

2-LINEAR OPERATORS ON 2-MODULAR SPACES

Burhanudin Arif Nurnugroho¹, Supama^{2,*} and Atok Zulijanto³

¹Department of Mathematical Education Ahmad Dahlan University Yogyakarta, Indonesia e-mail: burhanarifmath@gmail.com

^{1,2,3}Department of Mathematics Universitas Gadjah Mada Yogyakarta 55281, Indonesia e-mail: supama@ugm.ac.id atokzulijanto@ugm.ac.id

Abstract

In this paper, we observe some topological properties of 2-modular spaces. Further, we introduce and characterize a 2-p-bounded 2-linear operator from a 2-modular space into a normed space as well.

1. Introduction and Preliminaries

A modular space has important roles and applications in many areas, such as engineering, physics, economics, social sciences, etc. Therefore, it gains a lot of attention of many researchers from many fields. A concept of

*Corresponding author

Received: July 7, 2017; Revised: July 22, 2017; Accepted: October 2, 2017

²⁰¹⁰ Mathematics Subject Classification: 46A80, 47Axx.

Keywords and phrases: 2-norm, 2-modular, 2-linear operator.

Communicated by Choonkil Park; Editor: International Journal of Functional Analysis, Operator Theory and Applications: Published by Pushpa Publishing House, Allahabad, India.

modular spaces was firstly initiated by Nakano in 1950 (see [6, 8, 12]). Later on, Mazur and Orlicz [7] and Musielak and Orlicz [9] modified the definition of the modular space proposed by Nakano, by avoiding the lattice structure in the space X on which the modular is defined as well as the monotonicity axiom for the modular.

As usual, the symbols \mathbb{N} , \mathbb{R} and \mathbb{R}^* denote the natural number system, the real number system and the extended real number system, respectively. As given in [9], we can rewrite the definition of the modular as the following. Let *X* be a real linear space over \mathbb{R} . A nonnegative function $\rho : X \to \mathbb{R}^*$ is called a *modular* if for every $x, y \in X$, the following conditions hold:

(i) $\rho(x) = 0$ if and only if x = 0,

(ii) $\rho(-x) = \rho(x)$, and

(iii)
$$\rho(\alpha x + \beta y) \le \rho(x) + \rho(y)$$
 for every $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$.

If the condition (iii) is replaced by

(iii') $\rho(\alpha x + \beta y) \le \alpha \rho(x) + \beta \rho(y)$ for every $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$,

then the modular ρ is called a *convex modular*. A real linear space X equipped with a modular ρ , written (X, ρ) or X in short, is called a *modular space*.

Based on the definition of a modular as given above, we can easily check that every norm is a modular. Therefore, we can consider a modular as a generalization of a norm. As consequences, many concepts in normed spaces can be generalized into modular spaces.

In an earlier paper ([2] and [3]), Gahler introduced a concept of 2-norm spaces and *n*-norm spaces. One knows that every *n*-norm can define an n-1-norm. See [4] and [5]. Inductively, from an *n*-norm, we can derive a norm. Further, based on the theory of Gahler, Chu et al. [1] characterized 2-isometries on 2-norm spaces. Srivastava et al. [11] characterized linear

n-functionals in *n*-norm spaces. Moreover, they formulated the extension of Hanh-Banach theorem for linear *n*-functionals in *n*-norm spaces.

Modular spaces are closed related to normed spaces [12]. Meanwhile, as mentioned before, any *n*-norm can define a norm ([4, 5]). Based on these facts and analogously to the definition of an *n*-norm, Nourouzi and Shabanian [10] defined a notion of *n*-modular spaces. In the present paper, we observe some topological properties of 2-modular spaces. We also introduce a definition of a 2- ρ -bounded 2-linear operator from a 2-modular space into a normed space. Furthermore, some properties of a 2- ρ -bounded 2-linear operator from a 2-modular space are observed as well.

2. 2-modular Spaces

As usual, symbols \mathbb{N} , \mathbb{R} and \mathbb{R}^* denote a natural numbers system, a real number system and an extended real numbers system, respectively. For any linear space *X*, dim(*X*) means the dimension of *X*. In this paper, we always assume that for any linear space *X*, the dim(*X*) \geq 2, unless otherwise mentioned.

