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Abstract 

An autoregressive moving average (ARMA) is a time series model that is applied in everyday 

life for pattern recognition and forecasting. The ARMA model contains a noise which is 

assumed to have a specific distribution. The noise is often considered to have a Gaussian 

distribution. However in applications, the noise is sometimes found that does not have a 

Gaussian distribution. The first objective is to develop the ARMA model in which noise has a 

Laplacian distribution. The second objective is to estimate the parameters of the ARMA model. 

The ARMA model parameters include ARMA model orders, ARMA model coefficients, and 

noise variance. The parameter estimation of the ARMA model is carried out in the Bayesian 

framework. In the Bayesian framework, the ARMA model parameters are treated as a variable 

that has a prior distribution. The prior distribution for the ARMA model parameters is 

combined with the likelihood function for the data to get the posterior distribution for the 

parameter. The posterior distribution for parameters has a complex form so that the Bayes 

estimator cannot be determined analytically. The reversible jump Markov Monte Carlo chain 

(MCMC) algorithm was adopted to determine the Bayes estimator. The first result, the ARMA 

model can be developed by assuming Laplacian distribution noise. The second result, the 

performance of the algorithm was tested using simulation studies. The simulation shows that 

the reversible jump MCMC algorithm can estimate the parameters of the ARMA model 

correctly. 

Keywords: ARMA time series, Hierarchical Bayesian, Laplacian noise, Reversible Jump 

MCMC. 

Introduction 

An autoregressive moving average (ARMA) is a time series model that is applied to modeling 

and forecasting in various fields, for example: [1-3]. The ARMA model is used in the field of 

short-term load system for forecasting [1]. The ARMA model is used in the field of science for 

forecasting wind speed [2]. The ARMA model is used in the business field for modelling 

volatility and risk of shares financial markets [3]. 

This ARMA model contains a noise. This noise is assumed to have a specific distribution. 

Noise for ARMA models is often considered to have a Gaussian distribution, for example: [4-

7]. The ARMA model is used for Sequential and non-sequential acceptance sampling [4]. The 

ARMA model is used to investigate the non-residual residual surges [5]. The ARMA model is 

used to predict small-scale solar radiation [6]. The ARMA model is used to forecast passenger 

service charge [7]. In an ARMA model application, the noise sometimes shows that it does not 

have a Gaussian distribution. Several studies related to ARMA models with non-Gaussian 

Manuscript Click here to access/download;Manuscript;IJ-CIS-D-19-00530-
Suparman-Revised 30 Januari 2020.docx
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noise can be found in [1-3, 8, 9]. Estimating ARMA parameters with non-Gaussian noise is 

investigated using high-order moments [8]. A cumulant-based order determination of ARMA 

models with Gaussian noise is studied in [9]. 

A Laplacian is a noise investigated by several authors, for example: [10-12].  The Laplace 

distribution has the probability density function: 

𝑓(𝑥|𝛿, 𝛽) =
1

2𝑏
𝑒𝑥𝑝 −

|𝑥−𝛿|

𝛽
. (1) 

Here, 𝛿 is a location parameter and 𝛽 > 0 is a scale parameter. The Laplacian noise is used to 

detect body position changes [10]. The Feasibility Pump Algorithm is used to find the Sparse 

Representation under Laplacian Noise [11]. Laplacian noise is used in human sensory 

processing [12]. However, the ARMA model that contains Laplacian noise has not been 

studied. The significant novelty of the proposed study is the use of a Laplacian noise in the 

ARMA model. The Laplacian noise provides a smaller error variance compared to Gaussian 

noise. This study has several objectives. The first objective is to develop the new ARMA model 

by assuming that noise has a Laplacian distribution. The second objective is to estimate the 

order of the ARMA model. The third objective is to estimate the ARMA model coefficients. 

If the ARMA model is compared to the AR model and the MA model, the ARMA model is a 

more general model than the AR model and the MA model. If the ARMA model is compared 

to the ARIMA model, the only difference is the integrated part. Integrated refers to how many 

times it takes to differentiate a series to achieve stationary condition. The ARMA model is 

equivalent to the ARIMA model of the same MA and AR orders with no differencing. An 

ARMA model was chosen instead of the other models such as AR model, MA model, or 

ARIMA model because the ARMA model can describe a more general class of processes than 

AR model and MA model.  The ARMA model in this study has stationary and invertible 

properties that are not possessed by the ARIMA model. 

This paper consists of several parts. The first part gives an introduction regarding the ARMA 

model and its application. The second part explains the method used to estimate the ARMA 

model. The third part presents the results of the research and discussion. The fourth section 

gives some conclusions and implications. 

Materials and Methods 

This paper uses an ARMA model that has Laplacian noise. The parameters used in ARMA 

model are the order of the ARMA model, the coeficients of the ARMA model, and the variance 

of the noise. The parameter estimation of the ARMA model is carried out in the Bayesian 

framework. The first step determines the likelihood function for data. The second step 

determines the prior distribution for the ARMA model parameters. The reason about the 

consideration of prior distribution is to improve the quality of parameter estimation. The prior 

distribution can be determined from previous experiments. The binomial distribution is chosen 

as the prior distribution for ARMA orders. The uniform distribution is selected as the prior 

distribution for the ARMA model coefficient. The inverse Gamma distribution is selected as 

the prior distribution for the noise parameter. The third step combines the likelihood function 

for data with the prior distribution to get the posterior distribution. The fourth step determines 

the Bayes estimator based on the posterior distribution using the reversible jump MCMC 

algorithm [13]. Time series modelling via reversible jump MCMC is a very-well studied topic 

in the literature [14-15]. The power of Reversible Jump MCMC algorithm is in the fact that it 

can move between space of varying dimension and not that it is just a simple MCMC method. 
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The fifth step tests the performance of the reversible jump MCMC algorithm by using 

simulation studies.  

