1, y2, y3) .6692 .9795 .8683

6.29 V = velocity (fixed), L = lubricant (random).

V effect (using HV L for error matrix): � = .0492, V (s) = .951, U (s) =
19.315, θ = .951. With p = 2, νH = 1, and νE = 3, �.05 = .050, V (s)

.05 =
.950, U (s)

.05 = T 2
.05/νE = 19.00, θ.05 = .950. Thus all four test statistics are

significant.
L effect (using E for error matrix): � = .692, V (s) = .314, U (s) = .438,
θ = .295. None is significant.
V L interaction (using E for error matrix): � = .932, V (s) = .069, U (s) =
.073, θ = .061. None is significant.

6.30 Source � V (s) U (s) θ Significant?

(a) Reagent .0993 1.126 6.911 .868 Yes
(b) Contrast 1 vs. 2, 3, 4 .146 .854 5.871 .854 Yes

Subjects .00000082 2.847 1091.127 .999 Yes
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6.31 P = proportion of filler, T = surface treatment, F = filler:

Source � V (s) U (s) θ Significant?

P .138 .977 5.441 .841 Yes
T .080 .920 11.503 .920 Yes
PT .712 .295 .396 .271 No
F .019 .980 51.180 .981 Yes
P F .179 .958 3.835 .784 Yes
T F .355 .645 1.815 .645 Yes
PT F .752 .264 .309 .172 No

6.32 A = period; P , T , and F are defined in Problem 6.31:

Source � V (s) U (s) θ Significant?

A .021 .979 47.099 .979 Yes
AP .475 .545 1.063 .505 No
AT .142 .858 6.049 .858 Yes
APT .777 .228 .282 .208 No
AF .095 .905 9.486 .905 Yes
APF .622 .387 .594 .363 No
ATF .387 .613 1.586 .613 Yes
APTF .781 .229 .267 .169 No

For the between-subject factors and interactions, we have

Source df F p-Value

P 2 21.79 < .0001
T 1 78.34 < .0001
PT 2 1.28 .3143
F 1 345.04 < .0001
PF 2 15.79 .0004
TF 1 5.36 .0392
PTF 2 .48 .6294
Error 12

6.33 For parallelism, we use (6.79) to obtain � = .2397. For levels, we use (6.81)
and (6.82) to obtain � = .9651 and F = .597. For flatness we use (6.84) to
obtain T 2 = 110.521.

6.34 (a) By (6.90), T 2 = 20.7420. By (6.105) or (6.106), � = .5655.

(b) For each row c′
i of C, we use T 2

i = n(c′
i y)

′(c′
i Sci )

−1c′
i y, as in Exam-

ple 6.9.2: T 2
1 = 17.0648, T 2

2 = .3238, T 2
3 = .2714. This can also be done

by Wilks’ � using �i = c′
i Eci/c′

i (E + H∗)ci : �1 = .6127, �2 = .9882,
�3 = .9900.

6.35 The six variables represent two within-subjects factors: y1 is A1 B1, y2 is A1 B2,
y3 is A1 B3, x1 is A2 B1, x2 is A2 B2, and x3 is A2 B2. Using linear and quadratic
effects (other orthogonal contrasts could be used), the matrices A,B, and G in
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(6.98), (6.99), and (6.100) become

A = ( 1 1 1 −1 −1 −1 ),

B =
(

1 0 −1 1 0 −1
1 −2 1 1 −2 1

)
,

G =
(

1 0 −1 −1 0 1
1 −2 1 −1 2 −1

)
.

Using these in T 2 as given by (6.101), (6.102), and (6.103), we obtain T 2
A =

193.0901, T 2
B = 2.8000, and T 2

AB = 6.8676. Using MANOVA tests for the
same within-subjects factors, we obtain

Source � V (s) U (s) θ Significant?

A .202 .798 3.941 .798 Yes
B .946 .054 .057 .054 No
AB .877 .123 .140 .123 Yes

6.36 MANOVA tests for the within-subjects effect T (time), and interactions of time
with the between-subjects effects C (cancer) and G (gender):

Source � V (s) U (s) θ

T .258 .742 2.874 .742
T C .363 .809 1.299 .444
T G .929 .071 .077 .071
T CG .809 .201 .225 .130

ANOVA F-tests for between-subjects factors and interactions:

Source df F p-Value

C 5 4.16 .003
G 1 2.69 .107
CG 5 .37 .869

6.37 (a) T 2 = 79.551

(b) Using ti = c′
i y/
√

c′
i Sci/n, where c′

i is the i th row of C, we obtain t1 =
7.155, t2 = −.445, t3 = −.105.

6.38 (a) T 2 = 1712.2201

(b) Using ti = c′
i y/
√

c′
i Sci/n, we obtain t1 = 332.358, t2 = 54.589, t3 =

.056, t4 = 7.637, t5 = 4.344, t6 = 1.968.
6.39 (a) Using T 2 = N (Cy..)

′(CSplC′)−1(Cy..) in (6.122), we obtain T 2 =
17.582 < T 2

.05,3,9 = 27.202.

(b) t1 = .951, t2 = 1.606, t3 = .127 [Since the T 2-test in part (a) did not
reject H0, these would ordinarily not be calculated.]
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(c) Using � = |CEC′|/|C(E + H)C′| in (6.124), we obtain � = .3107 >
�.05,3,2,9 = .203.

(d) To compare groups using each row of C, we use �i = c′
i Eci/ci (E + H)ci

to obtain �1 = .833, �2 = .988, �3 = .650. [Since the �-test in part (c)
did not reject H0, we would ordinarily not have calculated these.]

6.40 (a) Using T 2 = N (Cy..)
′(CSplC′)−1(Cy..) in (6.122), we obtain T 2 =

33.802 > T 2
.05,4,24 = 12.983.

(b) Using t2
i = N (c′

i y)
2/c′

i Splci , we obtain t2
1 = .675, t2

2 = .393, t2
3 =

32.626. Only the cubic effect is significant.
(c) For an overall test comparing groups, we use (6.124),

� = |CEC′|/|C(E + H)C′| = .4361.

(d) To compare groups using each row of C, we use

�i = c′
i Eci/c′

i (E + H)ci : �1 = .534,�2 = .764,�3 = .941.

6.41 (a) Using T 2 = N (Cy..)
′(CSplC′)−1(Cy..) in (6.122), we obtain T 2 =

45.500.
(b) Using t2

i = N (c′
i y)

2/c′
i Splci , we obtain t2

1 = 18.410, t2
2 = 8.385, t2

3 =
3.446, t2

4 = .011, t2
5 = .098, t2

6 = 2.900.
(c) For an overall test comparing groups, we use (6.124),

� = |CEC′|/|C(E + H)C′| = .304.

(d) To compare groups using each row of C, we use

�i = c′
i Eci/c′

i (E + H)ci : �1 = .695,�2 = .925,�3 = .731,

�4 = .814,�5 = .950,�6 = .894.

6.42 (a) Combined groups (pooled covariance matrix). Using t = number of min-
utes −30, we obtain, by (6.115),

�̂′ = (98.1, .981, .0418,−.00101,−.000048).

By (6.116), we obtain T 2 = .216. By (6.118), we have

�̂′ = (95.5, 96.7, 95.6, 93.8, 98.1, 99.2).

(b) Group 1: �̂′
1 = (100.7, .819, .040,−.00085,−.000038), T 2 = .0113,

�̂′
1 = (105.2, 104.4, 101.5, 98.6, 100.6, 108.1)

(c) Groups 2–4: �̂′
2 = (97.4, 1.010, .0403,−.00103,−.000049), T 2 =

.2554, �̂′
2 = (92.6, 94.4, 93.8, 92.4, 97.4, 96.6)
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6.43 (a) For the control group, the overall test is

T 2 = n1(Cy1.)
′(CS1C′)−1(Cy1.) = 554.749.

For each row of C (linear, quadratic, etc.), we have

t2
i = n1(c′

i y1.)
2/c′

i S1ci : t2
1 = 5.714,

t2
2 = 50.111, t2

3 = 50.767, t2
4 = 8.011, t2

5 = .508.

(b) For the obese group, we obtain T 2 = n2(Cy2.)
′(CS2C′)−1(Cy2.) =

128.552. For the five rows of C, we obtain t2
1 = 4.978, t2

2 = 107.129,
t2
3 = 5.225, t2

4 = 10.750, t2
5 = 3.572.

(c) For the combined groups (Spl = pooled covariance matrix), we use
T 2 = N (Cy..)

′(CSplC′)−1(Cy..) in (6.122) to obtain T 2 = 247.0079.
We test for linear, quadratic, etc., trends using the rows of C in t2

i =
N (c′

i y..)
2/c′

i Splci : t2
1 = 1.162, t2

2 = 155.017, t2
3 = 30.540, t2

4 = 1.319,
t2
5 = .506. To compare groups, we use � = |CEC′|/|C(E + H)C′|

in (6.124) and �i = c′
i Eci/c′

i (E + H)ci : � = .4902, �1 = .7947,
�2 = .9940, �3 = .7987, �4 = .6228, �5 = .9172.

6.44 Control group: By (6.115),

�̂′
1 = (3.129, .656,−.283,−.334, .192, .037,−.020).

By (6.116), T 2 = .7633. By (6.118),

�̂′
1 = (µ̂11, µ̂12, . . . , µ̂18) = (4.11, 3.29, 2.71, 2.71, 3.04, 3.39, 3.54, 3.95).

Obese group: �̂′
2 = (3.207,−.187, .463, .056,−.102,−.010, .010), T 2 =

.3943, �̂′
2 = (4.51, 4.12, 3.81, 3.48, 3.24, 3.37, 3.70, 4.02)

Combined groups (pooled covariance matrix): �̂′ = (3.15, .162, .183,−.115,
.012, .010,−.002), T 2 = .0158, �̂′ = (4.36, 3.80, 3.36, 3.15, 3.13, 3.37, 3.63,
3.98)

6.45 A = activator, T = time, C = group. In (6.101), (6.102), and (6.103), we use

A =
(

2 2 2 −1 −1 −1 −1 −1 −1
0 0 0 1 1 1 −1 −1 −1

)
,

T =
( −1 0 1 −1 0 1 −1 0 1

1 −2 1 1 −2 1 1 −2 1

)
,

G =




−2 0 2 1 0 −1 1 0 −1
2 −4 2 −1 2 −1 −1 2 −1
0 0 0 1 0 −1 −1 0 1
0 0 0 1 −2 1 −1 2 −1


 .
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T 2
A = 5072.579, T 2

T = 268.185, T 2
AT = 143.491. The same within-sample

factors and interaction can be tested with Wilks’� using (6.105) and the other
three MANOVA tests:
Source � V (s) U (s) θ Significant?

A .003 .997 317.04 .997 Yes
T .056 .944 16.76 .944 Yes
AT .100 .900 8.97 .900 Yes

The interactions of the within factors with the between factor G are tested
with Wilks’ � (Section 6.9.5) and with the other three MANOVA tests:

Source � V (s) U (s) θ Significant?

AC .884 .116 .131 .116 No
T C .889 .111 .125 .111 No
AT C .795 .205 .258 .205 No

The between-subjects factor C is tested with an ANOVA F-test: F = .47,
p-value = .504.

CHAPTER 7

7.1 If �0 is substituted for S in (7.1), we have

u = ν[ln |�0| − ln |�0| + tr(I)− p] = ν[0 + p − p] = 0.

7.2 ln |�0| − ln |S| = − ln |�0|−1 − ln |S|
= − ln |�−1

0 | − ln |S| [by (2.91)]

= −(ln |S| + ln |�−1
0 |)

= − ln |S�−1
0 | [by (2.89)]

7.3 − ln
(∏p

i=1 λi
)+∑p

i=1 λi = −∑p
i=1 lnλi +∑p

i=1 λi =∑p
i=1(λi − lnλi )

7.4 As noted in Section 7.1, the likelihood ratio in this case involves the ratio of
the determinants of the sample covariance matrices under H0 and H1. Under
H1, which is essentially unrestricted, the maximum likelihood estimate of �
(corrected for bias) is given by (4.12) as S. Under H0 it is assumed that each
of the p yi ’s in y has variance σ 2 and that all yi ’s are independent. Thus we
estimate σ 2 (unbiasedly) in each of the p columns of the Y matrix [see (3.17)
and (3.23)] and pool the p estimates to obtain

σ̂ 2 =
n∑

i=1

p∑
j=1

(yi j − y j )
2

(n − 1)p
.
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Show that by (3.22) and (3.23) this is equal to

σ̂ 2 =
p∑

j=1

s j j

p
= tr(S)

p
.

Thus the likelihood ratio is

LR =
( |S|

|σ̂ 2I|
)n/2

=
( |S|

|I tr(S)/p|
)n/2

.

Show that by (2.85) this becomes

LR =
( |S|
(tr S/p)p

)n/2

.

7.5 If λ1 = λ2 = · · · = λp = λ, say, then by (7.5),

u = p p∏p
i=1 λi(∑p

i=1 λi
)p = p pλp

(pλ)p
= 1.

7.6 [(1 − ρ)I + ρJ] =




1 − ρ 0 . . . 0
0 1 − ρ . . . 0
...

...
...

0 0 . . . 1 − ρ


+



ρ ρ . . . ρ

ρ ρ . . . ρ
...

...
...

ρ ρ . . . ρ




=




1 ρ . . . ρ

ρ 1 . . . ρ
...

...
...

ρ ρ . . . 1




7.7 (a) Substitute J = jj′ and x = j into Jx = λx to obtain jj′j = λj, which gives
pj = λj.

(b) S0 = s2[(1 − r)I + rJ] = s2(1 − r)

(
I + r

1 − r
J
)

(c) By (2.85) and (2.108), we have

|S0| =
∣∣∣∣s2(1 − r)

(
I + r

1 − r
J
)∣∣∣∣ = (s2)p(1 − r)p

∣∣∣∣I + r

1 − r
J

∣∣∣∣
= (s2)p(1 − r)p

p∏
i=1

(1 + λi ) = (s2)p(1 − r)p
(

1 + rp

1 − r

)

= (s2)p(1 − r)p−1(1 − r + rp) = (s2)p(1 − r)p−1[1 + (p − 1)r].
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7.8 M = |S1|ν1/2|S2|ν2/2 · · · |Sk |νk/2

|S|∑i νi/2
= |S1|ν1/2|S2|ν2/2 · · · |Sk |νk/2

|S|ν1/2|S|ν2/2 · · · |S|νk/2

7.9 (a) M = .7015 (b) M = .0797

7.10 � = |S|
|Syy||Sxx | = |Sxx ||Syy − SyxS−1

xx Sxy|
|Syy||Sxx |

= |S−1
yy ||Syy − SyxS−1

xx Sxy| [by (2.91)]

= |S−1
yy (Syy − SyxS−1

xx Sxy)| [by (2.89)]

= |I − S−1
yy SyxS−1

xx Sxy|
=∏s

i=1(1 − r2
i ) [by (2.108)],

where the r2
i ’s are the nonzero eigenvalues of S−1

yy SyxS−1
xx Sxy . It was shown in

Section 2.11.2 that 1 − λi is an eigenvalue of I − A, where λi is an eigenvalue
of A.

7.11 When all pi = 1, we have k = p, and the submatrices in the denominators of
(7.33) and (7.34) reduce to S j j = s j j , j = 1, 2, . . . , p, and R j j = 1, j = 1,
2, . . . , p.

7.12 When all pi = 1, we have k = p and

a2 = p2 −
p∑

i=1

p2
i = p2 − p, a3 = p3 − p,

c = 1 − 1

12 f ν
(2a3 + 3a2)

= 1 − 1

6(p2 − p)ν
[2(p3 − p)+ 3(p2 − p)]

= 1 − 1

6(p − 1)ν
[2(p2 − 1)+ 3(p − 1)]

= 1 − 1

6(p − 1)ν
[2(p − 1)(p + 1)+ 3(p − 1)]

= 1 − 1

6ν
[2p + 5].

7.13 As noted below (7.6), the degrees of freedom for the χ2-approximation is the
total number of parameters minus the number estimated under H0. The number
of distinct parameters in � is p + (p

2

) = 1
2 p(p +1). The number of parameters

estimated under H0 is p. The difference is 1
2 p(p + 1)− p = 1

2 p(p − 1).
7.14 By (7.1) and (7.2), u = 11.094 and u′ = 10.668.
7.15 By (7.7), u = .0000594. By (7.9), u′ = 23.519. For H0 : C�C′ = σ 2I, u =

.471 and u′ = 2.050.
7.16 For H0 : � = σ 2I, u = .00513 and u′ = 131.922. For H0 : C�C′ = σ 2I,

u = .129 and u′ = 36.278.
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7.17 For H0 : � = σ 2I, u = .00471 and u′ = 136.190. For H0 : C�C′ = σ 2I,
u = .747 and u′ = 7.486.

7.18 By (7.16), u′ = 6.3323 with 13 degrees of freedom. The F-approximation is
F = .4802 with 13 and 1147 degrees of freedom.

7.19 u′ = 21.488, F = 2.511 with 8 and 217 degrees of freedom
7.20 u′ = 35.795, F = 4.466 with 8 and 4905 degrees of freedom
7.21 u = 8.7457, F = .8730 with 10 and 6502 degrees of freedom
7.22 |S1| = 2.620 × 1014, |S2| = 2.410 × 1014, |Spl| = 4.368 × 1014, u = 17.502,

F = .829
7.23 ln M = −85.965, u = 156.434, a1 = 21, a2 = 17,797, F = 7.4396
7.24 ln M = −7.082, u = 10.565, a1 = 10, a2 = 1340, F = 1.046
7.25 ln M = −8.6062, u = 14.222, a1 = 20, a2 = 3909, F = .707
7.26 ln M = −28.917, u = 44.018, a1 = 50, a2 = 3238, F = .8625
7.27 ln M = −142.435, u = 174.285, a1 = 110, a2 = 2084, F = 1.448
7.28 |S| = 1,207, 109.5, |Syy| = 2385.1, |Sxx | = 1341.9, � = .3772
7.29 |S| = 4.237 × 1013, |Syy| = 484, 926.6, |Sxx | = 131, 406, 938, � = .6650
7.30 |S| = 9.676 × 10−8, |Syy| = .02097, |Sxx | = 9.94 × 10−6, � = .4642
7.31 |S| = 1.7148 × 1016, |S11| = 11, 284.967, |S22| = 11,891.15, |S33| =

25,951.605, s44 = 22,227.158, s55 = 214.06, u = .00103, u′ = 274.787,
ν = 46

7.32 |S| = 459.96, s11 = 140.54, s22 = 72.25, s33 = .250, u = .1811, u′ =
12.246, f = 3

7.33 u = .0001379, u′ = 16.297
7.34 u = .0005176, u′ = 127.367
7.35 u = .005071, u′ = 131.226

CHAPTER 8

8.1 Using a = S−1
pl (y1 − y2), we obtain

[a′(y1 − y2)]2

a′Spla
= [(y1 − y2)

′S−1
pl (y1 − y2)]2

(y1 − y2)
′S−1

pl SplS−1
pl (y1 − y2)

= [(y1 − y2)
′S−1

pl (y1 − y2)]2

(y1 − y2)
′S−1

pl (y1 − y2)
.

8.2 You may wish to use the following steps:
(i) In Section 5.6.2 the grouping variable w is defined as n2/(n1 + n2) for

each observation in group 1 and −n1/(n1 + n2) for group 2. Show that
with this formulation, w = 0.
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(ii) Because w = 0, there is no intercept, and the fitted model becomes

ŵi = b1(yi1 − y1)+ b2(yi2 − y2)+ · · · + bp(yip − y p),

i = 1, 2, . . . , n1 + n2.

Denote the resulting matrix of y values corrected for their means as
Yc and the vector of w’s as w. Then the least squares estimate b =
(b1, b2, . . . , bp)

′ is obtained as

b = (Y′
cYc)

−1Y′
cw.

Using (2.51), show that

Y′
cYc =

2∑
i=1

ni∑
j=1

(yi j − y)(yi j − y)′

=
2∑

i=1

ni∑
j=1

(yi j − yi )(yi j − yi )
′ + n1n2

n1 + n2
(y1 − y2)(y1 − y2)

′,

where y = (n1y1 + n2y2)/(n1 + n2). It will be helpful to write the first
sum above as

n1∑
j=1

(y1 j − y)(y1 j − y)′ +
n2∑
j=1

(y2 j − y)(y2 j − y)′

and add and subtract y1 in the first term and y2 in the second.
(iii) Show that

Y′
cw =

2∑
i=1

ni∑
j=1

(yi j − y)wi j = n1n2

n2 + n2
(y1 − y2).