Further, we give a definition of a 2-modular, analogously with those of a 2-norm.

Definition 2.1. Let *X* be a real linear space with $\dim(X) \ge 2$. A real valued function $\rho(\cdot, \cdot) : X \times X \to \mathbb{R}^*$ is called a 2-modular on *X* if

- (i) $\rho(x, y) = 0$ if and only if x and y are linearly dependent,
- (ii) $\rho(x, y) = \rho(y, x)$ for every $x, y \in X$,
- (iii) $\rho(-x, y) = \rho(y, x)$ for every $x, y \in X$, and

(iv) $\rho(\alpha x + \beta y, z) \le \rho(x, z) + \rho(y, z)$ for every $x, y, z \in X$ and for every $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$.

If the condition (iv) is replaced by

(iv') $\rho(\alpha x + \beta y, z) \le \alpha \rho(x, z) + \beta \rho(y, z)$ for every $x, y, z \in X$ and for every $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$,

then $\rho(\cdot, \cdot)$ is called a *convex* 2-modular.

It is easy to prove that $\rho(x, y) \ge 0$ for every $x, y \in X$. Moreover, following the condition (i) in Definition 2.1, we have

(i) $\rho(x, 0) = 0$ for every $x \in X$, and

(ii) if $\rho(x, y) = 0$ for every $y \in X$, then x = 0.

Following are examples of 2-modulars.

Example 2.2. Let $X = \mathbb{R}^2$. If the function $\rho : X \times X \to \mathbb{R}^*$ is defined by

$$\rho(x, y) = \operatorname{abs}\left(\begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix}\right),$$

then ρ is a 2-modular on *X*.

Example 2.3. Let *X* be a real linear space and $\|\cdot, \cdot\|$ a 2-norm on *X*. Then

$$\rho(x, y) = \int_0^{\|x, y\|} (e^t - 1) dt$$

is a 2-modular on X.

It can be seen that every 2-norm on a linear space X is a 2-modular, but the converse is not true.

Example 2.4. Let $X = \mathbb{R}^2$. If the function $\rho : X \times X \to \mathbb{R}^*$ is defined by

$$\rho(x, y) = \sqrt{\operatorname{abs}\left(\begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix}\right)},$$

then ρ is a 2-modular on X. However, ρ is not a 2-norm on X.

Theorem 2.5. Any 2-modular on a real linear space X generates a modular on X.

Proof. Let $\rho(\cdot, \cdot)$ be a 2-modular on a real linear space X. Take any linearly independent set of vectors $\{a_1, a_2\}$ on X. Define a function $\sigma: X \to \mathbb{R}^*$ by

$$\sigma(x) = \max\{\rho(x, a_1), \rho(x, a_2)\},\$$

then $\sigma(-x) = \sigma(x)$ for every $x \in X$ and

$$\sigma(x) = 0 \Leftrightarrow \max\{\rho(x, a_1), \rho(x, a_2)\}$$
$$\Leftrightarrow \rho(x, a_1) = \rho(x, a_2) = 0$$
$$\Leftrightarrow \{x, a_1\} \text{ and } \{x, a_2\} \text{ are linearly dependent}$$
$$\Leftrightarrow x = 0,$$

since $\{a_1, a_2\}$ is linearly independent. Now, let $x, y \in X$ and $\alpha, \beta \ge 0$ be such that $\alpha + \beta = 1$. Then

$$\sigma(\alpha x + \beta y) = \max\{\rho(\alpha x + \beta y, a_1), \rho(\alpha x + \beta y, a_2)\}$$

$$\leq \max\{\rho(x, a_1), \rho(x, a_2)\} + \max\{\rho(y, a_1), \rho(y, a_2)\}$$

$$= \sigma(x) + \sigma(y).$$

Thus, the function σ is a modular.

The following theorem describes some basic properties of a 2-modular.