Results and Discussion 

This section discusses the likelihood function for data, Bayesian approach, reversible jump 

MCMC algorithm, and simulations. 

Likelihood function 

Suppose that 𝑥1, ⋯ , 𝑥𝑛 are n data. This data is said to have an autoregressive model if for 𝑡 =
1, ⋯ , 𝑛 the data satisfies the following equation: 

𝑥𝑡 = − ∑ 𝜙𝑖𝑥𝑡−𝑖

𝑝

𝑖=1
+ ∑ 𝜃𝑗𝑧𝑡−𝑗

𝑞

𝑗=1
+ 𝑧𝑡 

(2) 

The values of 𝑝 and 𝑞 are orders for the ARMA model. To abbreviate the mention, the ARMA 

model that has the order 𝑝 and 𝑞 will be written by 𝐴𝑅𝑀𝐴(𝑝, 𝑞). Given the values of orders 𝑝 

and 𝑞, the values 𝜙1, ⋯ , 𝜙𝑝 and 𝜃1, ⋯ , 𝜃𝑞 express the coefficients of the 𝐴𝑅𝑀𝐴(𝑝, 𝑞). While 

the random variables 𝑧1, ⋯ , 𝑧𝑛 are noise. This noise is assumed to have a Laplace distribution 

with mean 0 and variance 2𝛽2. The probability function for the variable 𝑧𝑡 is written by the 

following equation: 

𝑔(𝑧𝑡|𝛽) =
1

2β
 𝑒𝑥𝑝 −

|𝑧𝑡|

𝛽
. (3) 

With a variable transformation between 𝑥𝑡 and 𝑧𝑡, the probability function for the variable 𝑥𝑡 

can be written by 

𝑓(𝑥𝑡|𝛽) =
1

2β
 𝑒𝑥𝑝 −

|∑ 𝜙𝑖𝑥𝑡−𝑖
𝑝
𝑖=1 −∑ 𝜃𝑗𝑧𝑡−𝑗

𝑞
𝑗=1 +𝑥𝑡|

𝛽
. 

(4) 

Suppose that 𝑥 = (𝑥1, ⋯ , 𝑥𝑛), 𝜙(𝑝) = (𝜙1, ⋯ , 𝜙𝑝) and 𝜃(𝑞) = (𝜙1, ⋯ , 𝜙𝑞). The probability 

function for 𝑥 is 

𝑓(𝑥|𝑝, 𝑞, 𝜙(𝑝), 𝜃(𝑞), 𝛽)  

= ∏
1

2β
 𝑒𝑥𝑝 −

|∑ 𝜙𝑖𝑥𝑡−𝑖
𝑝
𝑖=1 − ∑ 𝜃𝑗𝑧𝑡−𝑗

𝑞
𝑗=1 + 𝑥𝑡|

𝛽

𝑛

𝑡=𝑝+1
 

 

= (
1

2β
)

𝑛−𝑝

𝑒𝑥𝑝 −
1

𝛽
∑ |∑ 𝜙𝑖𝑥𝑡−𝑖

𝑝
𝑖=1 − ∑ 𝜃𝑗𝑧𝑡−𝑗

𝑞
𝑗=1 + 𝑥𝑡|𝑛

𝑡=𝑝+1 . 
(5) 

The 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model is called stationary if and only if the root equation is located outside 

the unit circle. The stationarity of 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model refers to the mean, variance, and 

autocorrelation are all constant over time. Suppose that 𝑆𝑝 denotes the stationarity region. This 

stationary condition is difficult to determine if the order value 𝑝 is high. To overcome this 

problem, a transformation is made. Let 𝐹 be a transformation from 𝜙(𝑝) ∈ 𝑆𝑝  to 𝑟 =

(𝑟1, ⋯ , 𝑟𝑝) ∈ (−1,1)𝑝 where 𝑟1, ⋯ , 𝑟𝑝 are functions of partial autocorrelation [16]. With the F 

transformation, this stationary condition of the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model becomes easily determined 

even though the order value p is high. The 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model is called stationary if and only 

if  (𝑟1, ⋯ , 𝑟𝑝) ∈ (−1,1)𝑝.  

The 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model is called invertible if and only if the root of equation 1 +
∑ 𝜃𝑗𝐵𝑗 = 0𝑞

𝑗=1  is located outside the unit circle. The invertibility of 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model refers 

to the noises can be inverted into a representation of past observations. The limitation of the 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) model is that if the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model is not invertible, the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model 

cannot be used to forecast the future values of the dependent. Suppose 𝐼𝑞 denotes an invertible 

region. This invertibility condition is difficult to determine if the order 𝑞 value is high. To 
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overcome this problem, a transformation is made. Let 𝐺 be a transformation from 𝜃(𝑞) ∈ 𝐼𝑞 to 

𝜌 = (𝜌1, ⋯ , 𝜌𝑞) ∈ (−1,1)𝑞 where 𝜌1, ⋯ , 𝜌𝑞 are functions of inverse partial autocorrelation 

[17]. With the 𝐺 transformation, the invertibility condition of the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model is easily 

determined even though the order 𝑞 value is high. The 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model is called invertible 

if and only if (𝜌1, ⋯ , 𝜌𝑞) ∈ (−1,1)𝑞. If the likelihood function for data is expressed in the 

transformation of 𝐹 and 𝐺, the likelihood function for data can be written by 

𝑓(𝑥|𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞), 𝛽)  

