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Abstract

This paper aims to estimate a parameter of piecewise MA model that has a gaussian white noise. A Bayesian method 1s adopted. A prior
distribution of the parameter of piecewise MA model is selected and then this prior distribution is combined with a likelihood function of
data to get a posterior distribution. Based on this posterior distribution, a Bayesian estimator for the parameter of piecewise MA model is
estimated. Because the order of MA model is considered a parameter, a method of reversible jump Markov Chain Monte carlo (MCMC)
is adopted. The result is an estimation of parameter MA model that can be simultancously calculated.
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ARMA model parameters of unknown model order. Suparman
[15] implemented the MCMC reversible jump algorithm to detect
piecewise regression models where the number of change-points is
unknown.

1. Introduction

A moving average (MA) model is a mathematical model that is

widely used in many fields. Nakamura [1] used the MA model to
estimate the natural location of the bee colony. Wang [2] used the
MA model as an error in this non-linear-finite impulse response
(IIR). Various authors have examined the estimation of MA model
parameters, e.g. Dimitriou [3] proposed the Yule-Walker estimator
to estimate the parameters of the MA model. But in many applica-
tions, many data have models that change from one time interval
to another. Combined several mathematical models are needed to
model data that has models that change from one time interval to
another time interval.

The piecewise model is a mathematical model developed to model
the data that changes patterns from one time interval to another
time interval. The piecewise model is widely used in many fields.
Hong [4] used piecewise regression model on semiconductors.
Diallo [5] used the piecewise model to model longitudinal data.
Tang [6] and Tang [7] used the piecewise model to model the
virus-immune  system. Chamrouki [8] used the piecewise
regression model for clustering and segmentation. Xu [9] used the
piecewise model for the diversity of species in the niver. Buscot
[107] used the piecewise regression model to detect the divergence
of trajectory in groups of children with different developmental
phases. Hector [11] used the piecewise model to calculate energy
expenditure (EE) in real time from heart rate. Soleimanmeigouni
[12] used a linear piecewise model to model the degradation of
railway geometry with known break points. But in various
applications, the number of models in the piecewise model 1s
generally unknown. The number of models i1s a parameter that
needs to be estimated based on the data.

The MCMC reversible jump algonthm [13] 15 a method that can
be used for the selection of mathematical models i which the
number of mathematical models is assumed to be unknown.

Moving-Average (MA) model is a model that is often used in
many fields. If the piecewise MA model is matched against the
al data. the model parameters will be generally unknown. The
objective of this paper is to estimate the parameters of the
piecewise MA model. There are so many piecewise MA models.
In this paper. the noise distribution for each segment will be
assumed as the Gaussian distribution with mean 0 and unknown
variance.
Consider a !n'l&ﬂ YV = (Vj....¥n) where n is the number of
observations, modelled as an MA model with piecewise constant
parameter and k (k = 0.,... k....) change-points. Mathematically, the
model is the following:

M

Yo=7,+ 20057,
j=1
for 7ik €t <7i+lk and j =0, k Here, 1jk is the it change-
point (defined as the index of the observation just before the i
change-point, with the usual convention Tk =land tk+1k =n,
and for each i segment:
P 4 ) [C Y (0 ) are o 3 o o o
* (i and ¢._L“ =(¢-.1.| e ‘1’.“1 y are the model order and the

parameter of the MA model associated to this segment.
* 7z is the Gaussian noise of variance g? associated to the

MA  model in  this segment, 1e. Z,---N(OAG,:L) for

Lt<t
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As shown in [1], for each the i segment (1 = 0...., k), the MA
model of the order q;y is invertible if ¢!%+’ belongs to
L+d i 5+
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xeC, |\| <1}.
The invertible region I, is difficult to be find if g;;, > 2. To solve
this problem, a reparameterization of a MA(q;,) model 1s adopted

[16]. The notation refers to the MA(q; ) model of order ;. Fora
MA(q;x) model, There is a onevtc-cn transformation

Gipyt €L > el
where plad =(Pf.t_:]-----p:.~::rjk y is the vector of the first gy in-
verted partial autocorrelations of the MA(q; ) model (see [16] for

a definition of the vector p(*+’). The rcnts of this reparametriza-

<10 =

tion, show the condition that 1,‘_';-“ el becomes |p{';;"
Lk Di 8

[

Let 0=(k.t™.q".¢*".c™y be a parameter vector. Here

4% = @ogerrr Qi+ Y =001

Utk]:((ynlkq___qu'klk)'. Suppose that y,(t=1,...n) is a random

Tth=(‘{| ..... rl.-). . L'.{;.J)u and

sample drawn from a mllatiun having a piecewise MA model.
This paper proposes a reversible jump MCMC algorithm to
estimate the parameter 0.

