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Abstract

Noise that is normally distributed is often added to autoregressive (AR) time series models. Most AR model time series parameter estima-
tion methods are based on normality assumptions. One of the AR time series models that does not verify normality assumptions is the
Laplace AR model. If the estimation method based on the normality assumption is used on the Laplace AR time series model, the estimation
method will produce a very biased estimate. This study proposes the reversible jump Markov Chain Monte Carlo (MCMC) algorithm to
estimate the parameters of the Laplace AR time series models. The parameters of the Laplace AR time series models are model order,
model coefficient, and noise variance. The parameter estimation of the Laplace AR time series models is done in the Bayesian framework.
The prior distribution for the model order is selected the binomial distribution, the prior distribution for the model coefficient is selected
the uniform distribution, the prior distribution for the noise variance is selected the inverse-Gamma distribution. This prior distribution is
combined with the likelihood function of the data to get the posterior distribution. Parameter estimation is based on the posterior distribu-
tion. The reversible MCMC algorithm allows to estimate the model order, model coefficients, and noise variance simultaneously. The
performance of the algorithm is tested by using some synthetic data generated from the simulation, The simulation results show that the
reversible jump MCMC algorithm can estimate the Laplace AR models parameters well. The advantage of reversible jump MCMC algo-

rithm is that this algorithm is able to estimate the parameters of the stationary Laplace AR time series models.
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1. Introduction

Autoregressive is a mathematical model that is applied to model
data in various fields of life. The autoregressive (AR) model is a
flexible model by setting an order and a model parameter. The AR
maodel is adopted to diagnose Parkinson's disease [1]. The AR
maodel is applied to an eye tremor movement [2]. The eye tremor
maovement is extracted based on the eye position signal. The AR
maodel is used to predict river flow [3]. The AR model is utilized to
categorize a gas chromatography output [4]. AR model is imple-
mented to model respiratory rate extraction [5]. The AR model is
applied to detect damage [6]. The AR model is adopted to forecast
EEG data [7]. The AR model is utilized to detect structural damage
[8]. The AR model is implemented to simulate a dynamic light scat-
tering (DLS) signal [9]. An AR maodel is used to predict a channel
in a wireless network [10]. The AR model is applied in an analysis
of preearthquake ionospheric anomalies [11]. The AR model is
adopted to predic s temperature that is discharged by a ship's
main engine [12]. The AR model can predict a trend of changes in
smoke temperatures. The AR model is used to identify a random
signal frequency [13]. The AR model is implemented to identify a
high accuracy on electroencephalography (EEG) biometrics [14].
The AR model is utilized to detect an atrial fibration [15].

The autoregressive model contains noise. This noise is assumed to
have a specific distribution. The autoregressive model is generally
considered to have a Gaussian noise, for example [16]. In various
applications of autoregressive models, noise present in mathemati-
cal models are often found not Gaussian distributed, for example
[17], [18], and [19]. The autoregressive model was investigated
where the distribution for noise was Pareto [17]. An autoregressive
model is examined where noise is exponentially distributed [18].
An autoregressive model was discussed where the noise used was
G-GARCH [19]. In the studies above, the autoregressive model or-
der is assumed to be known. The autoregressive model for noise
which is exponentially distributed is studied, but the order of the
model is unknown [20].

A Laplacian noise is used in a rare signal representation [21]. The
use of Laplacian noise in human sensory processing is investigated
[22]. A change in body position from the ECG is detected by as-
suming that changes in body position from the ECG are Laplacian
distribution [23]. However, an autoregressive model that has Lapla-
cian noise has not been studied. This swdy will propose the devel-
opment of an autoregressive model that has Laplacian noise. The
autofghtl ssive model order is assumed to be unknown.

The paper is organized as follows: the first part presents an intro-
duction, the second part describes the method, the third part gives
the results and discussion, and the fourth part provides a conclusion
with.

2. Method

This study will use the Bayesian approach to estimate an AR model
parameter. An autoregressive model order, an autoregressive model
coefficient, and a noise variance are treated as a random variable
that has a distribution. This distribution is known as a prior distri-
bution. The prior distribution for an order chosen is the Binomial
distribution. The prior distribution for a coefficient if given order is
a uniform distribution. The prior distribution for the noise variance
selected is the inverse exponential distribution. Furthermore, the
prior distribution for a parameter is combined with a likelihood
function for data to get a posterior distribution for the parameter.
Because the order is a parameter, the form of the posterior distribu-
tion for a parameter is very complicated. The complexity of the pos-
terior distribution for a parameter that makes the Bayes estimator
cannot be determined explicitly. A reversible jump method MCMC
[24] was adopted to create a random variable that has a distribution
approaching a posterior distribution. The reversible jump MCMC
method uses three transformations, namely: an order birth, an order
death, and a change in the coefficient. The performance of the re-
versible jump MCMC method was evaluated using a simulation
study. The reversible jump MCMC method was applied to the
estimation of a model parameter for heart rate.
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3. Result and Discussion

This section describes the likelihood function, prior distribution,
posterior distribution, reversible jump MCMC, simulation, and
maodeling for heart rate data in more detail.