Theorem 2.6. If ρ is a 2-modular on a real linear space X, then

(i) $\rho(\lambda x, y) \le \rho(x, y)$ for every $x, y \in X$ and $|\lambda| \le 1$. (ii) $\left(\sum_{i=1}^{n} \lambda_{i}\right) \le \sum_{i=1}^{n} \lambda_{i}$

(ii)
$$\rho\left(\sum_{k=1}^{n} \lambda_k x_k, y\right) \leq \sum_{k=1}^{m} \rho(x_k, y)$$
 for every $x_k, y \in X$ and

 $\lambda_k \ge 0, \ k = 1, \ 2, \ ..., \ n, \ with \ \sum_{k=1}^n \lambda_k = 1.$

(iii) $\rho(\alpha x, y) \leq \rho(\beta x, y)$ for every $x, y \in X$ and $\alpha, \beta \in \mathbb{R}$ with $0 < \alpha \leq \beta$.

Proof. (i) It is trivial for $\lambda = 0$ or $|\lambda| = 1$. Now, let $0 < \lambda < 1$. Then

$$\rho(\lambda x, y) = \rho(\lambda x + (1 - \lambda)0, y) \le \rho(x, y).$$

Moreover, following the condition (iii) in Definition 2.1, then we have

$$\rho(\lambda x, y) \le \rho(x, y),$$

for every $-1 < \lambda < 0$. So, (i) is proved.

(ii) We are going to prove (ii) by mathematical induction. It is true for x_1, x_2, y and $\lambda_1, \lambda_2 \ge 0$ with $\lambda_1 + \lambda_2 = 1$, because of the condition (iv) in Definition 2.1. Assume that it is true for $x_1, x_2, ..., x_n, y$ and $\lambda_1, \lambda_2, ..., \lambda_n \ge 0$ with $\sum_{k=1}^n \lambda_k = 1$. Then

$$\rho\left(\sum_{k=1}^n \lambda_k x_k, y\right) \leq \sum_{k=1}^n \rho(x_k, y).$$

Now, take any $x_1, x_2, ..., x_{n+1}, y \in X$ and $\lambda_1, \lambda_2, ..., \lambda_{n+1} \ge 0$ such that $\sum_{k=1}^{n+1} \lambda_k = 1$, then there is a positive integer $j, 1 \le j \le n+1$, such that $\lambda_j \ne 0$. So, we have

$$\begin{split} \rho \Biggl(\sum_{k=1}^{n+1} \lambda_k x_k, \ y \Biggr) &= \rho \Biggl((1 - \lambda_j) \sum_{k=1, \ k \neq j}^{n+1} \frac{\lambda_k x_k}{1 - \lambda_j} + \lambda_j x_j, \ y \Biggr) \\ &\leq \rho \Biggl((1 - \lambda_j) \sum_{k=1, \ k \neq j}^{n+1} \frac{\lambda_k x_k}{1 - \lambda_j}, \ y \Biggr) + \rho(x_j, \ y) \\ &\leq \sum_{k=1, \ k \neq j}^{n+1} \rho(x_k, \ y) + \rho(x_j, \ y) = \sum_{k=1}^{n+1} \rho(x_k, \ y) \end{split}$$

(iii) Following condition (iv) in Definition 2.1, then the assertion follows. $\hfill \Box$

Let *X* be a real linear space. A 2-modular ρ on *X* is said to satisfy the Δ_2 -condition if there exists a constant K > 0 such that $\rho(2x, y) \le K\rho(x, y)$ for every $x, y \in X$. The 2-modular ρ as given in Example 2.4 satisfies the Δ_2 -condition. However, the 2-modular ρ as given in Example 2.3 does not satisfy the Δ_2 -condition.

Throughout this paper, we always assume that the 2-modular ρ satisfies the Δ_2 -condition.

Let ρ be a 2-modular on a real linear space X. We define

$$X_{\rho} = \{x \in X : \rho(\lambda x, y) < \infty, \text{ for some } \lambda > 0 \text{ and for any } y \in X\}.$$
 (2.1)

It can easily be proved that X_{ρ} is a real linear space. Moreover, X_{ρ} is a 2-modular space with respect to ρ . We can also prove that $\rho(x, y) < \infty$ for every $x \in X_{\rho}$ and for every $y \in X$.

Throughout this paper, X_{ρ} is always meant as given in (2.1).

