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Abstract 
 

The objective of the present study was to formulate an effective mathematical model of heart rate adolescents, in religious environment 

with similar activities like mindfulness. Based on an existing model, a system of two coupled differential equations which give the rate of 

change of heart rate. The modifications introduced to the existing model are justified and discussed. The environment, daily activities, as 

well as mood are also taken into account. Application of the model provides information regarding the individual’s heart beat and is able 

to detect next beat from the last two beats found in the data. To demonstrate examples of successful numerical fit of the model, heart rate 

data sets of two individuals have been selected and numerical optimization was implemented. The proposed model can serve as a powerful 

tool for a complete means of heart rate analysis, not only in daily activities, but also in the areas of cardiovascular health.  
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1. Introduction 

The heart rate is one of the 'vital signs,' or the significant gauges of health in the human body. It measures 

the amount of times per minute that the heart contracts or pulses. The pace of the heartbeat varies as a 

result of physical activity, threats to safety, and emotional responses [1] Even if individual is not an 

athlete, knowledge about individual’s heart rate can help him monitor his fitness level — and it might 

even help him spot developing health problems [2]influenced by emotion like freez ….disgust….an-

gry…. hostility can ruin your heart rate. 

Most psychophysiological disorders as a consequence of stressful situations depend on triggered physi-

ological responses and activated organs. Physiological activity causes wear and tear in the organs con-

cerned (fatigue). The higher the frequency, intensity and duration of the response triggered by a stressful 

situation, the greater the likelihood of interference. Individuals who have strategies to deal with stressful 

situations will be able to cope with stress and minimize the possibility of the appearance of psychophys-

iological disorders. Response to stress is not a bad thing, because it facilitates access to more resources 

to overcome various situations. But if resources are often spent in large quantities, especially if sustain-

able, this involves significant debilitation for individuals. 

Stress can produce negative, anxiety, anger, fear, sadness or other emotional reactions. Anxiety is an 

emotion that causes a fear reaction to anticipate a danger or threat, accompanied by activation of the 

autonomic nervous system. responses to fears of unknown or uncertain things are generally found in 

stressful situations. Therefore stress that occurs repeatedly has a negative effect on health. There is a lot 

of evidence that shows the influence of stress on health, including cardiovascular problems, infections, 

or exacerbations of existing problems (when stressed the individual's weak points are greatly affected, 

such as eczema, back pain associated with tension, migraines, colds, etc.)[3] 
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Evidence supporting hypothesis that humor, gratitude and savoring may all share an underlying common 

characteristic that could drive greater positive cognitive appraisals. Savoring, in turn, is an important 

strategy for maintaining and amplifying the experience of positive emotions (e.g., happiness)[4] 

Understanding human heart rate is important matter interpretation and analysis is fundamental not only 

to our knowledge of cardiovascular health and rehabilitation, but also for fitness. 

Data Set. It should be noted here that raw heart rate data, recorded on a beat-to-beat basis are necessary 

for the development of a model: a model which is fit to averaged data is not necessarily a good model 

of the raw un-averaged data. It is widely accepted that beat-to-beat recordings exhibit spontaneous fluc-

tuations which may have biological significance, as non-linear systems such as the one that governs the 

circulatory function can produce signals which look like random noise but are in fact not stochastic. 

Therefore part of what is attributed to noise can contain inherent features and vital information 

Growing evidence shows that cardiovascular functions are related to intrinsic circadian clocks. The di-

urnal changes in blood pressure and heart rate are well known circadian rhythms. These rhythms pro-

duce changes in variables such as body temperature, various hormone levels, and the sleep–wake cy-

cle.  

This pattern of activities in the morning or evening is associated with biological signs at the respective 

time of day [5]. Phase estimation of the human circadian rhythm is a topic that has been explored using 

various modeling approaches. The current models range from physiological to mathematical, all at-

tempting to estimate the circadian phase from different physiological or behavioral signals. Here, we 

have focused on estimation of the circadian phase from unobtrusively collected signals in ambulatory 

conditions using a statistically trained autoregressive moving average with exogenous inputs (AR-

MAX) model. Special attention has been given to the evaluation of heart rate interbeat intervals (RR 

intervals) as a potential circadian phase predictor [6]. 

