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Abstract

An autoregressive moving average (ARMA) is a time series model that is applied in everyday
life for pattern recognition and forecasting. The ARMA model contains a noise which is
assumed to have a specific distribution. Noise is often considered to have a Gaussian
distribution. In applications sometimes noise is found that does not have a Gaussian
distribution. This paper has several objectives. The first objective is to develop an ARMA
model where noise has a Laplacian distribution. The second objective is to estimate the
parameters of the ARMA model. The ARMA model parameters include ARMA model
orders, ARMA model coefficients, and noise variance. The parameter estimation of the
ARMA model is carried out in the Bayesian framework. In the Bayesian framework, the
ARMA model parameters are treated as a variable that has a prior distribution. The prior
distribution for the ARMA model parameters is combined with the likelihood function for the
data to get the posterior distribution for the parameter. The posterior distribution for
parameters has a complex form so that the Bayes estimator cannot be determined
analytically. The reversible jump Markov Monte Carlo chain (MCMC) algorithm was
adopted to determine the Bayes estimator. This paper provides some results. The first result,
the ARMA model can be developed by assuming Laplacian distribution noise. The second
result, the performance of the algorithm was tested using simulation studies. The simulation
shows that the reversible jump MCMC algorithm can estimate the parameters of the ARMA
model correctly.

Introduction

An autoregressive moving average (ARMA) is a time series model that is applied to
modeling and forecasting in various fields, for example: [1], [2], and [3]. The ARMA model
is used in the field of short-term load system for forecasting [1]. The ARMA model is used in
the field of science for forecasting wind speed [2]. The ARMA model is used in the business
field for modeling volatility and risk of shares financial markets [3].

This ARMA model contains a noise. This noise is assumed to have a specific distribution.
Noise for ARMA models is often considered to have a Gaussian distribution, for example:
[4]. [5]. [6] and [7]. The ARMA model is used for Sequential and non-sequential acceptance
samffiing [4]. The ARMA model is used to investigate the non-residual residual surges [5].
The ARMA model is used to predict small-scale solar radiation [6]. The ARMA model is
used to forecast passenger service charge [7]. In an ARMA model application. the noise
sometimes shows that it does not have a Gaussian distribution. Several studies related to
ARMA models with non-Gaussian noise can be found in [8]. [9]. [1]. [2]. and [3]. Estimating




ARMA parameters with non-Gaussian noise is investigated using high-order moments [8]. A
Cumulant is used to order determination for the ARMA model [9].

Laplacian is a noise investigated by several authors, for example: [10], [11] and [12].
Laplacian noise is used to detect body position changes [10]. The Feasibility Pump
Algorithm is used to find the Sparse Representation under Laplacian Noise [11]. Laplacian
noise is used in human sensory processing [12]. However, the ARMA model that contains
Laplacian noise has not been studied. This study has several objectives. The first objective
was to develop the FRMA model by assuming that noise has a Laplacian distribution. The
second objective is to estimate the order of the ARMA model. The third objective is to
estimate the ARMA model coefficients.

This paper consists of several parts. The first part gives an introductiofEk garding the ARMA
model and its application. The second part explains the method used to estimate the ARMA
model. The third part presents the results of the research and discussion. The fourth section
gives some conclusions and implications.

Methods

This paper uses an ARMA model that has Laplacian noise. The parameter estimation of the
ARMA model is carried out in the Bayesian framework. The first step determines the
likelihood function for data. The second step determines the prior distribution for the ARMA
model parameters. The binomial distribution is chosen as the prior distribution for ARMA
orders. The uniform distribution is selected as the prior distribution for the ARMA model
coefficient. The inverse Gamma distribution is selected as the prior distribution for the noise
parameter. The third step combines the likelihood function for data with the prior distribution
to get the posterior distribution. The fourth step determines the Bayes estimator based on the
posterior distribution using the reversible jump MCMC algorithm [13]. The fifth step tests
the performance of the reversible jump MCMC algorithm by using simulation studies.

Results and Discussion

This section discusses the likelihood function for data, Bayesian approach, reversible jump
MCMC algorithm, and simulation studies.

