
Parallelized k-Means Clustering by Exploiting
Instruction Level Parallelism at Low Occupancy

Adhi Prahara, Dewi Pramudi Ismi
Department of Informatics,

Faculty of Industrial Technology,
Universitas Ahmad Dahlan, Indonesia

adhi.prahara@tif.uad.ac.id, dewi.ismi@tif.uad.ac.id

Achmad Imam Kistijantoro, Masayu Leylia Khodra
Department of Informatics,

School of Electrical Engineering and Informatics, ITB
Bandung, Indonesia

imam@stei.itb.ac.id, masayu@stei.itb.ac.id

Abstract—Clustering is a technique to cluster data into defined

number of cluster. K-means clustering is the most well-known and
widely used clustering algorithm. While data become large in
terms of volume, the needs of high performance computing (HPC)
to perform data clustering is raising. One of the solutions with
compromised budget but high efficiency is to utilize highly parallel
architecture of Graphics Processing Unit (GPU). In this research,
k-means clustering algorithm is implemented on GPU and
optimized by exploiting instruction level parallelism (ILP) at low
occupancy. ILP on k-means clustering algorithm is achieved by
running a number of independent instruction per thread i.e. when
calculating distance or sum of data in each cluster. By loading
more works into thread at lower occupancy, the higher utilization
can be achieved. Experiment on clustering several data shows that
the proposed method can speed up k-means clustering several
times faster than other parallelized k-means clustering and k-
means implementation on CPU.

Keywords—k-means clustering; parallel computing; instruction
level parallelism; low occupancy; CUDA

I. INTRODUCTION
One of the most prominent data analytics tasks is to create

groups of data collection based on similarities between data.
This grouping activity is called clustering. Clustering activity is
usually performed for three main purposes; knowing the
underlying structure of the data, natural classification of the data,
and compressing the data by taking a prototype from each group
of data [1]. Clustering is an unsupervised task. It means that no
information/label about the data is known before the data is
grouped. Similarity between data is measured from the intrinsic
properties held by the data. The number of clusters generated
from clustering activity is a predefined input variable. Each
generated cluster contains data which are similar to each other.
In each generated cluster, sum of distance between data points
and its cluster center is minimized.

Clustering algorithms in the literature can be classified into
partition clustering, hierarchical clustering, density based
clustering and grid based clustering. The most legendary
partition clustering algorithm is k-means clustering. K-means
clustering is popular due to its easy and simple implementation
and its favorable outcome [1].

Researchers have previously conducted attempts to improve
performance of k-means clustering algorithms. In general,
efforts to improve performance of k-means clustering are
performed through two different approaches. The first approach

is done by modifying the original algorithm such that
computation time can be reduced. Cluster center initialization
becomes major concern in this matter since in the original k-
means clustering initial cluster centers are appointed in random
manner and thus affecting the number of iteration needed to
reach convergence. The second approach is done by increasing
hardware’s computation capacity by employing parallel
architecture such as OpenMP, Hadoop MapReduce, and GPU.

In this research we focus on parallel k-means clustering
implemented on GPU. There are several existing GPU based k-
means clustering, i.e. GPUMiner [2], UV_KMeans [3],
HP_KMeans [4], and also [5-9]. With respect to the
implementation of parallel k-means clustering in GPU, distance
calculation and centroid update are two tasks in k-means which
are implemented in parallel fashion. In [5] a specific centroid
initialization is also proposed in parallel fashion besides distance
calculation and centroid updates. Thread scheduling, solution of
finding top-k elements, and parallel high dimension reduction
are proposed in [6]. The challenge of GPU based k-means lies
on the memory utilization. GPUMiner designed a bitmap to store
the nearest centroid of each data point and used corresponding
bits to update centroids. Major limitation of GPUMiner is that it
uses global memory to store all data points and thus intensive
global memory access causes latency. UV_KMeans tried to
avoid global memory latency by copying all data points into
texture memory and storing centroids in constant memory.
UV_KMeans speedup is achieved by using cache mechanism to
get high reading efficiency.

According to [10], better performance in GPU computation
can be achieved by employing low occupancy. It declaims that
hiding latency in GPU is only achieved when occupying more
threads. It proves that increasing Instuction Level Parallelism
(ILP) is another means of hiding arithmetic latency. Moreover it
also shows that using fewer threads, faster computation is
resulted as more registers per thread can be occupied.