 

In this framework, Jessica, Margaret, Rasmussen, Smiley and Hellemann documented bidirectional as-

sociations between parental over control (OC) and children’s anxiety; over control OC may place chil-

dren at risk for anxiety and also may occur in response to children’s requests for help. for higher anxiety 

mothers themselves, engaging in OC will be associated with reductions in physiological reactivity (de-

creases in heart rate) [7]. 

 Mantantzis, Maylor, and Schlaghecken. examined whether glucose can help older adults to exert more 

effort under high difficulty conditions. Fifty-three young and 58 older adults consumed a glucose or 

glucose produced increased heart rate (indicating higher task engagement) [8]. Tracy, Gerardo, and 

Koenig found that Sex differences in resting Heart Rate Variability (HRV) exists such that women typ-

ically exhibit higher resting heart rate variability (HRV) than men [9].  

Sassenrath, Wagner, Keller, and Sassenberg found what feeling with another person findings suggest 
that coping-related appraisal processes influence how the empathizing individual reacts in terms of car-
diovascular reactivity. This, in turn, provides novel insights regarding the affective-motivational out-
comes of empathy [10]. However, research has not yet considered how individual differences in both 
emotion regulation abilities, as indexed by resting high-frequency heart rate variability (HF-HRV), and 
rumination, The following investigation examined this relationship in a sample of 101 college-aged stu-
dents (45 AAs and 56 Caucasian Americans). Resting HF-HRV was assessed via electrocardiogram 
during a 5-minute-resting period. [11]. Wendt, Weymar, Junge, Hamm, and Lischke examined during 
social interactions, Memory formation of salient stimuli like untrustworthy faces may be modulated by 
the interplay between the autonomic and central nervous system, which can be indexed by changes in 
vagally mediated heart rate variability (HRV). To test this assumption, they investigated whether differ-
ences in heart rate variability (HRV) would be associated with differences in memory formation of un-
trustworthy faces in a sample of healthy participants. Across participants, increased memory accuracy 
for untrustworthy faces was associated with increased heart rate variability (HRV)  [12].  

Nasso, Vanderhasselt, Demeyer, and Raedt setting goal of their study was twofold: first, the authors 
compared the influence of adaptive versus maladaptive anticipatory emotion regulation (ER) on the au-
tonomic system during anticipation of, confrontation with, and recovery from a stressor. Trait rumination 
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levels moderated the effect of anticipatory ER strategy on heart rate variability (HRV) during the stressor 
phase. high ruminators demonstrated lower heart rate variability (HRV) in that same condition. [13].  

Katharina Rombold-Bruehl, Katja Wingenfeld concluded thatsome people develop symptoms of post-
traumatic stress disorder (PTSD) after having experienced a traumatic event, Least absolute shrinkage 
and selection operator regression revealed salivary cortisol, salivary -amylase activity, heart rate varia-
bility (HRV), subjectively rated distress, fear, and (on trend level) dissociation during the trauma film 
as relevant predictors of intrusive memories. A heightened biological stress response in young women 
is associated with more intrusive memories the first days after experiencing a trauma analogue[14].  

Heart Rate Reveals the Difference Between Disgust and Anger in the Domain of Morality Konishi and 
Kochi investigated the potential of distinguishing disgust from anger by changes in heart rate (HR) in 
the domain of morality. they measured participants’ HR while they read a series of moral violation sce-
narios. The results of three studies (Pilot Study 2, Study 1, and Study 2) demonstrated an association 
between decreased HR and disgust in response to moral violations. Anger tended to be associated with 
increased HR, but this association occasionally failed to reach statistical significance. Study 2 also re-
vealed that anger provoked both direct and indirect punishment, whereas disgust provoked indirect pun-
ishment and distancing from the transgressor[15]. 