3. Topological Properties of 2-modular Spaces

In this section, we introduce some topological concept with respect to a 2-modular. We begin our discussion by giving a notion of 2-modular convergent sequences in the space X_{ρ} .

Let X_{ρ} be a 2-modular space. A sequence $\{x_n\}$ in X_{ρ} is said to be 2-modular convergent (or ρ -convergent) to some $x \in X_{\rho}$, denoted by

$$\rho - \lim x_n = x$$

if for every $y \in X_{\rho}$, $\lim \rho(x_n - x, y) = 0$, i.e., for every $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for any integer $n \ge N$, we have $\rho(x_n - x, y) < \varepsilon$. In

this case, the vector x is called a 2-modular limit (ρ -limit) of the sequence $\{x_n\}$.

Example 3.1. Let X and ρ be as given in Example 2.4. It is clear that $X_{\rho} = X$. Let $x_n = \left(\frac{1}{n}, 0\right)$ for every $n \in \mathbb{N}$ and x = (0, 0). For any $y = (y_1, y_2) \in X$, we have

$$\rho(x_n - x, y) = \sqrt{\operatorname{abs}\left(\begin{vmatrix} \frac{1}{n} & 0\\ y_1 & y_2 \end{vmatrix}\right)} = \sqrt{\frac{|y_2|}{n}}.$$

Given $\varepsilon > 0$, we can choose a positive integer N such that $\sqrt{\frac{|y_2|}{N}} < \varepsilon$. Hence, the sequence $\{x_n\}$ ρ -converges to x.

We observe some basic properties of the ρ -convergence of a sequence in any 2-modular space. Let us see the following theorems:

Theorem 3.2. Let X_{ρ} be a 2-modular space and $\{x_n\}$ be a sequence in X_{ρ} . If $\{x_n\}$ is ρ -convergent, then its ρ -limit is unique.

Proof. Since the 2-modular ρ satisfies the Δ_2 -condition, there exists a constant K > 0 such that

$$\rho(2x, y) \le K\rho(x, y),$$

for every $x, y \in X_{\rho}$. Given any $\varepsilon > 0$. Suppose $\{x_n\}$ ρ -converges to x and z in X_{ρ} . For any $y \in X_{\rho}$, there exists an $N \in \mathbb{N}$ such that

$$\rho(x_N - x, y) < \frac{\varepsilon}{2K} \quad \text{and} \quad \rho(x_N - z, y) < \frac{\varepsilon}{2K}.$$

These imply

$$\rho(x-z, y) \le \rho(2(x_N - x, y)) + \rho(2(x_N - z, y)) < \varepsilon.$$
 (3.1)

Since the expression (3.1) holds for any $\varepsilon > 0$, we obtain $\rho(x - z, y) = 0$ for every $y \in X_{\rho}$. This implies x = z. **Theorem 3.3.** Let X_{ρ} be a 2-modular space and $\{x_n\}$ be a sequence in X_{ρ} . If for every $z \in X_{\rho}$, $\lim \rho(x_n - x, z) = \lim \rho(x_n - y, z) = 0$ for some $x, y \in X_{\rho}$, then

- (i) $\rho(\alpha x_n \alpha x, z) = 0$ for every real number α , and
- (ii) $\rho((x_n + y_n) (x + y, z)) = 0.$

Proof. Since the 2-modular ρ satisfies the Δ_2 -condition, there exists a constant K > 0 such that $\rho(2x, y) \le K\rho(x, y)$ for every $x, y \in X_{\rho}$.

(i) It is trivial for $\alpha = 0$. Let $\alpha > 0$ be an arbitrary, there is a positive integer p such that $\alpha < 2^p$. Given $\varepsilon > 0$. Since $\rho(x_n - x, z) = 0$, there exists an $N \in \mathbb{N}$ such that for every $n \ge N$, we have $\rho(x_n - x, z) < \frac{\varepsilon}{K^p}$. This implies

$$\rho(\alpha x_n - \alpha x, z) \le \rho(2^p(x_n - x), z) \le K^p \rho(x_n - x, z) < \varepsilon.$$

In other words, $\lim \rho(\alpha x_n - \alpha x, z) = 0$. Moreover, following the condition (iii) in Definition 2.1, we obtain $\lim \rho(\alpha x_n - \alpha x, z) = 0$ for every $\alpha \in \mathbb{R}$.