Likelihood function

Suppose that xq, -+, x, are n data. This data is said to have an autoregressive model if for
t = 1,--+,n the data satisfies the following equation:
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In equation (3.1), the values of p and q are orders for the ARMA model. To abbreviate the
mention, the ARMA model that has the order p and q will be written by ARMA(p, q). Given
the values of orders p and g, the values ¢, -+, ¢, and 64,---, 0, express the @efficients of
the ARMA(p,q). While the random variables z,, -+, z,, are noise. This noise is assumed to
have a Laplace distribution with mean 0 and variance 23%. The probability function for the
variable z, is written by the following equation:
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With a variable transformation between x; and z;, the probability function for the variable x;
can be written by

f Gl B) = 55 exp
Suppose that x = (xq, -, xy). ¢(p) (61,1 ¢p) and 6 = (¢, -, ¢g). The probability
function for x is
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The ARMA(p, q) model is called stationary if and only if the root equation is located outside
the unit circle. Suppose that S,, denotes the stationarity region. This stationary condition is
difficult to determine if the order value p is high. To overcome this problem, a transformation
is made. Let F be a transformation from ¢®) € S, tor= (rl,---,rp) € (—1,1)” where
r,', 1, are functions of partial autocorrelation [14]. With the F transformation, this
stationary condition of the ARMA(p, qffnodel becomes casily determined even though the
order value p is high. The ARMA((p, g) model is called stationary if and only if (rl, o rp) €
(—1,1)7. In the same way. the ARMA(p, q) model is called invertible if and only if the root
of equation 1+ EJ 1E!J,BJ' =0 is located outside the unit circle. Suppose I, denotes an
invertible region. This invertibility condition is difficult to determine if the order g value is
high. To overcome this problem, a transformation is made. Let G be a transformation from
ACNS I to p= (pl,---,pq) € (—=1,1)7 where py,-+,pq are functions of inverse partial
autocorrelation [15]. With the G transformation, the invertibility condition of the
ARMA(p,q) model is casily determined even though the order g value is [Hgh. The
ARMA(p, q) model is called invertible if and only if (pl, ---,pq) € (—1,1p If the likelihood

function for data is expressed in the transformation of F and G, then the likelihood function
for data can be written by
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In the probability function for this data, F~* and G~! are inverse transformations for the
transformation of F and G.
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Prior and Posterior Distributions o

1
The Binomial distribution with the parameter A is chosen as the prior distribution for order p.
The prior distribution for order p can be written by
n(p|A) = ;™ AP (1 — A)Pmax~P (©)
where the ppq. value is set. Whereas the Binomial distribution with the parameter p is
chosen as the prior distribution for order q. The distribution of priors for g order can be
expressed by

m(qlw) = C{ua(1 — p)tmex=a ()




where the value gpqy is set. Given the order p, the prior distribution for »® is a uniform

distribution at (—1,1)”. The prior distribution for » ) if given an order p can be written by
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Given the order g, the prior distribution for p(? is a uniform distribution at (—1,1)7. The
prior distribution for p(4) if given an order q can be written by

1
n(pﬁq) = )
The inverse Gamma distribution with parameter v is selected as the prior distribution for 5.
Value u is set, namely: u = 1. The distribution of prior for § can be expressed by

(Blu,v) = o 7 Dexp — 2. (10

This prior distribution cdfains a parameter, namely: A, g, and v. Uniform distribution at
interval (0,1) is chosen as the {for distribution for A, namely: ©(1) = 1. The uniform
distribution at intervalff0,1) is chosen as the prior distribution for p, namely: m(u) = 1.
Finally, the Jeffreys distribution is chosen as the prior distribution for v. The prior
distribution for v can be written by m(v) oc%. Thus, the joint prior distribution for

p,q, 7P, p@, A, u, B and v can be expressed by

f{(p‘ q, T(p), p(Q)_ )L .u'_ ﬁ_ 1;)
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By using the Bayes Theorem, distribution posterior for p,q,r®, p(@, A, u, B, and v can be

expressed by

m(p,q,7®, 0@, 2,1, B,v|x)
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This posterior distribution has a complex form so that the Bayes estimator cannot be
determined explicitly. The reversible jump MCMC algorithm was adopted to determine the
Bayes estimator.

Reversible jump Markov chain Monte Carlo

The basic idea of the MCMC algorithm is to treat the parameters p, g, 7 ®, p®P, A, u, 8, and v
as a Markov chain. To determine the Bayes estimator for parameters, a Markov chain is
created by simulation. This Markov chain is designed so that it has a limit distribution that
approaches the posterior distribution for parameters p,q,7%?,p@, 1, 1,8, and v. This
Markov chain is used to find the Bayes estimator. The algorithm consists of two stages.
namely; the first stage is to create a Markov chain for (4, B,v|p,q,7®),p@) by
simulation. The second stage makes the Markov chain for (p,q,7®,p@|A, 1, B,v) by
simulation.




