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Abstract

This paper investigates a mathematical model of the PI3K/AKT

pathway in acute myeloid leukemia (AML) in the absence of protein

dephosphorylation and AKT degradation. We perform a bifurcation

analysis by using the bifurcation method, which is based on the use of
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the center manifold theory. We give an explicit condition for                        
the existence of backward and forward bifurcations. Numerical 
simulations are presented to support analytical results and then 
discussed from both the mathematical and the medical perspectives. 

1. Introduction 
Phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB) also known             

as AKT is an important mediator in the regulation of hematopoiesis. 
Constitutive activation of PI3K/AKT signaling pathway has been observed 
in acute myeloid leukemia (AML), characterized by abnormal differentiated 
and uncontrolled proliferation of immature myeloid cells [1]. FMS-like 
tyrosine kinase (FLT3) mutation is the most frequent molecular abnormality 
in AML that causes constitutive activation of the PI3K/AKT pathway. AML 
is the most common myeloid leukemia in adults that have a poor clinical 
outcome, with only about 10% of patients survive. The treatment of                 
AML mainly based on standard chemotherapy with or without stem cell 
transplantation has changed little in the recent decade, among with the 
development of small molecules that target the disease on a molecular level 
[2-4]. Recently, the US Food and Drug Administration (FDA) approved 
midostaurin to treat FLT3 mutated AML [5]. Midostaurin is a small 
molecule inhibitor that targets FLT3 which is used in combination with 
chemotherapy. Currently, numerous agents are under development for the 
treatment of AML as do a novel combination with FLT3 inhibitors, such            
as quizartinib, gilteritinib, and selinexor [2, 5]. Therefore, it is important to 
understand the most important parameters in the PI3K/AKT pathway, which 
have significance in the AML diseases and should be intervened. 

Mathematical modeling in the PI3K/AKT pathway can help improve our 
understanding of molecular dynamics in this pathway. Motivated by several 
recent studies, numerous new agents are under development to treat AML 
patients. In previous work, we have developed a mathematical model that 
describes the interaction of the protein in the PI3K/AKT pathway on AML 
[6]. This modeling result suggested the potential protein in the PI3K/ AKT 
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pathway that should be targeted to AML therapy. In this paper, we propose a 
new model by ignoring the protein dephosphorylation and AKT degradation 
rate. In this model, we consider the fact that in AML, the mechanism of 
protein dephosphorylation does not proceed normally, and the degradation 
processes of AKT relatively slower than the AKT phosphorylation [7]. 
Furthermore, in this study, we will perform a qualitative analysis and 
indicate that the model undergoes a backward bifurcation by using the 
method introduced by Castillo-Chavez and Song in [8]. 

In a medical point of view, the occurrence of backward bifurcation plays 
an important role in disease control and eradication. In a compartment 
epidemic model, it has been widely accepted that the condition of basic 
reproduction number 0R  is an essential requirement for the elimination           
of diseases. If ,10 R  then the disease-free equilibrium is asymptotically 
stable and infection dies out, whereas if ,10 R  then the endemic 
equilibrium point is asymptotically stable and the infection persists. 
However, the phenomenon of backward bifurcation causes the 10 R  
condition not to be fully adequate as a condition for eradicating the disease. 
The backward bifurcation scenario involves a stable disease-free equilibrium 
coexists with a stable and unstable endemic equilibrium. Medically, the 
backward bifurcation at 10 R  makes treatment or control of diseases more 
difficult than that of the model which exhibits forward bifurcation. In the 
case of forward bifurcation, the infection or diseases usually do not persist 
whenever .10 R  Therefore, the occurrence of backward bifurcation has 
important implications in many infectious diseases. It has been observed           
in several recent studies, either for generic or specific diseases, see [9-14]. 
Bifurcation analysis in these studies was carried out based on the use of 
center manifold theory [8, 15]. 

Such as in epidemic modeling, in this paper, we aim to provide the 
bifurcation threshold and derive conditions in term of parameters of the 
system to ensuring the occurrence of backward or forward bifurcation. The 
paper is organized as follows. A model of PI3K/AKT pathway in acute 
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myeloid leukemia is formulated and analyzed in Section 2. In Section 3, we 
determine threshold values and derive sufficient conditions for the scenario 
of backward or forward bifurcation. In Section 4, we provide some 
numerical simulations to verify the theoretical results obtained in Section 3. 
We then make a conclusion and discussion of this study in Section 5. 