This work aims at improving the performance of previous
implementation parallel k-means clustering in GPU. Although
several implementation of GPU based k-means clustering
existed, ILP is not employed on those previous implementation.
In this work we propose a parallelized k-means clustering by
exploiting Instruction Level Parallelism (ILP) at low occupancy
to gain better performance/faster execution time. In summary,
the contribution of this work is given as follow:

2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)

978-1-5386-0658-2/17/$31.00 ©2017 IEEE 30

a. Calculation of distance between data to each cluster centers
and sum of data in each cluster are optimized to gain the
benefit of ILP.

b. The kernels are launched using small number of threads to
maintain low occupancy and achieve higher utilization by
loading more works on thread.

The rest of this paper is organized as Section 2 presents the
proposed parallelized k-means clustering, Section 3 presents the
results and discussion, and the conclusion of this work is
described in Section 4.

II. METHODOLOGY

A. k-Means Clustering
K-means clustering is an algorithm to partition data into k

cluster. Data are grouped by the shortest distance between data
and each cluster through iterative procedure. If the number of
data is 𝑁, dimension of data is 𝐷, and the number of cluster is 𝐾
then the general procedure of k-means clustering algorithm can
be explained in the following steps.

1. Initialize cluster centers. There are some methods to
initialize cluster centers such as using random data, seeding,
or simply use the first K data.

2. Find the minimum distance between data to each cluster
centers using (1) where 𝑑𝑖 is the distance of 𝑖𝑡ℎ data, 𝑥𝑖 is
the 𝑖𝑡ℎ data, and 𝜇𝑗 is the 𝑗𝑡ℎcluster center. The distance
measurement usually uses Euclidean distance or can be any
distance metric.

 𝑑𝑖 = 𝑎𝑟𝑔 min
1≤𝑗≤𝐾

‖𝑥𝑖 − 𝜇𝑗‖
2
 (1)

3. Assign data to the nearest cluster center from step 2.
4. Compute the new cluster centers using (2) where 𝜇𝑗 is the

𝑗𝑡ℎ cluster center, 𝑛𝑗 is the number of data in 𝑗𝑡ℎ cluster, and
𝑥𝑖

𝑗 is the 𝑖𝑡ℎdata belong to 𝑗𝑡ℎ cluster.

 𝜇𝑗 =
∑ 𝑥𝑖

𝑗𝑛𝑗
𝑖=1

𝑛𝑗
 (2)

5. Repeat step 2 to step 4 until converged or reach the
termination criteria. There are some convergence terms
such as the members of each cluster did not change, the
distances between new cluster centers and previous cluster
centers are less than threshold, or simply the iteration has
reached maximum number of iteration.

Parallelized k-means clustering is done with the same
procedure as the original k-means, but the computation is
performed in parallel fashion. In this research, authors use the
first K data to initialize cluster centers, Euclidean distance as
distance measurement, also a distance threshold and maximum
number of iteration as termination criteria.

B. Low Occupancy in GPU
GPU is a highly parallel architecture consists of streaming

multiprocessors (SM). GPU is structured into grids, blocks, and
threads and has several types of memory e.g. global memory,
local memory, shared memory, registers, constant memory, and
texture memory. Every memory has different latency and the
slowest is global memory. According to [11], the access to
global memory should be minimized and perform the operation
on faster memory such as registers or shared memory.

Another optimization is to hide the latency by running more
threads on multiprocessor or on thread block. The Thread Level
Parallelism (TLP) can be achieved with this procedure by
assigning a number of independent operations on different
thread. This procedure also increases the occupancy. However,
by maximizing the occupancy sometimes resulted in loss
performance [10]. Therefore, authors perform parallelized k-
means clustering at low occupancy by using a few numbers of
threads in a block in this research.

At lower occupancy, the latency can also be hidden with
Instruction Level Parallelism (ILP) beside TLP. ILP can be
achieved by performing a number of independent instructions on
a thread. This procedure can increase the utilization [10]. The
benefits of lower occupancy are no need to synchronize the
thread if the number of thread is within the warp and the threads
will have more memory resources.