Distribution for (4,4, B,v|p,q,r®,p@) is the product of the distribution for
(}Llp, q,r(p).p(Q))_ the distribution for (ulp, q,r(p),p(q)), distribution for (ﬁlp, q,r(p),p(q)),

and the distribution for (v|p, q, 7, p?). The distribution for (A|p, q,7®, p‘?) is binomial,
the distribution for (|p,q,7®,p®) is Binomial, the distribution for (8|p,q,r®, p(®) is
the Gamma inverse distribution, distribution for (v|p,q,r®,p(@) is the Gamma
distribution. Simulation for the Markov chain (4, 1, 8, v|p, q,r®, p(?) is as follows [16]:

A~ B(p + 1 Pmax— 0 + 1),

H~ B(q + 1:Qmax —q+ 1)-
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The distribution for (p,q,7®), p@ |2, 1, B,v) has a complgx form. Simulation for the Markoy
chain (p, q,7®, ,o(‘n|il,u, B, v) is carried out using the reversible jump MCMC algorithm.
The reversible jflhp MCMC algorithm is an extension of the Metropolis-Hastings algorithm
[17], [18]. This reversible jump MCMC algorithm uses six types of transformation, namely:
birth for order p, death for order p, change for coefficient r®, birth for order g, death for
order g, and change for coefficient p(®,
Birth of the order p
Suppose that w = (p,q, g, p(?) is the old Markov chain and w* = (p~, q. 7, p@) isa
new Markov chain. The birth of the order p changes the order p and the coefficient r® but
does not change the order g and the coefficient p(?. The new Markov chain
(p",q,r‘(px),p(‘”) is defined as follows: (a) first determine the order p* = p + 1. (b) the

second takes randomly a at the interval (—1,1) and then determines r*®) = (,.(p)} a)A The
old Markov chain will be replaced with a new Markov chain with probability

12 (w, w*) = min]1 fClw) n @) n(r- P p") q(w",w) (13)
p W, 'flxlw) () mG@Plp) qlw,w*)
where J; ((:illt )) is the ratio of the likelihood function, % is the ratio between the prior

w(r'|p®)
_ m(rlp)
and r®_ and % is the ratio between the distribution of instrument w and w”. In contrast,

distribution for order p and p*, is the ratio between the posterior distribution for r* ®9

the old Markov chain will remain with the probability 1 — n;ﬁm (w,w"). Following is the
calculation for the probability function ratio, the ratio between the prior distribution for order
p and p". the ratio between the posterior distribution for 7*®” and r®. and the ratio
between the distribution of instruments w and w*,

The ratio for the likelihood function can be stated by
f(xlp*,q.7*®?, p@) 4
f(xlp, q, r(P), p(Q))
1 s _
exp —Bz?t?;p’u |Z?=1 F1(r)xemi — Z?:l G 1(Pj)zt—j + xtl ( 1 )
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The ratio between the prior distribution for order p and p* can be expressed by

Tf(p*) _ Pmax — P A (15)
()  p+1 1-4

The ratio between posterior distribution for order p and p* can be written by

() s o
(r®p) ~ 2

While the ratio between the distribution of instrument w and w* depends on the value of a. If

a < 0, the ratio between the distribution of instrument w and w* can be written by

qw'w) 1 (17)

qgw,w*) a+1

If a > 0, the ratio between the distribution of instrument w and w” can be written by

qgw*,w) 1 (18)

gw,w?) 1-d

Death of the order p + 1

1

geath of the order p + 1 is the opposite of the birth of order p. Letw = (p, q, r(p“).p(ﬁ) be
the old Markov chain and w* = (p*, q,r‘(p.),p(‘?)) is a new Markov chain. The death of the
order p + 1 changes the order p + 1 and the coefficient »P*1) but does not change the order
@) p(‘”) is defined as follows:

(a) first determine the order p* =p, (b ) the second determines "% =@ The old
Markov chain will be replaced with a new Markov chain with probability

8;R(w,w") = min {1

g and the coefficient p(@, The new Markov chain (p‘. q,r

(19)
‘npR(w,w*))’
In contrast, the old Markov chain will remain with the probability 1 — 61‘,“? (w,w").

Change of the coefficient r®

Let w = (p, q,r(m,p(‘ﬂ) be the old Markov chain and w* = (p*,q,r*(p.),p(q)) is a new
Markov chain. The change in the coefficient r®) does not change the order p but changes the
coefficient ™). The change in the coefficient »®) also does not change both the order g and
the coefficient p(. The new Markov chain (p*, q,7*®", p() is defined as follows: (a) first
determine the order p* =p. (b ) second takes randomly i € {1,---,p}. (c) third takes
randomly b at the interval (—1,1) and then determines r*®” = (rf, 77 = b,---,rp‘), The
old Markov chain will be replaced with a new Markov chain with probability

fxlw?) q(W‘,W)} (20)
" fxlw) qw,w))
In this change in coefficient, the likelihood function ratio can be written by
flxlp® q.r @, p@) (1)

f(xlpl q,r(P), p(‘?))