(ii) Since

$$\rho((x_n + y_n) - (x + y), z) \le \rho(2(x_n - x), z) + \rho(2(y_n - y), z)$$
$$\le K(\rho(x_n - x, z) + \rho(y_n - y, z)),$$

the assertion follows.

A sequence $\{x_n\}$ in X_{ρ} is called a ρ -*Cauchy sequence* if for every $\varepsilon > 0$, there is a positive integer N such that

$$\rho(x_n-x_m, y)<\varepsilon,$$

for every $m, n \ge N$. The correlation between ρ -convergent and ρ -Cauchy sequences is formulated in the following theorem:

Theorem 3.4. Every ρ -convergent sequence in X_{ρ} is a ρ -Cauchy sequence.

Proof. We can choose a constant K > 0 such that $\rho(2x, y) \le K\rho(x, y)$ for all $x, y \in X_{\rho}$, since the 2-modular ρ satisfies the Δ_2 -condition. Now, let $\{x_n\}$ be any sequence in X_{ρ} that ρ -converges, say to some $x \in X_{\rho}$. Given any $\varepsilon > 0$ and $y \in X_{rho}$, then there is a positive integer N such that $\rho(x_n - x, y) < \frac{\varepsilon}{3K}$ for every $n \ge N$. Further, for any $m, n \ge N$, we have $\rho(x_n - x_m, y) \le \rho(2(x_n - x), y) + \rho(2(x - x_m), y)$ $\le K(\rho(x_n - x, y) + \rho(x_m - x, y)) < \varepsilon$.

So, the proof is complete.

We also characterize ρ -Cauchy sequences, as given in the following theorem:

Theorem 3.5. A sequence $\{x_n\}$ in X_{ρ} is ρ -Cauchy if and only if $\{\alpha x_n\}$ is a ρ -Cauchy sequence for all $\alpha \in \mathbb{R}$.

Proof. (\Leftarrow :) By taking $\alpha = 1$, the assertion follows.

(⇒:) It is trivial for $\alpha = 0$. Let $\alpha > 0$ be an arbitrary. Then there is a positive integer *p* such that $\alpha < 2^p$. Since the 2-modular ρ satisfies the Δ_2 -condition, there is a constant K > 0 such that $\rho(2x, y) \le K\rho(x, y)$ for all $x, y \in X_{\rho}$.

Let $\{x_n\}$ be a ρ -Cauchy sequence. Given $\varepsilon > 0$ and $y \in X_{\rho}$, there exists an $N \in \mathbb{N}$ such that for every $m, n \ge N$, we have $\rho(x_n - x_m, y) < \frac{\varepsilon}{K^p}$. This implies

$$\rho(\alpha x_n - \alpha x_m, y) \le \rho(2^p(x_n - x_m), y) \le K^p \rho(x_n - x_m, y) < \varepsilon.$$

In other words, $\{\alpha x_n\}$ is a ρ -Cauchy sequence. Moreover, following the condition (iii) in Definition 2.1, we obtain $\{\alpha x_n\}$ is a ρ -Cauchy sequence for every $\alpha \in \mathbb{R}$.

4. 2-linear Operators

Let X be a real linear space. A notation X^2 is meant $X \times X$. The following definition refers to [1, 11].

Definition 4.1. Let *X* and *Y* be real linear spaces. An operator $T : X^2 \to Y$ is said to be 2-*linear* if for every *x*, *y*, *u*, $v \in X$ and $\alpha, \beta \in \mathbb{R}$, the following conditions hold:

(i)
$$T(x + y, u + v) = T(x, u) + T(x, v) + T(y, u) + T(y, v)$$
.

(ii) $T(\alpha x, \beta y) = \alpha \beta T(x, y)$.

Analogous to the definition of a 2-bounded 2-linear operator on 2-norm spaces, we define a 2- ρ -bounded 2-linear operator on 2-modular spaces. Let X_{ρ} be a 2-modular space and Y be a normed space. A 2-linear operator $T: X_{\rho}^2 \rightarrow Y$ is said to be 2- ρ -bounded if there exists a real constant M > 0such that

$$\|T(x, y)\| \le M\rho(x, y),$$

for every $x, y \in X_{\rho}$. Let us consider the following example.