There are many benefits from mathematical modeling for biopsychology. For example The benefit of 

mathematics in biopsychology has led researchers that may be able to reveal the architecture of the 

human genome. And how DNA is organized and accessed. in Japan to a formula that can describe the 

movement of DNA inside living human cells. In this research an autoregressive model will be used. This 

is a time series model that is often used to model data in different areas of biopsychology.  The auto-

regressive model (AR) is a flexible model by setting the order and model parameters and in psychology 

usually used for longitudinal studies [16][17]. Other study revealed bidirectional influence Between Af-

rican American Mothers’ and Children’s Racial Centrality From Elementary Through High School [18]. 

For example in diagnosing Parkinson’s disease [19] eye tremor movement that was extracted from the 

recorde eye position signal. Kisi [20] used the AR model to predict stream flow. Other researchers  Zhao, 

Morgan, and Davis [21] used the AR model to classify the output from gas chromatography. Lee and 

Chon [22] used the AR model to model the extraction of respiratory rate. Figueiredo and Figueiras [23] 

used the AR model to detect damage. Kim, Faloutsos, and Yang [24] used the AR model to predict EEG 

data related to epilepsy. Study in brain science found the problem with playing games among driver 

using AR model Jayawardhana et al. [14] used the AR model to identify structural damage. Zhang, Qi, 

and Li [9] used the AR modelto simulate dynamic light scattering (DLS) signals. Zhao et al. [10] used 

the AR model to predict channels in wireless networks. Dai, Liu, and Zhang [11] applied the AR model 

to the preearthquake ionospheric anomaly analysis. Yuewen et al. [12] used the AR model to predict the 

engine's exhaust gas main engine 

temperature. The AR model can predict the changing trend of smoke temperature. Song [13] used the 

AR model to identify the 

frequency of random signals. Kaewwit, Lursinsap, and Sophatsathit [14] used the AR model to deter-

mine the high accuracy of biometric electroencephalography (EEG). Padmavathi and 

A study on the optimum order of autoregressive models for heart rate variability (HRV) [25] AR-based 

Method for ECG Classification and Patient Recognition The electrocardiogram (ECG) is the recording 

of heart activity obtained by measuring the signals from electrical contacts placed on the skin of the 

patient. By analyzing ECG, it is possible to detect the rate and consistency of heartbeats and identify 

possible irregularities in heart operation. This paper describes a set of techniques employed to pre-pro-

cess the ECG signals and extract a set of features – autoregressive (AR) signal parameters used to char-

acterise ECG signal. Extracted parameters are in this work used to accomplish two tasks. Firstly, AR 

features belonging to each ECG signal are classified in groups corresponding to three different heart 

conditions – normal, arrhythmia and ventricular arrhythmia. Obtained classification results indicate ac-

curate, zero-error classification of patients according to their heart condition using the proposed method. 

Sets of extracted AR coefficients are then extended by adding an additional parameter – power of AR 

modelling error and a suitability of developed technique for individual patient identification is investi-

gated [26]. Burr and Cowan. Autoregressive time series model-based spectral estimates of heart period 

sequences can provide a parsimonious and visually attractive representation of the dynamics of interbeat 
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intervals. While a corollary to Weld’s decompo- sition theorem implies that the discrete Fourier peri-

odogram spectral estimate and the autoregressive spectral estimate converge asymptotically, there are 

practical differences between the two approaches when applied to short blocks of data. Autoregressive 

spectra can achieve good frequency resolution and excellent statistical stability on short segments of 

heart period data of sinus origin. How- ever, the order of the autoregressive model (number of free 

parameters to be estimated) must be explicitly chosen, a decision that influences the trade-off of fre-

quency resolution with statistical stability. Akaike’s Information Criterion (AIC), an information-theo-

retic rule for picking the optimum order, is sensitive to the aggregate amount of data in the analysis. 