Again it will be helpful to sum separately over the two groups.
(iv) From steps (ii) and (iii) we have

b = (νS + kd d
′
)−1kd,

where S = ∑
i j (yi j − yi )(yi j − yi )

′/(n1 + n2 − 2), ν = n1 + n2 − 2,

k = n1n2/(n1 + n2), and d = y1 − y2. Use (2.77) for the inverse of a
patterned matrix of the type νS + kd d

′
to obtain (8.4).
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8.3 You may want to use the following steps:

(i) R2 is defined as [see (10.30)]

R2 = b′Y′
cw − nw2

w′w − nw2
.

In this case the expression simplifies because w = 0. Using Y′
cw in Prob-

lem 8.2(iii), show that R2 = b′(y1 − y2).
(ii) Show that

b′(y1 − y2) = T 2

n1 + n2 − 2 + T 2
.

8.4 [a′(y1 − y2)]2 = a′(y − y2)a
′(y1 − y2) = a′(y1 − y2)(y1 − y2)

′a
8.5 Ha − λEa = 0

E−1(Ha − λEa) = E−10
E−1Ha − λE−1Ea = 0
(E−1H − λI)a = 0

8.6 Substituting a∗
r = sr ar , r = 1, 2, . . . , p, into (8.15), we obtain

z1i = s1a1
y1i1 − y11

s1
+ s2a2

y1i2 − y12

s2
+ · · · + spap

y1i p − y1p

sp

= a1 y1i1 + a2 y1i2 + · · · + ap y1i p − a1 y11 − a2 y12 − · · · − ap y1p

= a1 y1i1 + a2 y1i2 + · · · + ap y1i p − a′y1

8.7 (a) a∗′ = (1.366,−.810, 2.525,−1.463)
(b) t1 = 5.417, t2 = 2.007, t3 = 7.775, t4 = .688
(c) The standardized coefficients rank the variables in the order y3, y4, y1, y2.

The t-tests rank them in the order y3, y1, y2, y4.
(d) The partial F’s calculated by (8.26) are F(y1|y2, y3, y4) = 7.844,

F(y2|y1, y3, y4) = 2.612, F(y3|y1, y2, y4) = 40.513, and
F(y4|y1, y2, y3) = 9.938.

8.8 (a) a′ = (.345,−.130,−.106,−.143)
(b) a∗′ = (4.137,−2.501,−1.158,−2.068)
(c) t1 = 3.888, t2 = −3.865, t3 = −5.691, t4 = −5.043
(e) F(y1|y2, y3, y4) = 35.934, F(y2|y1, y3, y4) = 5.799,

F(y3|y1, y2, y4) = 1.775, F(y4|y1, y2, y3) = 8.259

8.9 (a) a′ = (−.145, .052,−.005,−.089,−.007,−.022)
(b) a∗′ = (−1.016, .147,−.542,−1.035,−.107,−1.200)
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(c) t1 = −4.655, t2 = .592, t3 = −4.354, t4 = −5.257, t5 = −4.032,
t6 = −6.439

(e) F(y1|y2, y3, y4, y5, y6) = 8.081, F(y2|y1, y3, y4, y5, y6) = .150,
F(y3|y1, y2, y4, y5, y6) = .835, F(y4|y1, y2, y3, y5, y6) = 8.503,
F(y5|y1, y2, y3, y4, y6) = .028, F(y6|y1, y2, y3, y4, y5) = 9.192

8.10 (a) a′ = (.057, .010, .242, .071)
(b) a∗′ = (1.390, .083, 1.025, .032)
(c) t1 = −3.713, t2 = .549, t3 = −3.262, t4 = −.724
(e) F(y1|y2, y3, y4) = 3.332, F(y2|y1, y3, y4) = .010,

F(y3|y1, y2, y4) = 1.482, F(y4|y1, y2, y3) = .001

8.11 (a) a′
1 = (.021, .533,−.347,−.135), a′

2 = (−.317, .298, .243,−.026)
(b) λ1/(λ1 + λ2) = .958, λ2/(λ1 + λ2) = .042. Using the methods of Sec-

tion 8.6.2, we have two tests, the first for significance of λ1 and λ2 and the
second for significance of λ2:

Test � F p-Value for F

1 .2245 8.3294 <.0001
2 .8871 1.3157 .2869

(c) a∗′
1 = (.076, 1.553,−1.182,−.439), a∗′

2 = (−1.162, .869, .828,−.085)
(d) F(y1|y2, y3, y4) = 1.067, F(y2|y1, y3, y4) = 20.975,

F(y3|y1, y2, y4) = 9.630, F(y4|y1, y2, y3) = 1.228
(e) In the plot, the first discriminant function separates groups 1 and 2 from

group 3, but the second is ineffective in separating group 1 from group 2.
8.12 (a) λi λi/

∑4
j=1 λ j Eigenvector

1.8757 .6421 a′
1 = (.470,−.263, .653,−.074)

.7907 .2707 a′
2 = (.176, .188,−1.058, 1.778)

.2290 .0784 a′
3 = (−.155, .258, .470,−.850)

.0260 .0089 a′
4 = (−3.614, .475, .310,−.479)

(b) Test of significance of each eigenvalue and those that follow it:

Test � Approximate F p-Value for F

1 .1540 4.937 <.0001
2 .4429 3.188 .0006
3 .7931 1.680 .1363
4 .9747 .545 .5839

(c) a∗′
1 = (.266,−.915, 1.353,−.097), a∗′

2 = (.100, .654,−2.291, 2.333)
a∗′

3 = (−.087, .899, .973,−1.115), a∗′
4 = (−2.044, 1.654, .643,−.628)

(d) F(y1|y2, y3, y4) = .299, F(y2|y1, y3, y4) = 1.931,
F(y3|y1, y2, y4) = 6.085, F(y4|y1, y2, y3) = 4.659



624 ANSWERS AND HINTS TO PROBLEMS

(e) In the plot, the first discriminant function separates groups 1, 4, and 6
from groups 2, 3, and 5. The second function achieves some separation of
group 6 from groups 1 and 4 and some separation of group 3 from groups
2 and 5.

8.13 Three variables entered the model in the stepwise selection. The summary table
is as follows:

Variable
Step Entered Overall � p-Value Partial � Partial F p-Value

1 y4 .4086 <.0001 .4086 12.158 <.0001
2 y3 .2655 <.0001 .6499 4.418 .0026
3 y2 .1599 <.0001 .6022 5.284 .0008

8.14 Summary table:

Variable
Step Entered Overall � p-Value Partial � Partial F p-Value

1 y4 .6392 <.0001 .6392 21.451 <.0001
2 y3 .5430 <.0001 .8495 6.554 .0147
3 y6 .4594 <.0001 .8461 6.549 .0148
4 y2 .4063 <.0001 .8843 4.578 .0394
5 y5 .3639 <.0001 .8957 3.959 .0547

In this case, the fifth variable to enter, y5, would not ordinarily be included
in the subset. The p-value of .0547 is large in this setting, where several tests
are run at each step and the variable with smallest p-value is selected.

8.15 Summary table:

Variable
Step Entered Overall � p-Value Partial � Partial F p-Value

1 y2 .6347 .0006 .6347 9.495 .0006
2 y3 .2606 <.0001 .4106 22.975 <.0001

CHAPTER 9

9.1 z1 − z2 = a′y1 − a′y2 = a′(y1 − y2) = (y1 − y2)
′S−1

pl (y1 − y2)

9.2 1
2 (z1 + z2) = 1

2 (a
′y1 + a′y2) = 1

2 a′(y1 + y2) = 1
2 (y1 − y2)

′S−1
pl (y1 + y2)

9.3 Write (9.7) in the form

f (y|G1)

f (y|G2)
>

p2

p1

and substitute f (y|Gi ) = Np(�i ,�) from (4.2) to obtain

f (y|G1)

f (y|G2)
= e(�1−�2)

′�−1y−(�1−�2)
′�−1(�1+�2)/2 >

p2

p1
.
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Substitute estimates for �1, �2, and �, and take the logarithm of both sides to
obtain (9.8). Note that if a > b, then ln a > ln b.

9.4 Maximizing pi f (y,Gi ) is equivalent to maximizing ln[pi f (y|Gi )]. Use
f (y|Gi ) = Np(�i ,�) from (4.2) and take the logarithm to obtain

ln[pi f (y|Gi )] = ln pi − 1
2 p ln(2π)− 1

2 |�| − 1
2 (y − �i )

′�−1(y − �i ).

Expand the last term, delete terms common to all groups (terms that do not
involve i), and substitute estimators of �i and � to obtain (9.11).

9.5 Use f (y|Gi ) = Np(�i ,�i ) in ln[pi f (y|Gi )], delete −(p/2) ln(2π), and sub-
stitute yi and Si for �i and �i .

9.6 (a) a′ = (y1 − y2)
′S−1

pl = (.345,−.130,−.106,−.143),

1
2 (z1 + z2) = −15.8054

(b)
Actual Number of

Predicted Group

Group Observations 1 2

1 19 19 0
2 20 1 19

Error rate = 1
39 = .0256

(c) Using the k nearest neighbor method with k = 5, we obtain the same
classification table as in part (b). With k = 4, two observations are mis-
classified, and the error rate becomes 2/39 = .0513.

9.7 (a) a′ = (y1 − y2)
′S−1

pl = (−.145, .052,−.005,−.089,−.007,−.022),

1
2 (z1 + z2) = −17.045

(b) Linear Classification

Actual Number of
Predicted Group

Group Observations 1 2

1 39 37 2
2 34 8 26

Error rate = (2 + 8)/73 = .1370

(c) p1 and p2 Proportional to Sample Sizes

Actual Number of
Predicted Group

Group Observations 1 2

1 39 37 2
2 34 8 26

Error rate = (2 + 8)/73 = .1370
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9.8 (a) a′ = (y1 − y2)
′S−1

pl = (−.057,−.010,−.242,−.071),

1
2 (z1 + z2) = −7.9686

(b) Linear Classification

Actual Number of
Predicted Group

Group Observations 1 2

1 9 8 1
2 10 1 9

Error rate = 2
19 = .1053

(c) Holdout Method

Actual Number of
Predicted Group

Group Observations 1 2

1 9 6 3
2 10 3 7

Error rate = (3 + 3)/19 = .3158

(d) Kernel Density Estimator with h = 2

Actual Number of
Predicted Group

Group Observations 1 2

1 9 9 0
2 10 1 9

Error rate = 1
19 = .0526

9.9 (a)

Actual Number of
Predicted Group

Group Observations 1 2

1 20 18 2
2 20 2 18

Error rate = (2 + 2)/40 = .100
(b) Four variables were selected by the stepwise discriminant analysis: y2, y3,

y4, and y6 (see Problem 8.14). With these four variables we obtain the
classification table in part (c).
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(c)

Actual Number of
Predicted Group

Group Observations 1 2

1 20 18 2
2 20 2 18

Error rate = (2 + 2)/40 = .100. The four variables classified the sam-
ple as well as did all six variables in part (a).

9.10 (a) By (9.10), Li (y) = y′
i S

−1
pl y − 1

2 y′
i S

−1
pl yi = c′

i y + c0i . The vectors
(c0i

ci

)
,

i = 1, 2, 3, are

Group 1 Group 2 Group 3

−72.77 −65.18 −68.57
.81 2.12 .68

15.15 10.11 2.79
−1.03 −.24 6.54
10.02 11.06 13.09

(b) Linear Classification

Actual Number of
Predicted Group

Group Observations 1 2 3

1 12 9 3 0
2 12 3 7 2
3 12 0 1 11

Error rate = (3 + 3 + 2 + 1)/36 = .250
(c) Quadratic Classification

Actual Number of
Predicted Group

Group Observations 1 2 3

1 12 10 2 0
2 12 2 8 2
3 12 0 1 11

Error rate = (2 + 2 + 2 + 1)/36 = .194
(d) Linear Classification–Holdout Method

Actual Number of
Predicted Group

Group Observations 1 2 3

1 12 7 5 0
2 12 4 5 3
3 12 0 1 11

Error rate = (5 + 4 + 3 + 1)/36 = .361
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(e) k Nearest Neighbor with k = 5

Actual Number of
Predicted Group

Group Observations 1 2 3

1 11 9 2 0
2 11 2 7 2
3 12 0 1 11

Error rate = (2 + 2 + 2 + 1)/34 = .206

9.11 (a) By (9.10), Li (y) = y′
i S

−1
pl y − 1

2 y′
i S

−1
pl yi = c′

i y + c0i . The vectors
(c0i

ci

)
,

i = 1, 2, . . . , 6, are
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

−300.0 −353.2 −328.5 −291.8 −347.5 −315.8
314.6 317.1 324.6 307.3 316.8 311.3
−59.4 −64.0 −65.2 −59.4 −65.8 −63.1
149.6 168.2 154.9 147.7 168.2 160.6

−161.2 −172.6 −150.4 −153.4 −172.9 −175.5

(b) Linear Classification

Actual Number of
Predicted Group

Group Observations 1 2 3 4 5 6

1 8 5 0 0 1 0 2
2 8 0 3 2 1 2 0
3 8 0 0 6 1 1 0
4 8 3 0 1 4 0 0
5 8 0 3 1 0 3 1
6 8 2 0 0 0 2 4

Correct classification rate = (5 + 3 + 6 + 4 + 3 + 4)/48 = .521
Error rate = 1 − .521 = .479

(c) Quadratic Classification

Actual Number of
Predicted Group

Group Observations 1 2 3 4 5 6

1 8 8 0 0 0 0 0
2 8 0 7 0 1 0 0
3 8 1 0 6 0 1 0
4 8 0 0 1 7 0 0
5 8 0 3 0 0 4 1
6 8 2 0 0 0 1 5

Correct classification rate = (8 + 7 + 6 + 7 + 4 + 5)/48 = .771
Error rate = −.771 = .229
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(d) k Nearest Neighbor with k = 3

Actual Number of
Predicted Group

Group Observations 1 2 3 4 5 6 Ties

1 8 5 0 0 2 0 0 1
2 8 0 4 0 0 1 0 3
3 8 1 0 6 0 1 0 0
4 8 0 0 0 5 0 0 3
5 8 0 1 0 0 6 1 0
6 8 2 0 0 0 0 5 1

Correct classification rate = (5 + 4 + 6 + 5 + 6 + 5)/40 = .775
Error rate = 1 − .775 = .225

(e) Normal Kernel with h = 1
(For this data set, larger values of h do much worse.)

Actual Number of
Predicted Group

Group Observations 1 2 3 4 5 6

1 8 8 0 0 0 0 0
2 8 0 8 0 0 0 0
3 8 1 0 6 0 1 0
4 8 1 0 0 7 0 0
5 8 0 0 0 0 7 1
6 8 2 0 0 0 0 6

Correct classification rate = (8 + 8 + 6 + 7 + 7 + 6)/48 = .875
Error rate = 1 − .875 = .125

CHAPTER 10

10.1 y−X�̂ =




y1
y2
...

yn


−




x′
1

x′
2
...

x′
n


�̂ =




y1
y2
...

yn


−




x′
1�̂

x′
2�̂
...

x′
n�̂


 =




y1 − x′
1�̂

y2 − x′
2�̂

...

yn − x′
n�̂




By (2.33),
∑n

i=1(yi − x′
i �̂)

2 = (y − X�̂)′(y − X�̂).

10.2
∑n

i=1(yi − µ)2 =∑n
i=1(yi − y + y − µ)2

=∑n
i=1(yi − y)2 + 2

∑n
i=1(yi − y)(y − µ)+∑n

i=1(y − µ)2

=∑n
i=1(yi − y)2 + (y − µ)

∑n
i=1(yi − y)+ n(y − µ)2

=∑i (yi − y)2 + n(y − µ)2 [since
∑n

i=1(yi − y) = 0]
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10.3
∑n

i=1(xi2 − x2)y = y
∑n

i=1(xi2 − x2) = y(
∑n

i=1 xi2 − nx2) = y(nx2 − nx2)

10.4 E[ŷi − E(yi)]2 = E[ŷi − E(ŷi)+ E(ŷi)− E(yi)]2

= E[ŷi − E(ŷi)]2 + 2E[ŷi − E(ŷi)][E(ŷi)− E(yi)]
+E[E(ŷi)− E(yi)]2

The second term on the right vanishes because [E(ŷi)− E(yi)] is constant and
E[ŷi − E(ŷi)] = E(ŷi)− E(ŷi) = 0. For the third term, we have E[E(ŷi)−
E(yi)]2 = [E(ŷi)− E(yi)]2, because [E(ŷi)− E(yi)]2 is constant.

10.5 First show that cov(�̂p) = σ 2(X′
pXp)

−1. This can be done by noting that

�̂p = (X′
pXp)

−1X′
py = Ay, say. Then, by (3.74), cov(Ay) = A cov(y)A′ =

A(σ 2I)A′ = σ 2AA′. By substituting A = (X′
pXp)

−1X′
p, this becomes

cov(�̂p) = σ 2(X′
pXp)

−1. Then, by (3.70), var(x′
pi �̂p) = x′

pi cov(�̂p)xpi
and the remaining steps follow as indicated.

10.6 By (10.36), s2
p = SSEp/(n − p). Then by (10.44),

Cp = p + (n − p)
s2

p − s2
k

s2
k

= p + (n − p)

(
s2

p

s2
k

− 1

)

= p + (n − p)
s2

p

s2
k

− (n − p) = (n − p)
SSEp/s2

k

n − p
− n + 2p

= SSEp

s2
k

− (n − 2p).

10.7 (Y − XB̂)′(Y − XB̂) = Y′Y − Y′XB̂ − B̂′X′Y − B̂′X′XB̂. Transpose B̂ =
(X′X)−1X′Y from (10.46) and substitute into B̂′X′XB̂.

10.8 E[ŷi − E(yi )][ŷi − E(yi )]′ = E[ŷi − E(ŷi )+ E(ŷi)− E(yi )][ŷi − E(ŷi )

+E(ŷi )− E(yi )]′
= E[ŷi − E(ŷi )][ŷi − E(ŷi )]′

+E[ŷi − E(ŷi )][E(ŷi)− E(yi )]′
+E[E(ŷi)− E(yi)][ŷi − E(ŷi )]′
+E[E(ŷi)− E(yi)][E(ŷi)− E(yi )]′

The second and third terms are equal to O because [E(ŷi) − E(yi)] is a
constant vector and E[ŷi − E(ŷi)] = E(ŷi )− E(ŷi) = 0. The fourth term is a
constant matrix and the first E can be deleted.

10.9 As in Problem 10.5, we have cov(�̂p( j)) = σ j j (X′
pXp)

−1, where σ j j =
var(y j ) is the j th diagonal element of � = cov(y). Similarly, cov(�̂p( j),

�̂p(k)) = σ jk(X′
pXp)

−1, where σ jk = cov(y j , yk) is the ( jk)th element of �.
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The notation cov(�̂p( j), �̂p(k)) indicates a matrix containing the covariance
of each element of �̂p( j) and each element of �̂p(k). Now for the covariance
matrix, cov(ŷ′

i ) = cov(x′
pi �̂p(1), . . . , x′

pi �̂p(m)), we need the variance of each
of the m random variables and the covariance of each pair. By Problem 10.5
and (3.70), var(x′

pi �̂p(1)) = x′
pi cov(�̂p(1))xpi = σ11x′

pi (X
′
pXp)

−1xpi . Sim-

ilarly, cov(x′
pi �̂p(1), x′

pi �̂p(2)) = σ12x′
pi (X

′
pXp)

−1xpi . The other variances
and covariances can be obtained in an analogous manner.

10.10 By (10.77), Sp = Ep/(n − p). Then by (10.83),

Cp = pI + (n − p)S−1
k (Sp − Sk)

= pI + (n − p)S−1
k

Ep

n − p
− (n − p)I

= S−1
k Ep + (2p − n)I.

10.11 |E−1
k Ep| = |E−1

k ||Ep| > 0, because both E−1
k and Ep are positive definite.

10.12 By (10.84), Cp = S−1
k Ep + (2p − n)I. Using Sk = Ek/(n − k), we obtain

(
Ek

n − k

)−1

Ep = Cp − (2p − n)I,

(n − k)E−1
k Ep = Cp + (n − 2p)I.