2. Model Formulation 
In this paper, we improved our previous model in [6] by adding 

assumption that FOXO3a as a transcriptional regulator always exists in a 
certain amount within the nucleus [16]. Then we consider the simplified 
model by ignoring the protein dephosphorylation and AKT degradation            
rate. This is due to the fact that in AML the mechanism of protein 
dephosphorylation does not proceed normally caused by the decrease in a 
level of phosphatase or the presence of phosphatase deletions. In addition, 
the phosphorylation processes in the activation of AKT occur relatively 
faster than the degradation processes. This condition leads us to assume that 
the degradation rate of AKT can be neglected. Therefore, we consider the 
following system of ODEs: 

,11501 xdbxkdt
dx   

,2222
221222
xK

xxkadt
dx

  

,332222
22123 xdxK

xxk
dt

dx   

    ,3434
2434444 





 xK
xxkmxpxdt
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  .553434
424345 xdxK

xxxk
dt

dx 
  (1) 
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The system (1) describes the interactions between PIP3, AKT, 

phosphorylated AKT (AKTp), FOXO3a and phosphorylated FOXO3a 
(FOXO3ap) in the PI3K/AKT pathway denoted by 4321 ,,, xxxx  and ,5x  
respectively. All the parameter values are positive constants, with the 
following interpretation: 0k  is the formation PIP3 by PI3K, b is the increase 
activation PIP3 by FOXO3ap, 2a  is the AKT production rate, 2k  and 4k  are 
the constant rates of AKT and FOXO3a phosphorylation, respectively, 2K  
and 4K  are the Michaelis constants of AKT and FOXO3a phosphorylation, 
respectively,  is the rest of FOXO3a in the nucleus, p is the FOXO3a 
production rate, m is the degradation rate of FOXO3a by 14-3-3 protein, 

31, dd  and 5d  are the degradation rates of PIP3, AKTp and FOXO3ap, 
respectively. Next, we want to determine the equilibrium point of the system 
(1). In addition, we note that in a healthy cell, there are no FOXO3a in             
the cytoplasm so that the AML-free equilibrium point indicates the zero 
concentration of FOXO3ap. Therefore, we find that the system (1) admits 
the AML-free equilibrium point 




  0,,,, 3
2

1220
122

1
00 d

a
dakk

daK
d
kE  (2) 

and the other equilibrium point 
 ,,,,, 543211   iiiiii xxxxxE  (3) 

where 
 

  ,3434531
42424

1
01 





i

iii xKddd
xxabk

d
kx  

 
      ,

4242423434531220

3434531222 
 


iii

ii xxakbkxKdddakk
xKdddaKx  

,3
23 d

ax i   



Y. A. Adi, L. Aryati, F. Adi-Kusumo and M. S. Hardianti 188 
 

 343453
424245 




i

iii xKdd
xxakx  (4) 

and 4,3,2,1,4  ix i  is a positive solution of the following equation: 
004124234344  cxcxcxcx  (5) 

with 

.,,, 3403413
4223 m

pKcKcmd
kacm

pc   (6) 

Now, we focus on the AML-free equilibrium point 0E  and investigate 
the occurrence of both backward and forward bifurcations. Note that the 
equilibrium point 0E  always exists whenever .01220  dakk  For stability 
of the equilibrium point ,0E  we introduce the threshold value : 

 
,

3343
224





Kd
akm

p  (7) 

and state the following theorem. 
Theorem 2.1. The AML-free equilibrium point 0E  is locally 

asymptotically stable if 1  and unstable if .1  
Proof. The eigenvalues of Jacobian matrix of system (1) at 0E  




  0,,,, 3
2

1220
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1
0 d

a
dakk

daK
d
k  are   ,2

1220
31220121 dKkk

dakkda   ,12 d  

,33 d   3343
2244 

 Kd
akmp  and .55 d  We have four 

eigenvalues that are always strictly negative. We can see that p4  

  ,3343
224


 Kd
akm  can be either positive or negative. We found that all 
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eigenvalues are negative if  3343
224


 Kd
akmp  or 1  and 0E  is 

locally asymptotically stable, and if ,1  then there is one positive 
eigenvalue, so that 0E  is unstable. This completes the proof. 

From (7), we find that 1  iff  3343
224


 
Kd

akmpp  and 0E  

is locally asymptotically stable if , pp  whereas it loses its stability if 
. pp  Furthermore, in the next section, we will perform that the system 

(1) can undergo the forward or backward bifurcation at . pp  
3. Bifurcation Analysis 

In this section, we will make use of the bifurcation method introduced         
in [8] to derive the sufficient conditions for both backward and forward 
bifurcation scenarios. We then claim the following theorem. 