C. Instruction Level Parallelism
ILP is a measure of average number of instructions that can

be executed at the same time by a processor. ILP relies on
dependency between instructions. Instructions can be executed
simultaneously if the instructions are independent to each other,
otherwise the instructions must be executed in order. There are
different types of dependencies that affect ILP which explained
as follow.

1. Data dependencies. The dependency occurs when the
result of one instruction is used directly or indirectly by
another instruction.

2. Name dependencies. The dependency occurs when
instructions try using the same register or memory location.
The common case is one instruction tries to read a memory
location while another instruction tries to write on that
memory location or some instructions try to write on the
same memory location.

3. Data hazard. Data hazard occurs when there is data
dependency between instructions and close enough to make
the pipeline to stall. The common cases are RAW (read after
write) when one instruction tries to read a source before
another instruction write it, WAW (write after write) when
one instruction tries to write a source before it is written by
another instruction, or WAR (write after read) when one
instruction tries to write a source before another instruction
read it.

4. Control dependencies. The dependency that determines
the order of instructions with respect to branch. Instructions
inside a branch cannot be moved before the branch
evaluated.

By avoiding the previously mentioned dependencies, ILP
can be achieved. In k-means clustering algorithm, the potential
operations to be executed in ILP are the calculation of distance
and sum of data in each cluster.

III. RESULT AND DISCUSSION
Our proposed parallelized k-means clustering is written in

C++ with CUDA and tested on Intel Core i7 6700K, NVidia
GeForce GTX 1070 8GB, and 16GB of RAM. Authors use KDD
Cup 1999 dataset [12], the same dataset used in [2] which consist
of 50,000, 100,000, and 200,000 data with 41 dimensions.
Authors analyze the speed up using variation of ILP levels and

2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)

31

number of thread. The experiment compares our proposed
parallelized k-means clustering with k-means implementation
on CPU and k-means bitmap from GPUMiner [2] by varying
number of data and number of cluster.

A. Parallelized k-Means Clustering
Our proposed parallelized k-means clustering utilizes two

kernels. The first kernel mainly computes two tasks: find
minimum distance between data and cluster centers and also
sum of data and number of data in each cluster. The second
kernel computes new cluster centers. The implementation of our
proposed parallel k-means is explained as follow.

1) Optimization in distance calculation

The closest Euclidean distance between data and each cluster
centers is used to determine the membership of data. To find the
closest distance, cluster centers are compared repeatedly as
many as the number of data. This condition can make excessive
access to global memory. Therefore, authors create shared
memory allocation for cluster centers to reduce access to global
memory and gain the benefit of faster latency of shared memory.

On distance calculation, the algorithm is optimized for ILP.
If 𝐷 is the number of data dimension and 𝐿 is the number of ILP
level then Algorithm 1.a. shows the distance calculation and
Algorithm 1.b shows the distance calculation which optimized
for ILP. In Algorithm 1.a., the instructions have data
dependencies and will run 𝐷 times to give the sum result.

In Algorithm 1.b, the distance calculation is divided into
three parts. The ILP part (marked with orange color in line 7-8)
makes 𝐿 heavy distance calculations executed simultaneously
because the instructions are independent. The sum part (marked
with green color in line 10-11) sums the 𝐿 distance data which
saved in static memory. The remainder part (marked with blue
color in line 13-14) computes the distance using Algorithm 1.a.
The remainder part will only be computed when the number of
dimension is not divisible by the number of ILP level.

Algorithm 1.a. Distance calculation

 𝑑𝑖𝑠𝑡 ← 0
 𝐟𝐨𝐫 𝑗 = 0 𝐭𝐨 𝐷 𝐝𝐨
 𝑑𝑖𝑠𝑡 ← 𝑑𝑖𝑠𝑡 + (𝑑𝑎𝑡𝑎[𝑗] − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑[𝑗])2
 𝑑𝑖𝑠𝑡 ← 𝐬𝐪𝐫𝐭(𝑑𝑖𝑠𝑡)

Algorithm 1.b. Distance calculation optimized for ILP

 𝑡𝐷 ← 𝐷/𝐿 // divide the number of dimension with ILP level
 𝑟𝑒𝑚𝐷 ← 𝐦𝐨𝐝(𝐷, 𝐿) // remainder after division
 𝑡𝑒𝑚𝑝[𝐿] // static memory in registers