= ∏
1

2β
 𝑒𝑥𝑝 −

|∑ 𝐹−1(𝑟𝑖)𝑥𝑡−𝑖
𝑝
𝑖=1 − ∑ 𝐺−1(𝜌𝑗)𝑧𝑡−𝑗

𝑞
𝑗=1 + 𝑥𝑡|

𝛽

𝑛

𝑡=𝑝+1
 

 

= (
1

2β
)

𝑛−𝑝

𝑒𝑥𝑝 −
1

𝛽
∑ |∑ 𝐹−1(𝑟𝑖)𝑥𝑡−𝑖

𝑝

𝑖=1
− ∑ 𝐺−1(𝜌𝑗)𝑧𝑡−𝑗

𝑞

𝑗=1
+ 𝑥𝑡|

𝑛

𝑡=𝑝+1
. 

(6) 

In the probability function for this data, 𝐹−1 and 𝐺−1 are inverse transformations for the 

transformation of 𝐹 and 𝐺. 

Prior and Posterior Distributions 

The Binomial distribution with the parameter 𝜆 is chosen as the prior distribution for order 𝑝. 

The prior distribution for order p can be written by 

𝜋(𝑝|𝜆) = 𝐶𝑝
𝑝𝑚𝑎𝑥𝜆𝑝(1 − 𝜆)𝑝𝑚𝑎𝑥−𝑝 (7) 

where the 𝑝𝑚𝑎𝑥 value is set. Whereas the Binomial distribution with the parameter 𝜇 is chosen 

as the prior distribution for order 𝑞. The distribution of priors for 𝑞 order can be expressed by 

𝜋(𝑞|𝜇) = 𝐶𝑞
𝑞𝜇𝑞(1 − 𝜇)𝑞𝑚𝑎𝑥−𝑞 (8) 

where the value 𝑞𝑚𝑎𝑥 is set. For model order p and q, a Binomial distribution is used because 

it is a conjugate prior.  

The prior distribution for 𝑟(𝑝) given by the order 𝑝 is a uniform distribution at (−1,1)𝑝. The 

uniform distribution is chosen because it is a conjugate prior. The prior distribution for 𝑟(𝑝) if 

given an order 𝑝 can be written by 

𝜋(𝑟(𝑝)|𝑝) =
1

2𝑝. (9) 

The prior distribution for 𝜌(𝑞) given by the order 𝑞 is a uniform distribution at (−1,1)𝑞. The 

prior distribution for 𝜌(𝑞) if given an order 𝑞 can be written by 

𝜋(𝜌(𝑞)|𝑞) =
1

2𝑞. (10) 

The inverse Gamma distribution with parameter 𝑣 is selected as the prior distribution for 𝛽. 

Value 𝑢 is set, namely: 𝑢 = 1. The distribution of prior for 𝛽 can be expressed by 

𝜋(𝛽|𝑢, 𝜈) =
𝜈𝑢

Γ(𝑢)
𝛽−(𝑢+1)𝑒𝑥𝑝 −

𝑣

𝛽
. (11) 

For 𝛽, an inverse Gamma distribution is used because it is a conjugate prior. 

This prior distribution contains a parameter, namely: 𝜆, 𝜇, and 𝜈. Uniform distribution at 

interval (0,1) is chosen as the prior distribution for 𝜆, namely: 𝜋(𝜆) = 1. The uniform 

distribution at interval (0,1) is chosen as the prior distribution for 𝜇, namely: 𝜋(𝜇) = 1. The 

uniform distribution is proposed in previous work [7].  

Finally, the Jeffreys distribution is chosen as the prior distribution for 𝜈. The prior distribution 

for 𝜈 can be written by 𝜋(𝜈) ∝
1

𝜈
.  This is a non-informative prior distribution. Thus, the joint 

prior distribution for 𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞), 𝜆, 𝜇, 𝛽 and 𝜈 can be expressed by 

𝜋(𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞), 𝜆, 𝜇, 𝛽, 𝑣)  

∝ 𝐶𝑝
𝑝𝑚𝑎𝑥𝜆𝑝(1 − 𝜆)𝑝𝑚𝑎𝑥−𝑝𝐶𝑞

𝑞𝑚𝑎𝑥𝜇𝑞(1 − 𝜇)𝑞𝑚𝑎𝑥−𝑞 1

2(𝑝+𝑞)  
𝜈𝑢

Γ(𝑢)
𝛽−(𝑢+1)𝑒𝑥𝑝 −

𝑣

𝛽

1

𝛽

1

𝜈
. (12) 
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By using the Bayes Theorem, distribution posterior for 𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞), 𝜆, 𝜇, 𝛽, and 𝜈 can be 

expressed by 

𝜋(𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞), 𝜆, 𝜇, 𝛽, 𝑣|𝑥)  

∝ (
1

2β
)

𝑛−𝑝

𝑒𝑥𝑝 −
1

𝛽
∑ |∑ 𝐹−1(𝑟𝑖)𝑥𝑡−𝑖

𝑝

𝑖=1
− ∑ 𝐺−1(𝜌𝑗)𝑧𝑡−𝑗

𝑞

𝑗=1
+ 𝑥𝑡|

𝑛

𝑡=𝑝+1
 

 

     𝐶𝑝
𝑝𝑚𝑎𝑥𝜆𝑝(1 − 𝜆)𝑝𝑚𝑎𝑥−𝑝𝐶𝑞

𝑞𝑚𝑎𝑥𝜇𝑞(1 − 𝜇)𝑞𝑚𝑎𝑥−𝑞
1

2(𝑝+𝑞)
 

