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Abstract

This paper discusses the important issues in signal segmentation disturbed by
multiplicative noise where the number of segments is unknown. A Bayesian approach is
proposed to estimate the parameter. In this case the parameter includes the number of
segments, the location of the segment, and the amplitude. However, the posterior distribution
for the parameter does not have a simple equation so that the Bayes estimator is not easily
determined. Reversible Jump MCMC method is adopted to overcome the problem. The
Reversible Jump MCMC method creates a Markov chain whose distribution is close to the
posterior distribution. The performance of the algorithm is shown by simulation data. The result
of this simulation shows that the algorithm works well. As an application, the algorithm is used to
segment SAR signal. The advantage of this method is that the number of segments, the position
of the segment change, and the amplitude are estimated simultaneously.
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1. Introduction

Signal processing with additive noise has been investigated by several authors, for
example Gustafsson ef al. [1]. But in many applications it is often found that signal with
multiplicative noise. Some authors have also discussed signals with multiplicative noise, such
as Ullah et al. [2], Osoba and Kosko [3], Tian et al. [4], and Dong et al. [5]. Ullah et al. [2] used a
variational approach for restoring images with multiplicative noise. Osoba and Kosko [3] used
the noisy Expectation-Maximization Algorithm for multiplicative noise injection. Tian et al. [4]
used an adaptive fractional-order method to eliminate multiplicative noise. Dong et al. [5]
proposed a method using a sparse analysis model for signal with multiplicative noise. In signal
segmentation with multiplicative noise, generally the number of segments is unknown and must
be estimated based on the data. This paper discusses the segmentation of signal with
multiplicative noise when the number of segments is unknown.

Let N be the many pixels contained in a line from the Synthetic Aperture Radar (SAR)
image. The equation of the line can be expressed in the following form (Suparman et al. [6],
Tourneret et al. [7]) :

}'.1 :rl Zl
with vy, is the intensity of the measured SAR image, riis SAR intensity, and z,is a multiplicative
noise. In various SAR images, including agricultural images, the properties of r, and z; can be
defined as follows (Oliver and Quegan [8]) :
(a) SAR intensity ris a step function. The equation can be written as :

r, =h, n, <tsn,,

t=12---.N (1)

with K = 0, 1, ..., K. Here, ng is the position of the height change of K" step. (with
agreement ng = 0 and ng+¢ = N) and h is the height of K" step, and K is the number of
steps.

(b) Multiplicative noise z; is given in the form of a random variable that follows the gamma
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distribution with the mean L and variance 1/L, written z, ~ G(L, L),

LI. .
f(zi)zl—-(L) z; exp_[LZt] t=12,---.N

Here, L is the number of measurements. The value of L is known.
Based on the datay,(t =1, 2, ..., N), then we will estimate the value of the parameter
K, n™ = (ny, na, ..., Nier) and KD = (hg, by, ., hi).
To estimate the value of these parameters, a hierarchical Bayesian approach is used, which will
be described in the following sections.

2. Research Method

2.1. Hiearchical Bayesian

The Bayesian approach [9] is a method for estimating parameter values
0 = (K.n"’_ h""), which is done based on information obtained from the data y, (expressed in
the probability distribution f(y| 0)) and information on parameter O (expressed in the prior
distribution w(0) ).

Due to a multiplicative noise z, ~ G(L,L), then the probability distribution for y; can be
written as :

£y [0) o6 T, hien exp_{Lm(y,;n.,n... )] o

with t(a,b)=b —a, o(y.a,b) = Z::;m V. , and symbol “oc” means "proportional to".