Theorem 3.1. The system (1) at 1  exhibits: 
a. Backward bifurcation whenever: 

 
 








.02
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34324
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mKd
Kak

K
 (8) 

b. Forward bifurcation whenever: 
02 343  K  (9) 

or 

 
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
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Proof. From the last section, we find that 1  associated with 

  ,3343
224


 
Kd

akmpp  and eigenvalues of the Jacobian matrix at 

 pE ,0  as     ,2
1220

12201212201 dKkk
dakkdadakk   ,12 d  ,33 d  

04   and .55 d  
Obviously, 04   is a single zero eigenvalue and all other eigenvalues 

are real and negative. Thus, 0E  is a nonhyperbolic equilibrium point and 
system (1) can undergo a bifurcation at  3343

224


 
Kd

akmpp  (or 
equivalently at .)1  Now, we will determine the eigenvector associated 
with the zero eigenvalues .04   
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so that 

   
  .,,0,2,1 1224

33451
1220121220

22212
T

b
d

bak
Kdd

dakkdadakk
kKda 








w  (11) 



Backward Bifurcation in a Mathematical Model … 191 
It is easy to show that the left eigenvector of the matrix  pEJ ,0  satisfying 

1. wv  is given by 

  .0,,0,0,0 33451
224 





 Kdd

bakv  (12) 

Furthermore, we define the coefficients a and b: 

     
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Then considering the components of the right and left eigenvectors 03 w  
and ,05321  vvvv  it follows that 
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and 

.5
42

544
42

442
42

241
42

14 px
fwvpx

fwvpx
fwvpx

fwvb   

In view of (11), (12) and   ,334
2432444 





 K
xxakmpxf  we then 

get: 
   

  



 




 mKd
Kak

abk
Kdda 23343

34324224
33451 22  (13) 

and 
.1b  (14) 

The coefficient b is always positive so that, by applying Theorem 4 in 
[8], we may conclude that the system (1) exhibits a backward bifurcation if 

 
  02

23343
34324 

 mKd
Kak  and a forward bifurcation if  

 23343
34324 2




Kd
Kak  

.0 m  
Hence, for the existence of a backward or a forward bifurcation, we have 

the following conditions: if 02 343  K  and  
  ,02

23343
34324 

 mKd
Kak  

then the system (1) exhibits a backward bifurcation at ,1  whereas if: (i) 
02 343  K  or (ii) 02 343  K  and  

  ,02
23343

34324 
 mKd

Kak  then 
the system (1) exhibits a forward bifurcation at .1  This completes the 
proof. 

4. Numerical Simulations 
In this section, we provide a numerical simulation to verify the 

theoretical results obtained in the previous section. In the first scenario, we 
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consider the set of parameter values: 

,2.0,2.0,09.0,09.0,033.0,0083.0,01.0 3210  pdadbk  
.125.0,1.0,04.0,1.0,1,28.0 54422  dKkKkm  

With these parameter values, we have the AML-free equilibrium point 
 ,0,2.0,1,64998.0,3030303.00 E  and the condition (8) in Theorem 3.1           

is satisfied, that is ,0006.02 343  K  and  
  

 mKd
Kak
23343

34324 2  
.03125.0   If the equilibrium point 0E  is continued with respect to a 

parameter p, then the system (1) exhibits a backward bifurcation                              
at .233778.0 pp  The saddle-node bifurcation value is 2p  
0.209575955 (see Figure 1). Figure 1 shows that there is an equilibrium 
point 11E  which is stable besides AML-free equilibrium point 0E  when 

.1  This indicates that to eliminate the disease, it might not be sufficient 
to reduce  below 1. We can see from Figure 1 that to eliminate the              
disease, p must be below 0.2095759556, where at ,209575955.02 p  2  
0.8964750952. In the interval ,18964750952.0   we have three 
equilibrium points, that is an unstable equilibrium point ,12E  and stable 
equilibrium points 11E  and .0E  

In the second scenario, by choosing ,22 k  12.04 k  and ,2.04 K  
and keeping the other parameter values as before, we have 0E  
(0.3030303, 0.041761, 1, 0.2, 0) and the condition (9) of Theorem 3.1                   
is satisfied, that is .0008.02 343  K  In this scenario, forward 
bifurcation occurs at .3560000356.0 pp  Figure 2 shows that when 

3560000356.0p  or equivalent ,1  there is only one stable equilibrium 
point, that is AML-free equilibrium point .0E  Hence, to eliminate the AML 
disease or to prevent AML disease outbreaks, we can identify the value 
parameter p necessary to reduce  below 1. In this case, we also find a 
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saddle-node bifurcation at two points, which indicates the occurrence of             
an unusual phenomenon of forward bifurcation with hysteresis. The saddle-
node bifurcation values are 53608238069.01 p  and 43927675512.02 p  
(see Figure 2). Figure 2 shows that the system (1) exhibits a hysteresis                 
effect where two stable equilibria 11E  and 12E  coexist when 1  if 