 𝑑𝑖𝑠𝑡 ← 0
 𝐟𝐨𝐫 𝑗 = 0 𝐭𝐨 𝑡𝐷 𝐝𝐨
 // ILP part
 𝐟𝐨𝐫 𝑟 = 0 𝐭𝐨 𝐿 𝐝𝐨 (7)
 𝑡𝑒𝑚𝑝[𝑟] ← (𝑑𝑎𝑡𝑎[𝑗 + 𝑟 ∙ 𝑡𝐷] − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑[𝑗 + 𝑟 ∙ 𝑡𝐷])2 (8)
 // sum part
 𝐟𝐨𝐫 𝑟 = 0 𝐭𝐨 𝐿 𝐝𝐨 (10)
 𝑑𝑖𝑠𝑡 = 𝑑𝑖𝑠𝑡 + 𝑡𝑒𝑚𝑝[𝑟] (11)
 // remainder part
 𝐟𝐨𝐫 𝑟 = 0 𝐭𝐨 𝑟𝑒𝑚𝐷 𝐝𝐨 (13)
 𝑑𝑖𝑠𝑡 ← 𝑑𝑖𝑠𝑡 + (𝑑𝑎𝑡𝑎[𝑟 + 𝐿 ∙ 𝑡𝐷] − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑[𝑟 + 𝐿 ∙ 𝑡𝐷])2 (14)
 𝑑𝑖𝑠𝑡 ← 𝐬𝐪𝐫𝐭(𝑑𝑖𝑠𝑡)

2) Optimization in sum of data calculation

Before calculating new cluster centers in the second kernel,
the first kernel will sum the data and calculate number of data in
each cluster. With 𝑁 data which want to write into 𝐾 clusters, it
can produce data race and excessive access to global memory.
Authors use atomic addition in shared memory to solve this
problem. Atomic addition ensures that data will be queued if
they want to write into the same memory address. The sum of
data and number of data in each cluster will be computed
partially in shared memory to reduce the data race and global
memory access. After the computation is done, each block sums
the partially calculated sum of data and number of data in each
cluster to global memory using atomic addition.

 To further optimize the sum of data computation in
Algorithm 2.a., authors use ILP as shown in Algorithm 2.b.
Instructions in Algorithm 2.a. are already independent but there
is a limit on how many ILP can be executed at once because the
limited resources of registers. By using nested loop, the ILP can
be maintained. The algorithm is divided into two parts: ILP part
(marked by orange color in line 7-8 and in line 16-17) and
remainder part (marked by blue color in line 10-11 and in line
19-20). The addition instructions in ILP part are independent
and can be executed simultaneously. The ILP level is easily
adjusted to lies within the scope memory of registers.

Algorithm 2.a. Computation of partial sum of data to shared
memory and the merger to global memory

 // partial sum of data to shared memory
 𝐟𝐨𝐫 𝑗 = 0 𝐭𝐨 𝐷 𝐝𝐨
 𝐚𝐭𝐨𝐦𝐢𝐜𝐀𝐝𝐝(𝑠𝑚𝑒𝑚[𝑗], 𝑑𝑎𝑡𝑎[𝑗])

 … // other routines

 // merge partial sum to global memory
 𝐟𝐨𝐫 𝑗 = 0 𝐭𝐨 𝐷 𝐝𝐨
 𝐚𝐭𝐨𝐦𝐢𝐜𝐀𝐝𝐝(𝑠𝑢𝑚𝑂𝑓𝐷𝑎𝑡𝑎[𝑗], 𝑠𝑚𝑒𝑚[𝑗])

Algorithm 2.b. Computation of partial sum of data and the
merger to global memory optimized for ILP

 𝑡𝐷 ← 𝐷/𝐿 // divide the number of dimension with ILP level
 𝑟𝑒𝑚𝐷 ← 𝐦𝐨𝐝(𝐷, 𝐿) // remainder after division
 𝑡𝑒𝑚𝑝[𝐿] // static memory in registers