2. Research method

Here. the parameter 0 is estimated by using Bayesian method.
Unfortunately, the Bayesian estimator cannot be determined
analytically because the likelihood function of the para 0 has
a complicated form. To overcome these problems. a reversible
Jjump MCMC Algorithm [13] is used.

The parameter estimation is done in a bayesian framework. First,
the function of probability is determined. Second. the prior
distribution for the parameters of the piecewise model is selected.
Third, the posterior distribution is determined by using Bayes's
thegrem. Fourth, since the bayes estimator for parameters can not
l)e‘ﬁr:llated analytically, the bayes estimator for the parameters
is calculated using the MCMC reversible jump algorithm. The
MCMC reversible jump algorithm is implemented in three stages:
(a) The birth of the change-point number, the death of the change-
point number, and (¢) the change of location of the change-point.
Furthermore. for the number of change-point and change-point
location known there are three sub-stages, namely: birth order MA
model, death order MA model, and changes in the coefficient
value of the MA model.

3. Results and anaysis

3.1. Maximum Likelihood Function

In lieu of the exact hikelihood. an approximation to the likelithood
is developed. Let q,,,, be the maximum number of order. Since the
residual sequence 1s a normal distribution, the approximate likeli-
hood takes a form :

. k 2 e Tk =Tin)
fspy=[J@nsi) 7 @
=)
1 = = 1 Al 2
cxp_z—z Z (.Vr_z(’(pi.k )z, ;)
ik b=t 4 il
where
S=(}:\|,M¢|""‘Y|\ ).
and with letting
Z=..=2, =0

the " residual (t=qpt1.....0) is calﬂated by

ik 3
2: =Y. —ZG(F’:_‘L‘“)Z[_J'- Tix gl(ti"-k" 1=0.....k
]

3.2. Bayesian Approach

A Bayesian approach is adopted in this work. It implies the choice
of priors. Denote k., as the maximum number of change-point.
The @Amber k of positions is drawn following a binomial distribu-
tion B(k, . .A) With parameleg,(ﬁ <A <1) and Ky

For k fixed, the change-point positions are distributed as the even
numbered positions of the order statistics of 2k+1 points uniform-
ly drawn without repetitions i {2....n}. This choice avoids too
small interval between changes. We obtain (k<<n large). The
model order gy (1=0.....k) 1s independent with the same binomial
distribution B(quuy .pu) With parameter p(0 < p <1) and gy, For
q. fixed. where pib) is independent with the same uniform dis-

ik
tribution D:if_;'*- U(-LI) and 2 is independent and distributed
according to IG(ot/2.p/2) (et >0.p >0). In order to have the
robust prior, we consider the hyper-parameter vector (. p. o f3) to
be random. The h}-'pcr—parars % and v are drawn following
the same uniform prior on l), ie. j~U(0]1) and i~ U(01).
Set ae =2 and we choose a non-informative improper Jefﬁqn
prior for . Then the prior distribution of the parameters 0 is
given by:
m(0:8) = (ke m(x M- kym(g ™ k) p™ 3

k.q"m(e* e pk)
where £ = ()..)- By the classical Bayesian formula, the poste-
rior distribution is
n(0.8fs) o¢ £(30)m(0.£) (4)

That is the product of likelihood function in (2) and prior distribu-
tion in (3). The Bayesian inference for parameter (9,2) is based
on the posterior distribution. This posterior distribution is
calculated by (4). In our case. it is not analytically possible to
obtain this quantity. The reversible jump MCMC algorithm is
therefore applied.