10.13 If Cp is replaced by pI in (10.86), we obtain

E−1
k Ep = Cp + (n − 2p)I

n − k
= pI + nI − 2pI

n − k
= (n − p)I

n − k
.

10.14 (a) B̂ =




.6264 83.243

.0009 .029
−.0010 −.013
.0015 −.004




(b) � = .724, V (s) = .280, U (s) = .375, θ = .264
(c) λ1 = .3594, λ2 = .0160. The essential rank of B̂1 is 1, and the power

ranking is θ > U (s) > � > V (s).
(d) The Wilks’ � test of x2 adjusted for x1 and x3, for example, is given by

(10.65) as

�(x2|x1, x3) = �(x1, x2, x3)

�(x1, x3)
,

which is distributed as �p,1,n−4 and has an exact F-transformation. The
tests for x1 and x3 are similar. For the three tests we obtain the following:
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� F p-Value

x1|x2, x3 .931 1.519 .231
x2|x1, x3 .887 2.606 .086
x3|x1, x2 .762 6.417 .004

10.15 (a) B̂ =

 34.282 35.802

.394 .245

.529 .471




(b) � = .377, V (s) = .625, U (s) = 1.647, θ = .622
(c) λ1 = 1.644, λ2 = .0029. The essential rank of B̂1 is 1, and the power

ranking is θ > U (s) > � > V (s).
(d) � F p-Value

x1|x2 .888 1.327 .287
x2|x1 .875 1.506 .245

10.16 (a) B̂ =




54.870 65.679 58.106
.054 −.048 .018

−.024 .163 .012
.107 −.036 .125




(b) � = .665, V (s) = .365, U (s) = .458, θ = .240
(c) λ1 = .3159, λ2 = .1385, λ3 = .0037. The essential rank of B̂1 is 2, and

the power ranking is V (s) > � > U (s) > θ .
(d) � F p-Value

x1|x2, x3 .942 .903 .447
x2|x1, x3 .847 2.653 .060
x3|x1, x2 .829 3.020 .040

(e) � F p-Value

y1|y2, y3 .890 1.804 .160
y2|y1, y3 .833 2.932 .044
y3|y1, y2 .872 2.159 .106

10.17 (a) B̂ =




−4.140 4.935
1.103 −.955
.231 −.222

1.171 1.773
.111 .048
.617 −.058
.267 .485

−.263 −.209
−.004 −.004




Test of overall regression of (y1, y2) on (x1, x2, . . . , x8):� = .4642 (with
p = 2, exact F = 1.169, p-value = .332). Tests on subsets (the F’s are
exact because p = 2):
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� F p-Value

(b) x7, x8|x1, x2, . . . , x6 .856 .808 .527
(c) x4, x5, x6|x1, x2, x3, x7, x8 .674 1.457 .218
(d) x1, x2, x3|x4, x5, . . . , x8 .569 2.170 .066

10.18 (a) The overall test of (y1, y2) on (x1, x2, . . . , x8) gives � = .4642, with
(exact) F = 1.169 (p-value = .332). Even though this test result is not
significant, we give the results of a backward elimination for illustrative
purposes:

Partial �-Test on Each xi Using (10.72)
Step x1 x2 x3 x4 x5 x6 x7 x8

1 .723 .969 .817 .859 .821 .945 .924 .943
2 .741 .801 .851 .839 .948 .927 .940
3 .737 .837 .798 .757 .949 .938
4 .675 .852 .821 .794 .925
5 .680 .861 .835 .817
6 .701 .805 .806
7 .855 .930
8 .891

At each step, the variable deleted was not significant. In fact, the variable
remaining at the last step, x1, is not a significant predictor of y1 and y2.

(b) There were no significant x’s, but to illustrate, we will use the three x’s at
step 6 and test for each y:

� F p-Value

y1|y2 .701 3.548 .029
y2|y1 .808 1.984 .142

10.19 (a) B̂ =




43.703 46.793 187.923
.019 −.098 1.016
.139 .185 −4.953
.204 .107 1.606




� = .167, V (s) = .883, U (s) = 4.709, θ = .823

(b) B̂ =




99.817 −29.120 121.595
−.008 −.224 −.027
.097 1.252 5.775

−.049 −.442 −1.768
−.022 −.631 −.488
−.159 2.128 4.387
.054 −.037 −.476




� = .110, V (s) = 1.350, U (s) = 4.319, θ = .769
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(c) B̂ =




710.236 123.403
−1.625 .055
24.648 .094
−8.622 −.334
−8.224 .462
23.626 −.110
2.862 .427

−16.186 −.267
−.268 .014

−1.160 −.336




� = .102, V (s) = 1.236, U (s) = 5.475, θ = .827
10.20 Using a backward elimination based on (10.72), we obtain the following partial

�-values:
Step x1 x2 x3 x4 x5 x6 x7 x8 x9

1 .993 .962 .916 .958 .919 .879 .981 .999 .797
2 .994 .962 .916 .956 .909 .874 .980 .626
3 .951 .883 .954 .912 .873 .981 .626
4 .948 .884 .955 .861 .867 .561
5 .953 .862 .840 .803 .561
6 .830 .781 .783 .535

At step 6, we stop and retain all four x’s because each � has a p-value less
than .05.

CHAPTER 11

11.1 By (3.38), Syy = DyRyyDy and Sxx = Dx Rxx Dx , where Dy and Dx are
defined below (11.14). Similarly, Syx = DyRyxDx and Sxy = Dx RxyDy .
Substitute these into (11.7), replace I by D−1

y Dy , and factor out Dy on the
right.

11.2 Multiply (11.7) by S−1
xx Sxy on the left to obtain (S−1

xx SxyS−1
yy SyxS−1

xx Sxy −
r2S−1

xx Sxy)a = 0. Factor out S−1
xx Sxy on the right to write this in the form

(S−1
xx SxyS−1

yy Syx − r2I)S−1
xx Sxya = 0. Upon comparing this to (11.8), we see

that b = S−1
xx Sxya.

11.3 When p = 1, s is also 1, and there is only one canonical correlation, which
is equal to R2 from multiple regression [see comments between (11.28) and
(11.29)]. Thus

� = 1 − r2
1

1 − c2
1

= 1 − R2
f

1 − R2
r
.
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11.4 F = (1 −�)(n − q − 1)

�h
= [1 − (1 − R2

f )/(1 − R2
r )](n − q − 1)

[(1 − R2
f )/(1 − R2

r )]h
= [1 − R2

r − (1 − R2
f )](n − q − 1)

(1 − R2
f )h

= (R2
f − R2

r )(n − q − 1)

(1 − R2
f )h

11.5 By (11.39),

r2
i = λi

1 + λi
, r2

i + r2
i λi = λi , λi (1 − r2

i ) = r2
i .

11.6 Substitute E = (n − 1)(Syy − SyxS−1
xx Sxy) and H = (n − 1)SyxS−1

xx Sxy from
(11.44) and (11.45) into (11.41):

Ha = λEa,

(n − 1)SyxS−1
xx Sxya = (n − 1)λ(Syy − SyxS−1

xx Sxy)a,

SyxS−1
xx Sxya = λ(Syy − SyxS−1

xx Sxy)a.

11.7 By (11.42), SyxS−1
xx Sxya = r2Syya. Subtracting r2SyxS−1

xx Sxya from both
sides gives

SyxS−1
xx Sxya − r2SyxS−1

xx Sxya = r2Syya − r2SyxS−1
xx Sxya,

(1 − r2)SyxS−1
xx Sxya = r2(Syy − SyxS−1

xx Sxy)a.

11.8 (a) r1 = .5142, r2 = .1255
(b) c1 c2 d1 d2

y1 1.020 −.048 x1 .436 .823
y2 −.160 1.009 x2 −.704 −.455

x3 1.081 −.401

(c) k � Approximate F p-Value

1 .7240 2.395 .035
2 .9843 .336 .716

11.9 (a) r1 = .7885, r2 = .0537
(b) c1 c2 d1 d2

y1 .5522 −1.3664 x1 .5044 −1.7686
y2 .5215 1.3784 x2 .5383 1.7586

(c) k � Approximate F p-Value

1 .3772 6.5972 .0003
2 .9971 .0637 .8031
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11.10 (a) r1 = .4900, r2 = .3488, r3 = .0609
(b) c1 c2 c3 d1 d2 d3

y1 .633 .091 .806 x1 .482 −.262 1.054
y2 −.624 .816 .147 x2 −.578 1.024 −.059
y3 .643 .400 −.690 x3 .865 .216 −.626

(c) k � Approximate F p-Value

1 .665 2.175 .029
2 .875 1.552 .194
3 .996 .171 .681

11.11 (a) r1 = .6251, r2 = .4135
(b) c1 c2

y1 1.120 −.007
y2 −.498 1.003

d1 d2

x1 1.091 −.794
x2 .184 −.288
x3 .842 1.807
x4 .944 .641
x5 1.040 −.154
x6 .215 1.256
x7 −.603 −.528
x8 −.641 −.588

(c) k � Approximate F p-Value

1 .4642 1.1692 .3321
2 .7553 .9718 .4766

11.12 (b) By (11.34),

�(x7, x8|x1, x2, . . . , x6) =
∏2

i=1(1 − r2
i )∏2

i=1(1 − c2
i )
,

where r2
1 and r2

2 are the squared canonical correlations from the full model,
and c2

1 and c2
2 are the squared canonical correlations from the reduced

model:

�(x7, x8|x1, x2, . . . , x6) = (1 − .62082)(1 − .49472)

(1 − .26502)(1 − .08862)
= .4643

.9225
= .5033

(c) �(x4, x5, x6|x1, x2, x3, x7, x8) = (1 − .62082)(1 − .49472)

(1 − .33012)(1 − .17072)

= .4643

.8651
= .5367
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(d) �(x1, x2, x3|x4, x5, . . . , x8) = (1 − .62082)(1 − .49472)

(1 − .48312)(1 − .21852)

= .4643

.7300
= .6359

11.13 (a) r1 = .9279, r2 = .5622, r3 = .1660,

k � Approximate F p-Value

1 .0925 17.9776 <.0001
2 .6651 4.6366 .0020
3 .9725 1.1898 .2816

(b) r1 = .8770, r2 = .6776, r3 = .3488,

k � Approximate F p-Value

1 .1097 6.919 <.0001
2 .4751 3.427 .001
3 .8783 1.351 .269

(c) r1 = .9095, r2 = .6395,

k � Approximate F p-Value

1 .1022 8.2757 <.0001
2 .5911 3.1129 .0089

(d) r1 = .9029, r2 = .7797, r3 = .3597, r4 = .3233, r5 = .0794,
k � Approximate F p-Value

1 .0561 4.992 <.0001
2 .3037 2.601 .0007
3 .7747 .829 .6210
4 .8898 .761 .6030
5 .9937 .124 .8840

CHAPTER 12

12.1 From λ = a′Sa/a′a in (12.7), we obtain λa′a = aSa, which can be factored
as a′(Sa − λa) = 0. Since a = 0 is not a solution to λ = a′Sa/a′a, we have
Sa − λa = 0.

12.2 |R − λI| = 0,

∣∣∣∣ 1 − λ r
r 1 − λ

∣∣∣∣ = (1 − λ)2 − r2 = 0,

(1 − λ+ r)(1 − λ− r) = 0, λ = 1 ± r
With λ1 = 1 + r in (R − λ1I)a1 = 0, we obtain( −r r

r −r

)(
a11
a12

)
=
(

0
0

)
,

which gives a11 = a12 for any r . Normalizing to a′
1a1 = 1, yields a11 = 1/

√
2.
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12.3 (a) By (4.14) and a comment in Section 7.1, the likelihood ratio is given by
LR = (|S|/|S0|)n/2, where S0 is the estimate of � under H0. By (2.108)
and (7.6), the test statistic is

−2 ln LR = −2 ln

( |S|
|S0|

)n/2

= −2
(n

2

)
ln

∏p−k
i=1 λi

∏p
i=p−k+1 λi∏p−k

i=1 λi
∏p

i=p−k+1 λ

= −n ln

∏p
i=p−k+1 λi

λ
k

= n

(
k lnλ−

p∑
i=p−k+1

lnλi

)
.

In (12.15), the coefficient n is modified to give an improved chi-square
approximation.

12.4 If S is diagonal, then λi = sii , as in (12.17). Thus

Sai = λi ai = sii ai ,


s11 0 · · · 0
0 s22 · · · 0
...

...
...

0 0 · · · spp






ai1
ai2
...

aip


 =




s11ai1
s22ai2
...

sppaip


 =




sii ai1
sii ai2
...

sii aip


 .

From the first element, we obtain s11ai1 = sii ai1 or (s11 − sii )ai1 = 0.
Since s11 − sii 
= 0 (unless i = 1), we must have ai1 = 0. Thus, ai =
(0, . . . , 0, aii , 0, . . . , 0)′, and normalizing ai leads to aii = 1.

12.5 By (10.34) and (12.2),

R2
yi |z1,... ,zk

= s′
yi zS−1

zz syi z

s2
yi

= (syi z1, syi z2, . . . , syi zk )




s2
z1

0 · · · 0
0 s2

z2
· · · 0

...
...

...

0 0 · · · s2
zk




−1


syi z1

syi z2
...

syi zk



/

s2
yi
.

Show that this is equal to

R2
yi |z1,... ,zk

=
k∑

j=1

s2
yi z j

s2
z j

s2
yi

=
k∑

j=1

r2
yi z j
.

12.6 The variances of y1, y2, x1, x2, and x3 on the diagonal of S are .016, 70.6,
1106.4, 2381.9, and 2136.4. The eigenvalues of S and R are as follows:
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S R

λi λi/
∑

j λ j Cumulative λi λi/
∑

j λ j Cumulative

3466.18 .608607 .60861 1.72 .34 .34
1264.47 .222021 .83063 1.23 .25 .59
895.27 .157195 .98782 .96 .19 .78
69.34 .012174 .99999 .79 .16 .94

.01 .000002 1.00000 .30 .06 1.00

Two principal components of S account for 83% of the variance, but it
requires three principal components of R to reach 78%. For most purposes
we would use two components of S, although with three we could account for
99% of the variance. However, we show all five eigenvectors below because of
the interesting pattern they exhibit. The first principal component is largely a
weighted average of the last two variables, x2 and x3, which have the largest
variances. The second and third components represent contrasts in the last
three variables and could be described as “shape” components. The fourth and
fifth components are associated uniquely with y2 and y1, respectively. These
components are “variable specific,” as described in the discussion of method 1
in Section 12.6. As expected, the principal components of R show an entirely
different pattern. All five variables contribute to the first three components of
R, whereas in S, y1 and y2 have small variances and contribute almost nothing
to the first three components. The eigenvectors of S and R are as follows:

S R

a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

y1 .0004 −.0008 .0018 .0029 .9999 .42 .53 −.42 −.40 .46
y2 −.0080 .0166 .0286 .9994 −.0029 .07 .68 .16 .70 −.10
x1 .1547 .6382 .7535 −.0309 −.0008 .36 .20 .76 −.44 −.24
x2 .7430 .4279 −.5145 .0136 .0009 .54 −.43 .25 .39 .56
x3 .6511 −.6397 .4083 .0042 −.0015 .63 −.18 −.40 .10 −.64

12.7 S =




65.1 33.6 47.6 36.8 25.4
33.6 46.1 28.9 40.3 28.4
47.6 28.9 60.7 37.4 41.1
36.8 40.3 37.4 62.8 31.7
25.4 28.4 41.1 31.7 58.2




R =




1.00 .61 .76 .58 .41
.61 1.00 .55 .75 .55
.76 .55 1.00 .61 .69
.58 .75 .61 1.00 .52
.41 .55 .69 .52 1.00
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The eigenvalues of S and R are as follows:

S R

λi λi/
∑

j λ j Cumulative λi λi/
∑

j λi Cumulative

200.4 .684 .684 3.42 .683 .683
36.1 .123 .807 .61 .123 .806
34.1 .116 .924 .57 .114 .921
15.0 .051 .975 .27 .054 .975
7.4 .025 1.000 .13 .025 1.000

The first three eigenvectors of S and R are as follows:

S R

a1 a2 a3 a1 a2 a3

.47 −.58 −.42 .44 −.20 −.68

.39 −.11 .45 .45 −.43 .35

.49 .10 −.48 .47 .37 −.38

.47 −.12 .62 .45 −.39 .33

.41 .80 −.09 .41 .70 .41

The variances in S are nearly identical, and the covariances are likewise similar
in magnitude. Consequently, the percent of variance explained by the eigenval-
ues of S and R are indistinguishable. The interpretation of the second principal
component from S is slightly different from that of the second one from R, but
otherwise there is little to choose between them.

12.8 The variances on the diagonal of S are 95.5, 73.2, 76.2, 808.6, 505.9, and
508.7. The eigenvalues of S and R are as follows:

S R

λi λi/
∑

j λ j Cumulative λi λi/
∑

j λ j Cumulative

1152.0 .557 .557 2.17 .363 .363
394.1 .191 .748 1.08 .180 .543
310.8 .150 .898 .98 .163 .706
97.8 .047 .945 .87 .144 .850
68.8 .033 .978 .55 .092 .942
44.6 .022 1.000 .35 .058 1.000

We could keep either two or three components from S. The first three com-
ponents of S account for a larger percent of variance than do the first three
from R. The first three eigenvectors of S and R are as follows:
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S R

a1 a2 a3 a1 a2 a3

.080 .092 −.069 .336 .176 .497

.034 −.018 .202 .258 .843 −.093

.076 .122 −.011 .370 .049 .466

.758 −.446 −.469 .475 −.329 −.358

.493 −.081 .844 .486 .079 −.567

.412 .878 −.147 .471 −.376 .278

As expected, the first three principal components from S are heavily influ-
enced by the last three variables because of their relatively large variances.

12.9 The variances on the diagonal of S are .69; 5.4; 2,006, 682.4; 90.3; 56.4; 18.1.
With the large variance of y3, we would expect the first principal component
from S to account for most of the variance, and y3 would essentially constitute
that single component. This is indeed the pattern that emerges in the eigen-
values and eigenvectors of S. The principal components from R, on the other
hand, are not dominated by y3. The eigenvalues of S and R are as follows:

S R

λi λi/
∑

j λ j λi λi/
∑

j λ j Cumulative

2,006,760 .999954 2.42 .404 .404
65 .000033 1.40 .234 .638
18 .000009 1.03 .171 .809
7 .000003 .92 .153 .963
3 .000001 .20 .033 .996
0 .000000 .02 .004 1.000

Most of the correlations in R are small (only three exceed .3), and its first
three principal components account for only 72% of the variance. The first
three eigenvectors of S and R are as follows:

S R

a1 a2 a3 a1 a2 a3

.00016 .005 −.0136 .424 −.561 −.150

.00051 .017 .0787 .446 −.528 .087

.99998 −.001 −.0002 .563 .387 −.051

.00529 .698 .0174 .454 .267 .166

.00322 −.716 .0195 .303 .425 −.296

.00020 .025 .9965 .073 .069 .923
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12.10 Covariance matrix for males:

SM =




5.19 4.55 6.52 5.25
4.55 13.18 6.76 6.27
6.52 6.76 28.67 14.47
5.25 6.27 14.47 16.65




Covariance matrix for females:

SF =




9.14 7.55 4.86 4.15
7.55 18.60 10.22 5.45
4.86 10.22 30.04 13.49
4.15 5.45 13.49 28.00




The eigenvalues are as follows:

Males Females

λi λi/
∑

j λ j Cumulative λi λi/
∑

j λ j Cumulative

43.56 .684 .684 48.96 .571 .571
11.14 .175 .858 18.46 .215 .786
6.47 .102 .960 13.54 .158 .944
2.52 .040 1.000 4.82 .056 1.000

The first two eigenvectors are as follows:

Males Females

a1 a2 a1 a2

.24 .21 .22 .27

.31 .85 .39 .62

.76 −.48 .68 .17

.52 .09 .58 −.72

The variances in SM have a slightly wider range (5.19–28.67) than those in
SF (9.14–30.04), and this is reflected in the eigenvalues. The first two compo-
nents account for 86% of the variance from SM , whereas the first two account
for 79% from SF .