Thus, the best model order for estimating the spectrum of a 4-minute segment of data will generally be 

lower than the best order for estimating an hourly spectrum based on averaging I5 4- minute spectra. A 

major advantage of the autoregressive model approach to spectral analysis is the ease with which it can 

be extended to handle messy data frequently seen in heart rate variability (HRV) studies. A number of 

autoregressive- based robust-resistant techniques are available for the analysis of heart period sequences 

that contain a high volume of nonsinus and other unusual beats intervals. A theoretically satisfying 

framework is also available for spectral analysis of unevenly sampled data and missing data [27]. De-

tection of Atrial Fibrillation using Autoregressive modeling  

  

  

Padmavathi and Ramakrishna. Atrial fibrillation (AF) is the common arrhythmia that causes death in the 

adults. We measured AR coefficients using Burgs method for each 15 second segment of ECG. These 

features are classified using the different statistical classifiers: kernel SVM and KNN classifier. The 

performance of the algorithm was evaluated on signals from MIT-BIH Atrial Fibrillation Database. The 

effect of AR model order and data length was tested on the classification results. This method shows 

better results can be used for practical use in the clinics [28]. Some researchers studied the feasibility of 

the improved prediction of heart motion. they propose a nonlinear time varying multivariate vector 

utoregre sive (MVAR) model based adaptive prediction method. In this model, the significant correla-

tion between ECG and heart motion enables the improvement of the predic-

tion of sharp changes in heart motion and the approximation of the motion with sufficient de-

tail.  Last, they [29]. Ge, Hou, and Xiang offers a formulation to many problems more realistic than that 

of classical hypothesis testing or of criteria based on estimation theory (e.g., AIC) in autoregressive 

model. The experimenter is also allowed to incorporate any a priori knowledge of the true order (e.g., 

lower bound as well as upper bound) [30]. Study of Feature Extraction Based on Autoregressive Mod-

eling in ECG Automatic Diagnosis. Ding-Fei, Bei-Ping, and Xin-Jian. This article explores the ability 

of multivariate autoregressive model (MAR) and scalar AR model to extract the features from two-lead 

electrocardiogram signals in order to classify certain cardiac arrhythmias. The classification performance 

of four different ECG feature sets based on the model coefficients are shown. The data in the analysis 

including normal sinus rhythm, atria premature contraction, premature ventricular contraction, ventric-

ular tachycardia, ventricular fibrillation and super ventricular tachycardia is obtained from the MIT-BIH 

database. The classification is performed using a quadratic discriminant function. The results show the 

MAR coefficients produce the best results among the four ECG representations and the MAR modeling 

is a useful classification and diagnosis tool[31]. Takalo, Hytti, and Ihalainen explained the theoretical 

basis of autoregressive (AR) modelling in spectral analysis is explained in simple terms Spectral analysis 

gives information about the frequency content and sources of variation in a time series. The AR method 

is an alternative to discrete Fourier transform, and the method of choice for high-resolution spectral 

estimation of a short time series. In biomedical engineering, AR modelling is used especially in the 

spectral analysis of heart rate variability (HRV) and electroencephalogram tracings. In AR modelling, 

each value of a time series is regressed on its past values. The number of past values used is called the 

model order. An AR model or process may be used in either process synthesis or process analysis, each 

of which can be regarded as a filter. The AR analysis filter divides the time series into two additive 

components, the predictable time series and the prediction error sequence. When the prediction error 

sequence has been separated from the modelled time series, the AR model can be inverted, and the 

prediction or sequence can be regarded as an input and the measured time series as an output to the AR 

synthesis filter. When a time series passes through a filter, its amplitudes of frequencies are rescaled. 
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The properties of the AR synthesis filter are used to determine the amplitude and frequency of the dif-

ferent components of a time series. Heart rate variability (HRV) data are here used to illustrate the 

method of AR spectral analysis. Some basic definitions of discrete-time signals, necessary for under-

standing of the content of the paper, are also presented [32]. However the heart beat research in South 

East Asia were very rare. Most research conducted in western countries. In this research we purpose the 

mathematical modelling for adolescents who live in collectivistic culture, and different emotional re-

sponse with western countries. 