To use the Bayesian approach, the prior distribution for the parameter ) should be
determined. Prior distribution for parameter () is taken the same as in Suparman et al. [6].
Suppose K. is the maximum number of steps, then K is assumed to follow a Binomial
distribution with parameter },. The prior distribution for K can be written as

Tl:(K.| Kllllk\i 2 ?\.)Cﬁ ?\’K (1 - A’)Km“k‘_'{ K = 0' 1 . Kmax- (3)
For the value of K given, n® is assumed to follow the following distribution :
n(n“"|K)oc IT.(,, —n -1 )

and h™ follows the inverse gamma distribution with parameters « dan p. Prior distribution for
h can be written as

5
B (5)

h -
i

The problem that arises is the presence of hyperparameter = (., ) in the above

ﬂ(h‘“'”| K,O:,B)oc T, h ' exp—[

prior distributions. To simplify the problem, in Suparman et al. [6] value ¢ is known. In this
paper, as in Tourneret et al. [7] hyperparameter ¢ is seen as a random variable with a given
distribution, here 2 follows a uniform distribution at interval (0,1) and p follows Jeffrey
distribution. The value « is taken relatively small.

By using Bayes's theorem, the posterior distribution for 0, written with =(6.¢|v), can be
expressed as the product of times of the probability distribution for y; and prior distribution for
©.9) :

(0. < v)ee £y | 0) x 11:(9| @)= 7(ep) (8)
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Then an estimate of the parameter 0 will be done based on the posterior distribution. For
example, the parameter estimator 0 which creates a posterior distribution value =(0|y)

reaches the maximum value. But the shape of the posterior distribution n(e|y) is very complex,

then it is difficult to estimate parameter value 0. To overcome this, we adopt the Markov Chain
Monte Carlo (MCMC) method, especially Reversible Jump MCMC method.

2.2. Reversible Jump MCMC Method
Suppose M = (0.¢) IS a Markov chain. In general, MCMC method is a sampling method,

that is by making a homogeneous Markov chain M,.M,.---.M_ which satisfies periodic and
irreducible propertiessuch that M, .M,..--.M  can be considered as a random variable
following the distribution 11:(0.<p| _v) [10]. Therefore, the chain Markov M .M,.---.M_ can be

used to estimate parameter M. To realize it was adopted Gibbs algorithm which consists of two
stages :
1. Simulate distribution m(¢|6.v)

2. Simulate distribution =(0|¢. v)

The Gibbs algorithm is used to simulate the distribution (| 0.y) . Hybrid algorithm is used to
simulate the distribution w(&|¢.y) . This hybrid algorithm combines the Reversible Jump MCMC
algorithm [11] to simulate parameter n(l{.n‘“’l @.y) and algoritma Gibbs to simulate
parameter m(h'*’| «.y). Reversible Jump MCMC algerithm is an extension of the Metropolis-

Hastings algorithm.

2.2.1.Distribution Simulation x(¢|6.y)
Conditional distribution of ¢ given 0 andy, the distribution (¢ 6.y) can be expressed

as

K K K K1) . K I
ﬂ’((d es }') o A (l - A‘) o '5 exXp— (BZ.:n h_)

The distribution is the product of distributon B(K+LK_ —-K+1) and

G(a(K +1)+1. ¥, 1/h ). So to simulate it we can use Gibbs algorithm.

2.2.2.Distribution Simulation (0 |ep.y)
Conditional distribution of 0 given (¢p.v)can be expressed as

1|:(0|(p. y) o 1 [ B

Ohin N CES e ] [T (., —n,)—1

cF )
]_ -[i){." h :In’u.L.n,.n,_, =1 pr_ I_L},(Bj L?})l” n 1 ni‘l)_]

where @ =« +Lx(a,b) and W(B.L.y.a,.b) =B+ Lo(y.a,b).
When itis integrated against h'*’, it will be obtained
(K. n™ g, y) o<

CE"“‘;\-K (A—=n)K= C le-rl (%] I (m, —n)-1

I'(P(a.L.n,.n )
Y(P.L.v.n,.n_ )

I
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On the other hand, we have
VPR, L.y.n,.n, )
h

(K} (K} 7
n(h | K.n™,qpy)oc 15, h:l::u_L.n, n-1 exp—|

I

®F, IG(P(a.Lon,.n, . " F(B.L.y.n,.n )

i=0

So we can write the distribution =(0|p.y) as the product of the distribution
T[(K, ntKr

