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1. Introduction 

The study of human visual attention begins with a philosophy, scientifically explained in cognitive 
psychology and neuroscience, then computationally modeled in computer science and engineering. The 
computational model of human visual attention has been intensively studied, especially in the field of 
computer vision. Computer vision is a study to model biological vision into artificial vision. Computer 
vision has two aims which are to propose the computational models of human visual system (HVS) and 
to build an autonomous system that performs the same tasks or even surpass the human visual system 
[1]. Recently, computer vision has gained attention for its widespread application in various study fields 
and industries. 

Back in the 19th century, the concept of visual attention influences the field of cognitive psychology 
and neuroscience. Visual attention is defined as a mechanism that helps to overcome the human 
limitations by placing the limited available resources into the correct place at the right time with focus 
attention and set the mind into the right context [2]. Survey, observations, and experiments on how 
stimulus processed by human visual system, how human recognize pattern, how human attention work, 
and how the response is categorized or constructed, have been conducted by many cognitive 
psychologists and neuroscientists expert [3]–[11] in order to understand the human visual attention 
mechanism. Moreover, the development of biological and medical instruments, techniques and imagery 
such as Electroencephalograph (EEG), Magnetoencephalography (MEG), Positron Emission 
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 The philosophy of human visual attention is scientifically explained in the 
field of cognitive psychology and neuroscience then computationally 
modeled in the field of computer science and engineering. Visual attention 
models have been applied in computer vision systems such as object 
detection, object recognition, image segmentation, image and video 
compression, action recognition, visual tracking, and so on. This work 
studies bottom-up visual attention, namely human fixation prediction and 
salient object detection models. The preliminary study briefly covers from 
the biological perspective of visual attention, including visual pathway, the 
theory of visual attention, to the computational model of bottom-up visual 
attention that generates saliency map. The study compares some models at 
each stage and observes whether the stage is inspired by biological 
architecture, concept, or behavior of human visual attention. From the 
study, the use of low-level features, center-surround mechanism, sparse 
representation, and higher-level guidance with intrinsic cues dominate the 
bottom-up visual attention approaches. The study also highlights the 
correlation between bottom-up visual attention and curiosity.  
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Tomography (PET), functional Magnetic Resonance Imaging (fMRI), single-cell recording and 
neuronal tracing allow new and more detailed experiments to prove and to validate the hypothesis of 
human visual attention.   

Human visual attention is observed based on its behavior and mechanism in processing visual stimuli 
also by investigating the visual pathway and the neuron activity in the primary visual cortex and beyond. 
The observation leads to the most influential biological inspired computational model of visual attention 
[12][13]. The model adopts the bottom-up mechanism of human visual attention that tends to shift 
the attention towards salient locations in the visual field. Saliency is defined as the degree of a spatial 
location to attract attention in a bottom-up manner. The saliency value can be triggered either by unique 
color, intensity, orientation or motion. The bottom-up visual saliency model then can be divided into 
human fixation prediction model and salient object detection model. Fig. 1 shows the history of bottom-
up visual attention studies from the concept of attention to the computational saliency map models.  

 

Fig. 1. The study of bottom-up visual attention. 

But why do we need to study human visual attention? What biological model that inspires the 
computational model of bottom-up visual attention? What is the advantage of modeling the bottom-up 
visual attention? To what extent the computational model of bottom-up visual attention has been 
developed? Those are the important questions that will be covered in this preliminary study, along with 
our focus of study that investigate and highlight the biologically-inspired bottom-up visual attention 
model and its future development. The overview of bottom-up visual attention model will be explained 
in the next sections that organized as follow. Section 2 presents the visual pathway and visual attention 
in biological perspective. Section 3 presents the cognitive psychology theory of human visual attention. 
Section 4 presents the bottom-up saliency map models. Section 5 presents the discussion of the future 
development of bottom-up visual attention model. The conclusion of this work is described in Section 
6. 

2. Visual Pathway 

This section will briefly overview the visual pathway and highlight the points that later will influence 
the computational model of visual attention. The present biological instruments allow researchers to 
observe the human visual system and construct the visual pathway (the illustration of visual pathway can 
be seen in Aminoff [14]). Visual stimuli begin when the lights fall into the retina photoreceptors. The 
lights trigger photochemical reactions in rods and cones at the back of the retina. The rods are sensitive 
to light while the cones are sensitive to color. There are three types of color reception, namely long 
wavelength (L), middle wavelength (M), and short wavelength (S) cones, which sensitive to red, green, 
and blue spectrums respectively.  