 

2. Method 

in this research the heart rate of eight adolescents male and female were recorded, living at rent room or 

house on self-selected sleep-wake schedules. Individual differences in human biological rhythms and 

diurnal preference (morningness-eveningness) are often based on self-report scales. All subjects were 

adolescents Indonesian muslims. Faithful Muslims usually has diurnal preference in early morning.  the 

daily mood, physical activities, and waking hours were recorded too. Several subjects filled their 

questionaire faster than others.  

The fast and bright subject usually have morningness preference. Indonesia as muslims country, has 

different kind of muslim population. Some of them wake up early for morning prayers, and some don’t. 

Some people just say that they were muslim, but they don’t understand their religious teaching. So they 

don’t practice daily prayer. The adolescents muslims that practice five times prayers were recruited in 

this research.The reversible jump MCMC algorithm is used to identify the AR model order and the AR 

model parameter for the simulated data. 

 

3. Results and Discussion 

Studies on heart or heart rate in international publications mostly in western world with its different 

races and cultures [33][34]. This study was different with what Liang, Meng, and Yu used multivariate 

autoregressive model. They used Multivariate Autoregressive Model Based Heart Motion Prediction 

Approach for beating heart during surgery. Then, they investigate the relationship between ECG sig-

nal and beating heart motion using Granger Causality Analysis, which describes 

A simulation study is conducted to find out whether the performance of the reversible jump MCMC 

algorithm worked well or not. To know the performance of reversible jump MCMC algorithm simulation 

study is conducted. Figure 1 is an AR heart rate data made according to the equation (1) with n = 100. 

 

Fig. 1: Heart Rate of the adolescent girl 

The reversible jump MCMC algorithm is implemented in this heart rate of the adolescent girl who wake 

up in early morning regularly and does household activities to estimate the AR model order, AR model 

coefficients, and error variance. Figure 2 shows the histogram of the AR model order 
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Fig. 2: Histogram of the AR Order of adolescent girl 

Figure 2 shows that the mode of AR order is reached in order 2. This means that the estimator for AR 

order is p = 2. After it is determined that the most suitable AR model is AR (2) then the estimator for 

the AR coefficient and corresponding error variance is determined. 

Heart rate mathematical model is given following equation (1) 

 

𝑥𝑡 = 0.2 𝑥𝑡−1 + 0.78 𝑥𝑡−2                                                      (1) 

 

 

Data I: The pulse of girls with activities at home 
Figure 1 depicts the human pulse. The number of pulses per minute is recorded for 100 minutes. For 

data I, the histogram shows that the maximum order is reached in number 2. So the estimation for the 
autoregressive model order is 2. While the estimated coefficients are 0.2 and 0.78. So that the following 
equation is obtained 

𝑥𝑡 = 0.2 𝑥𝑡−1 + 0.78 𝑥𝑡−2 
These mathematical equations can be used for several purposes. 
First, the equation can be used to predict the next pulse. For example, the 101st pulse prediction can 

be calculated by the following equation 

𝑥101 = 0.2 𝑥100 + 0.78 𝑥99 

Because 𝑥99 = 80 dan 𝑥100 = 80 the prediction of the 101st pulse is  
𝑥101 = 0.2(80) + 0.78 (80) = 78 

 

Figures 

 

Fig. 3: Heart rate adolescent boy 

The reversible jump MCMC algorithm is implemented in this heart rate of the adolescent boy who wake 

up in early morning and late morning irregularly and does outdoor activities to estimate the AR model 

order, AR model coefficients, and error variance. Figure 4 shows the histogram of the AR model order 
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Fig. 4: Histogram of the AR Order of adolescent boy 

Figure 4 shows that the mode of AR order is reached in order 3. This means that the estimator for AR 

order is p = 2. After it is determined that the most suitable AR model is AR (2) then the estimator for 

the AR coefficient and corresponding error variance is determined 

Heart rate mathematical model is given following equation 

𝑥𝑡 = 0.34 𝑥𝑡−1 + 0.64 𝑥𝑡−2                                   (2) 

 

The equation (1) and (2) showed that there is differrent heart rate pattern between the girl and boy. The 

girl wake up early in the morning (chronotype preference: early morning)  and doing her activities at 

home. While the boy has an outdoor activities. The similar AR Order 

Figure 2 and Figure 4 show that the mode of AR order are reached in order 2. This means that the 

estimator for AR order is p = 2. There is something similar for both subject. Either they are both human 

or something else. The natural light seems influence their heart beat. From the eight subject, they have 

almost different pattern in their mathematical models. The active subjects in daily morning prayer 

(praying on time) have better record. Daily mood also affects the subjects’ heart beat. 