12.11 Covariance matrix for species 1:

S1 =




187.6 176.9 48.4 113.6
176.9 345.4 76.0 118.8
48.4 76.0 66.4 16.2

113.6 118.8 16.2 239.9
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Covariance matrix for species 2:

S2 =




101.8 128.1 37.0 32.6
128.1 389.0 165.4 94.4
37.0 165.4 167.5 66.5
32.6 94.4 66.5 177.9




The eigenvalues are as follows:

Species 1 Species 2

λi λi/
∑

j λ j Cumulative λi λi/
∑

j λ j Cumulative

561.3 .669 .669 555.7 .664 .664
169.0 .201 .870 145.4 .174 .838
65.3 .078 .948 93.5 .112 .950
43.7 .057 1.000 41.7 .050 1.000

The first two eigenvectors are as follows:

Species 1 Species 2

a1 a2 a1 a2

.50 .01 .28 −.20

.72 −.48 .81 −.34

.17 −.22 .42 .14

.45 .85 .30 .91

The variances in S1 have a wider range than those in S2, and the first two
components of S1 account for a higher percent of variance.

12.12 The variances on the diagonal of S in each case are:
(a) Pooled: 536.0, 59.9, 116.0, 896.4, 248.1, 862.0,
(b) Unpooled: 528.2, 68.9, 145.2, 1366.4, 264.4, 1069.1.

The eigenvalues are as follows:

Pooled Unpooled

λi λi/
∑

j λ j Cumulative λi λi/
∑

j λ j Cumulative

1050.6 .386 .386 1722.0 .500 .500
858.3 .316 .702 878.4 .255 .755
398.9 .147 .849 401.4 .117 .872
259.2 .095 .944 261.1 .076 .948
108.1 .040 .984 128.9 .037 .985
43.4 .016 1.000 50.4 .015 1.000
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The first three eigenvectors are as follows:

Pooled Unpooled

a1 a2 a3 a1 a2 a3

.441 −.190 .864 .212 .389 .888

.041 −.038 .082 −.039 .064 .096
−.039 .031 .143 .080 −.066 .081

.450 .892 −.033 .776 −.608 .081
−.019 −.001 −.054 −.096 .010 .015

.774 −.407 −.471 .580 .686 −.434

(c) The pattern in eigenvalues as well as eigenvectors is similar for the pooled
and unpooled cases. The first three principal components account for
87.2% of the variance in the unpooled case compared to 84.9% for the
pooled case.

12.13 The variances on the diagonal of S in each case are:
(a) Pooled: 49.1, 8.1, 12140.8, 136.2, 210.8, 2983.9,
(b) Unpooled: 63.2, 8.0, 15168.9, 186.6, 255.4, 4660.7.
The eigenvalues are as follows:

Pooled Unpooled

λi λi/
∑

j λ j Cumulative λi λi/
∑

j λ j Cumulative

12,809.0 .8249 .8249 17,087.0 .8400 .8400
2,455.9 .1582 .9830 2,958.0 .1454 .9854

137.1 .0088 .9918 168.6 .0083 .9937
77.2 .0050 .9968 77.1 .0038 .9974
42.2 .0027 .9995 44.7 .0022 .9996
7.4 .0005 1.0000 7.3 .0004 1.0000

The eigenvectors are as follows:

Pooled Unpooled

a1 a2 a1 a2

−.004 −.000 .013 .027
−.005 .004 −.004 .004

.968 −.233 .931 −.355
−.002 .023 .028 .069

.103 .041 .103 .021

.228 .971 .350 .932

12.14 The variances on the diagonal of S are all less than 1, except s2
x4

= 5.02
and s2

x8
= 1541.08. We therefore expect the last variable, x8, to dominate the

principal components of S. This is the case for S but not for R. The eigenvalues
of S and R are as follows:
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S R

λi λi/
∑

j λ j λi λi/
∑

j λ j Cumulative

1541.55 .996273 3.174 .317 .317
4.83 .003123 2.565 .256 .574

.44 .000286 1.432 .143 .717

.27 .000174 1.277 .128 .845

.10 .000066 .542 .054 .899

.07 .000043 .473 .047 .946

.02 .000014 .251 .025 .971

.02 .000011 .118 .012 .983

.01 .000005 .104 .010 .994

.00 .000003 .064 .006 1.000

The eigenvectors of S and R are as follows:

S R

a1 a2 a1 a2 a3 a4

.0009 −.005 .12 .19 .69 .10

.0007 −.034 .06 .32 .54 .26

.0029 −.007 .46 −.06 .07 −.38

.0014 .004 .29 .17 −.18 .49

.0059 −.009 .52 .14 −.04 −.01
−.0150 .982 −.09 −.42 .07 .55
−.0028 −.092 −.31 .45 −.01 −.14
−.0022 −.158 −.23 .54 −.14 −.10

.0044 −.011 .09 .36 −.38 .44

.9998 .014 .50 .11 −.13 −.09

12.15 The variances in the diagonal of S are: 55.7, 10.9, 402.7, 25.7, 13.4, 438.3, 1.5,
106.2, 885.6, 22227.2, 214.1.
The eigenvalues of S and R are as follows:

S R

λi λi/
∑

j λ j Cumulative λi λi/
∑

j λ j Cumulative

22,303.5 .91479 .91479 6.020 .54730 .54730
1590.7 .06524 .98003 2.119 .19267 .73996
358.0 .01469 .99471 1.130 .10275 .84272

63.4 .00260 .99731 .760 .06909 .91181
29.3 .00120 .99852 .355 .03231 .94411
17.1 .00070 .99922 .259 .02358 .96769
12.7 .00052 .99974 .122 .01110 .97879
2.8 .00012 .99986 .110 .01004 .98883
1.9 .00008 .99994 .060 .00544 .99427
.9 .00004 .99997 .042 .00384 .99810
.7 .00003 1.00000 .021 .00190 1.00000
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The eigenvectors of S and R are as follows:

S R

a1 a2 a1 a2 a3 a4

y1 −.0097 .1331 .3304 −.0787 .0880 −.2807
y2 .0006 .0608 .3542 .1928 .1071 −.2301
y3 −.0141 .4397 .3923 .0518 .1105 −.1413
y4 −.0033 .1078 .3820 .0474 .1334 −.0104
y5 .0101 .0398 .2323 .5303 .0154 −.0710
y6 .0167 .4290 .3621 .2361 .1198 .1350
y7 −.0012 −.0072 −.0884 .0213 .7946 .5414
y8 .0275 −.1844 −.2501 .5023 .0826 −.1506
y9 .0456 −.6657 −.3111 .3595 .2136 −.2278

y10 .9982 .0346 −.0243 .4685 −.4669 .5001
y11 .0034 .3311 .3357 −.1153 −.1853 .4550

For most purposes, one or two principal components would suffice for S, with
91% or 98% of the variance explained. For R, on the other hand, three compo-
nents are required to explain 84% of the variance, and seven components are
necessary to reach 98%. The reduction to one or two components for S is due
in part to the relatively large variances of y3, y6, y9, and y10. In the eigenvec-
tors of S, we see that these four variables figure prominently in the first two
principal components.

CHAPTER 13

13.1 var(yi ) = var(yi − µi ) = var(λi1 f1 + λi2 f2 + · · · + λim fm + εi )

=∑m
j=1 λ

2
i j var( f j )+ var(εi )+∑ j 
=k λi jλik cov( f j , fk)

+∑m
j=1 λi j cov( f j , εi )

=∑m
j=1 λ

2
i j + ψi .

The last equality follows by the assumptions var( f j ) = 1, var(εi ) = ψi ,
cov( f j , fk) = 0, and cov( f j , εi ) = 0.

13.2 cov(y, f)=cov(�f + �, f) [by (13.3)]

=cov(�f, f) [by (13.10)]

=E[�f − E(�f)][f − E(f)]′ [by analogy to (3.31)]

=E[�f − �E(f)][f − E(f)]′
=�E[f − E(f)][f − E(f)]′
=� cov(f) = � [by (13.7)]



ANSWERS AND HINTS TO PROBLEMS 647

13.3 E(f∗) = E(T′f) = T′E(f) = T′0 = 0,

cov(f∗) = cov(T′f) = T′ cov(f)T = T′IT = I

13.4 Let E = S − (�̂�̂′ + �̂). Then by (2.98), tr(E′E) = ∑
i j e2

i j . By (13.26),

�̂ = diag(S−�̂�̂′), and E has zeros on the diagonal. This gives the inequality

∑
i j

e2
i j ≤ sum of squared elements of S − �̂�̂′.

By (2.98),

Sum of squared elements of S − �̂�̂′ = tr(S − �̂�̂′)′(S − �̂�̂′).

Since S − �̂�̂′ is symmetric, we have by (13.20), (13.23), and (13.24),

S − �̂�̂′ = CDC′ − C1D1/2
1 D1/2

1 C′
1

= CDC′ − C1D1C′
1,

where C = (c1, c2, . . . , cp) contains normalized eigenvectors of S,D =
diag(θ1, θ2, . . . , θp) contains eigenvalues of S,C1 = (c1, c2, . . . , cm), and
D1 = diag(θ1, θ2, . . . , θm).

Using the partitioned forms C = (C1,C2) and D =
(

D1 O
O D2

)
, show

that C′
1C1 = Im,C′

1C2 = O,C′C1 =
(

Im

O

)
, D
(

Im

O

)
=
(

D1
O

)
,

C
(

D1
O

)
= C1D1, and CDC′C1D1C′

1 = C1D2
1C′

1. Show similarly that

C1D1C′
1CDC′ = C1D2

1C′
1 and C1D1C′

1C1D1C′
1 = C1D2

1C′
1. Now by (2.97)

tr(CD2C′) = tr(C′CD2) = tr(D2) = ∑p
i=1 θ

2
i . Similarly, tr(C1D2

1C′
1) =∑m

i=1 θ
2
i . Then

tr(S − �̂�̂′)′(S − �̂�̂′) = tr(CDC′ − C1D1C′
1)(CDC′ − C1D1C′

1)

= tr(CDC′CDC′ − CDC′C1D1C′
1 − C1D1C′

1CDC′

+C1D1C′
1C1D1C′

1)

=
p∑

i=1

θ2
i −

m∑
i=1

θ2
i −

m∑
i=1

θ2
i +

m∑
i=1

θ2
i

=
p∑

i=m+1

θ2
i .
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13.5
∑p

i=1

∑m
j=1 λ̂

2
i j =∑p

i=1

[∑m
j=1 λ̂

2
i j

]
=∑p

i=1 ĥ2
i [by (13.28)]

By interchanging the order of summation, we have

p∑
i=1

m∑
j=1

λ̂2
i j =

m∑
j=1

p∑
i=1

λ̂2
i j =

m∑
j=1

θ j [by (13.29)].

13.6 We use the covariance matrix to avoid working with standardized variables.
The eigenvalues of S are 39.16, 8.78, .66, .30, and 0. The eigenvector corre-
sponding to λ5 = 0 is

a′
5 = (−.75,−.25, .25, .50, .25).

As noted in Section 12.7, s2
z5

= 0 implies z5 = 0. Thus

z5 = a′
5y = −.75y1 − .25y2 + .25y3 + .50y4 + .25y5 = 0,

3y1 + y2 = y3 + 2y4 + y5.

13.7 Words data of Table 5.9:

Principal Varimax
Component Rotated
Loadings Loadings Communalities,

f1 f2 f1 f2 ĥ2
i

Variables
Informal words .802 −.535 .956 .129 .930
Informal verbs .856 −.326 .858 .321 .839
Formal words .883 .270 .484 .786 .853
Formal verbs .714 .658 .101 .966 .943

Variance 2.666 .899 1.894 1.671 3.565

Proportion .666 .225 .474 .418 .891

The orthogonal matrix T for the varimax rotation as given by (13.49) is

T =
(

.750 .661
−.661 .750

)
.

Thus sinφ = −.661 and φ = −41.4◦. A graphical rotation of −40◦ would
produce results very close to the varimax rotation.
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13.8 Ramus bone data of Table 3.6:

Principal Varimax Orthoblique
Component Rotated Pattern
Loadings Loadings Communalities, Loadings

f1 f2 f1 f2 ĥ2
i f1 f2

Variables
8 years .949 −.295 .884 .455 .988 −.108 1.087
8 1

2 years .974 −.193 .830 .545 .986 .106 .900
9 years .978 .171 .578 .808 .986 .825 .188
9 1

2 years .943 .319 .449 .888 .991 1.099 −.121

Variance 3.695 .255 2.005 1.946 3.951

Proportion .924 .064 .501 .486 .988

The Harris–Kaiser orthoblique rotation produced loadings for which the
variables have a complexity of 1. These oblique loadings provide a much
cleaner simple structure than that given by the varimax loadings. For interpre-
tation, we see that one factor represents variables 1 and 2, and the other factor
represents variables 3 and 4. This same clustering of variables can be deduced
from the varimax loadings if we simply use the larger of the two loadings for
each variable.

The correlation between the two oblique factors is .87. The angle between
the oblique axes is cos−1(.87) = 29.5◦. With such a small angle between the
axes and a large correlation between the factors, it is clear that a single factor
would better represent the variables. This is also borne out by the eigenvalues
of the correlation matrix: 3.695, .255, .033, and .017. The first accounts for
92% of the variance and the second for only 6%.

13.9 Rootstock data of Table 6.2:

Principal Varimax
Component Rotated
Loadings Loadings Communalities,

f1 f2 f1 f2 ĥ2
i

Variables
Trunk 4 years .787 .575 .167 .960 .949
Extension 4 years .849 .467 .287 .925 .939
Trunk 15 years .875 −.455 .946 .280 .973
Weight 15 years .824 −.547 .973 .179 .978

Variance 2.785 1.054 1.951 1.888 3.839

Proportion .696 .264 .488 .472 .960
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The rotation was successful in producing variables with a complexity of 1,
that is, partitioning the variables into two groups, each with two variables.

13.10 (a) Fish data of Table 6.17:

Principal Varimax
Component Rotated
Loadings Loadings Communalities,

f1 f2 f1 f2 ĥ2
i

Variables
y1 .830 −.403 .874 .294 .851
y2 .783 −.504 .911 .189 .866
y3 .803 .432 .270 .871 .831
y4 .769 .497 .200 .893 .838

Variance 2.537 .850 1.709 1.678 3.386

Proportion .634 .213 .427 .420 .847

(b) The loadings for y1 and y2 are similar. In R we see some indication of the
reason for this; y1 and y2 are more highly correlated than any other pair of
variables, and their correlations with y3 and y4 are similar:

R =




1.00 .71 .51 .40
.71 1.00 .38 .40
.51 .38 1.00 .67
.40 .40 .67 1.00


 .

(c) By (13.58), the factor score coefficient matrix is

B̂1 = R−1�̂ =




.566 −.109

.636 −.207
−.130 .584
−.194 .630


 ,

where �̂ is the matrix of rotated factor loadings given in part (a). The
factor scores are given by (13.59) as follows:
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Method 1 Method 2 Method 3

f̂1 f̂2 f̂1 f̂2 f̂1 f̂2

.544 1.151 −.254 .309 −1.156 2.104
1.250 −.254 −.309 −1.534 −.321 .878
1.017 1.120 −1.865 −1.558 −.671 .947
−.147 −1.583 −.999 −.690 .067 1.130

.219 −.103 .520 −.343 −1.610 −.458
1.007 .679 .919 −.111 .557 .491
1.413 −.186 −.443 −.018 −.454 1.157
−.666 −2.279 −.265 .676 −.961 .063
1.057 −1.870 1.449 −.295 −.230 1.721
.388 −.440 1.371 .295 −1.309 .054

1.328 −.298 1.260 −.027 −1.766 −.111
.694 −.033 −.000 −1.452 −1.636 −.048

(d) A one-way MANOVA on the two factor scores comparing the three meth-
ods yielded the following values for E and H:

E =
(

21.8606 10.3073
10.3073 25.2081

)
, H =

(
13.1394 −10.3073

−10.3073 9.7919

)
.

The four MANOVA test statistics are � = .3631, V (s) = .6552, U (s) =
1.7035, and θ = .6259. All are highly significant.

13.11 (a) For the flea data of Table 5.5, the eigenvalues of R are 2.273, 1.081, .450,
and .196. There is a noticeable gap between 1.081 and .450, and the first
two factors account for 83.9% of the variance. Thus m = 2 factors seem
to be indicated for this set of data.

(b)

Principal Varimax Orthoblique
Component Rotated Pattern
Loadings Loadings Communalities, Loadings

f1 f2 f1 f2 ĥ2
i f1 f2

Variables
y1 −.038 .989 −.025 .990 .980 −.003 .990
y2 .889 .269 .892 .256 .862 .898 .253
y3 .893 −.157 .891 −.170 .823 .887 −.173
y4 .827 −.073 .823 −.084 .689 .824 −.087

Variance 2.273 1.081 2.273 1.081 3.354

Proportion .568 .270 .568 .270 .839

(The variance explained by the varimax rotated factors remains the
same as for the initial factors when rounded to three decimal places.)
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(c) In this case, neither of the rotations changes the initial loadings apprecia-
bly. The reason for this unusual outcome can be seen in the correlation
matrix:

R =




1.00 .18 −.17 −.07
.18 1.00 .73 .59

−.17 .73 1.00 .59
−.07 .59 .59 1.00


 .

There are clearly two clusters of variables: {y1} and {y2, y3, y4}. We would
expect two factors corresponding to these groupings to emerge after rota-
tion. That the same pattern surfaces in the initial factor loadings (based
on eigenvectors) is due to their affiliation with principal components. As
noted in Section 12.8.1, if a variable has small correlations with all other
variables, the variable itself will essentially constitute a principal compo-
nent. In this case, y1 has this property and makes up most of the second
principal component. The first component is comprised of the other three
variables.

13.12 (a) For the engineer data of Table 5.6, the number of eigenvalues greater than
1 is three, but the three account for only 70% of the variance. It requires
four eigenvalues to reach 84%. The scree plot also indicates four eigenval-
ues.

(b)

Principal Varimax
Component Loadings Rotated Loadings Communalities,

f1 f2 f3 f1 f2 f3 ĥ2
i

Variables
y1 .536 .461 .478 −.063 .834 .170 .729
y2 −.129 .870 −.182 −.357 .100 .818 .806
y3 .514 −.254 −.448 .724 −.026 .068 .529
y4 .724 −.366 −.110 .739 .295 −.193 .670
y5 −.416 −.414 .649 −.484 −.013 −.729 .766
y6 .715 .124 .420 .239 .800 −.069 .702

Variance 1.775 1.354 1.073 1.493 1.435 1.275 4.202

Proportion .296 .226 .179 .249 .239 .212 .700

(c) The initial communality estimates for the six variables are given by
(13.36) as .215, .225, .113, .255, .161, .248. With these substituted for the
diagonal of R, the eigenvalues of R − �̂ are

Eigenvalue .994 .569 .255 −.025 −.237 −.339
Proportion .816 .468 .209 −.020 −.195 −.278
Cumulative .816 1.284 1.493 1.473 1.278 1.000



ANSWERS AND HINTS TO PROBLEMS 653

The principal factor loadings and varimax rotation are as follows:

Principal Varimax
Component Loadings Rotated Loadings Communalities,

f1 f2 f3 f1 f2 f3 ĥ2
i

Variables
y1 .403 .312 .227 .030 .536 .151 .311
y2 −.106 .569 −.100 −.288 .083 .505 .345
y3 .343 −.139 −.197 .413 .060 .037 .176
y4 .559 −.247 −.090 .564 .233 −.094 .381
y5 −.286 −.246 .328 −.262 −.088 −.417 .250
y6 .556 .089 .197 .258 .537 .003 .356

(d) The pattern of loadings is similar in parts (b) and (c), and the interpretation
of the three factors would be the same.

13.13 Probe word data of Table 3.5:

Principal Varimax Orthoblique
Component Rotated Pattern
Loadings Loadings Communalities, Loadings

f1 f2 f1 f2 ĥ2
i f1 f2

Variables
y1 .817 −.157 .732 .395 .692 .737 .131
y2 .838 −.336 .861 .271 .815 .963 −.092
y3 .874 .288 .494 .776 .847 .248 .734
y4 .838 −.308 .844 .292 .798 .931 −.057
y5 .762 .547 .244 .905 .879 −.134 1.023

Variance 3.416 .614 2.294 1.736 4.031

Proportion .683 .123 .459 .347 .806

The loadings for y2 are similar to those for y4 in all three sets of loadings.
The reason for this can be seen in the correlation matrix

R =




1.00 .61 .76 .58 .41
.61 1.00 .55 .75 .55
.76 .55 1.00 .61 .69
.58 .75 .61 1.00 .52
.41 .55 .69 .52 1.00


 .