As mention in Frintrop [15] that referred to Palmer [16], the outputs of three types of cones produce 
color opponency. The red-green contrast is produced from the excitatory output of L-cones combined 
with the inhibitory output of M-cones, hence the equation is (𝐿 −𝑀) and the green-red contrast is 
produced by (𝑀 − 𝐿). The blue-yellow contrast is produced from the excitatory output of S-cones 
combined with the sum of the inhibitory output of M and L-cones (𝑆 − (𝑀 + 𝐿)) and the yellow-blue 
contrast is produced by ((𝑀 + 𝐿) − 𝑆). Luminance contrast is produced from the sum of the excitatory 
output (𝑆 +𝑀 + 𝐿) or the inhibitory output (−𝑆 −𝑀 − 𝐿) of S, M and L-cones. In the retina, there 
is a unique structural arrangement of photoreceptors. The density of photoreceptors decreases rapidly 
from the fovea into the retinal periphery. This creates an efficient visual field area where small central 
area describes detail with high resolution while the lateral region covers large visual area with low 
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resolution [17]. This center-surround mechanism of receptive field and the color opponency of 
photoreceptors are adopted by some visual attention models that will be described in the later section. 

The signals from approximately 65 million photoreceptors per eye that goes through only ten million 
of bipolar cells indicate that parallel processing occurs from the densely clustered receptors at the fovea 
[18]. Additionally, there are approximately ten different types of bipolar cells that indicate parallel 
processing also happen at the retina i.e. between the cone cells and bipolar cells [19]. The evidence of 
parallel processing also presents in the ganglion cells. There are approximately 20 different types of 
ganglion cells that act as parallel filters to encode the different aspects of the visual field [19]. The facts 
that parallel processing happen in low-level vision and also followed by the result of human reaction 
time in the cognitive psychological test for visual attention, parallel processing then considered becoming 
one of the characteristics of bottom-up visual attention. 

The photoreceptors send input for ganglion cells through the bipolar cells indirectly. The ganglion 
cells receptive fields composed of rods and cones input and separated into a center area and a surround 
area. The receptive field arranged into on-centers/off-surround cells and off-center/on-surround cells. 
The response of the on-center cells increases when the light falls at the center while the response of the 
off-center cells decreases when the light falls at the center so the two areas always have the opposite 
characteristic. Ganglion cells project their axons that converged into optic nerve to a different layer of 
Lateral Geniculate Nucleus (LGN). The LGN consists of several layers namely Parvocellular layers (P), 
Magnocellular layers (M), and Koniocellular layers (K). The projecting axons of the ganglion cells that 
carry the data of high spatial resolution, color perception, and stereopsis will be processed at the 
parvocellular (P) layers while the ones that carry encoded data from receptors that respond to moving 
stimuli will be processed at the magnocellular (M) layers [18]. Some portions of signal from ganglion 
cells are projected to the superior colliculus. Superior colliculus is involved in the visual orientation and 
generation of rapid eye movements or saccades that used to shift the gaze to objects interest in the 
different parts of the visual field after receiving the input that mainly from primary visual cortex (V1) 
[9][20].     

The visual input from LGN is transmitted to M-P related sub-layer and modules in primary visual 
cortex (V1). From V1, the P-input is fed to the ventral stream and the M-input is fed to the dorsal 
stream. Ventral stream receives input mainly chromatics stimuli that go through P-system that handles 
shape, texture, color, pictorial detail, and size to identify object (the “what” pathway). Dorsal stream 
receives input mainly luminance stimuli that go through M-system that handles location, 
movement/motion, spatial transformation, spatial relations, and attention to perform spatial vision (the 
“where” pathway) [19]. In early attention, spatial attention modulates input solely according to their 
location regardless of their identity. This characteristic is adopted to the salient object detection which 
identity of the object is not considered important.  