From our data, we found that the heart rate of an adolescent vary according to their moods and activities. 

One of adolescent felt dizzy after eating with normal heart rate while in other time he felt comfortable. 

The possible explanation was the overeating will cause dizziness. Before and after prayer showed low 

heart beat and high one. During comfortable conditions the adolescent score different heart rate depend 

on their activities. 

 

Fry (1994) points out that relaxing laughter gives rise to a significant increase in heart rate, so that for 

normal hearts it brings diverse benefits for the heart muscle, similar to those obtained from any aerobic 

exercise[35]. 

The mechanism of the influence of humor on physical health, explained by Martin (2001) as follows 

(each related to various types of humor): 

- Laughter can train and relax muscles, improve breathing, stimulate circulation, increase endorphins 

production, reduce stress related hormones and enhance the immune system. 

- Humor and laughter can encourage positive emotional states, which will have beneficial effects on 

health, such as increasing tolerance to pain, enhancing the immune system and avoiding the conse-

quences of negative emotions at the cardiovascular level. According to this model, laughter is not im-

portant to get health benefits, because humor induces a positive mood with or without laughter. 

- Humor can be beneficial to health indirectly by moderating the adverse effects of stress on health. The 

experience of stress in a person's daily life can damage health, for example by suppressing the immune 

system and increasing the risk of infectious diseases and heart disease. According to this model, the 

cognitive-perceptual component is more important than just laughter, and the ability to see the funny 

side in bad times[36]. 
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4. Conclusion  

The conclusion is that the order two see figure 3 showed there are similar patterns. It showed histogram 

that placed on number two. From this finding researcher can predict that the amount of the next beat can 

be predicted from two numbers before the end of this number the last number. The research comparison 

should be conducted. 

 
This study has limitations, the most important of which is the accuracy of data about positive and 
negative affect experiences that underlie the mood of the subject. Future studies may be included in the 
process of measuring positive and negative effects of research subjects using the Positive And Negative 
Affect Scale (PANAS; Watson, Clark, & Tellegen, 1988)[4] 
The PANAS is composed of 20 items and yields separate scores for positive and negative affect. Exam-

ples of positive items include “interested,” “strong,” and “enthusiastic.” Negative items include “dis-

tressed,” “upset,” and “guilty.” Each item is rated on a 5-point scale, as experienced in the present mo-

ment, with a range from 1 (very slightly or not at all) to 5 (extremely). The PANAS is a well-validated, 

commonly used measure of both positive and negative affect[4]. 

 

Acknowledgement 

We would like to thank to University of Ahmad Dahlan, Indonesia who has provided a grant to present 

this paper at the 5th international conference on the application of science and mathematics in Malaysia. 

References  

[1] M. Daly, L. Delaney, P. P. Doran, C. Harmon, and M. MacLachlan, “Naturalistic Monitoring of 

the Affect-Heart Rate Relationship: A Day Reconstruction Study,” Heal. Psychol., vol. 29, no. 

2, pp. 186–195, 2010. 

[2] C. A. F. Wascher, I. B. R. Scheiber, A. Braun, and K. Kotrschal, “Heart Rate Responses to 

Induced Challenge Situations in Greylag Geese (Anser anser),” J. Comp. Psychol., vol. 125, no. 

1, pp. 116–119, 2011. 

[3] G. G. Colom, C. T. Alcover, C. Sánchez-Curto, and J. Zárate-Osuna, “Study of The Effect of 

Positive Humour as A Variable that Reduces Stress: Relationship of Humour with Personality 

and Performance Variables,” Psychol. Spain, vol. 15, no. 1, pp. 9–21, 2011. 