The correlations of y2 with y1, y3, and y5 are very similar to the correlations
of y4 with y1, y3, and y5.
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CHAPTER 14

14.1 Adding and subtracting x and y in (14.2) (squared), we obtain

d2(x, y) =
p∑

j=1

[(x j − x)− (y j − y)+ (x − y)]2

=
p∑

j=1

(x j − x)2 +
p∑

j=1

(yi − y)2 + p(x − y)2

−2
p∑

j=1

(x j − x)(y j − y).

The other two terms vanish because
∑

j (x j − x) = ∑
j (y j − y) = 0.

Substituting v2
x = ∑p

j=1(x j − x)2 and v2
y = ∑p

j=1(y j − y)2 and adding and

subtracting −2
√
v2

xv
2
y = −2vxvy , we obtain

d2(x, y) = v2
x + v2

y − 2
√
v2

xv
2
y + p(x − y)2 + 2vxvy

−2
√
v2

xv
2
y

∑p
j=1(x j − x)(y j − y)√

v2
xv

2
y

= (vx − vy)
2 + p(x − y)2 + 2vxvy(1 − rxy).

14.2 (a) Since yAB =∑n AB
i=1 yi/n AB , we have by (14.16),

SSEAB =
n AB∑
i=1

(yi − yAB)
′(yi − yAB)

=
n AB∑
i=1

y′
i yi −

n AB∑
i=1

y′
i yAB −

n AB∑
i=1

y′
AByi

+
n AB∑
i=1

y′
AByAB

=
n AB∑
i=1

y′
i yi − n ABy′

AByAB − n ABy′
AByAB

+n ABy′
AByAB

=
n AB∑
i=1

y′
i yi − n ABy′

AByAB .
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Similarly, SSEA = ∑n A
i=1 y′

i yi − n Ay′
AyA and SSEB = ∑nB

i=1 y′
i yi −

nBy′
ByB . Now

n ABy′
AByAB = (n A + nB)

(n AyA + nByB)
′

n A + nB

(n AyA + nByB)

n A + nB

= n2
Ay′

AyA + n AnBy′
AyB + n AnBy′

AyB + n2
By′

ByB

n A + nB
.

Thus

SSEAB − (SSEA + SSEB) =
n AB∑
i=1

y′
i yi −

n A∑
i=1

y′
i yi −

nB∑
i=1

y′
i yi

+n Ay′
AyA + nBy′

ByB − n ABy′
AByAB

= n Ay′
AyA + nBy′

ByB − n ABy′
AByAB .

Show that when the right side of (14.16) is expanded, it reduces to this
same expression [see Problem 14.3(b)].

(b) Multiplying out the right side of (14.16), we have

n Ay′
AyA − n Ay′

AyAB − n Ay′
AByA + n Ay′

AByAB + nBy′
ByB

− nBy′
ByAB − nBy′

AByB + nBy′
AByAB

= n Ay′
AyA + nBy′

ByB − 2(n Ay′
A + nBy′

B)yAB + (n A + nB)y′
AByAB

= n Ay′
AyA + nBy′

ByB − 2(n A + nB)y′
AByAB + (n A + nB)y′

AByAB

= n Ay′
AyA + nBy′

ByB − (n A + nB)y′
AByAB .

Substitute yAB = (n AyA + nByB)/(n A + nB).
14.3 (a) Complete linkage. From Table 14.2, we have

D(C, AB) = 1
2 D(C, A)+ 1

2 D(C, B)+ 1
2 |D(C, A)− D(C, B)| (1)

If D(C, A) > D(C, B), then |D(C, A) − D(C, B)| = D(C, A) −
D(C, B), and equation (1) becomes D(C, AB) = D(C, A). If D(C, A) >
D(C, B), then |D(C, A)− D(C, B)| = D(C, B)− D(C, A) and equation
(1) becomes D(C, AB) = D(C, B). Thus equation (1) can be written as
D(C, AB) = max[D(C, A), D(C, B)], which is equivalent to (14.9), the
definition of distance for the complete linkage method.

(b) Average linkage. From Table 14.2, we have

D(C, AB) = n A

n A + nB
D(C, A)+ nB

n A + nB
D(C, B). (2)
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By (14.10) equation (2) can be written as

D(C, AB) = n A

n A + nB
· 1

nC n A

nC∑
i=1

n A∑
j=1

d(yi , y j )

+ nB

n A + nB
· 1

nC nB

nC∑
i=1

nB∑
j=1

d(yi , y j )

= 1

nC(n A + nB)

nC∑
i=1

[
n A∑
j=1

d(yi , y j )+
nB∑
j=1

d(yi , y j )

]

= 1

nC n AB

nC∑
i=1

n AB∑
j=1

d(yi , y j ),

which, by (14.10), is the definition of distance for the average linkage
method.

(c) Substitute yAB = (n AyA + nByB)/(n A + nB) in the left side of (14.40) in
the statement of Problem 14.3(c) and multiply to obtain

y′
C yC − 2n Ay′

AyC

n A + nB
+ 2n AnBy′

AyB

(n A + nB)2
− 2nBy′

ByC

n A + nB

+ n2
Ay′

AyA

(n A + nB)2
+ n2

By′
ByB

(n A + nB)2
.

Similarly, multiply on the right side of (14.40) to obtain the same result.
(d) Using n A = nB in yAB = (n AyA+nByB)/(n A+nB) in (14.12), we obtain

mAB = 1
2 (yA + yB) in (14.13). Then (14.40) [see part (c)] becomes

(yC − mAB)
′(yC − mAB) = 1

2 (yC − yA)
′(yC − yA)+ 1

2 (yC − yB)
′(yC − yB)

− 1
4 (yA − yB)

′(yA − yB),

which matches the parameter values for the median method in Table 14.2.
(e) By (14.19),

(yA − yB)
′(yA − yB) = n A + nB

n AnB
IAB,

and we have analogous expressions for (yC − yAB)
′(yC − yAB), (yC −

yA)
′(yC −yA), and (yC −yB)

′(yC −yB). Then (14.40) in part (c) becomes
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nC + n AB

nC n AB
IC(AB) =

(
n A

n A + nB

)(
nC + n A

nC n A

)
IC A

+
(

nB

n A + nB

)(
nC + nB

nC nB

)
IC B

−
[

n AnB

(n A + nB)2

](
n A + nB

n AnB

)
IAB

= n A + nC

nC n AB
IAC + nB + nC

nC n AB
IBC − 1

n AB
IAB .

Solve for IC(AB).
14.4 If γ = 0, then (14.20) becomes

D(C, AB) = αA D(C, A)+ αB D(C, B)+ βD(A, B). (1)

By (14.25), we have D(A,C) > D(A, B) and D(B,C) > D(A, B). Thus,
replacing D(C, A) and D(C, B) in equation (1) by D(A, B), we obtain

D(C, AB) > αA D(A, B)+ αB D(A, B)+ βD(A, B),

which is equivalent to (14.26).

14.5 (a) v.. = 1

gn

g∑
i=1

n∑
j=1

vi j = 1

gn

g∑
i=1

n∑
j=1

(Ayi j + b) = 1

gn

(
A
∑

i j

yi j + gnb

)

= A
(

1

gn

∑
i j yi j

)
+ b = Ay.. + b

Show similarly that vi. = Ayi. + b. Then by (6.9), we have

Hv = n
g∑

i=1

(vi. − v..)(vi. − v..)′

= n
∑

i

[Ayi. + b − (Ay.. + b)][Ayi. + b − (Ay.. + b)]′

= n
∑

i

(Ayi. − Ay..)(Ayi. − Ay..)
′

= n
∑

i

A(yi. − y..)(yi. − y..)
′A′ [by (2.27)]

= nA

[∑
i

(yi. − y..)(yi. − y..)
′
]

A′ [by (2.45)]

= AHyA′.

Show similarly that Ev = AEyA′.
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(b) tr(Ev) = tr(AEyA′) = tr(A′AEy) 
= tr(Ey)

(c) |Ev| = |AEyA′| = |A||Ey ||A′| = |A|2|Ey | = c|Ey |, where c > 0. Thus
minimizing |Ev| is equivalent to minimizing |Ey |.

(d) tr(E−1
v Hv) = tr[(AEyA′)−1(AHyA′)]

= tr[(A′)−1E−1
y A−1AHyA′]

= tr[(A′)−1E−1
y HyA′]

= tr[A′(A′)−1E−1
y Hy]

= tr(E−1
y Hy)

14.6 There are p parameters in each �i , 1
2 p(p + 1) unique parameters in each �i ,

and g − 1 unique parameters αi . Thus the total number is

gp + g
[ 1

2 p(p + 1)
]+ g − 1 = g

[
p + 1

2 p(p + 1)+ 1
]− 1

= 1
2 g[2p + p2 + p + 2] − 1

= 1
2 g(3p + p2 + 2)− 1

= 1
2 g(p + 1)(p + 2)− 1.

14.7 (a) The two-cluster solution from single linkage puts boy No. 20 in one cluster
and the other 19 boys in the other cluster.
(b), (c), and (d). Based on the change in distance, average linkage and the
other cluster solutions in parts (c) and (d) clearly indicate two clusters.
These solutions generally agree and also correspond to a division into two
groups seen in the first principal component in Figure 12.5. The separation
of the three apparent outliers from the other 17 observations is less pro-
nounced in the cluster analyses than in Figure 12.5. Note that the scale of
the second component in Figure 12.5 is much larger than that of the first
component, so the separation of points 9, 12, and 20 from the rest is not
as large as it appears in the figure. Of the methods in parts (b), (c), and
(d), only flexible beta with β = −.50 and −.75 place points 9, 12, and 20
together in one cluster. All others place 9 and 12 in one of the clusters and
20 in the other.

14.8 (a) The distance between centroids of the two clusters is
√

2994.9 = 54.7.
(b) From the dendrogram produced by the average linkage method, the largest

change in distance corresponds to a two-cluster solution.
(c) The discriminant function completely separates the two clusters, with no

overlap.
14.9 (a) Observation 22 seems to be an outlier, because it forms its own cluster in

both the single linkage and average linkage methods. The cluster consist-
ing of observations 2, 21, 24, 26, and 30 is the same in all six methods.

(b) The discriminant function completely separates the two clusters, with no
overlap.
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14.10 (a) The following five clusters were found using as seeds the five observations
that are mutually farthest apart.

Cluster 1 2 3 4 5

Observation(s) 9, 15, 16, 1, 2, 3, 6, 7, 8, 10, 11, 14
18, 19 4, 5, 17 20 12, 13

In the plot of the first two discriminant functions, observation 14 is
relatively far removed from the rest. Clusters 1, 2, and 3 are somewhat
closer to each other.

(b) The following five clusters were found using as seeds the first five obser-
vations.

Cluster 1 2 3 4 5

Observation(s) 1, 3, 4 2 5, 17, 6, 7, 8, 9, 10, 11
18, 19 15, 16, 20 12, 13, 14

The plot of the first two discriminant functions shows a pattern different
from that in part (a).

(c) The following five clusters were found using as seeds the centroids of the
five-cluster solution resulting from Ward’s method.

Cluster 1 2 3 4 5

Observation(s) 6, 7, 8, 15, 5, 9, 17, 10, 11, 1, 2, 14
16, 20 18, 19 12, 13 3, 4

The plot of the first two discriminant functions shows a pattern similar
to that found in part (a), with observation 14 isolated.The dendrogram
shows that Ward’s method gives the same five-cluster solution as the k-
means result.

(d) The following five clusters were found using the k-means method with
seeds equal to the centroids of the five clusters from average linkage.

Cluster 1 2 3 4 5

Observation(s) 6, 7, 8, 15, 1, 2, 3, 4, 5, 10, 11, 9 14
16, 20 17, 18, 19 12, 13

The plot of the first two discriminant functions shows a pattern some-
what similar to that in part (a).
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In the dendrogram for average linkage, observations 9 and 14 are iso-
lated clusters in the five-cluster solution, which is identical to the five-
cluster solution using k-means clustering with these seeds.

(e) Observation 14 does not appear as an outlier in the plot of the first two
principal compoments, but it does show up as an outlier in the plot of
the second and third components. The solutions found in parts (a) and (c)
seem to agree most with the principal component plots. This suggests that
a different number of initial cluster seeds be used.

(f) The two clustering solutions are identical. The results are given next.

Cluster 1 2 3

Observations 6, 7, 8, 15, 9, 10, 11, 12, 1, 2, 3, 4, 5,
16, 20 13, 14 17, 18, 19

(g) The clustering solution is identical to that found in part (f), which indicates
that the three-cluster solution is appropriate.

14.11 The number of clusters obtained from the indicated combinations of k and r
are shown in the following table. Note that for each pair of values of k and
r , the value of r was increased if necessary for each point until k points were
included in the sphere.

k/r .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0

2 10 10 10 10 8 6 4 3 3 2
3 5 5 5 5 5 3 2 2 2 2
4 2 2 2 2 2 2 2 2 2 2
5 1 1 1 1 1 1 1 1 1 1

The maximum value of k that yields a two-cluster solution is 4.
14.12 (a) The number of clusters obtained from the initial combinations of k and r

are shown in the following table. The value of r was variable, as noted in
Problem 14.11.

k/r .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0

2 3 3 3 3 3 3 3 3 3 3
3 2 2 2 2 2 2 2 2 2 2
4 1 1 1 1 1 1 1 1 1 1

(b) The plot of the first two discriminant functions for k = 2 and r = 1 shows
the three clusters to be well separated.

(c) The plot of the first two principal components shows the same groupings
as in the plot in part (b).
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(d) The plot of the discriminant function shows wide separation of the two
clusters, which do not overlap. The three-cluster solution found in part (b)
is given next

Cluster 1 Cluster 2 Cluster 3

Harpers Rosemaund Cambridge
Morley Terrington Cockle Park
Myerscough Headley
Sparsholt Seale-Hayne
Sutton Bonington
Wye

The two-cluster solution found in part (d) merges clusters 2 and 3 of
part (b).

CHAPTER 15

15.1

B =
(

I − 1

n
J
)

A
(

I − 1

n
J
)

= A − 1

n
AJ − 1

n
JA + 1

n2
JAJ (1)

By (2.38),

1

n
Aj = 1

n



∑

j a1 j∑
j a2 j
...∑
j anj


 =




a1.
a2.
...

an.


 . (2)

Hence,

1

n
AJ = 1

n
A(j, j, . . . , j) =

(
1

n
Aj, . . . ,

1

n
Aj
)

=




a1. · · · a1.
a2. · · · a2.
...

...

an. · · · an.


 .

Show that
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1

n
JA =




a.1 a.2 · · · a.n
a.1 a.2 · · · a.n
...

...
...

a.1 a.2 · · · a.n


 .

Using equation (2), we obtain

1

n2
j′Aj = 1

n2
(1, 1, . . . , 1)



∑

j a1 j∑
j a2 j
...∑
j anj


 = 1

n2

∑
i j

ai j = a...

By (3.63),

1

n2
JAJ = 1

n2




j′Aj · · · j′Aj
...

...

j′Aj · · · j′Aj


 =




a.. · · · a..
...

...

a.. · · · a..


 .

Hence the i j th element of equation (1) is bi j = ai j − ai. − a. j + a...
15.2 (a) (Seber 1984, pp. 236–237) The elements of B = (bi j ) are defined as bi j =

ai j − ai. − a. j + a.., where ai j = − 1
2δ

2
i j . Thus

−2ai j = δ2
i j = (zi − z j )

′(zi − z j )

= z′
i zi + z′

j z j − 2z′
i z j .

Then

−2ai. = 1

n

n∑
j=1

(−2ai j ) = 1

n

∑
j

(z′
i zi + z′

j z j − 2z′
i z j )

= z′
i zi + 1

n

∑
j

z′
j z j − 2

n
z′

i

∑
j

z j

= z′
i zi + 1

n

∑
j

z′
j z j − 2z′

i z.

Similarly, show that

−2a. j = z′
j z j + 1

n

∑
i

z′
i zi − 2z′z j ,

−2a.. = 2

n

∑
i

z′
i zi − 2z′z.
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Solve for ai j , ai., a. j , and a.. and substitute into bi j = ai j − ai.− a. j + a..
to obtain bi j = z′

i z j − z′
i z − z′z j + z′z, which can be factored as bi j =

(zi − z)′(z j − z). Hence

B =


(z1 − z)′(z1 − z) · · · (z1 − z)′(zn − z)

...
...

(zn − z)′(z1 − z) · · · (zn − z)′(zn − z)




=


(z1 − z)′

...

(zn − z)′


(z1 − z, . . . , zn − z)

= ZcZ′
c [see (10.13)].

Thus B is positive semidefinite (see Section 2.7).
(b) If B is positive semidefinite of rank q, then by (2.109) and Section 2.11.4,

B can be expressed in the form B = V�V′, where V = (v1, v2, . . . , vn)

is an orthogonal matrix of eigenvectors of B, and � is a diagonal matrix
of eigenvalues, q of which are positive, with the rest equal to zero. Letting
�1 be the q × q upper-left-hand block of � with positive eigenvalues
and V1 = (v1, v2, . . . , vq) be the n × q matrix with the corresponding
eigenvectors, we can write B = V�V′ as

B = (V1,V2)

(
�1 O
O O

)(
V′

1
V′

2

)

= V1�1V′
1 = V1�

1/2
1 �

1/2
1 V′

1

= ZZ′, (1)

where the n × q matrix Z is

Z = V1�
1/2
1 = (

√
λ1v1,

√
λ2v2, . . . ,

√
λqvq)

=




z′
1

z′
2
...

z′
n


 .

To show that (zi − z j )
′(zi − z j ) is equal to δ2

i j , we can proceed as follows:

(zi − z j )
′(zi − z j ) = z′

i zi + z′
j z j − 2z′

i z j . (2)

By equation (1), we have
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B = ZZ′ =




z′
1

z′
2
...

z′
n


(z1, z2, . . . , zn)

=




z′
1z1 z′

1z2 · · · z′
1zn

z′
2z1 z′

2z2 · · · z′
2zn

...
...

...

z′
nz1 z′

nz2 · · · z′
nzn


 .

Hence equation (2) becomes

(zi − z j )
′(zi − z j ) = z′

i zi + z′
j z j − 2z′

i z j

= bii + b j j − 2bi j . (3)

Show that substituting bi j = ai j −ai.−a. j +a.. into equation (3) leads to

(zi − z j )
′(zi − z j ) = aii + a j j − 2ai j + ai. − a.i + a. j − a j..

Show that the symmetry of A implies ai. = a.i and a. j = a j.. Hence,

(zi − z j )
′(zi − z j ) = aii + a j j − 2ai j = −2ai j = δ2

i j ,

since aii = − 1
2δ

2
i i = 0 and −2ai j = δ2

i j .

15.3 (a) r =
b∑

j=1

p. j c j =
b∑

j=1

p. j

(
p1 j

p. j
,

p2 j

p. j
, . . . ,

paj

p. j

)′

=
b∑

j=1

(p1 j , p2 j , . . . , paj )
′ [by (2.61)]

=(∑ j p1 j ,
∑

j p2 j , . . . ,
∑

j paj )
′

=(p1., p2., . . . , pa.)
′

(b) c′ = =
a∑

i=1

pi.r′
i =

a∑
i=1

pi

(
pi1

pi.
,

pi2

pi.
, . . . ,

pib

pi.

)

=
a∑

i=1

(pi1, pi2, . . . , pib) [by (2.61)]

= (
∑

i pi1,
∑

i pi2, . . . ,
∑

i pib)

= (p.1, p.2, . . . , p.b)

15.4 j′r =∑a
i=1 pi. =∑a

i=1
∑b

j=1 pi j =∑i j ni j/n = n/n = 1,

c′j =∑b
j=1 p. j =∑ j n. j/n =∑ j

∑
i ni j/n = n/n
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15.5 By (15.8), (15.9), and (15.10), pi j = ni j/n, pi. = ni./n, and p. j = n. j/n.
Substituting these into (15.25), we obtain

χ2 =
∑

i j

n
(

ni j
n − ni.n. j

n2

)2

ni.n. j
n2

=
∑

i j

n
[

1
n (ni j − ni.n. j

n )
]2

ni.n. j
n2

=
∑

i j

n
n2 (ni j − ni.n. j

n )2

ni.n. j
n2

=
∑

i j

(ni j − ni.n. j
n )2

ni.n. j
n

.

15.6 (a) Multiplying numerator and denominator of (15.25) by pi., we obtain

χ2 =
∑

i

n
∑

j

pi.

p2
i. p. j

(pi j − pi. p. j )
2

=
∑

i

n pi.