3.1. Likelihood Function

Suppose x = (xy, ..., xy) is data where n represents the amount of
data. The data is said to have a p-order autoregressive model, writ-
ten with AR (p), if the data satisfies the equation:
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The variable z, (t =1,....,n) is assumed to be a Laplace distribu-
tion with the P parameter. The probability function of z; can be
written as
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By using variable transformations, the probability function of x; is
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where ¢ = (b, ..., ¢p). Suppose that 1y, 75,7, states the
functions of partial autocorrelation which correspond to the auto-
regressive model. Let F denote a transformation from
(¢»1,...,¢P) €58, to (ry, 12, . 1,) € (—1,1)P where §,, is the sta-
tionary area of the autoregressive model [25]. If the value of p is
large, the condition of stationarity will be difficult to determine.
Through a reparametrization with the help of transformation F,, the
condition of stationarity will be easily identified even for | p.
By using reparameterization, the likelihood function for data can be
written as
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where F~ is the inverse transformation of F.
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3.2. Prior Distribution

e (5)

The prior distribution for the order of the AR model chosen is the
Binomial distribution with a parameter p,,,, and A

w(pld) = CpmaAP(1 — A)Pmax—P (6)
While the prior distribution for " is a uniform distribution at in-
tervals (—1,1)F

1 (M
(- ®p) ==

Finally, the prior distribution for § is the inverse (&)
Gamma distribution with parameters u and v
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Here,u = 1. In the prior distribution, there are parameters A and
v. The prior distribution for A selected is a uniform distribution at
the interval (0,1). Whereas the prior distribution for v chosen is the

prior distribution of Jeffreys 7 (v) o & Thus, the prior joint distri-
bution and the hyperprior can be written as
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3.3. Posterior Distribution

Using the Bayes Theorem, the posterior distribution for
(p,7#), 1, B,v) can be expressed by
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3.4. Reversible Jump MCMC

A simulation for posterior distribution is done in two stages, namely:
a conditional distribution simulation for (4, 8, v) if given (p, r®)
and a conditional distribution simulation for (p,r®)) if given
(A, B, v). Because the conditional distribution for (4, £, v) if given
(p,r(m) can be easily recognlz.egu'le simulation of conditional
distribution for (4, B, v) if given (p,r®) can be done as follows:
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However, the conditional distribution for (p,7 ) if given (4, 8, v)
has a complex form, then the simulation is the conditional distribu-
tion for (p, r®) if given (4, £, v) is carried out using a reversible
jump MCMC algorithm. This algorithm uses three types of trans-
formations, namely: a change in coefficient, an order birth, and an
order death [26].

3.4.1. Change in coefficient

Suppose that w = (p,r®) is an old Markov chain and w* =
(p”,r”(p‘)) is a new Markov chain. Transformation of coefficient
changes does not change the order of the AR model but changes the
coefficient of the AR model. So the change from w to w™ is done
in two steps. The first step, take p” = p. The second step, select




i €{1,..,p}and define r{’ = a where a~U(—1,1). The ratio be-
en the likelihood function f(x|w*) and the likelihood function
f(x|w) can be expressed as
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So, the probability of acceptance for the change in coefficient
a(w,w*)is
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3.4.2. Order Birth

Suppose that w* = (p*,r*®"”) is the old Markov chain and w* =

(p‘,r‘(‘”')) is a new Markov chain. The birth of an order will
change both the AR model order and the AR model coefficient. So
the change from w to w™ is done in two steps. The [irst step, take
p*=p+1 . The second step, define w* =(w,a) where
a~U(—1,1). The ratio been the likelihood function f(x|w*)
and the likelihood function f(x|w*) can be expressed as
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The ratio between the prior distribution for p* and the prior distri-
bution for p is
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The ratio between the distribution of instrument g (w*, w) and the
distribution of instrument g(w, w*) depends on the value of a. IT
a < 0, then the ratio between the dis on of instrument
¢ (w*,w) and the distribution of instrument g(w, w*) is
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‘Whereas if @ > 0, then the ratio between the distribution of instru-
ment g(w*, w) and the distribution of instrument q(w*, w) is
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3.4.3. Order D¢

The death of an AR model order is the opposite of the birth of an
AR model order. Let w = (p + 1,r®*1)) be the old Markov chain
and w” = (p, r?) the new Markov chain. The death of an order will
change both the AR model order and the AR model coeflicient. So
the change from w to w” is done in two steps. The [irst step, take
p* = p. The second step, define w* = w \ {141} So. the probabil-
ity of acceptance for the death of order ay(w, w”) is

ﬂ'd(W, W‘) = min{l,m}. (20)

3.5. Simulations
The performance of the algorithm is tested using a simulation study.
3.5.1. First Simulation

For the first simulation, a total of 250 synthesis time series are
made according to equation (1). The AR model parameters are
stated in Table 1. Maximum order i8 Pipars = 10.