Example 4.2. Let X and ρ be as given in Example 2.2. Note that $X_{\rho} = X$. If an operator $T : X_{\rho}^2 \to \mathbb{R}$ is defined by

$$T(x, y) = \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix}, \quad x, y \in X_{\rho},$$

3204 Burhanudin Arif Nurnugroho, Supama and Atok Zulijanto then we can show that *T* is a 2-linear operator. Moreover, since

$$|T(x, y)| = \operatorname{abs}\left(\begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix}\right) = \rho(x, y)$$

for every $x, y \in X_{\rho}$, T is 2- ρ -bounded.

Let X_{ρ} be a 2-modular space and *Y* be a normed space. If $T : X_{\rho}^2 \to Y$ is a 2- ρ -bounded linear operator, then it is easy to prove that T(x, y) = 0 for every $x, y \in X_{\rho}$ which are linearly dependent. The collection of all 2- ρ bounded linear operators $T : X_{\rho}^2 \to Y$ will be denoted by $B(X_{\rho}^2, Y)$. It is easy to check that $B(X_{\rho}^2, Y)$ is a real linear space. Moreover, one can define a function $\sigma : B(X_{\rho}^2, Y) \to \mathbb{R}^*$ by

$$\sigma(T) = \sup\left\{\frac{\|T(x, y)\|}{\rho(x, y)} : x, y \in X_{\rho}, \rho(x, y) \neq 0\right\}.$$
(4.1)

The theorem below shows that the function σ as given in (4.1) is a modular.

Theorem 4.3. The function $\sigma : B(X^2_{\rho}, Y) \to \mathbb{R}^*$ as given in (4.1) is a modular on $B(X^2_{\rho}, Y)$.

Proof. (i) If T = 0, then the definition of σ is obviously followed by $\sigma(T) = 0$. Conversely, if $\sigma(T) = 0$, then T(x, y) = 0 for all $x, y \in X_{\rho}$ which are not linearly dependent. Since T(x, y) = 0 for every $x, y \in X_{\rho}$, which are linearly dependent, we get T(x, y) = 0 for every $x, y \in X_{\rho}$. Hence, T = 0.

(ii) It is clear that $\sigma(-T) = \sigma(T)$ for every $T \in B(X_{\rho}^2, Y)$.

(iii) Take any $S, T \in B(X_{\rho}^2, Y)$ and $\alpha, \beta \ge 0$ such that $\alpha + \beta = 1$. Then 2-linear Operators on 2-modular Spaces

$$\sigma(\alpha S + \beta T) = \sup \left\{ \frac{\| \alpha S(x, y) + \beta T(x, y) \|}{\rho(x, y)} : \rho(x, y) \neq 0, x, y \in X_{\rho} \right\}$$
$$\leq |\alpha| \sup \left\{ \frac{\| S(x, y) \|}{\rho(x, y)} : \rho(x, y) \neq 0, x, y \in X_{\rho} \right\}$$
$$+ |\beta| \sup \left\{ \frac{\| T(x, y) \|}{\rho(x, y)} : \rho(x, y) \neq 0, x, y \in X_{\rho} \right\}$$
$$\leq \sigma(S) + \sigma(T).$$

From (i), (ii) and (iii), the assertion follows.

The following theorem states necessary and sufficient conditions so that a 2-linear operator from a 2-modular space into a normed space is 2-p-bounded.

Theorem 4.4. Let X_{ρ} be a 2-modular space and Y be a normed space. A 2-linear operator $T: X_{\rho}^2 \to Y$ is 2- ρ -bounded if and only if there is a constant M > 0 such that

$$||T(x, y) - T(u, v)|| \le M \{\rho(x - u, y) + \rho(u, y - v)\}$$

and

$$||T(x, y) - T(u, v)|| \le M \{\rho(x - u, v) + \rho(x, y - v)\}$$

for all $x, y, u, v \in X_{\rho}$.