 // partial sum of data to shared memory
 𝐟𝐨𝐫 𝑗 = 0 𝐭𝐨 𝑡𝐷 𝐝𝐨
 // ILP part
 𝐟𝐨𝐫 𝑟 = 0 𝐭𝐨 𝐿 𝐝𝐨 (7)
 𝐚𝐭𝐨𝐦𝐢𝐜𝐀𝐝𝐝(𝑠𝑚𝑒𝑚[𝑗 + 𝑟 ∙ 𝑡𝐷], 𝑑𝑎𝑡𝑎[𝑗 + 𝑟 ∙ 𝑡𝐷]) (8)
 // remainder part
 𝐟𝐨𝐫 𝑟 = 0 𝐭𝐨 𝑟𝑒𝑚𝐷 𝐝𝐨 (10)
 𝐚𝐭𝐨𝐦𝐢𝐜𝐀𝐝𝐝(𝑠𝑚𝑒𝑚[𝑟 + 𝐿 ∙ 𝑡𝐷], 𝑑𝑎𝑡𝑎[𝑟 + 𝐿 ∙ 𝑡𝐷]) (11)

 … // other routines

 // merge partial sum to global memory
 𝐟𝐨𝐫 𝑗 = 0 𝐭𝐨 𝑡𝐷 𝐝𝐨 (14)
 // ILP part
 𝐟𝐨𝐫 𝑟 = 0 𝐭𝐨 𝐿 𝐝𝐨 (16)
 𝐚𝐭𝐨𝐦𝐢𝐜𝐀𝐝𝐝(𝑠𝑢𝑚𝑂𝑓𝐷𝑎𝑡𝑎[𝑗 + 𝑟 ∙ 𝑡𝐷], 𝑠𝑚𝑒𝑚[𝑗 + 𝑟 ∙ 𝑡𝐷]) (17)
 // remainder part
 𝐟𝐨𝐫 𝑟 = 0 𝐭𝐨 𝑟𝑒𝑚𝐷 𝐝𝐨 (19)
 𝐚𝐭𝐨𝐦𝐢𝐜𝐀𝐝𝐝(𝑠𝑢𝑚𝑂𝑓𝐷𝑎𝑡𝑎[𝑟 + 𝐿 ∙ 𝑡𝐷], 𝑠𝑚𝑒𝑚[𝑟 + 𝐿 ∙ 𝑡𝐷]) (20)

2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)

32

B. Performance of Parallel k-Means with ILP
Authors perform experiment to measure the speed up of ILP

optimized algorithm in parallelized k-means. The experiment is
conducted on dataset of 50,000 data with 41 dimensions and
with 24 number of cluster. Fig. 1 shows the computational time
according to the variation of ILP level. In Fig. 1, ILP optimized
algorithm can decrease the computational time but not in all
levels. The drawback using ILP optimized algorithm is when
dealing with number of data which not divisible by the number
of ILP level, the remainder will be processed in serial manner.
Therefore, authors use ILP level two which resulted in smaller
remainder of any possibilities number of data.

Fig. 1. Performance for different level of ILP

C. Kernel Execution in Low Occupancy
 The proposed parallelized k-means clustering is executed in
low occupancy. According to [10], higher occupancy does not
always guarantee better performance. The experiment measures
computational time against variation number of thread using
dataset of 50,000 data with 41 dimensions and with 24 number
of cluster as shown in Fig. 2. From Fig. 2, the performance of
the proposed parallelized k-means clustering is better at lower
occupancy which has less than 64 threads and worsen when use
less than 8 threads. The lowest theoretical occupancy authors
can achieve is 18.75% when using number of thread less equal
than 32. Authors choose 32 threads to run the kernel to gain the
benefit of low occupancy and thread warp. At low occupancy, a
thread also has more memory resources and programmer can
load more works on thread.

Fig. 2. Performance at different level of occupancy

D. Performance Comparison
The performance of proposed parallelized k-means

clustering algorithm on GPU is compared with the same
implementation on CPU and GPUMiner k-means bitmap [2].
The experiment measures computational time with respect to
variation number of data (N) and number of cluster (K) as
shown in Table I. Fig. 3 shows the performance comparison
using 50,000 data with 24 clusters. From Table I, the speed-up
from CPU implementation is approx. 30x faster on small
dataset and approx. 20x faster on large dataset. The comparison
of speed up with other GPU implementation is approx. 20 times
faster on large dataset. The result proved that our parallelized
k-means clustering algorithm with ILP optimized in low
occupancy is superior with other implementation on CPU and
GPU.