𝜈𝑢

Γ(𝑢)
𝛽−(𝑢+1)𝑒𝑥𝑝 −

𝑣

𝛽

1

𝛽

1

𝜈
 

 

∝   (
1

2
)

𝑛−𝑝

(
1

β
)

𝑛−𝑝−1

𝑒𝑥𝑝

−
1

𝛽
∑ |∑ 𝐹−1(𝑟𝑖)𝑥𝑡−𝑖

𝑝

𝑖=1
− ∑ 𝐺−1(𝜌𝑗)𝑧𝑡−𝑗

𝑞

𝑗=1
+ 𝑥𝑡|

𝑛

𝑡=𝑝+1
 

 

    𝐶𝑝
𝑝𝑚𝑎𝑥𝜆𝑝(1 − 𝜆)𝑝𝑚𝑎𝑥−𝑝𝐶𝑞

𝑞𝑚𝑎𝑥𝜇𝑞(1 − 𝜇)𝑞𝑚𝑎𝑥−𝑞 1

2(𝑝+𝑞)
 
𝜈𝑢−1

Γ(𝑢)
𝛽−(𝑢+1)𝑒𝑥𝑝 −

𝑣

𝛽
. (13) 

This posterior distribution has a complex form so that the Bayes estimator cannot be 

determined explicitly. The reversible jump MCMC algorithm was adopted to determine the 

Bayes estimator. 

Reversible jump Markov chain Monte Carlo 

The basic idea of the MCMC algorithm is to treat the parameters 𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞), 𝜆, 𝜇, 𝛽, and 𝜈 

as a Markov chain. To determine the Bayes estimator for parameters, a Markov chain is created 

by simulation. This Markov chain is designed so that it has a limit distribution that approaches 

the posterior distribution for parameters 𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞), 𝜆, 𝜇, 𝛽, and 𝜈. This Markov chain is 

used to find the Bayes estimator. The algorithm consists of two stages, namely; the first stage 

is to create a Markov chain for (𝜆, 𝜇, 𝛽, 𝜈|𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)) by simulation. The second stage 

makes the Markov chain for (𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)|𝜆, 𝜇, 𝛽, 𝜈) by simulation. 

Distribution for (𝜆, 𝜇, 𝛽, 𝜈|𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)) is the product of the distribution for 

(𝜆|𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)), the distribution for (𝜇|𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)), distribution for (𝛽|𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)), 

and the distribution for (𝜈|𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)). The distribution for (𝜆|𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)) is Binomial, 

the distribution for (𝜇|𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)) is Binomial, the distribution for (𝛽|𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)) is the 

Gamma inverse distribution, distribution for (𝜈|𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)) is the Gamma distribution. 

Simulation for the Markov chain (𝜆, 𝜇, 𝛽, 𝜈|𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)) is as follows [18]: 

 𝜆 ∼ 𝐵(𝑝 + 1, 𝑝𝑚𝑎𝑥 − 𝑝 + 1), 
𝜇 ∼ 𝐵(𝑞 + 1, 𝑞𝑚𝑎𝑥 − 𝑞 + 1),  

𝛽 ∼  𝐼𝐺 (𝑛 − 𝑝, 𝑣 + ∑ |∑ 𝐹−1(𝑟𝑖)𝑥𝑡−𝑖

𝑝

𝑖=1
− ∑ 𝐺−1(𝜌𝑗)𝑧𝑡−𝑗

𝑞

𝑗=1
+ 𝑥𝑡|

𝑛

𝑡=𝑝+1
), 

 𝜐 ∼ 𝐺 (𝑢,
1

𝛽
). 

The distribution for (𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)|𝜆, 𝜇, 𝛽, 𝜈) has a complex form. Simulation for the Markov 

chain (𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)|𝜆, 𝜇, 𝛽, 𝜈) is carried out using the reversible jump MCMC algorithm. The 

reversible jump MCMC algorithm is an extension of the Metropolis-Hastings algorithm [19-

20]. This reversible jump MCMC algorithm uses six types of transformation, namely: birth for 

order 𝑝, death for order 𝑝, change for coefficient 𝑟(𝑝), birth for order 𝑞, death for order 𝑞, and 

change for coefficient  𝜌(𝑞). 
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Birth of the order 𝒑 
 

Suppose that 𝑤 = (𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)) is the old Markov chain and 𝑤∗ = (𝑝∗, 𝑞, 𝑟∗(𝑝∗), 𝜌(𝑞)) is a 

new Markov chain. The birth of the order 𝑝 changes the order 𝑝 and the coefficient 𝑟(𝑝) but 

does not change the order 𝑞 and the coefficient 𝜌(𝑞). The new Markov chain (𝑝∗, 𝑞, 𝑟∗(𝑝∗), 𝜌(𝑞))  

is defined as follows: (a) first determine the order 𝑝∗ = 𝑝 + 1, (b) the second takes randomly 

a at the interval (−1,1) and then determines 𝑟∗(𝑝∗) = (𝑟(𝑝), 𝑎). The old Markov chain will be 

replaced by a new Markov chain with probability 

𝜂𝑝
𝐴𝑅(𝑤, 𝑤∗) = 𝑚𝑖𝑛 {1,

𝑓(𝑥|𝑤∗)

𝑓(𝑥|𝑤)

𝜋(𝑝∗)

𝜋(𝑝)

𝜋(𝑟∗(𝑝∗)|𝑝∗)

𝜋(𝑟(𝑝)|𝑝)
 
𝑞(𝑤∗, 𝑤)