Proof. (\Rightarrow :) Since *T* is 2- ρ -bounded, there exists a real constant M > 0 such that

$$||T(x, y)|| \le M\rho(x, y),$$

for every $x, y \in X_{\rho}$. Take any $x, y, u, v \in X_{\rho}$, we have

$$\|T(x, y) - T(u, v)\| = \|T(x - u, y) - T(u, y - v)\|$$

$$\leq M\{\rho(x - u, y) + \rho(u, y - v)\}$$

3205

$$|T(x, y) - T(u, v)|| = ||T(x - u, v) - T(x, y - v)||$$

$$\leq M \{\rho(x - u, v) + \rho(x, y - v)\}.$$

 $(\Leftarrow:)$ It is obvious.

Theorem 4.5. Let
$$X_0$$
 be a 2-modular space and Y be a normed space. If

for any 2-linear operator $T: X_{\rho}^2 \to Y, \sigma(T)$ is as defined in (4.1), then

$$\sigma(T) = \inf \{ M > 0 : \| T(x, y) \| \le M \rho(x, y), x, y \in X_{\rho} \}.$$

Proof. Since $||T(x, y)|| \le \sigma(T)\rho(x, y)$ for every $x, y \in X_{\rho}$,

$$\inf \{M > 0 : \|T(x, y)\| \le M\rho(x, y), x, y \in X_{\rho}\} \le \sigma(T).$$

Conversely, if $K = \inf \{M > 0 : \|T(x, y)\| \le M\rho(x, y), x, y \in X_{\rho}\}$, then

$$\frac{\|T(x, y)\|}{\rho(x, y)} \le K$$

for every $x, y \in X_{\rho}$ with $\rho(x, y) \neq 0$. Hence, $\sigma(T) \leq K$.

Let X_{ρ} be a 2-modular space and *Y* be a normed space. An operator $T: X_{\rho}^2 \to Y$ is said to be (n, ρ) -*continuous* at $(x_0, y_0) \in X_{\rho}^2$ if for every real number $\varepsilon > 0$, there exists a $\delta > 0$ such that for every $x, y \in X_{\rho}^2$ with

(i)
$$\rho(x_0 - x, y_0) < \delta$$
 and $\rho(x, y - y_0) < \delta$, or

(ii)
$$\rho(x_0 - x, y) < \delta$$
 and $\rho(x_0, y - y_0) < \delta$,

we have $||T(x, y) - T(x_0, y_0)|| < \varepsilon$. The operator *T* is said to be (n, ρ) continuous on $E \subset X_{\rho}^2$ if it is (n, ρ) -continuous at every $(x, y) \in E$. And *T* is said to be (n, ρ) -continuous if it is (n, ρ) -continuous on X_{ρ}^2 .

Example 4.6. Let X, ρ, X_{ρ} , and $T : X_{\rho}^2 \to \mathbb{R}$ be as given in Example 4.2. Take any $(x_0, y_0) \in X_{\rho}^2$. For any $(x, y) \in X_{\rho}^2$, we have

$$|T(x, y) - T(x_0, y_0)| \le \rho(x - x_0, y_0) + \rho(x, y - y_0)$$

and

$$|T(x, y) - T(x_0, y_0)| \le \rho(x - x_0, y) + \rho(x_0, y - y_0).$$

Thus, *T* is (n, ρ) -continuous at (x_0, y_0) .

Theorem 4.7. Let X_{ρ} be a 2-modular space and Y be a normed space. If a 2-linear operator $T: X_{\rho}^2 \to Y$ is 2- ρ -bounded, then it is (n, ρ) -continuous.

Proof. By Theorem 4.4, the assertion follows. \Box

By adding the convex property to the 2-modular ρ , we can prove the equivalence between 2- ρ -boundedness and (n, ρ) -continuity of a 2-linear operator $T: X_{\rho}^2 \to Y$. For proving this, we need the following lemma:

Lemma 4.8. Let X_{ρ} be a 2-modular space and Y be a normed space. A 2-linear operator $T : X_{\rho}^2 \to Y$ is (n, ρ) -continuous at $(0, 0) \in X_{\rho}^2$ if and only if for any sequence $\{(x_n, y_n)\}$ that satisfies $\lim \rho(x_n, y_n) = 0$, we have $\lim \|T(x_n, y_n)\| = 0$.