TABLE I. COMPARISON PERFORMANCE BETWEEN DIFFERENT
IMPLEMENTATION

K N

Computational Time (s)

CPU
GPUMiner (k-
means bitmap)

[2]

Proposed
Method

24 50,000 10.0950 43.4554 0.3167
24 100,000 34.1760 146.8060 0.9287
24 200,000 64.0850 307.0507 1.9855
50 50,000 30.1850 48.2371 0.9033
50 100,000 87.2750 141.7453 2.6296
50 200,000 165.9790 396.6267 5.1411

100 50,000 45.1780 39.2931 1.9294
100 100,000 169.7930 150.3344 8.2932
100 200,000 388.4790 300.1742 16.2428

Fig. 3. Comparison performance with 50,000 data

IV. CONCLUSION
The proposed parallelized k-means clustering algorithm

exploits ILP at low occupancy. The experiment shows that the
proposed method can gain the benefit of ILP level two by
reducing the drawback of ILP when dealing with non-divisible
number of data with the number of ILP level. At low occupancy
with 32 threads in a block, threads can gain more benefit i.e.
having more memory resources, thread warps, and by loading
more works into thread, higher utilization can be achieved.
When compared to CPU implementation and other GPU

2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)

33

implementation (GPUMiner), the proposed parallelized k-
means clustering is superior with significant speed up. For future
work, authors will use multi GPUs to further increase the
performance of parallelized k-means clustering.

ACKNOWLEDGMENT
This research is supported by The Indonesian Ministry of

Research, Technology and Higher Education (RISTEK-DIKTI)
research grant no. PEKERTI-056/SP3/LPP-UAD/IV/2017

REFERENCES

[1] A.K. Jain, “Data clustering : 50 years beyond K-means”, Pattern
Recognition Letters, vol.31, pp.651-666, 2010.

[2] W. Fang, K. K. Lau, M. Lu, X. Xiao, C. K. Lam, P. Y. Yang, B. He, Q.
Luo, P. V. Sander, and K. Yang, “Parallel data mining on graphics
processors,” Hong Kong Univ. Sci. Techn

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron, “A
performance study of general-purpose applications on graphics processors
using CUDA,” J. Parallel Distrib. Comput., vol. 68, no. 10, pp. 1370–
1380, 2008.ol. Tech. Rep. HKUST-CS08-07, p. 1, 2008.

[4] R. Wu, B. Zhang, M. Hsu, Clustering billions of data points using GPUs,
in: UCHPC–MAW’09: Proceedings of the Combined Workshops on

UnConventional High Performance Computing Workshop Plus Memory
Access Workshop, Ischia, Italy, 2009, pp. 1–6.

[5] J. Bhimani, M. Leeser, and N. Mi, “Accelerating K-Means clustering with
parallel implementations and GPU computing,” 2015 IEEE High
Perform. Extrem. Comput. Conf. HPEC 2015, 2015.

[6] L. Jian, C. Wang, Y. Liu, S. Liang, W. Yi, and Y. Shi, “Parallel data
mining techniques on Graphics Processing Unit with Compute Unified
Device Architecture (CUDA),” in Journal of Supercomputing, 2013, vol.
64, no. 3, pp. 942–967.

[7] M. Zechner and M. Granitzer, “Accelerating k-means on the graphics
processor via CUDA,” in Proceedings of the 1st International Conference
on Intensive Applications and Services, INTENSIVE 2009, 2009, pp. 7–
15.

[8] Y. Li, K. Zhao, X. Chu, and J. Liu, “Speeding up k-Means algorithm by
GPUs,” J. Comput. Syst. Sci., vol. 79, no. 2, pp. 216–229, 2013.

[9] H. T. Bai, L. L. He, D. T. Ouyang, Z. S. Li, and H. Li, “K-means on
commodity GPUs with CUDA,” 2009 WRI World Congr. Comput. Sci.
Inf. Eng. CSIE 2009, vol. 3, pp. 651–655, 2009

[10] V. Volkov, “Better performance at lower occupancy,” in Proceedings of
the GPU technology conference, GTC, 2010, vol. 10, p. 16.

[11] S. Cook, CUDA programming : a developer’s guide to parallel computing
with GPUs. Morgan Kaufmann, 2013.

[12] KDDCup 1999 dataset. Available online at
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. Accessed on
September 8th, 2017.

2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)

34