.21 ppp    

 
Figure 1. Backward bifurcation at .233778.0 pp  

 
Figure 2. Forward bifurcation at .3560000356.0 pp  
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Figure 3. Forward bifurcation at .9665933277.1 pp  

As shown in Figure 2, if ,53608238069.03560000356.0  p  then 
there is only one stable equilibrium point 12E  which has low FOXO3ap 
concentration and if ,43927675512.0p  then there is only one stable 
equilibrium 11E  which has higher FOXO3a concentration. In the last 
scenario, we choose 15.04 K  keeping the other parameters as in the first 
scenario. With these parameter values, we have 000125.02 343  K  
and  

  ,02027146.02
23343

34324 
 mKd

Kak  so that the condition (10) in 
Theorem 3.1 is satisfied. The system (1) exhibits a forward bifurcation at 

771966659332.0 pp  (see Figure 3). 
As shown in Figure 3, before the bifurcation point, there is only one 

stable AML-free disease equilibrium point ,0E  and after the bifurcation 
point, there is one stable equilibrium point 11E  and one unstable AML-free 
disease equilibrium .0E  Hence, it is possible to conclude that, to eradicate 
the AML disease, the value of p should be below the bifurcation point 

.771966659332.0 pp  
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5. Discussion and Conclusion 

In this paper, we considered a mathematical model of the PI3K/AKT 
pathway in acute myeloid leukemia. We found the threshold value , so that 
the AML-free equilibrium point is stable when 1  and unstable when 

.1  In the previous section, we performed the conditions such that 
system (1) undergoes a backward or forward bifurcation at .1  These 
conditions are depicted in (8)-(10). 

Our analysis suggests that FOXO3a plays an important role in AML 
disease and may be used as a gauge in distinguishing between the 
occurrences of backward or forward bifurcation. Observe that the Michaelis 
constant of AKT phosphorylation 4K  is the concentration of FOXO3a             
for half-maximal phosphorylation FOXO3a by AKT and  is the rest of 
FOXO3a in the nucleus. According to Theorem 3.1, forward bifurcation 
occurs if 343 2K  0  or .02 43

1
 K  This forward bifurcation results 

in the existence of AML equilibrium point that is stable after passing the 
bifurcation point. Furthermore, AML treatment for this case can be done by 
reducing the rate of FOXO3a production, so that  below 1. However, in this 
case, a hysteresis phenomenon occurs. At the time of the occurrence of this 
phenomenon, medical steps cannot be determined for AML treatment 
because when hysteresis occurs, the conditions of proteins are more difficult 
to observe. 

If ,02 343  K  from Theorem 3.1, the system (1) can undergo 
backward and forward bifurcations. This occurrence depends on 

 
  mKd

Kak 


23343
34324 2  which can medically interpret as a difference 

between the component of phosphorylated FOXO3a that translocates from 
the nucleus to the cytoplasm and the FOXO3a degradation rate. The 
backward bifurcation occurs if the factors or components cause FOXO3a 
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translocation to the cytoplasm greater than the FOXO3a degradation rate, 
whereas, if the FOXO3a degradation rate is larger than the component that 
causes translocation of FOXO3a to the cytoplasm, there will be a forward 
bifurcation. Based on the bifurcation diagram, in this case, the hysteresis 
phenomenon does not appear, so from the medical point of view, the AML 
treatment strategy is easier to determine. One component that causes 
translocation FOXO3a from the nucleus to the cytoplasm in the expression            
is the concentration of AKT phosphorylation, which is expressed as .3

2d
a  

Therefore, inhibiting the concentration of AKT phosphorylation can also be 
done to reduce the translocation of FOXO3a from the nucleus to the 
cytoplasm so that the occurrence of backward bifurcation can be avoided. 
However, further research is needed. 

Finally, these results suggest that, in AML treatment, the targeted 
therapy can be done by targeting the FOXO3a. This is also in accordance 
with Zhang et al. [4], which states that leukemia cells depend on the release 
of protein, in this case, FOXO3a from the nucleus through phosphorylation 
and the return of protein to the nucleus in the presence of normal function of 
the tumor suppressor. Therefore, targeting FOXO3a can be combined with 
target therapy on FLT3. The combination of target therapy is expected to 
restore normal function PI3K/AKT pathway so that the development of 
AML cells can be controlled. 
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