𝑞(𝑤, 𝑤∗)
} 

(14) 

where 
𝑓(𝑥|𝑤∗

)

𝑓(𝑥|𝑤)
 is the ratio of the likelihood function, 

𝜋(𝑝∗)

𝜋(𝑝)
 is the ratio between the prior 

distribution for order 𝑝 and 𝑝∗, 
𝜋(𝑟∗

|𝑝∗
)

𝜋(𝑟|𝑝)
 is the ratio between the posterior distribution for 𝑟∗(𝑝∗)

 

and 𝑟(𝑝), and 
𝑞(𝑤∗,𝑤)

𝑞(𝑤,𝑤∗)
 is the ratio between the distribution of 𝑤 and 𝑤∗. In contrast, the old 

Markov chain will remain with the probability 1 − 𝜂𝑝
𝐴𝑅(𝑤, 𝑤∗).  Following is the calculation 

for the probability function ratio, the ratio between the prior distribution for order 𝑝 and 𝑝∗, the 

ratio between the posterior distribution for 𝑟∗(𝑝∗)
 and 𝑟(𝑝), and the ratio between the 

distribution of 𝑤 and 𝑤∗. 

The ratio for likelihood function can be stated by 

𝑓(𝑥|𝑝∗, 𝑞, 𝑟∗(𝑝∗), 𝜌(𝑞))

𝑓(𝑥|𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞))

=
𝑒𝑥𝑝 −

1
𝛽

∑ |∑ 𝐹−1(𝑟𝑖
∗)𝑥𝑡−𝑖

𝑝∗

𝑖=1 − ∑ 𝐺−1(𝜌𝑗)𝑧𝑡−𝑗
𝑞
𝑗=1 + 𝑥𝑡|𝑛

𝑡=𝑝∗+1

𝑒𝑥𝑝 −
1
𝛽

∑ |∑ 𝐹−1(𝑟𝑖)𝑥𝑡−𝑖
𝑝
𝑖=1 − ∑ 𝐺−1(𝜌𝑗)𝑧𝑡−𝑗

𝑞
𝑗=1 + 𝑥𝑡|𝑛

𝑡=𝑝+1

(
1

2β
). 

(15) 

The ratio between the prior distribution for order 𝑝 and 𝑝∗ can be expressed by 
𝜋(𝑝∗)

𝜋(𝑝)
=

𝑝𝑚𝑎𝑥 − 𝑝

𝑝 + 1

𝜆

1 − 𝜆
. 

(16) 

The ratio between posterior distribution for order 𝑝 and 𝑝∗ can be written by 

𝜋(𝑟∗(𝑝∗)
|𝑝∗

)

𝜋(𝑟(𝑝)
|𝑝)

=
1

2
. 

(17) 

While the ratio between the distribution of 𝑤 and 𝑤∗ depends on the value of 𝑎. If 𝑎 < 0, the 

ratio between the distribution of 𝑤 and 𝑤∗ can be written by 

𝑞(𝑤∗, 𝑤)

𝑞(𝑤, 𝑤∗)
=

1

𝑎 + 1
. 

(18) 

If 𝑎 > 0, the ratio between the distribution of  𝑤 and 𝑤∗ can be written by 
𝑞(𝑤∗, 𝑤)

𝑞(𝑤, 𝑤∗)
=

1

1 − 𝑎
. 

(19) 

Death of the order 𝒑 + 𝟏  
 

Death of the order 𝑝 + 1 is the opposite of the birth of order 𝑝. Let 𝑤 = (𝑝, 𝑞, 𝑟(𝑝+1), 𝜌(𝑞)) be 

the old Markov chain and 𝑤∗ = (𝑝∗, 𝑞, 𝑟∗(𝑝∗), 𝜌(𝑞)) is a new Markov chain. The death of the 

order 𝑝 + 1 changes the order 𝑝 + 1 and the coefficient 𝑟(𝑝+1) but does not change the order 
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𝑞 and the coefficient 𝜌(𝑞). The new Markov chain (𝑝∗, 𝑞, 𝑟∗(𝑝∗), 𝜌(𝑞)) is defined as follows: (a) 

first determine the order 𝑝∗ = 𝑝, (b ) the second determines 𝑟∗(𝑝∗) = 𝑟(𝑝). The old Markov 

chain will be replaced with a new Markov chain with probability 

𝛿𝑝
𝐴𝑅(𝑤, 𝑤∗) = 𝑚𝑖𝑛 {1,

1

𝜂𝑝
𝐴𝑅(𝑤, 𝑤∗)

}. 
(20) 

In contrast, the old Markov chain will remain with the probability  1 − 𝛿𝑝
𝐴𝑅(𝑤, 𝑤∗). 

Change of the coefficient 𝒓(𝒑) 
 

Let 𝑤 = (𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)) be the old Markov chain and 𝑤∗ = (𝑝∗, 𝑞, 𝑟∗(𝑝∗), 𝜌(𝑞)) is a new 

Markov chain. The change in the coefficient 𝑟(𝑝) does not change the order 𝑝 but changes the 

coefficient 𝑟(𝑝). The change in the coefficient 𝑟(𝑝) also does not change both the order 𝑞 and 

the coefficient 𝜌(𝑞). The new Markov chain (𝑝∗, 𝑞, 𝑟∗(𝑝∗), 𝜌(𝑞)) is defined as follows: (a) first 

determine the order 𝑝∗ = 𝑝, (b ) second takes randomly 𝑖 ∈ {1, ⋯ , 𝑝}, (c) third takes randomly 

𝑏 at the interval (−1,1) and then determines 𝑟∗(𝑝∗) = (𝑟1
∗, ⋯ , 𝑟𝑖

∗ = 𝑏, ⋯ , 𝑟𝑝
∗). The old Markov 

chain will be replaced by a new Markov chain with probability 

𝜍𝑝
𝐴𝑅(𝑤, 𝑤∗) = 𝑚𝑖𝑛 {1,

𝑓(𝑥|𝑤∗)

𝑓(𝑥|𝑤)
 
𝑞(𝑤∗, 𝑤)

𝑞(𝑤, 𝑤∗)
}. 