It is still under debate where the attention effect happens in visual pathway. It has been known that 
the neural activity which correlates to visual attention appear in nearly all brain area that associated with 
visual processing. Different statements are made by the researchers about the location that suspected 
similar to saliency map e.g. at the Frontal Eye Field (FEF), Lateral IntraParietal area (LIP), Superior 
Colliculus (SC), or V4. Evidence also stated that the saliency map is in V1 [21]. Several areas have been 
verified to be involved in visual attention process but the behavior and task of each area as well as the 
correlation between the area are not yet determined [15]. 

Visual pathway is one of the major contributions to understand the human visual attention. The 
other major contribution comes from the theory of human visual attention that will be described in the 
next section. 

3. Theory of Visual Attention 

At the beginning of psychological studies on visual attention, there are two distinctive attention 
processes namely overt attention and covert attention. In the visual attention context, overt attention is 
the change in posture to prepare receptors for expected visual input such as eye movements and the 
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change of pupil size. Covert attention is the ability to catch regions from the visual field that not fixated 
by the eyes. From this mechanism, the eye movement can be divided into fixation, saccades, and smooth 
pursuit. Visual attention is useful to overcome the bottleneck of information that happens in the visual 
pathway by selecting, ignoring, or deleting the information. The example of information deletion is 
inattentional blindness that blind everything except one aspect of the scene that we pay attention to 
[22]. A behavior when we fail to notice the changes in the environment called change blindness [23]. 
The early study of visual attention behaviors concludes some theories as follows. 

3.1. Selective and Divided Attention 

The visual attention allows only a small part of the visual input to reach the short-term memory and 
visual awareness. Therefore, resulting in less computation and localized visual analysis problems. There 
some kinds of attention based on the focus of cognitive resources to achieve attentive task namely focus 
attention, sustained attention, alternating attention, selective attention and divided attention [24]. Focus 
attention focus on specific stimuli or tasks. Sustained attention maintains consistent responses on a 
longer continuous task. Alternating attention switches between multiple tasks. The idea that there are 
limits on the number of the scene that we can pay attention to is known as selective attention. Selective 
attention allows the attention to focus on one thing while ignoring the other [25]. But how we can still 
perform more than one task at a time? The question leads to divided attention theory that considers the 
limited cognitive resources and the complexity of the tasks. The attention can be divided to handle more 
tasks as long as the resources are sufficient. When the resources become insufficient, the divided 
attention mechanism allocates the resources to a certain task even though some other tasks may suffer. 
The performance on a task will decline if the resources exceed the pool capacity. 

3.2. Bottom-up and Top-down Mechanism 

Visual attention can be attracted by salient stimuli that pop-out from the surrounding. Attention 
can be directed to the objects that currently important to the observer. According to Pessa [26] and 
Connor et al. [27], the bottom-up mechanism operates rapidly on raw sensory input and involuntarily 
shifting the attention to salient visual features while top-down mechanism implements longer cognitive 
strategies, biasing attention towards importance spot with a specific task. The top-down mechanism also 
called task-driven, goal-directed, voluntary, non-reflexive, and endogenous e.g. directed attention to find 
a specific object or to look at the specific location. The bottom-up mechanism also called stimulus-
driven, goal-independent, involuntary, reflexive, and exogenous e.g. although a task has been given to 
direct the attention but it can be automatically averted when a salient stimulus attracts the attention.  

Experiment to analyze the correlation between bottom-up and top-down mechanism conducted by 
comparing the response time of subject toward given stimulus. The evidence of top-down mechanism 
can be seen in the control of the attentional focus location (space-based and object-based attention) 
while the bottom-up mechanism is parallel and pre-attentive relative to single visual feature such as 
color, orientation and state of motion (feature-based attention) [26]. Visual attention by top-down or 
bottom-up mechanism helps shorten the reaction time and increase the accuracy of task performance 
[28][29]. 

3.3. Feature Integration Theory 

The feature integration theory of Triesman and Gelade [4] states that only simple visual features are 
computed in a parallel manner over the entire visual field. The visual scene is assumed to be coded into 
separable representations/features such as color, orientation, spatial frequency, brightness, and 
movement. The theory based on Neisser [11] and Hoffman [30] that proposes two-stage models namely 
pre-attentive and attentive model. Pre-attentive model is spatially parallel, process the information in 
bottom-up manner, without attentional resources but lack of details. It produces a spatial features map. 
Attentive is serial, top-down controlled, processing spatial features map and visual search. Visual search 
refers to scanning the environment for particular features. A feature search happens when only a single 
feature is required to detect the target (“pop-out phenomenon”) while a conjunction search happens 
when two or more features must be used in conjunction to detect the target. In the conjunction search, 
attentional resources are used to perform feature binding to bind together the object features. According 
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to Treisman and Gelade [4], to ensure the correct synthesis of features in complex display, the stimulus 
location has to be processed along with focal attention. The focal attention binds the features that present 
in the same fixation of attention to form a single object.  