®,v) and distribution w(h™ | K.n™ ¢q.v),thatis:

(0]p.y) =K, n“ |, y) mh ™ |K.n® . q.y)
Next to simulate the distribution 7(6|¢.y) , we use a Gibb algorithm consisting of two stages :

« Stage 1 : Simulate distribution 7(h*’

K,I'I(K’-_(P,}" )
e Stage 2 : Simulate distribution m(K, n™’ |(p, y)
Then to simulate the distribution m(h™ | K.n'™ _¢p.v) we use the Gibbs algorithm. On the

other hand, distribution m(K,n" |q),}-') is not explicitly so that the MCMC Reversible Jump
algorithm is used to simulate it.

3. Results and Analysis

As an illustration, this method is applied to segment simulation multiplicative and real
multiplicative signals. As in [12], a simulation study was undertaken to confirm the performance
of the Reversible Jump MCMC algorithm whether it works well or not. While case studies are
given to provide examples of application of research to solve problems in everyday life.To
segment the multiplicative signals of simulation and real multiplicative signals, the Reversible
Jump MCMC algorithm is implemented as much as 25 thousand iterations with a 5 thousand
burn-in period.

3.1. Multiplicative Signal Simulation

Figure 1 is a simulated multiplicative signal created according to the equation (1) above
with N =250 and L = 5. As for value K = 3, vector value n® = (75, 125, 200) and vector value
h'=(1,7,3,5).

LT ;|, N
A A gV
50

100 150 200 280

Figure 1. Multiplicative signal simulation
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Figure 2. Histogram for K
Furthermore, based on the simulation multiplicative signal in Figure 2, the number of segments
K, vector n" and vector ™ is estimated by using Reversible Jump MCMC algorithm. Estimator

of K, n® and h'*) generated by the algorithm are
K =3. n® =(75,125,196), and h'® =(0.9,7.3,3.1.5.1)

The histogram for K is given in Figure 2. The signal segmentation generated by the algorithm is
presented in Figure 3.

Figure 4. Images of the Natural Scene Around the Imogiri Tomb, Yogyakarta Indonesia
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If we compare the true parameter value of K, n(K], h™® with the estimated value of parameter K,

n™ h" obtained by algorithm, then it appears that the algorithm can work well.

3.2. Real Multiplicative Signal

Now, algorithms are used to segment a line on the real image. The image used is 480 x
640 (Figure 4). The image taken using the Nokia 3220 mobile phone is a natural scene around
the Imogiri Tomb, Yogyakarta Indonesia.

The 198" column of the real image is presented in Figure 5 below. Then the 198" line
will be called a real signal.
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| \ I| ’I || n|
m I “U |J "IW‘ |
sol-
- P 00 150 200 tz'sn 300 350 400 450
Figure 5. The 198" column
wml
P
-
-l
™ -l
==l
=
.-
s i3 " - 3

Figure 6. Histogram for K
Once the Reversible Jump MCMC algorithm is implemented in the real signal, we get an
estimate for the value K, n® dan h'™ as follows :

K =3, n® = (145, 213, 394) and h® = (151. 217,107,139).
The histogram for K is given in Figure 6. The results of its segment are presented in Figure 7.
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Figure 7. Results of real multiplicative signal segmentation

4., Conclusion

The above description was a theoretical study of Reversible Jump MCMC algorithms
and their applications for segmenting signal models with multiplicative noise. From the
simulation results showed that Reversible Jump MCMC algorithm can segment the signal well.

As an algorithm implementation, real signal was drawn from columns in a natural scene
around the Imogiri Tomb,Yogyakarta Indonesia. If the Reversible Jump MCMC algorithm is
implemented on each row or column of the image it will generate segmentation of the image.

However, if the image dimension size is large enough, then the method of segmenting
the image by segmenting each column or each row in the image will take a longer time. One
way to solve this problem is by directly segmenting the image. The development of a Reversible
Jump MCMC algorithm to segment images directly will be an interesting research topic.
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