(21) 

In this change in coefficient, the likelihood function ratio can be written by 

𝑓(𝑥|𝑝∗, 𝑞, 𝑟∗(𝑟∗), 𝜌(𝑞))

𝑓(𝑥|𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞))

=
𝑒𝑥𝑝 −

1
𝛽

∑ |∑ 𝐹−1(𝑟𝑖
∗)𝑥𝑡−𝑖

𝑝∗

𝑖=1 − ∑ 𝐺−1(𝜌𝑗)𝑧𝑡−𝑗
𝑞
𝑗=1 + 𝑥𝑡|𝑛

𝑡=𝑝∗+1

𝑒𝑥𝑝 −
1
𝛽

∑ |∑ 𝐹−1(𝑟𝑖)𝑥𝑡−𝑖
𝑝
𝑖=1 − ∑ 𝐺−1(𝜌𝑗)𝑧𝑡−𝑗

𝑞
𝑗=1 + 𝑥𝑡|𝑛

𝑡=𝑝+1

. 

(22) 

While the ratio between the distribution of 𝑤 and 𝑤∗ can be expressed by 

𝑞(𝑤∗, 𝑤)

𝑞(𝑤, 𝑤∗)
= (

(1 + 𝑏)(1 − 𝑏)

(1 + 𝑟𝑖)(1 − 𝑟𝑖)
)

1/2

. 
(23) 

Birth of the order 𝒒 
 

Let 𝑤 = (𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)) be the old Markov chain and 𝑤∗ = (𝑝, 𝑞∗, 𝑟(𝑝), 𝜌∗(𝑞∗)) is a new 

Markov chain. The birth for order 𝑞 changes the order 𝑞 and the coefficient 𝜌(𝑞) but does not 

change the order 𝑝 and the coefficient 𝑟(𝑝). The new Markov chain (𝑝, 𝑞∗, 𝑟(𝑝), 𝜌∗(𝑞∗)) is 

defined as follows: (a) first determines the order 𝑞∗ = 𝑞 + 1, (b) both take randomly 𝑐 at the 

interval (−1,1) and then determine 𝜌∗(𝑞) = (𝜌(𝑞), 𝑐). The old Markov chain will be replaced 

by a new Markov chain with probability 

𝜂𝑞
𝑀𝐴(𝑤, 𝑤∗) = 𝑚𝑖𝑛 {1,

𝑓(𝑥|𝑤∗)

𝑓(𝑥|𝑤)

𝜋(𝑞∗)

𝜋(𝑞)

𝜋(𝜌∗(𝑞∗)|𝑞∗)

𝜋(𝜌(𝑞)|𝑞)
 
𝑞(𝑤∗, 𝑤)

𝑞(𝑤, 𝑤∗)
} 

(24) 

where 
𝑓(𝑥|𝑤∗

)

𝑓(𝑥|𝑤)
 is the ratio for the likelihood function, 

𝜋(𝑞∗)

𝜋(𝑞)
 is the ratio between the prior 

distribution for order 𝑞 and 𝑞∗, 
𝜋(𝜌∗

|𝑞∗
)

𝜋(𝜌|𝑞)
 is the ratio between the posterior distribution for 𝜌∗(𝑞∗)

 

and 𝜌(𝑞), and 
𝑞(𝑤∗,𝑤)

𝑞(𝑤,𝑤∗)
 is the ratio between the distribution of 𝑤 and 𝑤∗. In contrast, the old 

Markov chain will remain with the probability 1 − 𝜂𝑞
𝑀𝐴(𝑤, 𝑤∗). The following is a calculation 
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for the likelihood function ratio, the ratio between the prior distribution for order 𝑞 and 𝑞∗, the 

ratio between the posterior distribution for 𝜌∗(𝑞∗)
 and 𝜌(𝑞), and the ratio between the 

distribution of 𝑤 and 𝑤∗. 

The ratio for the likelihood function can be stated by 

𝑓(𝑥|𝑝, 𝑞∗, 𝑟(𝑝), 𝜌∗(𝑞∗))

𝑓(𝑥|𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞))

=
𝑒𝑥𝑝 −

1
𝛽

∑ |∑ 𝐹−1(𝑟𝑖)𝑥𝑡−𝑖
𝑝
𝑖=1 − ∑ 𝐺−1(𝜌𝑗

∗)𝑧𝑡−𝑗
𝑞
𝑗=1 + 𝑥𝑡|𝑛

𝑡=𝑝+1

𝑒𝑥𝑝 −
1
𝛽

∑ |∑ 𝐹−1(𝑟𝑖)𝑥𝑡−𝑖
𝑝
𝑖=1 − ∑ 𝐺−1(𝜌𝑗)𝑧𝑡−𝑗

𝑞
𝑗=1 + 𝑥𝑡|𝑛

𝑡=𝑝+1

(
1

2β
). 

(25) 

The ratio between the prior distribution for order 𝑞 and 𝑞∗ can be expressed by 
𝜋(𝑞∗)

𝜋(𝑞)
=

𝑞𝑚𝑎𝑥 − 𝑞

𝑞 + 1

𝜇

1 − 𝜇
. 