3.3. Ri'ersib]e Jump MCMC

1
The key idea is to build an ergodic Markov chain
0.8 (j=1...M) whose equilibrium  distribution is  the
posterior tarihutiun -,T([),EJIS). This sample generated by the Mar-
kov chain can be used to estimate all posterior features of interest.
If the number of change-points k and the model orders q*' are
known, then the Metropolis-Hasting algorithm can be used to
simulate a process according to this posterior distribution. In our
casgyfince both k and q‘k‘ are unknown, the chain must jump from
the model (k.q) with parameters (<, 5% 5"y to the model
(k"q‘e\nth parameters (1" p*’ 5"y . Green [13] has pro-
posed a solution to such problems of model selece. This model
selection is done in two stages: First stage, the reversible jump
MCMC algorithm is used to define the jump between models of
differing dimension@@ity in term of k. In this work, the moves
chosen to be: birth of a change-point, death of a change-point
update of the change-point positions. Second stage, for k fixed we
use the reversible jump MCMC algorithm to define the jump be-
tween models of differing dimensionality, but in each term "
(i=1,... k). For the moves, the following transitions are used: birth
of the model parameter, death of the model parameter and update
of the parameter.
Using the Markgy chamn previously defined, to simulate (after a
burn-in period) dom vector distributed as the posterior distri-
butionﬂ((),a_h;). In the proposed implementation, the samples k;,

from the joint posterior distration j'((ﬂ,.;:ls;) are collected after

ignoring the other parameters. This strategy provides the marginal
distribution of the change-point number k. Consequently, the mar-
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ginal maximum posteriori estimator of parameter k can be easily
determined:

k =arg max f)[kul=l|5] li\E """ knmx}

Once paramet@lill has been estimated, the change-point locations
and the orders ean be estimated as follows:

o k=ks] ™ ef..n-1}

i

(k)

= arg max ﬂ‘t”]

and

q =arg max f’lq..k_,,|k =k.s] iy € 0 }

noise variance associaled are estimated by the same way (using
marginal maximum posteriori).

3.4. Simulation

The simulation results are presented for a synthetic signal. 250
samples of synthetic signal are generated from a signal model in
(1) whose parameters are k = 1, " =125, and the model order,
the MA parameter and the noise variance for each segment are
summarized in the Table 1.

Table 1: The parameter of the synthetic signal

i

i segment il i (gi.n)
¢
0 0.5 1 0.7826
1 1.5 3 (0.52, -0.08, -0.96)

The MCMC simulation is run for 60.000 iterations, after a bum-in
period of 10.000 iterations (knux =10.gmax =15) . The histo-
gram of the marginal a posteriori distribution k is plotted in the
Fig. 1, and we obtain the marginal maximum posteriori of k. Here
k=1.

Frequency
&

Changepaint Mumber
Fig. 1: The histogram of the marginal posteriori distribution of

" is obtained. Here

The Marginal Maximum Posteriori of
71 =127. This estimated change-point and the syntetic signal

data are plotted in the Fig. 2.

&

H

= e = = =

Fig. 2: The estimated change-point and the synthehtic signal

From the Fig. 2, it can see that this signal data set is composed of
two different MA models.
Then for 1:;:1:. fixed, the histogram of the conditional marginal

posterior distribution of V' q, and q, is given in the Fig. 3, Fig.

4 and Fig. 5 respectively.
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Changepoint Position
Fig. 3: The histogram of the conditional marginal posteriori
iy

distribution of T

0 [ |
o 2 4 5 8 1 12 14 15
Model Order

Fig. 4: The histogram of the conditional marginal posteriori
distribution of Q-
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Fig. 5: The histogram of the conditional marginal posterion

distribution of T

and Fig. 5, we obtain the maximum marginal
Given

From the Fi
posterior of qg; and q; are q01=1 and q11=3.
qo.l = ":‘IOJ . the Curve a (Fig. 6) shows the conditional marginal
postertor distribution of 'bElql“'lIJ by using Gaussian kernel with the
standard deviation 0.2, Similarly for q].] =c"1]‘1 , in the same Fig.
6 (Curve b, Curve ¢ and Curve d) shows the conditional marginal
sleri 1slri 1 = (L) (qui} g (q1a) ; 1
posterior distribution of L R T and o4 by using the

same Gaussian kernel with the standard deviation 0.2,
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Fig. 6: The listogram of the conditional marginal posterior
distribution of the coefficient of the MA models.

Finally, the histogram of the marginal posteriori distribution of
c0.] and o], are given in the Fig. 7 and Fig. 8.
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Fan

Fig. 7: The histogram of the conditional marginal posteriori
distribution of ()] .

LT

Fig. 8: The histogram of the conditional marginal posteriori
distribution of G1,1.

4. Conclusion

This paper studied a change-point detection of the MA model
based on reversible jump MCMC algorithm. The first algorithm
generated Markov chain samples distributed according to the joint
postertor distribution of the unknown parameters. These samples
were then used to derive the maximum marginal posterior estima-
tors. This algorithm showed good performance for the change-
point detection of the MA model. A comparison with other exist-
ing approaches on real signal data is currently under investigation.
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