1 1 s _
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While the ratio between the distribution of instrument w and w* can be expressed by




qw',w) _ ((1+b)(1-b)\"? (22)
qlw,w*) ~ ((1 +7)(1 - rs)) '

Birth of the order q

Let w = (p,q,7®,p@) be the old Markov chain and w* = (p,q*.r(p).p*(q.)) is a new
Markov chain. The birth for order q changes the order g and the coefficient p@ but does not
change the order p and the coefficient 7®). The new Markov chain (p.q‘,r(p),p‘(q‘)) is
defined as follows: (a) first determines the order ¢* = g + 1. (b) both take randomly ¢ at the
interval (—1,1) and then determine p*@ = (p'D, ¢). The old Markov chain will be replaced
with a new Markov chain with probability

wap. o FGIw)R@) n(p"]a7) qw,w) (23
ng  (w,w") = minil, @ "
fixlw) m(q) m(p@Plq) qw,w")

where L2 s the ratio for the likelihood function, 22 is the ratio between the prior
£ Gxw) - (@)

distribution for order g and q°, % is the ratio between the posterior distribution for

p* @) and p@_ and % is the ratio between the distribution of instruments w and w*. In

contrast, the old Markov chain will remain with the probability 1 fngm(w,w") The
following is a calculation for the likelihood function ratio. the ratio between the prior

distribution for order g and g°, the ratio between the posterior distribution for p"‘(q‘) and p@,
and the ratio between the distribution of instrument w and w”.
The ratio for the likelihood function can be stated by

f(x|p|qt,r(p),p‘(q.)) (24)
f(xlp,q,7®), p@) )
exp — EZ?=p+1|Z?=1 F7H)xe-i = Xy 671 (p))2e-j + xe| ( 1 )
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The ratio between the prior distribution for order g and g* can be expressed by
T(G) Gmax—9q H (25)
n(@ q+1 1-u
The ratio between posterior distribution for order g and g* can be written by
" la) 1 @

n(p@lg) 2
While the value of the ratio between the distribution of instrument w and w* depends on the
value c. If ¢ < 0, the ratio between the distribution of instrument w and w* can be written by
qw’,w) 1 27
qgw,w*) c+1
If ¢ > 0, the ratio between the distribution of instrument w and w* can be written by
gw’,w) 1 (28)
&(w.w") T1-¢

Death of the order g + 1




The death of order g + 1 is the opposite of the birth of order q. Let w = (p, q,r®, p@*D)
be the old Markov chain and w* = (p,q",7®, p*?) is a new Markov chain. The death of
order q + 1 changes the order g + 1 and the coefficient p“*) but does not change the order
p and the coefficient ™. The new Markov chain (p. q, r(p),p‘(q‘)) is defined as follows:

(a) first determines the order ¢* = q. (b ) the second determines p*(q‘) = p@ . The old
Markov chain will be replaced with a new Markov chain with probability
1 (29)
MA Y .
8q “(w,w") = mm{l,—ngﬂ(wlw*)}.
In contrast, the old Markov chain will remain with the probability 1 — 834 (w, w").

Change of the coefficient p(?©

Let w = (p,q,7®,p@) be the old Markov chain and w* = (p,q‘,r(p),p‘(q.)) is a new
Markov chain. The change in coefficient p@ does not change the order of g but changes the
coefficient p(@). The change in the coefficient p(?) also does not change both the order p and
the coefficient »P). The new Markov chain (p. q,r®, p"(q.)) is defined as follows: (a) first
determines the order g* = g, (b ) second take randomly j € {1,:+,g}, (c) all three take
randomly d at the interval (—1,1) and then determine p*(q.) = (p;,---.,o} = d,---,p;). The
old Markov chain will be replaced with a new Markov chain with probability

" | fIw?) qw™, w) (30)
cgm(w, w") = min [1. 2 Gy q(w,w")}'
In this change in coefficient, the ratio for the likelihood function can be written by
f(xlp.a",r®, ") (31)

fxlp.q,r®), p@)

1 _— —_— *
exp — Ez?:pi-llz:?:l F l(ri)xr-i - E?:l G I(Pj)zt—j + xtl
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While the ratio between the distribution of instrument w and w* can be expressed by
qw',w) (A +dA-ad) |\ (32)
oo (e ) BB

Simulations

The performance of the reversible jump MCMC algorithm is tested using simulation studies.
The basic idea of sirffBlation studies is to make a synthesis time series with a predetermined
parameter. Then the reversible jump MCMC algorithm is implemented in this synthesis time
series to estimate the parameter. Furthermore, the valueff the estimation of this parameter is
compared with the value of the actual parameter. The reversible jump MCMC algorithm is
said to perform well if the parameter estimation value approaches the actual parameter value.