3.4. Guided Search Theory 

Guided search is the modification of the feature integration model of Treisman and Gelade [4]. The 
theory also based on Neisser [11] and Hoffman [30] that proposes pre-attentive and attentive models 
and the conjunction search from Egeth et al. [5]. According to Wolfe [31], guided search states that the 
early stages of visual system process all locations in parallel but only extract a limited amount of 
information from visual input. In the guided search theory, pre-attentive stage generates a spatial features 
map. Bottom-up activation measures the difference of value between features in a given location with 
the other features in the neighborhood location. Top-down activation marks the location given by the 
feature value to search the subject. The combination of both activations produces an activation map and 
directs the attention to a point with the highest activation. 

4. Bottom-Up Visual Saliency 

The theory of saliency map also based on the pre-attentive and attentive model. Pre-attentive process 
generates a spatial saliency map. Saliency map is a map that associates each one of the different parts of 
a scene with a saliency value. Saliency map in the primary visual cortex (V1) corresponds to the highest 
neural firing rates that responded by superior colliculus to shift the gaze to that location [21]. The 
attentive process directs attentional focus to the different parts of a scene, following the order of saliency 
hierarchy. In short, saliency map is used to guide bottom-up selection to the most salient location 
regardless of features [12][13][31].  

 Excellent reviews of visual attention model are done by Borji et al. [32]–[34] and Riche et al. [35]. 
In order to validate and compare the models, researchers create saliency benchmark datasets e.g. MIT 
[36], Toronto [37], Kootstra [38], MSRA10K [39], DUT-Omron [40], THUR15K [39], ImgSal [41], 
ECSSD [42] and so on. The datasets are created by recording eye fixation from several human subjects 
on a set of image using eye-tracking device. The device has mounted camera to track the eyes movement 
during experiments. The datasets contain annotated images to benchmark the models using evaluation 
measures such as Precision-Recall (PR), F-Measure, Receiver Operating Characteristics (ROC) curve, 
Area Under ROC Curve (AUC) score, and Mean Absolute Error (MAE) score [33]. 

The famous and influential models of saliency map proposed by Koch and Ullman [12] and Itti et al. 
[13] are marked as the first wave in the computational visual attention study [34]. The models called 
human fixation prediction that predict the likelihood of human eye gaze. Numerous improvements [43]–
[50] are proposed since then. The research on bottom-up visual attention model begins to shift to search 
salient object on the scene rather than predict the eye fixation, thus it is marked as the second wave 
called salient object detection model. The model is initiated by Liu et al. [39] and continuous 
improvements [51]–[56] have been made. Recently, the rising of deep learning influences the bottom-
up salient object detection model into top-down or hybrid approach. The third wave is all about deep 
visual attention models that have been proposed by many researchers [57]–[65]. The deep visual 
attention models will not be covered in this preliminary study because the approach is not bottom-up 
but top-down approach using supervised learning or guided by object context. 

4.1. Human Fixation Prediction Model 

Itti et al. (IT) saliency map model [13] is based on the biologically-inspired saliency map architecture 
from Koch and Ullman [12], related to the features integration theory [4] and the guided search model 
[31]. This biologically-driven visual attention model is reflected in the color perception, the feature 
maps, the center-surround mechanism, and the saliency map generation. In this model, early visual 
features such as color, intensity and orientation are decomposed from input color image using linear 
filtering. Aside from the benefit of easy to compute, color, intensity and orientation feature also the 
basic features that have been proposed in the psychological and biological study of visual attention. The 
color feature maps inspired by the color opponency produced by the retina photoreceptors. The 
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orientation features in 0°, 45°, 90° and 135° are extracted using Gabor filters. Gabor filters estimate the 
receptive field sensitivity characteristics (impulse responses) of orientation-selective neurons in V1 [66]. 