(26) 

The ratio between posterior distribution for order 𝑞 and 𝑞∗ can be written by 

𝜋(𝜌∗(𝑞∗)|𝑞∗)

𝜋(𝜌(𝑞)|𝑞)
=

1

2
. 

(27) 

While the value of the ratio between the distribution of  𝑤 and 𝑤∗ depends on the value 𝑐. If 

𝑐 < 0, the ratio between the distribution of 𝑤 and 𝑤∗ can be written by 

𝑞(𝑤∗, 𝑤)

𝑞(𝑤, 𝑤∗)
=

1

𝑐 + 1
. 

(28) 

If 𝑐 > 0, the ratio between the distribution of 𝑤 and 𝑤∗ can be written by 
𝑞(𝑤∗, 𝑤)

𝑞(𝑤, 𝑤∗)
=

1

1 − 𝑐
. 

(29) 

Death of the order 𝒒 + 𝟏 
 

The death of order 𝑞 + 1 is the opposite of the birth of order 𝑞. Let 𝑤 = (𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞+1)) be 

the old Markov chain and 𝑤∗ = (𝑝, 𝑞∗, 𝑟(𝑝), 𝜌∗(𝑞∗)) is a new Markov chain. The death of order 

𝑞 + 1 changes the order 𝑞 + 1 and the coefficient 𝜌(𝑞+1) but does not change the order 𝑝 and 

the coefficient 𝑟(𝑟). The new Markov chain (𝑝, 𝑞∗, 𝑟(𝑝), 𝜌∗(𝑞∗)) is defined as follows: (a) first 

determines the order 𝑞∗ = 𝑞, (b ) the second determines 𝜌∗(𝑞∗) = 𝜌(𝑞). The old Markov chain 

will be replaced by a new Markov chain with probability 

𝛿𝑞
𝑀𝐴(𝑤, 𝑤∗) = 𝑚𝑖𝑛 {1,

1

𝜂𝑞
𝑀𝐴(𝑤, 𝑤∗)

}. 
(30) 

In contrast, the old Markov chain will remain with the probability 1 − 𝛿𝑞
𝑀𝐴(𝑤, 𝑤∗). 

Change of the coefficient 𝝆(𝒒) 
 

Let 𝑤 = (𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞)) be the old Markov chain and 𝑤∗ = (𝑝, 𝑞∗, 𝑟(𝑝), 𝜌∗(𝑞∗)) is a new 

Markov chain. The change in coefficient 𝜌(𝑞) does not change the order of 𝑞 but changes the 

coefficient 𝜌(𝑞). The change in the coefficient 𝜌(𝑞) also does not change both the order 𝑝 and 

the coefficient 𝑟(𝑝). The new Markov chain (𝑝, 𝑞∗, 𝑟(𝑝), 𝜌∗(𝑞∗)) is defined as follows: (a) first 

determines the order 𝑞∗ = 𝑞, (b ) second take randomly 𝑗 ∈ {1, ⋯ , 𝑞}, (c) all three take 

randomly 𝑑 at the interval (−1,1) and then determine 𝜌∗(𝑞∗) = (𝜌1
∗, ⋯ , 𝜌𝑗

∗ = 𝑑, ⋯ , 𝜌𝑞
∗). The 

old Markov chain will be replaced by a new Markov chain with probability 



International Journal of Computational Intelligence Systems 

 9 

𝜍𝑞
𝑀𝐴(𝑤, 𝑤∗) = 𝑚𝑖𝑛 {1,

𝑓(𝑥|𝑤∗)

𝑓(𝑥|𝑤)
 
𝑞(𝑤∗, 𝑤)

𝑞(𝑤, 𝑤∗)
}. 

(31) 

In this change in coefficient, the ratio for the likelihood function can be written by 

𝑓(𝑥|𝑝, 𝑞∗, 𝑟(𝑝), 𝜌∗(𝑞∗))

𝑓(𝑥|𝑝, 𝑞, 𝑟(𝑝), 𝜌(𝑞))

=
𝑒𝑥𝑝 −

1
𝛽

∑ |∑ 𝐹−1(𝑟𝑖)𝑥𝑡−𝑖
𝑝
𝑖=1 − ∑ 𝐺−1(𝜌𝑗

∗)𝑧𝑡−𝑗
𝑞
𝑗=1 + 𝑥𝑡|𝑛

𝑡=𝑝+1

𝑒𝑥𝑝 −
1
𝛽

∑ |∑ 𝐹−1(𝑟𝑖)𝑥𝑡−𝑖
𝑝
𝑖=1 − ∑ 𝐺−1(𝜌𝑗)𝑧𝑡−𝑗

𝑞
𝑗=1 + 𝑥𝑡|𝑛

𝑡=𝑝+1

. 

(32) 

While the ratio between the distribution of  𝑤 and 𝑤∗ can be expressed by 

𝑞(𝑤∗, 𝑤)

𝑞(𝑤, 𝑤∗)
= (

(1 + 𝑑)(1 − 𝑑)

(1 + 𝜌𝑗)(1 − 𝜌𝑗)
)

1/2

. 
(33) 

Simulations 

The performance of the reversible jump MCMC algorithm is tested using simulation studies. 

The basic idea of simulation studies is to make a synthesis time series with a predetermined 

parameter. Then the reversible jump MCMC algorithm is implemented in this synthesis time 

series to estimate the parameter. Furthermore, the value of the estimation of this parameter is 

compared with the value of the actual parameter. The reversible jump MCMC algorithm is said 

to perform well if the parameter estimation value approaches the actual parameter value. 