Proof. The proof is standard, so it is omitted.

Theorem 4.9. Let X_{ρ} be a 2-modular space with ρ be convex, Y be a normed space, and $T: X_{\rho}^2 \to Y$ be a 2-linear operator. The following statements are equivalent:

- (ii) The operator T is (n, ρ) -continuous at (0, 0).
- (iii) The set $\{ \| T(x, y) \| : \rho(x, y) \le 1 \}$ is bounded.
- (iv) The operator T is 2-p-bounded.

Proof. (i) \Rightarrow (ii) is obvious. (iv) \Rightarrow (i) follows from Theorem 4.7. What remains to show are (ii) \Rightarrow (iii) and (iii) \Rightarrow (iv).

(ii) \Rightarrow (iii) Suppose the set $\{ \| T(x, y) \| : \rho(x, y) \le 1 \}$ is unbounded. Then

for every $n \in \mathbb{N}$, there exists $(x_n, y_n) \in X_{\rho}^2$ such that $\rho(x_n, y_n) \leq 1$, but

$$\|T(x_n, y_n)\| \ge n^2.$$

Set $u_n = \frac{x_n}{n}$ and $v_n = \frac{y_n}{n}$, then

$$\rho(u_n, v_n) \le \frac{1}{n^2} \rho(x_n, y_n) \le \frac{1}{n^2}$$

This follows from the convexity of ρ . So, $\lim \rho(u_n, v_n) = 0$. By Lemma 4.8, it must be $\lim ||T(x_n, y_n)|| = 0$. However, it is impossible because

$$||T(u_n, v_n)|| = \frac{1}{n^2} ||T(x_n, y_n)|| \ge 1.$$

So, $\{||T(x, y)|| : \rho(x, y) \le 1\}$ is bounded.

(iii) \Rightarrow (iv) By the hypothesis, there exists M > 0 such that $||T(x, y)|| \le M$, whenever $\rho(x, y) \le 1$.

Take any $(x, y) \in X_{\rho}^2$. It is trivial if $\rho(x, y) \le 1$. If $\rho(x, y) > 1$, then by the convexity of ρ ,

$$\rho\left(\frac{(x, y)}{\rho(x, y)}\right) \le 1.$$

Hence,

$$\|T(x, y)\| \le M\rho(x, y)$$

and the proof is finished.

Acknowledgement

The authors would like to thank the referees for their comments and suggestions on the manuscript.

References

- [1] H. Y. Chu, S. H. Ku and D. S. Kang, Characterizations on 2-isometries, J. Math. Anal. Appl. 340 (2008), 641-628.
- [2] S. Gähler, Lineare 2-normierte Räume, Math. Nachr. 28 (1964), 1-43.
- [3] S. Gähler, Untersuchungen über verallgemenerte *m*-metrische Räume, I, II, III, Math. Nachr. 40 (1969), 165-189.
- [4] H. Gunawan and M. Mashadi, On *n*-normed spaces, Int. J. Math. Math. Sci. 27 (2001), 631-639.
- [5] H. Gunawan and Mashadi, On finite-dimensional 2-normed spaces, Soochow J. Math. 27(3) (2011), 321-329.
- [6] M. A. Khamsi, A convexity property in modular function spaces, Department of Mathematical Sciences, The University of Texas at El Paso, 1980.
- [7] S. Mazur and W. Orlicz, On some classes of linear spaces, Studia Math. 17 (1958), 97-119.
- [8] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., Vol. 1034, Springer-Verlag, 1983.

- 3210 Burhanudin Arif Nurnugroho, Supama and Atok Zulijanto
 - [9] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65.
- [10] K. Nourouzi and S. Shabanian, Operator defined on *n*-modular spaces, Mediterr. J. Math. 6 (2009), 431-446.
- [11] N. Srivastava, S. Bhattacharya and S. N. Lal, On Hahn-Banach extension of linear *n*-functionals in *n*-normed spaces, Math. Maced. 4 (2006), 25-32.
- [12] Supama, On some common fixed point theorems in modulared spaces, Int. Math. Forum 7(52) (2012), 2571-2579.