∑
j

1

p. j

[
1

pi.
(pi j − pi. p. j )

]2

=
∑

i

npi.

∑
j

(
pi j

pi.
− p. j

)2

/p. j .

15.7 (a) By (15.29), (15.10), (15.12), and (15.18), we obtain

χ2 =
∑

i

npi.(ri − c)′D−1
c (ri − c)

=
∑

i

npi.

(
pi1

pi.
− p.1, . . . ,

pib

pi.
− p.b

)
p.1 · · · 0
...

...

0 · · · p.b




−1


pi1
pi.

− p.1
...

pib
pi.

− p.b




=
∑

i

n pi.

( pi1
pi.

− p.1

p.1
, . . . ,

pib
pi.

− p.b

p.b

)
pi1
pi.

− p.1
...

pib
pi.

− p.b


 .

15.8 (a) By (15.9), r = Pj. Then D−1
r r = D−1

r Pj = Rj by (15.15). By (15.13),
r′

i j = 1, and therefore Rj = j. Now

D−1
r (P − rc′) = D−1

r P − D−1
r rc′ = R − Rjc′ = R − jc′.

15.9 By (15.49), z′
i = y′

i A (ignoring the centering on yi ). Thus the squared
Euclidean distance can be written as

(zi − zk)
′(zi − zk) = (z′

i − z′
k)(zi − zk)

= (y′
i A − y′

kA)(A′yi − A′yk)
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= (y′
i − y′

k)AA′(yi − yk)

= (yi − yk)
′(yi − yk),

since A is orthogonal.
15.10 (a) From YcV = U� in (15.55), we have YcV�−1 = U. Then

UU′ = YcV�−1�−1V′Y′
c

= YcV(�−1)2V′Y′
c. (1)

Since (�−1)2 = diag(1/λ2
1, 1/λ2

2, . . . , 1/λ2
p), where the λ2

i ’s are eigen-

values of Y′
cYc, the matrix (�−1)2 contains eigenvalues of (Y′

cYc)
−1 =

[(n − 1)S]−1 = S−1/(n − 1) [see (2.115) and (2.116)]. The matrix V
contains eigenvectors of Y′

cYc and thereby of (Y′
cYc)

−1 (see Section
2.11.9). Hence we recognize V(�−1)2V′ as the spectral decomposition of
(Y′

cYc)
−1 [see (2.109), (2.115), and (2.116)]. Therefore, equation (1) can

be written as

UU′ = YcV(�−1)2V′Y′
c = Yc(Y′

cYc)
−1Y′

c

= YcS−1Y′
c/(n − 1).

(b) If H = V�, then HH′ = V��V′ = V�2V′. The diagonal matrix �2

contains the eigenvalues λ2
i of the matrix Y′

cYc. Thus by (2.115), V�2V′
is the spectral decomposition of Y′

cYc, and

HH′ = V�2V′ = Y′
cYc = (n − 1)S.

15.11 By (15.64), (3.63), and (3.64) (ignoring n − 1 and assuming the yi ’s are cen-
tered),

(ui − uk)
′(ui − uk) = u′

i ui + u′
kuk − 2u′

i uk

= y′
i S

−1yi + y′
kS−1yk − 2y′

i S
−1yk

= (yi − yk)
′S−1(yi − yk).

15.12 (a) The first ten rows and columns of the matrix B are as follows.




129849 −26801 −88750 −53847 −59118 43583 −73877 81571 112101 80909
−26801 2310 17029 11125 14394 −11076 18149 −18662 −21852 −16306
−88750 17029 65973 32378 31044 −31085 68156 −56671 −79481 −54135
−53847 11125 32378 27683 31808 −18550 30003 −34154 −46882 −32096
−59118 14394 31044 31808 38141 −19161 27269 −37147 −51673 −34687

45383 −11076 −31085 −18550 −19161 14741 −33620 27054 45347 29211
−73877 18149 68156 30003 27269 −33620 76423 −45782 −86804 −58650

81571 −18662 −56671 −34154 −37147 27054 −45782 49169 75557 50169
112101 −21852 −79481 −46882 −51673 45347 −86804 75557 119634 81258

80909 −16306 −54135 −32096 −34687 29211 −58650 50169 81258 53286
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(b) The first two columns of the matrix Z are given by

City z1 z2 City z1 z2

A 354.1 −10.2 M 391.6 47.5
B −77.1 25.0 N 21.0 −44.7
C −238.2 −75.7 O 9.8 30.9
D −154.9 65.9 P −173.8 −78.5
E −163.2 72.2 Q 6.3 17.1
F 126.0 24.9 R 117.0 −48.0
G −228.8 −149.4 S −102.3 −170.2
H 223.9 1.5 T −53.2 −27.3
I 337.7 44.8 U −315.2 190.9
J 226.7 34.7 V −255.7 140.2
K −33.4 22.3 W −19.3 −34.3
L 1.1 −79.4

(c) The metric multidimensional scaling plot shows the relative positions of
the cities.

15.13 (a) The multidimensional scaling plot shows two clusters, one for positive
values of the first dimension and one for negative values. The two clusters
can be interpreted as comfort (positive values) and discomfort (negative
values). Hence, the axis of the first dimension can be interpreted as the
level of comfort.

(b) The dendrogram for Ward’s method clearly shows two clusters, the same
as in part (a).

15.14 (a) The initial configuration of points will vary. One example is as follows:

y1 y2 y3 y4 y5 y6

1.458 .769 −1.350 .456 −1.610 1.827
−.598 −1.069 −2.667 .458 .416 1.094

−1.777 −.409 .369 .655 −.058 1.177
.071 .361 1.157 −.154 .343 −.417

−.060 1.361 .743 1.436 .332 −.894
−.757 −.432 −.545 .233 .646 −.102

−1.971 −.492 −.461 .078 1.441 .039
−1.560 −.173 .657 -.528 1.001 1.030
−.597 .814 −.898 .283 −.355 −1.115
1.449 -.942 .867 −.922 .833 1.196

−1.809 −.093 −1.762 −.533 −1.136 −.226
1.067 .199 .978 .884 −1.060 −.800

(b) Answers will vary. For the seeds given in part (a), STRESS = .0266.
(c) Answers will vary. The plot of STRESS versus k for one solution showed

that two dimensions should be retained. The nonmetric MDS plot showed
that Franco, Mussolini, and Hitler were close together, as well as Churchill
and DeGaulle, and Eisenhower and Truman.

(d) Answers will vary. One solution gave results similar to part (c).
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(e) Answers will vary. One solution showed three dimensions. A plot of two
dimensions showed Mussolini and Franco together in the center with the
others forming a circle around them of almost equally spaced points.

(f) Answers will vary. One solution was similar to that in part (c).
15.15 (a) The correspondence matrix P is found by dividing each element of Table

15.16 by n = 1281 to obtain the following:

Death Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Total
Birth

Jan. .007 .011 .009 .011 .007 .009 .008 .012 .007 .009 .009 .010 .108
Feb. .010 .005 .005 .006 .007 .004 .003 .004 .005 .009 .001 .010 .069
Mar. .009 .011 .007 .005 .013 .008 .007 .008 .007 .002 .010 .007 .094
Apr. .005 .009 .008 .005 .007 .009 .003 .009 .003 .007 .006 .009 .080
May .006 .005 .009 .005 .003 .009 .007 .007 .009 .005 .007 .003 .075
Jun. .011 .004 .004 .005 .010 .004 .005 .003 .006 .007 .005 .004 .069
Jul. .009 .008 .010 .003 .004 .009 .005 .005 .003 .008 .003 .006 .073
Aug. .005 .005 .009 .010 .008 .007 .002 .006 .006 .006 .006 .009 .081
Sep. .005 .009 .009 .008 .008 .009 .003 .006 .009 .005 .006 .005 .083
Oct. .012 .006 .009 .007 .005 .008 .009 .006 .007 .006 .005 .005 .087
Nov. .005 .007 .012 .008 .009 .008 .005 .008 .005 .008 .007 .005 .087
Dec. .005 .014 .007 .009 .011 .006 .007 .007 .008 .005 .008 .006 .092

Total .092 .094 .096 .084 .092 .088 .066 .080 .077 .075 .074 .081 1.000

(b) The R matrix is given by

R =




.07 .11 .12 .11 .07 .04 .11 .10 .09 .08 .09 .04

.13 .08 .12 .07 .07 .03 .09 .11 .10 .08 .08 .08

.09 .08 .07 .15 .05 .08 .07 .08 .12 .08 .05 .08

.09 .06 .15 .08 .15 .04 .06 .07 .10 .01 .12 .08

.10 .11 .09 .10 .07 .07 .08 .09 .07 .08 .08 .07

.04 .06 .09 .11 .13 .07 .12 .14 .05 .04 .11 .04

.08 .04 .06 .06 .16 .08 .06 .06 .15 .08 .10 .09

.06 .08 .07 .12 .10 .07 .08 .07 .14 .11 .02 .07

.07 .09 .04 .06 .08 .09 .13 .11 .04 .09 .06 .11

.09 .09 .05 .08 .06 .06 .09 .14 .10 .08 .09 .06

.08 .07 .06 .07 .14 .11 .09 .10 .06 .06 .07 .08

.09 .08 .07 .11 .07 .04 .10 .10 .09 .08 .06 .11



,

and the C matrix is given by

C =




.07 .11 .12 .09 .06 .05 .10 .08 .08 .08 .09 .04

.12 .08 .12 .06 .04 .08 .09 .08 .08 .08 .08 .08

.10 .09 .08 .15 .05 .11 .07 .07 .12 .11 .06 .10

.07 .05 .13 .06 .11 .05 .04 .05 .08 .01 .11 .07

.13 .15 .13 .12 .08 .12 .10 .10 .08 .12 .11 .09

.04 .06 .08 .08 .10 .08 .10 .11 .04 .04 .10 .04

.07 .04 .05 .04 .12 .08 .04 .04 .11 .07 .09 .08

.07 .10 .09 .12 .10 .11 .09 .07 .14 .14 .02 .09

.07 .09 .04 .05 .07 .11 .11 .09 .03 .09 .10 .07

.08 .08 .07 .07 .14 .14 .09 .09 .06 .07 .08 .09

.09 .08 .07 .10 .06 .05 .10 .09 .08 .08 .06 .12



.
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(c) The chi-square statistic is 117.7742 with 121 degrees of freedom, which
gives a p-value of .5660. The two variables appear to be independent.

(d) In the correspondence plot, the following associations are seen: {November
births, June deaths}, {March deaths, April deaths, January births}, {September
births, February deaths}, {August births, April births}, {May deaths,
September deaths, May births}.

15.16 (a) The correspondence matrix P is found by dividing each element of Table
15.17 by 8193 to obtain the following:

Part of Country Burglary Fraud Vandalism Total

Oslo area .048 .300 .215 .563
Mid Norway .018 .019 .112 .148
North Norway .085 .040 .164 .289

Total .151 .358 .491 1.000

(b) The R matrix is given by

Part of Country Burglary Fraud Vandalism

Oslo area .086 .533 .381
Mid Norway .121 .126 .753
North Norway .293 .138 .569

and the C matrix is

Part of Country Burglary Fraud Vandalism

Oslo area .320 .837 .437
Mid Norway .119 .052 .228
North Norway .561 .111 .335

(c) The chi-square statistic is 1662.6 with 4 degrees of freedom, which gives
a p-value less than .0001. The two variables are dependent.

(d) In the correspondence plot, North Norway is associated with burglaries,
Oslo is associated with fraud, and Mid Norway is associated with vandal-
ism.
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15.17 (a) The Burt matrix is as follows.

No 5254 0 564 3408 1282 1830 3424 2466 2788 2190 3064 686 2666 1902
Yes 0 165 105 42 18 73 92 37 128 4 125 26 63 76

High dust 564 105 669 0 0 402 267 62 607 218 451 87 359 223
Low dust 3408 42 0 3450 0 1056 2394 1642 1808 1446 2004 480 1684 1286
Medium 1282 18 0 0 1300 445 855 799 501 566 734 145 686 469

dust

Race— 1830 73 402 1056 445 1930 0 932 971 799 1104 108 1658 137
Other

White 3424 92 267 2394 855 0 3516 1571 1945 1431 2085 604 1071 1841

Female 2466 37 62 1642 799 932 1571 2503 0 1373 1130 266 1421 816
Male 2788 128 607 1808 501 971 1945 0 2916 857 2059 446 1308 1162

Nonsmoker 2190 40 218 1446 566 799 1431 1373 857 2230 0 231 1142 857
Smoker 3064 125 451 2004 734 1104 2085 1130 2059 0 3189 481 1587 1121

10–20 686 26 87 480 145 108 604 266 446 231 481 712 0 0
≤ 10 2666 63 359 1684 686 1658 1071 1421 1308 1142 1587 0 2729 0
≥ 20 1902 76 223 1286 469 137 1841 816 1162 857 1121 0 0 1978

(b) The column coordinates for the plot are given by

Variables y1 y2

No −.032 −.087
Yes 1.013 2.761
High dust 1.072 1.648
Low dust −.209 −.107
Medium dust .003 −.564
Race—Other 1.184 −.153
White −.641 .083
Female .007 −.791
Male −.006 .679
Nonsmoker −.036 −.592
Smoker .025 .414
10–20 −.605 .535
≤ 10 .789 −.300
≥ 20 −.871 .221

(c) Some associations seen in the plot are {byssinosis-yes, high dust}, {female,
nonsmoker, medium dust}, {smoker, male}.
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15.18 (a) The two-dimensional coordinates of the observation points and variable
points are

Observation Points

Name Coordinate 1 Coordinate 2

Albania 14.102 −1.322
Austria −5.461 1.548
Belgium −6.077 −1.479
Bulgaria 26.116 3.319
Czech. 3.317 −2.092
Denmark −13.861 1.374
E. Germany −4.902 −8.360
Finland −12.262 11.290
France −6.345 .672
Greece 9.036 3.033
Hungary 10.805 −2.363
Ireland −11.857 5.312
Italy 6.309 −1.314
Netherlands −11.809 2.133
Norway −11.005 −.077
Poland 2.526 2.999
Portugal .784 −16.753
Romania 19.067 2.591
Spain 1.923 −10.483
Sweden −14.842 .726
Switzerland −9.068 4.000
UK −9.311 .698
USSR 10.586 4.355
W. Germany −13.514 −3.353
Yugoslavia 25.742 3.548

Variable Points

Name Coordinate 1 Coordinate 2

R MEAT −.151 .133
W MEAT −.129 .043
EGGS −.067 .021
MILK −.425 .831
FISH −.127 −.292
CEREALS .861 .406
STARCHY −.067 −.076
NUTS .114 −.070
FRUT VEG .020 −.169

In the biplot, the arrows for variables are too short to pass through the
points for observations.
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(b) The two-dimensional coordinates of the observation points and variable
points are given next.

Observation Points

Name Coordinate 1 Coordinate 2

Albania .231 −.049
Austria −.089 .057
Belgium −.100 −.055
Bulgaria .428 .122
Czech. .054 −.077
Denmark −.227 .051
E. Germany −.080 −.308
Finland −.201 .416
France −.104 .025
Greece .148 .112
Hungary .177 −.087
Ireland −.194 .196
Italy .103 −.048
Netherlands −.193 .079
Norway −.180 −.003
Poland .041 .110
Portugal .013 −.617
Romania .312 .095
Spain .032 −.386
Sweden −.243 .027
Switzerland −.149 .147
UK −.153 .026
USSR .173 .160
W. Germany −.221 −.124
Yugoslavia .422 .131

Variable Points

Name Coordinate 1 Coordinate 2

R MEAT −9.196 3.602
W MEAT −7.904 1.179
EGGS −4.106 .569
MILK −25.964 22.552
FISH −7.750 −7.934
CEREALS 52.545 11.025
STARCHY −4.080 −2.064
NUTS 6.953 −1.902
FRUT VEG 1.235 −4.593

In the biplot, the observation points are tightly clustered around the
point (0, 0), making them difficult to distinguish,whereas variable points
are easily discerned. Red meats, white meats, and milk are highly posi-
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tively correlated. These three variables are negatively correlated with nuts
and frut veg.

(c) The two-dimensional coordinates of the observation points and variable
points are as follows.

Observation Points

Name Coordinate 1 Coordinate 2

Albania 1.805 −.254
Austria −.699 .297
Belgium −.778 −.284
Bulgaria 3.343 .637
Czech. .425 −.402
Denmark −1.774 .264
E. Germany −.627 −1.605
Finland −1.570 2.167
France −.812 .129
Greece 1.157 .582
Hungary 1.383 −.454
Ireland −1.518 1.020
Italy .808 −.252
Netherlands −1.511 .409
Norway −1.409 −.015
Poland .323 .576
Portugal .100 −3.216
Romania 2.441 .497
Spain .246 −2.012
Sweden −1.900 .139
Switzerland −1.161 .768
UK −1.192 .134
USSR 1.355 .836
W. Germany −1.730 −.644
Yugoslavia 3.295 .681

Variable Points

Name Coordinate 1 Coordinate 2

R MEAT −1.177 .691
W MEAT −1.012 .226
EGGS −.526 .109
MILK −3.323 4.329
FISH −.992 −1.523
CEREALS 6.726 2.116
STARCHY −.522 −.396
NUTS .890 −.365
FRUIT VEG .158 −.882
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In the biplot, the variable points and observation points are both well
spaced. Finland scored high on the milk variable. Yugoslavia and Bulgaria
scored high on the cereal variable. Spain and Portugal scored highest on
the fish and frut veg variables.

(d) The biplot from part (c) seems better because the scales on the variables
and points are more evenly matched.

15.19 (a) The two-dimensional coordinates of the observation points and variable
points are as follows.

Observation Points

Name Coordinate 1 Coordinate 2

FSM1 −9.535 −4.752
Sister 2.705 .796
FSM2 4.043 −.584
Father 4.392 .614
Teacher −8.708 5.008
MSM 3.409 .701
FSM3 3.694 −1.782

Variable Points

Name Coordinate 1 Coordinate 2

KIND .610 −.054
INTEL .085 .413
HAPPY .407 −.456
LIKE .621 −.039
JUST .264 .785

In the biplot, the arrows for the variables are too short to pass through
the points for observations.

(b) The two-dimensional coordinates of the observation points and variable
points are as follows.

Observation Points

Name Coordinate 1 Coordinate 2

FSM1 −.622 −.655
Sister .176 .110
FSM2 .264 −.080
Father .287 .085
Teacher −.568 .690
MSM .222 .097
FSM3 .241 −.246
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Variable Points

Name Coordinate 1 Coordinate 2

KIND 9.345 −.391
INTEL 1.298 2.997
HAPPY 6.235 −3.313
LIKE 9.521 −.282
JUST 4.054 5.700

In the biplot, the observation points are tightly clustered around the
point (0, 0), making them difficult to distinguish, whereas variable points
are well spaced. Just and intelligent are highly positively correlated, as are
kind and likeable.

(c) The two-dimensional coordinates of the observation points and variable
points are as follows.

Observation Points

Name Coordinate 1 Coordinate 2

FSM1 −2.435 −1.764
Sister .691 .295
FSM2 1.033 −.217
Father 1.122 .228
Teacher −2.224 1.859
MSM .871 .260
FSM3 .943 −.662

Variable Points

Name Coordinate 1 Coordinate 2

KIND 2.387 −.145
INTEL .331 1.113
HAPPY 1.593 −1.230
LIKE 2.432 −.105
JUST 1.036 2.116

In the biplot, the variable points and observation points are both well
spaced. Father, sister, FSM2, and FSM3 all scored high on the kind, like-
able, and happy variables, whereas teacher and FSM1 scored negatively
on those variables.