[4] N. Maiolino and N. Kuiper, “Examining the impact of a brief humor exercise on psychological 

well-being.,” Transl. Issues Psychol. Sci., vol. 2, no. 1, pp. 4–13, 2016. 

[5] A. A. Lipnevich, M. Credè, E. Hahn, F. M. Spinath, U. Saarlandes, and R. D. Roberts, “How 

Distinctive Are Morningness and Eveningness From the Big Five Factors of Personality ? A 

Meta-Analytic Investigation,” vol. 112, no. 3, pp. 491–509, 2017. 

[6] E. A. Gil, X. L. Aubert, E. I. S. Møst, and D. G. M. Beersma, “Human circadian phase 

estimation from signals collected in ambulatory conditions using an autoregressive model,” J. 

Biol. Rhythms, vol. 28, no. 2, pp. 152–163, 2013. 

[7] J. L. Borelli et al., “Children ’ s and Mothers ’ Cardiovascular Reactivity to a Standardized 

Overcontrol,” vol. 18, no. 3, pp. 369–385, 2017. 

[8] K. Mantantzis, E. A. Maylor, and F. Schlaghecken, “Gain without pain: Glucose promotes 

cognitive engagement and protects positive affect in older adults,” Psychol. Aging, vol. 33, no. 

5, pp. 789–797, 2018. 



Mathematical Model of The Heart Rate 9 

 

[9] T. Rahman et al., “Sex moderates the relationship between resting heart rate variability and self-

reported difficulties in emotion regulation.,” Emotion, 2018. 

[10] C. Sassenrath, M. Wagner, J. Keller, and K. Sassenberg, “It’s a Challenge! Empathizing With 

Sad but Not With Angry Individuals Results in Cardiovascular Reactivity Consistent With a 

Challenge Motivational State,” Emotion, 2018. 

[11] J. F. Thayer et al., “Rumination moderates the association between resting high-frequency heart 

rate variability and perceived ethnic discrimination,” J. Psychophysiol., vol. 33, no. 1, pp. 13–

21, 2017. 

[12] J. Wendt, M. Weymar, M. Junge, A. O. Hamm, and A. Lischke, “Heartfelt memories: Cardiac 

vagal tone correlates with increased memory for untrustworthy faces,” Emotion, vol. 19, no. 1, 

pp. 178–182, 2019. 

[13] S. Nasso, M. A. Vanderhasselt, I. Demeyer, and R. De Raedt, “Autonomic Regulation in 

Response to Stress: The Influence of Anticipatory Emotion Regulation Strategies and Trait 

Rumination,” Emotion, vol. 19, no. 3, pp. 443–454, 2019. 

[14] K. Schultebraucks, F. Rombold-Bruehl, K. Wingenfeld, J. Hellmann-Regen, C. Otte, and S. 

Roepke, “Heightened biological stress response during exposure to a trauma film predicts an 

increase in intrusive memories.,” J. Abnorm. Psychol., 2019. 

[15] N. Konishi, T. Himichi, and Y. Ohtsubo, “Evolutionary Behavioral Sciences Heart Rate Reveals 

the Difference Between Disgust and Heart Rate Reveals the Difference Between Disgust and 

Anger in,” 2019. 

[16] T. C. Brown, M. D. Fry, and E. W. G. Moore, “A Motivational Climate Intervention and 

Exercise-Related Outcomes : A Longitudinal Perspective,” vol. 3, no. 4, pp. 337–353, 2017. 

[17] J. Huang, “Bayesian Dynamic Mediation Analysis,” vol. 22, no. 4, pp. 667–686, 2017. 

[18] A. J. Hoffman, B. Kurtz-costes, S. J. Rowley, and E. A. Adams, “Bidirectional Influence 

Between African American Mothers ’ and Children ’ s Racial Centrality From Elementary 

Through High School,” vol. 53, no. 6, pp. 1130–1141, 2017. 