First simulation

A total of 250 synthetic time series are made using equation (3.1). The parameters of the
ARMA model are presented in Table 1.

Table 1: The parameter value for synthetic ARMA (2,3)




(p,q) ¢(2) g3) B
2.3) (—0.1921) (—0.2364) 1

—0.4467 0.4377
—0.3565

Synthetic time series data with ARMA (2.3) model are presented in Figure 1. This synthetic
time series contains noise that has a Laplace distribution.
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Figure 1: Synthetic time series with ARMA(2,3) model

This synthetic time series is used as input for the reversible jump MCMC algorithnfZ The
algorithm runs as many as 100000 iterations with a 25000 burn-in period. The output of the
reversible jump MCMC algorithm is a parameter estimation for the synthetic time series
model. The histogram of order p for the synthetic ARMA model is presented in Figure 2.
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Figure 2: Histogram for order p of the synthetic ARMA(2,3) model
Figure 2 shows that the maximum order of p is reached at value 2. This histogram shows that
the order estimate for p is p = 2. Also, the histogram of order q for the synthetic ARMA
model is presented in Figure 3.
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Figure 3: Histogram for order q of the synthetic ARMA(2.3) model

Figure 3 shows that the maximal order of q is reached at value 3. This histogram shows that
the order estimation for q is § = 3. Given the values p = 2 and § = 3, the estimation of the
ARMA(2.3) model coefficients are presented in Table 2. The estimation of noise variance is
also shown in Table 2.

Table 2: Estimation of the parameter for the ARMA(Z 3) model

®,4) ¢(2) 6®)
2.3) (—0.2530) (—0.3267) 1.0058
—0.5732 0.3372
—0.3765

If Table 2 is compared with Table 1. the parameter cstimation of the ARMA model
approaches the actual parameter value.

Second simulation

A total of 250 synthetic time series are made using equation (3.1). The parameters of the
ARMA model are presented in Table 3

Table 3: The parameter value for synthetic ARMA (4.2)

(X 8 B
“4.2) 1.4773 (—0.5266) 1
1.1530 0.2662
1.4550
0.9752

In this second simulation, parameter synthetic ARMA models are taken differently. Synthetic
ARMA (4.2) time series data are presented in Figure 4. This synthetic time series data
contains noise that also has a Laplace distribution.

|‘ |||| il |1
HHM "

"‘ |

o 50 100 150 00 =0
t

Figure 4: Synthetic time series with ARMA(4.2) model
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This synthetic time series is used as input for the reversible jump MCMC algorithnfZ3The
algorithm runs as many as 100000 iterations with a 25000 burn-in period. The output of the
reversible jump MCMC algorithm is a parameter estimation for the synthetic time series
model. The histogram of order p for the synthetic ARMA model is presented in Figure 5.
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Figure 5: Histogram for order p of the synthetic ARMA(4.2) model

Figure 5 shows that the maximum order of p is reached at 4. This histogram shows that the
order cstimate for p is p = 4. Also, the histogram of order q for the synthetic ARMA model
is presented in Figure 6.
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Figure 6: Histogram for order q of the synthetic ARMA(4.2) model

Figure 6 shows that the maximal order of q is reached at value 2. This histogram shows that
the order estimation for q is § = 2. Given the value of p = 4 and § = 2, the estimation of the
ARMA (4,Imodel coefficients are presented in Table 4. The estimation of noise variance is
also shown in Table 4.

Table 4: Estimation of the parameter for the ARMA(4.2) model

@D oW g

42) /14393 (—0.5146) 1.1015
1.1033 | \ 0.2518
1.4193
0.9323

If Table 4 is compared with Table 3. the parameter estimation of the ARMA model
Ebproaches the actual parameter value. The first simulation and the second simulation show
that the reversible jump MCMC algorithm can estimate the parameter of the ARMA model
correctly.

Conclusions

This paper is an effort to develop a stationary and invertible ARMA model by assuming that
noise has a Laplacian distribution. Identification of ARMA model orders, estimation of

11




ARMA model coefficients find estimation of noise variance carried out simultaneously in the
Bayesian framework. The fBayes estimator is determined using the MCMC reversible jump
algorithm. The simulation shows that the reversible jump MCMC algorithm can estimate the
parameters of the ARMA model correctly.
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