(d) The biplot from part (c) seems better because the scales on the variables
and points are more evenly matched.
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15.20 (a) The two-dimensional coordinates of the observation points and variable
points are as follows:

Observation Points

Name Coordinate 1 Coordinate 2

1 49.410 −5.832
2 25.407 −7.658
3 21.600 −2.340
4 −23.545 −6.367
5 −28.477 −4.773
6 −33.341 2.315
7 −28.176 7.992
8 −25.786 12.655
9 −29.703 9.275

10 −33.868 −3.776
11 −33.529 −1.977
12 28.186 −16.031
13 10.804 −6.608
14 .566 3.021
15 77.970 .109
16 12.859 16.294
17 41.960 5.103
18 46.930 19.064
19 34.958 −1.018
20 −16.477 1.148
21 −23.634 −1.055
22 −34.036 −2.424
23 20.632 −5.882
24 −15.873 −6.731
25 −23.023 .745
26 −15.183 −1.942
27 −11.903 −6.917
28 5.273 3.610

Variable Points

Name Coordinate 1 Coordinate 2

North .526 .225
East .429 .752
South .579 −.379
West .452 −.490

In the biplot, the variable points are tightly grouped and the correspond-
ing arrows do not pass through the points for observations.
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(b) The two-dimensional coordinates of the observation points and variable
points are as follows:

Observation Points

Name Coordinate 1 Coordinate 2

1 .303 −.145
2 .156 −.191
3 .132 −.058
4 −.144 −.158
5 −.175 −.119
6 −.205 .058
7 −.173 .199
8 −.158 .315
9 −.182 .231

10 −.208 −.094
11 −.206 −.049
12 .173 −.399
13 .066 −.164
14 .003 .075
15 .478 .003
16 .079 .406
17 .257 .127
18 .288 .474
19 .214 −.025
20 −.101 .029
21 −.145 −.026
22 −.209 −.060
23 .127 −.146
24 −.097 −.168
25 −.141 .019
26 −.093 −.048
27 −.073 −.172
28 .032 .090

Variable Points

Name Coordinate 1 Coordinate 2

North 85.779 9.026
East 69.899 30.223
South 94.377 −15.213
West 73.682 −19.694

In the biplot, the observation points are tightly clustered around the
point (0, 0), making them difficult to distinguish, whereas variable points
are well spaced. All the variables are positively correlated, with south and
west showing the closest relationship.
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(c) The two-dimensional coordinates of the observation points and variable
points are as follows:

Observation Points

Name Coordinate 1 Coordinate 2

1 3.870 −.920
2 1.990 −1.208
3 1.692 −.369
4 −1.844 −1.004
5 −2.230 −.753
6 −2.611 .365
7 −2.207 1.261
8 −2.020 1.996
9 −2.326 1.463

10 −2.652 −.596
11 −2.626 −.312
12 2.207 −2.529
13 .846 −1.042
14 .044 .477
15 6.106 .017
16 1.007 2.571
17 3.286 .805
18 3.675 3.008
19 2.738 −.161
20 −1.290 .181
21 −1.851 −.166
22 −2.666 −.382
23 1.616 −.928
24 −1.243 −1.062
25 −1.803 .118
26 −1.189 −.306
27 −.932 −1.091
28 .413 .569

Variable Points

Name Coordinate 1 Coordinate 2

North 6.718 1.424
East 5.474 4.768
South 7.391 −2.400
West 5.771 −3.107

In the biplot, the variable points and observation points are both well
spaced. Tree 18 is associated with east, 17 with north, 1 and 3 with south,
and 2 and 23 with west.

(d) The biplot from part (c) seems better because the scales on the variables
and points are more evenly matched.
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Data Sets and SAS Files

Two sets of files are located on the ftp server of John Wiley & Sons STM (Scientific,
Technical, and Medical) Division.

All data sets in the book,

SAS command files for all numerical examples.

DOWNLOADING DATA SET FILES FROM FTP SERVER

Please read the message in the multivariate analysis area before downloading the
files. The message has information about the files and discusses how to access them.

The files can be accessed through either a standard ftp program or a Web browser
using the ftp protocol. To gain ftp access, type the following at your ftp command
prompt:

ftp://ftp.wiley.com

The files are located in the multivariate analysis area of the public/sci tech med
directory. If you need further information about downloading the files, you can reach
Wiley’s technical support line at 212-850-6194.
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Additional information, test for, 136–139,
231–233

Air pollution data, 502
Airline distance data, 508
Algebra, matrix, see Matrix, algebra
Analysis of variance:

multivariate (MANOVA):
additional information, test for, 231–233
association, measures of, 173–176
assumptions, checking on, 198–199
and canonical correlation, 376–377
contrasts, 180–183
discriminant function, 165, 184–185,

191
growth curves, 221–230. See also Growth

curves; Repeated measures
designs

H and E matrices, 160–161
higher order models, 195–196
individual variables, tests on, 163–164,

183–186
discriminant function, 184–185, 191
experimentwise error rate, 183–185
protected tests, 184

Lawley-Hotelling test, 167
table of critical values, 524–528

likelihood ratio test, 164
mixed models, 196–198

expected mean squares, 196–197
multivariate association, measures of,

173–176
one-way, 158–161

contrasts, 180–183
orthogonal, 181

model, 159
unbalanced, 168

Pillai’s test, 166

profile analysis, 199–201
repeated measures, 204–221. See also

Repeated measures designs;
Growth curves

Roy’s test (union-intersection), 164–166
table of critical values, 517–520

stepwise discriminant analysis, 233
stepwise selection of variables, 233
test for additional information, 231–233
test statistics, 161–173

comparison of, 169–170, 176–178
and eigenvalues, 168
power of, 176–178
and T 2, 169

tests on individual variables, 163–174,
183–186, 191

discriminant function, 165, 184–185, 191
experimentwise error rate, 183–185
protected tests, 184

test on a subvector, 231–233
two-way, 188–195

contrasts, 190–191
discriminant function, 191
interactions, 189–190
main effects, 189–190
model, 189
tests on individual variables, 191
test statistics, 190

unbalanced one-way, 168
union-intersection test, 164
Wilks’ � (likelihood ratio) test, 161–164

chi-square approximation, 162
F approximation, 162
partial �-statistic, 232
properties of, 162–164
table of critical values, 501–516
transformations to exact F , 162–163

695
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Analysis of variance (cont.)
univariate (ANOVA):

one-way, 156–158
contrasts, 178–180

orthogonal, 179–180
SSH, SSE, F-statistic, 158

two-way, 186–188
contrasts, 188
F-test, 188
interaction, 187
main effects, 187–188
model, 186

ANOVA, see Analysis of variance, univariate
Association, measures of, 173–176, 349–351
Athletic record data, 480

Bar steel data, 192
Beetles data, 150
Bilinear form, 19–20
Biplots, 531–539

coordinates of points, 533–534
correlation, 534
cosine, 534, 537

points for observations, 531–534
points for variables, 531–534
principal component approach, 531–532, 535
singular value decomposition, 532–533, 535

Birth and death data, 543
Bivariate normal distribution, 46, 84, 88–89, 133
Blood data, 237
Blood pressure data, 245
Bonferroni critical values, 127

table, 562–565
Box’s M-test, 257–259

table of exact critical values, 588–589
Bronchus data, 154
Burt matrix, 526–529
Byssinosis data, 545–546

Calcium data, 56
Calculator speed data, 210
Canonical correlation(s), 174, 260, 361–378

canonical variates, see Canonical variates
definition of, 362–364
and discriminant analysis, 376–378
and eigenvalues, 362–363, 377–378
with grouping variables, 174
and MANOVA, 376–378

dummy variables, 376–377
and measures of association, 362, 373–374
and multiple correlation, 361–362, 366, 376
properties of, 366–367
redundancy analysis, 373–374
and regression, 368–369, 374–376

subset selection, 376
with test for independence of two subvectors,

260, 367–368
tests of significance, 367–371

all canonical correlations, 367–369
comparison of tests, 368–369
and test of independence, 367–368
and test of overall regression, 367–368,

375
subset of canonical correlations, 369–371
subset selection, 376
test of a subset in regression, 375–376

Canonical variates:
correlations among, 364
definition of, 363
interpretation, 371–374

by correlations (structure coefficients),
373

by rotation, 373
by standardized coefficients, 371–373

redundancy analysis, 373–374
and regression, 374–376
standardized coefficients, 365, 371–373

Categorical variables, see Dummy variables
Central Limit Theorem (Multivariate), 91
Characteristic form:

of t-statistic, 117, 122
of T 2-statistic, 118, 123

Characteristic roots, see Eigenvalues
Chemical data, 340
Chi-square distribution, 86, 91–92, 114
Cholesky decomposition, 25–26
City crime data, 456
Classification analysis (allocation), 299–321

assigning a sampling unit to a group, 299
asymptotic optimality, 302
correct classification rates, 307–309
error rates, 307–313 See also Error rates

estimates of, 307–313
as a stopping rule, 311–313

k-nearest neighbor rule, 318–319
nonparametric classification procedures, 302,

314–320
density estimators (kernel), 315–317
multinomial data (categorical variables),

314–315
dummy variables, 315

nearest neighbor rule, 318–320
k-nearest neighbor rule, 318–319

several groups, 304–307
linear classification functions, 304–306

equal covariance matrices, 304–305
optimal classification rule (Welch), 305
prior probabilities, 305–307
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quadratic classification functions, 306–307
unequal covariance matrices, 306

subset selection, 311–313
stepwise discriminant analysis, 311–313

error rate as a stopping rule, 311–313
two groups, 300–303

Fisher’s classification function, 300–302
linear classification function, 301–302
optimal classification rule (Welch), 302
prior probabilities, 302

Cluster analysis, 451–503
average linkage method, 463
centroid method, 463–465
choosing the number of clusters, 494–496
and classification, 451
clustering observations, 451–496
clustering variables, 451, 497–499
comparison of methods, 478–479
complete linkage method, 459–462
definition, 451
dendrogram, 456

crossover, 471
examples of, 458–459, 461–462, 464–465,

467, 469, 472–473, 476–477
inversion, 471
reversal, 471

dissimilarity, 452
distance, 451–454

distance matrix, 453
Euclidean distance, 452
Minkowski metric, 453
profile of observation vector:

level, 454
shape, 454
variation, 454

scale of measurement, 453–454
statistical distance, 452–453

farthest neighbor method, see complete
linkage method

flexible beta method, 468–471
hierarchical clustering, 452, 455–481

agglomerative method, 455–479
average linkage, 463
centroid, 463–465

mean vectors, 463
complete linkage, 459–462
flexible beta, 468–471
median, 466
single linkage, 456–459
Ward’s method, 466–468

comparison of methods, 478–479
dendrogram, 456
divisive method, 455, 479–481

monothetic, 479

polythetic, 479–480
properties, 471–479

chaining, 474
contraction, 474
dilation, 474
monotonicity, 471
outliers, 478–479
space contracting, 474
space dilating, 474
ultrametric, 471

incremental sum of squares method, see
Ward’s method

median method, 466
nearest neighbor method, see single linkage

method
nonhierarchical methods, 481–494

density estimation, 493
dense point, 493
modes, 493

mixtures of distributions, 490–492
partitioning, 481–490

k-means, 482–488
seeds, 482–487

methods based on E and H, 488–490
number of clusters:

choosing the number of clusters, 494–496
cutting the dendrogram, 494–495
methods based on E and H, 495–496

total possible number, 455
optimization methods, see nonhierarchical

methods, partitioning
partitioning, 452, 481–490
plotting of clusters:

discriminant functions, 486–488, 494
principal components, 451, 484
projection pursuit, 451

profile of observation vector:
level, 454
shape, 454
variation, 454

similarity, 451–455
single linkage method, 456–459
tree diagram, see dendrogram
validity of a cluster solution, 496

cross validation, 496
hypothesis test, 496

variables, clustering of, 451, 497–499
correlations, 497
and factor analysis, 498

Ward’s method, 466–468
Coated pipe data, 135
Coefficient of determination, see R2

Commensurate variables, see Variables,
commensurate
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Communality, see Factor analysis
Confidence interval (reference), 119, 127
Contingency table:

graphical analysis of, see Correspondence
analysis

higher-way table, 526, 528–529
two-way table, 514–516, 519, 521

Contour plots, 84–85
Contrast(s):

contrast matrices in growth curves, 222–225,
227–230

contrast matrices in repeated measures, 206,
208–221

one-sample profile analysis, 141–142
one-way ANOVA, 178–180
one-way MANOVA, 180–183
orthonormal, 206
two-way ANOVA, 188
two-way MANOVA, 190–191

Cork data, 239
Correct classification rate, 307–309
Correlation:

canonical, see Canonical correlation(s)
and cosine of angle between two vectors,

49–50
intra-class correlation, 198–199
and law of cosines, 49–50
multiple, see Multiple correlation
and orthogonality of two vectors, 50
population correlation (ρ), 49
sample correlation (r ), 49
of two linear combinations, 67, 72–73

Correlation matrix:
and covariance matrix, 61
factor analysis on, 418–419
partitioned, 365
population correlation matrix, 61
principal components from, 383–384,

393–397
sample correlation matrix, 60–61

from covariance matrix, 61
from data, 60

Correspondence analysis, 514–530
contingency table:

higher-way table, 526, 528–529
two-way table, 514–516, 519, 521

coordinates for row and column points,
521–525

distances between column points, 523–524
distances between row points, 523–524
singular value decomposition, 522

generalized singular value
decomposition, 522

correspondence matrix, 515–516

definition (graph of contingency table),
514–515

independence of rows and columns, testing,
519–521

chi-square, 515, 520–521
in terms of frequencies, 520
in terms of inertia, 521
in terms of relative frequencies, 520
in terms of row and column profiles,

520–521
inertia, 515, 524
multiple correspondence analysis, 526–530

Burt matrix, 526–529
indicator matrix, 526–527

profiles of rows and columns, 515–519
rows and columns, 514–525

association, 514
inertia, 515, 524
interaction, 514–515
points for plotting, 521–525
profiles, 515–519

singular value decomposition, 522, 524
generalized singular value decomposition,

522
Covariance:

and independence, 46–47
and orthogonality, 47–48
population covariance (σxy), 46–47
sample covariance (sxy), 46–48

expected value of, 47
and linear relationships, 47

of two linear combinations, 67–68, 72
Covariance matrix:

compound symmetry, 206
and correlation matrix, 61
of linear combinations of variables, 69–73
partitioned, 62–66, 362

dependence of y and x and cov(y, x), 63

difference between cov

(
y
x

)
and

cov(y, x), 63
three or more subsets, 64–66

pooled covariance matrix, 122–123
population covariance matrix (�), 58–59
sample covariance matrix (S), 57–60

from data matrix, 58
distribution of, 91–92

Wishart distribution, 91–92
from observations, 57–58
positive definiteness of, 67
and sample mean vector, independence of,

92
sphericity, 206, 250–252
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tests on, 248–268. See also Tests of
hypotheses, covariance matrices

unbiasedness of, 59
uniformity, 206, 252–254

Cross validation, 310–311
Cyclical data, 153

Data matrix (Y), 55
Data sets:

air pollution data, 502
airline distance data, 508
athletic record data, 480
bar steel data, 192
beetles data, 150
birth and death data, 543
blood data, 237
blood pressure data, 245
bronchus data, 154
byssinosis data, 545–546
calcium data, 56
calculator speed data, 210
chemical data, 340
city crime data, 456
coated pipe data, 135
cork data, 239
cyclical data, 153
dental data, 227
diabetes data, 65
dogs data, 243–244
do-it-yourself data, 529
dystrophy data, 152
engineer data, 151
fabric wear data, 238
fish data, 235
football data, 280–281
glucose data, 80–81
guinea pig data, 201
height-weight data, 45
hematology data, 109–110
mandible data, 247
mice data, 241
Norway crime data, 544
people data, 526
perception data, 419
plasma data, 246
piston ring data, 518
politics data, 542
probe word data, 70
protein data, 483
psychological data, 125
ramus bone data, 78
repeated data, 218
Republican vote data, 53
road distance data, 541

rootstock data, 171
Seishu data, 263
snapbean data, 236
sons data, 79
steel data, 273
survival data, 239–241
temperature data, 269
trout data, 242
voting data, 512
weight gain data, 243
wheat data, 503
words data, 154

Data, types of, 3–4. See also Multivariate data
Density function, 43
Dental data, 227
Descriptive statistics, 2
Determinant, 26–29

definition of, 26–27
of diagonal matrix, 27
of inverse, 29
of nonsingular matrix, 28
of partitioned matrix, 29
of positive definite matrix, 28
of product, 28
as product of eigenvalues, 34
of scalar multiple of a matrix, 28
of singular matrix, 28

Diabetes data, 65
Diagonal matrix, 8
Discriminant analysis (descriptive), 270–296

and canonical correlation, 282, 376–378
and classification analysis, 270
discriminant functions:

for several groups, 165, 184–185, 191,
277–279

measures of association for, 282
for two groups, 126–132, 271–275

and distance, 272
and eigenvalues, 278–279
interpretation of discriminant functions,

288–291
correlations (structure coefficients), 291
partial F-values, 290
rotation, 291
standardized coefficients, 289

purposes of, 277
scatter plots, 291–293
selection of variables, 233, 293–296
several groups, 277–279
standardized discriminant functions, 282–284
stepwise discriminant analysis, 233, 293–296
tests of significance, 284–288
two groups, 271–275

and multiple regression, 130–132, 275–276
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Discriminant analysis (predictive), see
Classification analysis

Dispersion matrix, see Covariance matrix
Distance between vectors, 76–77, 83, 115, 118,

123, 271–272
Distribution:

beta, 97
bivariate normal, 46, 84, 88–89
chi-square, 86
elliptically symmetric, 103
F , 119, 138, 158, 162–163, 179, 254–255
multivariate normal, see Multivariate normal

distribution; Multivariate
normality, tests for

univariate normal, 82–83, 86
tests for, see Univariate normality, tests for

Wishart, 91–92
Dogs data, 243–244
Do-it-yourself data, 529
Dummy variables, 173–174, 282, 315,

376–377
Dystrophy data, 152

E matrix, 160–161, 339, 342–344
Eigenvalues, 32–37, 168, 362–365, 382–384,

397–398, 416–419, 422–423
Eigenvectors, 32–35, 363–365, 382–384,

397–398, 416–418, 420–422
Elliptically symmetric distribution, 103
EM algorithm, 75, 491
Engineer data, 151
Error rate(s), 307–313

actual error rate, 308
apparent error rate, 307

bias in, 308, 309–311
classification table, 307–308
cross validation, 310–311
experimentwise error rate, 1–2, 128–129,

183–185
holdout method, 310–311, 318
leaving-one-out method, 310–311, 318
partitioning the sample, 310
resubstitution, 307–308

Expected value:
of random matrix, 59
of random vector [E(y)], 55–56
of sample covariance matrix [E(S)], 59
of sample mean [E(y)], 44
of sample mean vector [E(y)], 56
of sample variance [E(s2)], 44
of sum or product of random variables,

46
of univariate random variable [E(y)], 43

Experimental units, 1

F-test(s):
ANOVA, 158, 188
between-subjects tests in repeated measures,

212, 216, 221
comparing two variances, 254–255
contrasts, 179
equivalent to T 2, 119, 124, 137–138
in multiple regression, 138, 330–332
partial F-test, 127, 138, 232, 293–296
stepwise selection, 233, 293–296, 336
test for additional information, 137
test for individual variables in MANOVA,

183–186
Wilks’ �:

exact F transformation for, 162–163
F approximation for, 162–163

Fabric wear data, 238
Factor analysis, 408–450

assumptions, 410–412
failure of assumptions, consequences of,

414, 444–445
common factors, 409
communalities, 413, 418, 422–423, 427–428

estimation of, 418, 422, 424, 428
eigenvalues, 416–419, 422–423, 427, 442,

446
eigenvectors, 416–418, 420, 422
factor scores, 438–443

averaging method, 440
regression method, 439–440

factors, 408–414
common, 409
definition of, 408–409
interpretation of, 409, 438
number of, 426–430

Heywood case, 424–425
loadings:

definition of, 409
estimation of, 415–426

comparison of methods, 424
fit of the model, 419
iterated principal factor method,

424–425
Heywood case, 424–425

maximum likelihood method, 425–426
principal component method, 415–421
principal factor method, 421–424
from S or R, 418–419, 421–422

model, 409–414
modeling covariances or correlations, 408,

410, 412, 414, 417
number of factors to retain, 426–430

average eigenvalue, 427–428
comparison of methods, 428–430
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hypothesis test, 427–428
indeterminacy of for certain data sets,

428–429
scree plot, 427–428
variance accounted for, 427–428

orthogonal factors, 409–415, 431–435
and principal components, 408–409, 447–448
and regression, 410, 439–440
rotation, 414–415, 417, 430–437

complexity of the variables, 431
interpretation of factors, 409, 438
oblique rotation, 431, 435–437

and orthogonality, 437
pattern matrix, 436

orthogonal rotation, 431–435
analytical, 434
communalities, 415, 431
graphical, 431–433
varimax, 434–435

simple structure, 431
scree plot, 427–428
simple structure, 431
singular matrix and, 422
specific variance, 410, 417
specificity, see specific variance
total variance, 418–419, 427
validity of factor analysis model, 443–447

how well model fits the data, 419, 444
measure of sampling adequacy, 445

variance due to a factor, 418–419
Fish data, 235
Fisher’s classification function, 300–302
Football data, 280–281