[19] K. Okada, S. Hando, M. Teranishi, Y. Matsumoto, and I. Fukumoto, “Translated paper Analysis 

of pathological tremors using the autoregression,” vol. 11, no. 3, pp. 221–235, 2001. 

[20] O. Kisi, “Daily River Flow Forecasting Using Artificial Neural Networks and Auto-Regressive 

Models,” vol. 29, pp. 9–20, 2005. 

[21] W. Zhao, J. T. Morgan, and C. E. Davis, “Gas Chromatography Data Classification Based on 

Complex Coefficients of an Autoregressive Model,” J. Sensors, vol. 2008, pp. 1–8, 2008. 

[22] J. Lee and K. H. Chon, “Respiratory rate extraction via an autoregressive model using the 

optimal parameter search criterion,” Ann. Biomed. Eng., vol. 38, no. 10, pp. 3218–3225, 2010. 

[23] E. Figueiredo, J. Figueiras, G. Park, C. R. Farrar, and K. Worden, “Influence of the 

autoregressive model order on damage detection,” Comput. Civ. Infrastruct. Eng., vol. 26, no. 3, 

pp. 225–238, 2011. 

[24] S. Kim, C. Faloutsos, and H. Yang, “Coercively Adjusted Auto Regression Model for 

Forecasting in Epilepsy EEG,” vol. 2013, 2013. 



10 Mathematical Model of The Heart Rate 

 

[25] X. Chai, B. Wang, Z. Zhang, and W. Wang, “Study on the Optimum Order of Autoregressive 

Models for Heart Rate Variability Analysis,” Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, vol. 

32, no. 5, pp. 958–964, 2015. 

[26] “AR-based Method for ECG Classification and Patient Recognition,” Int. J. Biometric 

Bioinforma., no. 7, pp. 74–92, 2013. 

[27] R. L. Burr and M. J. Cowan, “Autoregressive spectral models of heart rate variability. Practical 

issues,” J. Electrocardiol., vol. 25, no. SUPPL., pp. 224–233, 1992. 

[28] “Detection of atrial fibrillation using autoregressive modeling,” Int. J. Electr. Comput. Eng., 

vol. 5, no. 1, pp. 64–70, 2015. 

[29] F. Liang, X. Meng, and Y. Yu, “Multivariate autoregressive model based heart motion 

prediction approach for beating heart surgery,” Int. J. Adv. Robot. Syst., vol. 10, pp. 1–11, 2013. 

[30] Q. P. Duong, “on the Choice of the Order of Autoregressive Models: a Ranking and Selection 

Approach,” J. Time Ser. Anal., vol. 5, no. 3, pp. 145–157, 1984. 

[31] D.-F. GE, B.-P. HOU, and X.-J. XIANG, “Study of Feature Extraction Based on Autoregressive 

Modeling in EGG Automatic Diagnosis,” Acta Autom. Sin., vol. 33, no. 5, pp. 462–466, 2014. 

[32] R. Takalo, H. Hytti, and H. Ihalainen, “Tutorial on univariate autoregressive spectral analysis,” 

J. Clin. Monit. Comput., vol. 19, no. 6, pp. 401–410, 2005. 

[33] J. F. Thayer, L. K. Hill, D. P. Williams, D. L. Gray, A. S. Richmond, and L. S. Hoggard, 

“Examining the association between perceived discrimination and heart rate variability in 

African Americans.,” Cult. Divers. Ethn. Minor. Psychol., vol. 23, no. 1, pp. 5–14, 2017. 

[34] T. Chen et al., “Different Patterns of Heart Rate Variability During Acute Withdrawal in 

Alcohol Dependent Patients With and Without Comorbid Anxiety and / or Depression,” vol. 29, 

no. 3, pp. 87–98, 2015. 

[35] W. Fry, “The biology of humor,” Int. J. Humor Res., vol. 7, pp. 115–116, 1994. 

[36] R. A. Martin, “Humor, laughter, and physical health: Methodological issues and research 

findings.,” Psychol. Bull., vol. 127, no. 4, pp. 504–519, 2001. 

 