Table 1: Parameters for synthesis time series AR(3)

P (P12 s) B
3 (0.54,—0.04,—0.75) 2

The resulting time series is presented in Figure 1.

b

5:0 10‘!: 15;1 26\1 2_53
1
Fig. 1: Synthesis time series AR(3)

Furthermore, the autoregressive m(ydeaammelers are estimated
based on the synthesis time series. The reversible jump MCMC al-
gorithm is used to estimate parameters. The algorithm runs as many
as 20000 iterations with 5000 burn-in periods. Histogram for the
order is presented in Figure 2.
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Fig. 2: Histogram for order p

Figure 2 shows that the maximum frequency is reached in order 3.
So the estimator for p is pp = 3. Given p = 3,, the estimated value
of the model coefficient and noise variance are presented in Table
2.

Table 2: Estimated value for an AR(3) parameter

P [CD)] B
3 (0.54,-0.035,-0.73) 222

If the estimated value for the AR model parameters in Table 2 is
compared with the AR model parameter values in Table 1, then the
eter estimation value approaches the parameter value.

3.5.2. Second Simulation

For the second simulation, a total of 250 synthesis time series are
made according to equation (1). The AR model parameters are
stated in Table 3. Maximum order is pyqs = 10.

Table 3: Parameters for synthesis time series AR(5)

i by, b, bss by ps) ]
3 (0.56,—0.62,0.03,—0,15, 0.44) 2

The resulting time series is presented in Figure 3.
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Fig. 3: Synthesis time series AR(5)

Furthermore, the autoregressive m(wdeaammelers are estimated
based on the synthesis time series. The reversible jump MCMC al-
gorithm is used to estimate parameters. The algorithm runs as many
as 20000 iterations with 5000 burn-in periods. Histogram for the
order is presented in Figure 4.
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Fig. 4: Histogram for order p

Figure 4 shows that the maximum frequency is reached in order 5.
So the estimator forp is g = 5. Given p = 5, the estimated value
of the model coefficient and noise variance are presented in Table
4.

Table 4: Estimated value for an AR(S5) parameter

b (81,62, P b1 G5) [
S (0.55-059,-0.001,~0.1 2485

Likewise, if the value of the AR model parameter estimation in Ta-
ble 4 is compared with the AR model parameter values in Table 3,
then the parameter estimation value approaches the parameter value.
This simulation study shows that the reversible jump MCMC algo-
rithm can estimate the AR model parameters well.

3.6. Modeling for Heart Rate Data

Furthermore, the AR model is used to model human heart rate data.
The number of heart rate per minute is recorded . This data recording
is done for 100 minutes. The recording of this data is presented in
Figure 5.
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Fig. 5: Heart rate data
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This heart rate is modeled with the AR model. The reversible jump
MCMC algorithm is implemented to estimate an AR model param-
eter. The algorithm runs as many as 20000 iterations with a bumn-in
period of 5000, Figure 6 shows a histogram for the order.
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Fig. 6: Histogram for order p

Figure 6 shows that the maximum frequency is reached in order 2.
So the estimator forp is g = 2. Given p = 2, the estimated value
of the model coefTicient and noise variance are presented in Table
5.

Table 5: Estimated value for an AR(2) parameter

P (¢:.9.) B
3 (0.2,0.78) 4595

So the mathematical equation for heart rate can be written as
X =02x4+078x, (21)

This mathematical equation can be used to predict the heart rate in
the 101st minute, namely:

X101

= 0.2 x99 +0.78 xg9

= 0.2 (80) +0.78 (80)

=784 ~ 78 @2)

In other words, in the 101st minute, the heart rate will be 78. The
equation shows that the heart rate will tend to decrease.

4, Conclusion

This study is the development of an autoregressive model that has
Laplace distributed noise. The Bayesian approach is used to esti-
mate an autoregressive model parameter. Because an autoregres-
sive model order is a parameter too, then a Bayes estimator cannot
be determined analytically. The Reversible Jump algorithm is used
to generate a Markov chain whose distribution approaches a poste-
rior distribution. This Markov chain is used to determine the Bayes
estimator. A simulation study shows that the reversible jump
MCMC algorithm can estimate model orddggél autoregressive model
coefficients, and noise variance well. The reversible jump MCMC
algorithm is implemented to estimate parameters in the heart rate
madel. This heart rate data can be modeled with the AR model with
order 2.
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