Gauss-Markov theorem, 341
Generalized population variance, 83–85, 105
Generalized sample variance, 73

total sample variance, 73, 383, 409, 418,
427

Generalized singular value decomposition, 522
Geometric mean, 174
Glucose data, 80
Graphical display of multivariate data, 52–53
Graphical procedures, 504–547

biplots, see Biplots
correspondence analysis, see Correspondence

analysis
multidimensional scaling, see

Multidimensional scaling
Growth curves, 221–230

contrast matrices, 222–225, 227–230
one sample, 221–229
orthogonal polynomials, 222–225
polynomial function of t , 225–227

several samples, 229–230
unequally spaced time points, 225–227

Guinea pig data, 201

H matrix, 160–161, 343–344
Height-weight data, 45
Hematology data, 109–110
Hierarchical clustering, see Cluster analysis,

hierarchical clustering
Hotelling-Lawley test statistic, see

Lawley-Hotelling test statistic
Hotelling’s T 2-statistic, see T 2-statistic
Hyperellipsoid, 73
Hypothesis tests, see Tests of hypotheses

Identity matrix, 8
Imputation, 74
Independence of variables, test for,

265–266
table of exact critical values, 590

Indicator variables, see Dummy variables
Inferential statistics, 2
Intra-class correlation, 198–199

Kernel density estimators, 315–317
Kurtosis, 94–95, 98–99, 103–104

Largest root test, see Roy’s test statistic
Latent roots, see Eigenvalues
Lawley-Hotelling test statistic:

definition of, 167
table of critical values, 582–586

Length of vector, 14
Likelihood function, 90
Likelihood ratio test(s):

for covariance matrices, 248–250, 253, 256,
260, 262, 265

in factor analysis, 428
for mean vectors, 126, 164

Linear classification functions, 301–306
Linear combination of matrices, 19
Linear combination(s) of variables, 2, 67–73,

113
correlation matrix for several linear

combinations, 72
correlation of two linear combinations, 67,

71–73
covariance matrix for several linear

combinations, 69–70, 72–73
covariance of two linear combinations, 67–68,

71–72
distribution of, 86
mean of a single linear combination, 67,

71–72
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Linear combination(s) of variables (cont.)
mean vector for several linear combinations,

69
variance of a single linear combination, 67,

71–72
Linear combination of vectors, 19
Linear hypotheses, 141–142, 199–201,

208–225

Mahalanobis distance, 76–77, 83
Mandible data, 247
MANOVA, 130, 158. See also Analysis of

variance, multivariate
Matrix (matrices):

algebra of, 5–37
bilinear form, 19–20
Burt matrix, 526–529
Cholesky decomposition, 25–26
conformable, 11
covariance matrix, 57–59
definition, 5–6
determinant, 26–29, 34. See also Determinant

of diagonal matrix, 27
of inverse matrix, 29
of partitioned matrix, 29
of positive definite matrix, 28
of product, 28
of scalar multiple of a matrix, 28
of singular matrix, 28
of transpose, 29

diagonal, 8
eigenvalues, 32–37. See also Eigenvalues

characteristic equation, 32
and determinant, 34
of I + A, 33
of inverse matrix, 36
of positive definite matrix, 34

Perron-Frobenius theorem, 34
square root matrix, 36

of product, 35
singular value decomposition, 36
of square matrix, 36
of symmetric matrix, 35

spectral decomposition, 35
and trace, 34

eigenvectors, 32–37. See also Eigenvectors
equality of, 7
identity, 8
indicator matrix, 526–527
inverse, 23–25

of partitioned matrix, 25
of product, 24
of transpose, 24

j vector, 9

J matrix, 9
linear combination of, 19
nonsingular matrix, 23
notation for matrix and vector, 5–6
O (zero matrix), 9
operations with, 9–20

distributive law, 12
factoring, 12–13, 15
product, 11–20, 23–25

conformable, 11
with diagonal matrix, 18
distributive over addition, 12
and eigenvalues, 34–35
of matrix and scalar, 19
of matrix and transpose, 16–18
of matrix and vector, 12–13, 16, 21

as linear combination, 21
noncommutativity of, 11
product equal zero, 23
transpose of, 12
triple product, 13
of vectors, 14

sum, 10
commutativity of, 10

orthogonal, 31
rotation of axes, 31–32

partitioned matrices, 20–22
determinant of, 29
inverse of, 25
product of, 20–21
transpose of, 22

Perron-Frobenius theorem, 34, 402
positive definite, 25, 34
positive semidefinite, 25, 34
quadratic form, 19
rank, 22–23

full rank, 22
scalar, 6

product of scalar and matrix, 19
singular matrix, 24
singular value decomposition, 36
size of a matrix, 6
spectral decomposition, 35
square root matrix, 36
sum of products in vector notation, 14
sum of squares in vector notation, 14
symmetric, 7, 35
trace, 30, 34, 69

and eigenvalues, 34
of product, 30
of sum, 30

transpose, 6–7
of product, 12
of sum, 10
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triangular, 8
vectors, see Vector(s)
zero matrix (O) and zero vector (0), 9

Maximum likelihood estimation, 90–91
of correlation matrix, 91
of covariance matrix, 90
likelihood function, 90
of mean vector, 90–91
multivariate normal, 90

Mean:
geometric, 174
of linear function, 67, 72
population mean (µ), 43
of product, 46
sample mean (y), 43–44
of sum, 46

Mean vector, 54–56, 83, 90–92
notation, 54
population mean vector (�), 55–56
sample mean vector (y), 54–56

from data matrix, 55
distribution of, 91
and sample covariance matrix,

independence of, 92
Measurement scale, 2

interval scale, 2
ordinal scale, 2
ratio scale, 2

Mice data, 241
Misclassification rates, see Error rate(s)
Missing values, 74–76
Multicollinearity, 74, 84
Multidimensional scaling, 504–514

classical solution, see metric
multidimensional scaling

definition, 504–505
distances, 504–505

seriation (ranking), 504
metric multidimensional scaling, 504–508

algorithm for finding the points,
505–508

and principal component analysis, 506
nonmetric multidimensional scaling, 505,

508–514
monotonic regression, 509–510
ranked dissimilarities, 508–509
STRESS, 510–512

principal coordinate analysis, see metric
multidimensional scaling

spectral decomposition, 505–506
Multiple correlation, 332, 361–362, 423. See

also R2

Multiple correspondence analysis, 526–530
Burt matrix, 526–529

column coordinates, 527, 5290530
indicator matrix, 526–527

Multiple regression, see Regression, multiple
Multivariate analysis, 1

descriptive statistics, 1–2
inferential statistics, 2

Multivariate analysis of variance (MANOVA),
see Analysis of variance,
multivariate

Multivariate data:
basic types of, 4
plotting of, 52–53
sparceness of, 97

Multivariate inference, 2
Multivariate normal distribution, 82–105

applicability of, 85
conditional distribution, 88
contour plots, 84–85
density function, 83
distribution of y and S, 91–92
features of, 82
independence of y and S, 92
linear combinations of, 86
marginal distribution, 87
maximum likelihood estimates, 90–91. See

also Maximum likelihood
estimation

properties of, 85–90
quadratic form and chi-square distribution, 86
standardized variables, 86
zero covariance matrix implies independence

of subvectors, 87
Multivariate normality, tests for, 92, 96–99

D2
i , 97–98, 102–103
and chi-square, 98
table of critical values, 557

dynamic plot, 98
scatter plots, 98, 105
skewness and kurtosis, multivariate, 98–99,

103–104, 106
table of critical values, 553–556

Multivariate regression, see Regression,
multivariate

Nonsingular matrix, 23
Normal distribution:

bivariate normal, 46, 84, 88–89, 133
multivariate normal, see Multivariate normal

distribution
univariate normal, 82–83, 86

Normality, tests for, see Multivariate normality;
Univariate normality

Norway crime data, 544
Numerical taxonomy, see Cluster analysis
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Objectives of this book, 3
Observations, 1
One-sample test for a mean vector, 117–121
Orthogonal matrix, 31
Orthogonal polynomials, 222–225

table of, 587
Orthogonal vectors, 50
Outliers:

multivariate:
kurtosis, 103–104

elliptically symmetric distributions, 103
principal components, 389–392
slippage in mean, variance, and correlation,

101
Wilks’ statistic, 102–103

univariate:
accommodation, 100
block test, 101
identification, 100
masking, 101
maximum studentized residual, 100–101
skewness and kurtosis, 101
slippage in mean and variance, 100
swamping, 101

Overall variability, 73–74

Paired observation test, 132–136
Partial F-tests, 127, 138, 232, 293–296
Partitioned matrices, see Matrix (matrices),

partitioned matrices
Partitioning, see Cluster analysis, partitioning
Pattern recognition, see Cluster analysis
People data, 526
Perception data, 419
Perron-Frobenius theorem, 34, 402
Pillai’s test statistic:

definition of, 166
table of critical values, 578–581

Piston ring data, 518
Plasma data, 246
Plotting multivariate data, 52–53
Politics data, 542
Positive definite matrix, 25

positive definite sample covariance matrix, 67
Prerequisites for this book, 3
Principal components, 380–407

algebra of, 385–387
and biplots, 531–532
and cluster analysis, 390–393, 395, 482–484,

487
component scores, 386
definition of, 380, 382, 385
dimension reduction, 381–384, 385–387, 389
eigenvalues and eigenvectors, 382–385,

397–398

major axis, 384, 388
and factor analysis, 403, 408–409, 447–448
geometry of, 381–385
interpretation, 401–404

correlations, 403–404
rotation, 403
special patterns in S or R, 401–403

size and shape, 402–403
large variance of a variable, effect of,

383–384, 402
last few principal components, 382, 389, 401
maximum variance, 380, 385
minimum perpendicular distances to line,

387–388
number of components to retain, 397–401
orthogonality of, 380, 383–384
percent of variance, 383, 397
and perpendicular regression, 385, 387–389
plotting of, 389–393

assessing normality, 389–390
detection of outliers, 389–391

properties of, 381–386
proportion of variance, 383
robust, 389
as rotation of axes, 381–382, 384–385
from S or R, 383–384, 393–397

nonuniqueness of components from R, 397
sample specific components, 398
scale invariance, lack of, 383
scree graph, 397–399
selection of variables, 404–406
singular matrix and, 385–386
size and shape, 402–403
smaller principal components, 382, 389, 401
tests of significance for, 397, 399–400
variable specific components, 398
variances of, 382–383

Probe word data, 70
Product notation (

∏
), 10

Profile, 139–140
profile of observation vector, 454

Profile analysis:
and contrasts, 141–142
one-sample, 139–141
and one-way ANOVA, 140
profile, definition of, 139–140
and repeated measures, 139
several-sample, 199–204
two-sample, 141–148

hypotheses:
flatness, 145–146, 199–201
levels, 143–145, 199–200
parallelism, 141–143, 199–200

and two-way ANOVA, 143–145
Projection pursuit, 451
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Protein data, 483
Psychological data, 125

Q–Q plot, 92–94
Quadratic classification functions, 306–307
Quadratic form, 19
Quantiles, 92–94, 97

R2 (squared multiple correlation), 332–333,
337, 349, 355, 361–362, 365,
375–376, 422–423

Ramus bone data, 78
Random variable(s):

bivariate, 45
bivariate normal distribution, 46, 84,

88–89
correlation of, 49–50

as cosine, 49–50
covariance of, 46–48

linear relationships, 47
independent, 46

test for independence, 265–266
table of exact critical values, 590

orthogonal, 47–48
scatter plot, 50–51

linear combinations, see Linear
combination(s) of variables

univariate, 43
expected value of, 43
mean of, 43
variance of, 44

vector, 53–56
Random vector(s), 52–56

distance between, 76–77, 83, 115, 118, 123,
271–272

linear functions of, 66–73. See also Linear
combination(s) of variables

mean of, 54–56
partitioned random vector, 62–66
standardized, 86
subvectors, 62–66

Rank of a matrix, 22–23
Rao’s paradox, 116
Redundancy analysis, 373–374
Regression, monotonic, 509–510
Regression, multiple (one y and several x’s),

130–132, 323–337. See also
Regression, multivariate

centered x’s, 327–329
estimation of �:

centered x’s, 327–328
covariances, 328–329
least squares, 325–326

estimation of σ 2, 326–327
fixed x’s, 323–333

model, 323–324
assumptions, 323–324
corrected for means (centered), 327

multiple correlation, 332
R2 (squared multiple correlation), 332–333,

337, 349, 355. See also R2

random x’s, 322–323, 337
regression coefficients, 323
SSE, 325–326, 330–331, 333–336, 456
SSR, 330–331
subset selection, 333–337

all possible subsets, 333–335
criteria for selection (R2

p, s2
p,C p),

333–335
comparison of criteria, 335

stepwise selection, 335–337
tests of hypotheses, 329–332

full and reduced model, 330–332
partial F-test, 331–332
overall regression test, 329–330
subset of the β’s, 330–332

variables:
dependent (y), 322
independent (x), 322
predictor (x), 322
response (y), 322

Regression, multivariate (several y’s and several
x’s), 322–323, 337–358

association, measures of, 349–351
centered x’s, 342–343
estimation of B (matrix of regression

coefficients):
centered x’s, 342–343
covariances, 343
least squares, 339–341
properties of estimators, 341–342

estimation of �, 342
fixed x’s, 337–349
Gauss-Markov theorem, 341
model, 337–339

assumptions, 339
corrected for means (centered), 342–343

random x’s, 358
regression coefficients, matrix of (B), 88,

338
subset selection, 351–358

all possible subsets, 355–358
criteria for selection (R2

p,Sp,Cp),
355–358

stepwise procedures, 351–355
partial Wilks’ �, 352–354
subset of the x’s, 351–353
subset of the y’s, 353–355

tests of hypotheses, 343–349
E matrix, 339, 342–344
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Regression, multivariate (cont.)
full and reduced model:

on the x’s, 347–349
on the y’s, 353–355
with canonical correlations, 375–376

H matrix, 343–344
overall regression test, 343–347

with canonical correlations, 375
comparison of test statistics, 345
Lawley-Hotelling test, 345
Pillai’s test, 345
rank of B, 345
Roy’s test (union-intersection), 344–345
Wilks’ � test (likelihood ratio), 344

subset of the x’s, 351–353
with canonical correlations, 375–376

subset of the y’s, 353–355
Repeated data set, 218
Repeated measures designs, 204–221. See also

Growth curves
assumptions, 204–207
computation of test statistics, 212–213
contrast matrices, 206, 208–221
doubly multivariate data, 221
higher order designs, 213–221
multivariate approach, advantages of,

205–207
one sample, 208–211

likelihood ratio test, 209–210
and randomized block designs, 208

and profile analysis, 139
several samples, 211–212
univariate approach, 204–207

Republican vote data, 53
Research units, 1
Road distance data, 541
Rootstock data, 171
Rotation, see Factor analysis
Roy’s test statistic:

definition of, 164–165
table of critical values, 574–577

Sampling units, 1
Scalar, 6
Scale of measurement, 1
Scatter plot, 50–51, 98, 105
Seishu data, 263
Selection of variables, 233, 333–337, 351–358
Singular value decomposition, 36, 522, 524,

532–533
generalized singular value decomposition,

522
Size and shape, 402–403
Skewness, 94–95, 98–99, 104

Snapbean data, 236
Sons data, 79
Specific variance, see Factor analysis
Spectral decomposition, 35, 382, 416–418,

505–506
Squared multiple correlation, see R2

Standard deviation, 44
Standardized vector, 86
Steel data, 273
Stepwise selection of variables, 233, 335–337,

351–355
STRESS, 510–512
Subvectors, 62–66

conditional distribution of, 88
covariance matrix of, 62–66
distribution of sum of, 88
independence of, 63, 87
mean vector, 62–64, 66
tests of, 136–139, 231–233, 347–349,

353–359
Summation notation (

∑
), 9

Survival data, 239–241

t-tests:
characteristic form, 117, 122
contrasts, 179
equal levels in profile analysis, 145
growth curves, 224, 228
matched pairs, 132–133
one sample, 117
paired observations, 132–133
repeated measures, 210–211
two samples, 121–122, 127

T 2-statistic:
additional information, test for, 136–139
assumptions for, 122
characteristic form, 118, 123
chi-square approximation for, 120
computation of, 130–132

by MANOVA, 130
by regression, 130–132

and F-distribution, 119, 124, 137–138
full and reduced model test, 137
likelihood ratio test, 126
matched pairs, 134–136
one-sample, 117–121
paired observations, 134–136
and profile analysis, 139–148

one sample, 139–141
two samples, 141–148

properties of, 119–120, 123–124
for a subvector, 136–139
table of critical values for T 2, 558–561
two-sample, 122–126
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Taxonomy, numerical, see Cluster analysis
Temperature data, 269
Tests of hypotheses:

accepting H0, 118
for additional information, 136–139,

231–233, 347–349, 353–359
partial F-tests, 127, 138, 232

covariance matrices, 248–268
one covariance matrix, 248–254

independence:
individual variables, 265–266

table of exact critical values, 590
several subvectors, 261–264
two subvectors, 259–261

and canonical correlations, 260
a specified matrix �0, 248–249
sphericity, 250–252
uniformity, compound symmetry, 206,

252–254
several covariance matrices, 254–259

Box’s M-test, 257–259
table of exact critical values,

588–589
on individual variables, 126–130

Bonferroni critical values for, 127
tables, 562–565

discriminant functions, 126–132
experimentwise error rate, 128–129
partial F-tests, 127, 232
protected tests, 128–129

likelihood ratio test, 126. See also Likelihood
ratio tests

for linear combinations:
one sample (H0: C� = 0), 117, 140–141,

208–211
two samples (H0: C�1 = C�2),

142–143
mean vectors:

likelihood ratio tests, 126
one sample, � known, 114–117
one sample, � unknown, 117–121
several samples, 158–173
two-sample T 2-test, 122–126

multivariate vs. univariate testing, 1–2,
112–113, 115–117, 127–130

paired observations (matched pairs),
132–136

multivariate, 134–136
univariate, 132–133

partial F-tests, 127, 138, 232
power of a test, 113,
protected tests, 128–129
on regression coefficients, 329–332,

343–349

on a subvector, 136–139, 231–233, 347–349,
353–359

univariate tests:
ANOVA F-test, 156–158, 186–188
one-sample test on a mean, σ known,

113
one-sample test on a mean, σ unknown,

117
paired observation test, 132–133
tests on variances, 254–255
two-sample t-test, 121–122, 127
variances, equality of, 254–255

Total sample variance, 74, 383, 409, 418–419,
427

Trace of a matrix, 30, 34, 69
Trout data, 242
Two-sample test for equal mean vectors,

122–126

Union-intersection test, 164–165
Unit:

experimental, 1
research, 1
sampling, 1

Univariate normal distribution, 82–83, 86
Univariate normality, tests for, 92–96

D’Agostino’s D-statistic, 96
table of critical values, 552

goodness-of-fit test, 96–97
normal probability paper, 94
Q–Q plot, 92–94
quantiles, 92–94, 97
skewness and kurtosis, 94–95

tables of critical values, 549–551
transformation of correlation, 96

Variables, 1. See also Random variables
commensurate, 1
dummy variables, 173–174, 282, 315,

376–377
linear combinations of, 66–73

Variance:
generalized sample variance, 73
pooled variance, 121
population variance (σ 2), 44
sample variance (s2), 44
total sample variance, 74

Variance-covariance matrix, see Covariance
matrix

Variance matrix, see Covariance matrix
Varimax rotation, 434–435
Vector(s):

0 vector, 9
definition of, 6
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Vector(s) (cont.)
distance:

Mahalanobis, 76–77
from origin to a point, 14
between two vectors, 76–77

geometry of, 6
j vector, 9
length of, 14
linear combination of, 19
linear independence and dependence of,

22
normalized, 31
notation for vector, 6
observation vector, 53–54
orthogonal, 31, 50
perpendicular, 50
product of, 14–16

dot product, 14

rows and columns of a matrix, 15–16
standardized, 86
subvectors, 62–66
sum of products, 14
sum of squares, 14
transpose of, 6–7
zero vector, 9

Voting data, 512

Weight gain data, 243
Wheat data, 503
Wilks’ � test statistic:

definition of, 161–164
partial �-statistic, 232
table of critical values, 566–573

Wishart distribution, 91–92
Words data, 154
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