First simulation  

One-synthetic time series is made using equation (2). The length of this time series is 250. 

The parameters of the ARMA model are presented in Table 1. 

 
Table 1: The parameter value for synthetic ARMA (2,3) 

(𝑝, 𝑞) 𝜙(2) 𝜃(3) 𝛽 

(2,3) (
−0.1921
−0.4467

) 
(

−0.2364
0.4377

−0.3565
) 

1 

 

Synthetic time series data with ARMA (2,3) model are presented in Figure 1. This synthetic 

time series contains noise that has a Laplace distribution.  

 
Figure 1: Synthetic time series with ARMA(2,3) model 

 

This synthetic time series is used as input for the reversible jump MCMC algorithm. The 

algorithm runs as many as 100000 iterations with a 25000 burn-in period. The output of the 
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reversible jump MCMC algorithm is a parameter estimation for the synthetic time series model. 

The histogram of order p for the synthetic ARMA model is presented in Figure 2. 

 

 
Figure 2: Histogram for order p of the synthetic ARMA(2,3) model 

 

Figure 2 shows that the maximum order of p is reached at value 2. This histogram shows that 

the order estimate for p is �̂� = 2. Also, the histogram of order q for the synthetic ARMA model 

is presented in Figure 3.  

 

 
Figure 3: Histogram for order q of the synthetic ARMA(2,3) model 

 

Figure 3 shows that the maximal order of q is reached at value 3. This histogram shows that 

the order estimation for q is �̂� = 3. Given the values �̂� = 2 and �̂� = 3, the estimation of the 

ARMA(2,3) model coefficients are presented in Table 2. The estimation of noise variance is 

also shown in Table 2. 

 
Table 2: Estimation of the parameter for the ARMA(2,3) model 

(�̂�, �̂�) �̂�(2) 𝜃(3) �̂� 

(2,3) (
−0.2530
−0.5732

) 
(

−0.3267
0.3372

−0.3765
) 

1.0058 

 

If Table 2 is compared with Table 1, the parameter estimation of the ARMA model approaches 

the actual parameter value. 
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Second simulation 

Other one-synthetic time series is made using equation (2). The length of this time series is 

also 250, but the parameters are different. The parameters of the ARMA model are presented 

in Table 3 

 

 
Table 3: The parameter value for synthetic ARMA (4,2) 

(𝑝, 𝑞) 𝜙(4) 𝜃(2) 𝛽 

(4,2) 

(

1.4773
1.1530
1.4550
0.9752

) 
(

−0.5266
0.2662

) 
1 

 

In this second simulation, the parameters of synthetic ARMA model are taken differently. 

Synthetic ARMA (4,2) time series data are presented in Figure 4. This synthetic time series 

data contains noise that also has a Laplace distribution.  

 

 
Figure 4: Synthetic time series with ARMA(4,2) model 

 

This synthetic time series is used as input for the reversible jump MCMC algorithm. The 

algorithm runs as many as 100000 iterations with a 25000 burn-in period. The output of the 

reversible jump MCMC algorithm is a parameter estimation for the synthetic time series model. 

The histogram of order p for the synthetic ARMA model is presented in Figure 5. 

 
Figure 5: Histogram for order p of the synthetic ARMA(4,2) model 

 

Figure 5 shows that the maximum order of p is reached at 4. This histogram shows that the 

order estimate for p is �̂� = 4. Also, the histogram of order q for the synthetic ARMA model is 

presented in Figure 6.  
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Figure 6: Histogram for order q of the synthetic ARMA(4,2) model 

 

Figure 6 shows that the maximal order of q is reached at value 2. This histogram shows that 

the order estimation for q is �̂� = 2. Given the value of �̂� = 4 and �̂� = 2, the estimation of the 

ARMA (4,2) model coefficients are presented in Table 4. The estimation of noise variance is 

also shown in Table 4. 

 
Table 4: Estimation of the parameter for the ARMA(4,2) model 

(�̂�, �̂�) �̂�(4) 𝜃(2) �̂� 

(4,2) 

(

1.4393
1.1033
1.4193
0.9323

) 
(

 −0.5146
0.2518

) 
1.1015 

 

If Table 4 is compared with Table 3, the parameter estimation of the ARMA model approaches 

the actual parameter value. The first simulation and the second simulation show that the 

reversible jump MCMC algorithm can estimate the parameter of the ARMA model correctly.  

 

If the underlying model is wrong will produce a biased estimator. So that the ARMA model is 

not suitable for modelling data. There is a way to identify whether the wrong model is chosen 

in the following way. The model is used to predict 𝑛th data based on previous 𝑛 − 1 data. 

Then, the difference between the 𝑛th data forecast value and the 𝑛th data value is calculated. 

If the difference is relatively small, the model chosen is correct. Conversely, if the difference 

is large, the chosen model is wrong. 

 

Conclusion 

This paper is an effort to develop a stationary and invertible ARMA model by assuming that 

noise has a Laplacian distribution. The ARMA model can be used to describe future behaviour 

only if the ARMA model is stationary. The ARMA can be used to forecast the future values of 

the dependent variable only if the ARMA model is invertible. Identification of ARMA model 

orders, estimation of ARMA model coefficients, and estimation of noise variance carried out 

simultaneously in the Bayesian framework. The Bayes estimator is determined using the 

MCMC reversible jump algorithm. The performance of reversible jump MCMC is validated in 

the simulations. The simulation shows that the reversible jump MCMC algorithm can estimate 

the parameters of the ARMA model correctly.  
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