A set of scale made from Gaussian pyramids used to compute center–surround differences between 
fine-scale and coarse-scale for all feature types to generate a total of 42 feature maps. The center-surround 
mechanism that based on the Difference of Gaussian is inspired by the characteristics of visual neurons 
that most sensitive in a small region in the center of the visual field. This characteristic is good to detect 
locations which stand out from their surroundings and it is also a general computational principle in the 
retina, LGN, and V1 [66]. Normalization is performed to promote maps that have a small number of 
strong peak activity and suppress maps that have numerous comparable peaks response. A combination 
of each normalized feature maps generates single conspicuity map for each feature type. A linear 
combination sums the conspicuity maps into final saliency map. The winner-take-all scheme detects the 
point of highest salience in the map and focuses the attention towards that location. An inhibition-of-
return mechanism temporarily suppresses the highest salient location in the saliency map in order to 
make the attention directed to the next most salient image location autonomously. This mechanism is 
inspired by the function of superior colliculus that controls eye movements in the visual pathway.  

From the influential model of Koch and Ullman [12] and Itti et al. [13], many improvements and 
reviews have been done. The bottom-up visual saliency models can be grouped based on several 
characteristics namely 1) global or local approach where the models are applied to the entire image or 
local image patches, 2) post-processing procedure where the models highlights the center of saliency 
map by applying centered Gaussian bias, 3) attentive mechanism to generate the saliency map such as 
cognitive, graphical, spectral, information theory, Bayesian, pattern classification, decision theory, and 
other (see [32]), and 4) the visual input where the models use color or just grayscale [35]. In this study, 
the baseline models on each category based on the attentive mechanism are briefly presented. The 
biologically-inspired approach in the models will be highlighted to fit the purpose of our study. Fig. 2 
shows the stages of bottom-up saliency map model namely visual input that divided into global or local, 
feature extraction stage, attentive mechanism stage, and combination/integration stage to produce 
saliency map. Most researchers use similar approach at one stage and different for the other stage. 
Therefore, this per-stage approach explanation is suitable to present the comparison and to identify the 
biological or mathematical model that inspiring the models. 

Bruce and Tsotsos (AIM) [43] proposed saliency based on information maximization (AIM) [37]. 
The model that belongs to the information theory category uses a large sample of image patches 
generated from natural images to be fed into Independent Components Analysis (ICA) to learn a set 
of basis functions. These basis functions can be thought as the sparse representation of local 
neighborhoods. The work is inspired by the evidence that learning a sparse code from natural image 
results in the similar pattern of simple-cell receptive fields in V1. The sparse representation allows 
certain independence assumptions with respect to neural firing. The pseudoinverse of these basis 
functions is used in the matrix multiplication with any local neighborhood in the input image to 
generate a set of basis coefficients. Density estimation is used to create a coefficient distribution 
histogram followed by joint likelihood and Shannon’s self-information measure to generate saliency 
map.  

Torralba et al. (SDLF) [44], introduced visual search based on Bayesian framework. The model 
belongs to the Bayesian model category. In this model, saliency is defined as probability finding a set 
of local features which considered salient if they are statistically distinguishable from the background. 
The model inspired by the human visual search behavior observed from several cognitive psychological 
tests and measurements. The model consists of two parallel pathway namely local features (saliency) 
and global features (scene-centered) computation. The bottom-up part is the computation of local 
features to generate saliency map. Each color channel in the input image is filtered by a set of 
biologically-inspired multiscale-oriented filters. To compute the saliency, the distribution of local 
features is modeled using multivariate power-exponential distribution. The conditional distribution 
then estimated by fitting the power-exponential distribution using local features of the current input 
image to compute saliency map.  
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Fig. 2. The comparison of each stage of human fixation prediction models. 

Harel et al. (GBVS) [45] proposed Graph-Based Visual Saliency model (GBVS). The model belongs 
to the graphical model category. Input image is decomposed into feature maps as in Itti et al. [13] then 
generates the activation maps. The graph-based activation maps treat feature maps as a fully connected 
directed graph, assign the weight to its edges, normalizing the weights to create Markov chain and 
compute the equilibrium distribution. The authors claim that the graph-based and Markovian approach 
is biologically-inspired because nodes (neurons) exist in a retinotopically organized, connected network 
(the visual cortex), and able to communicate with each other (synaptic firing). The normalization step 
has the aim to concentrate mass on activation maps to highlights the conspicuity using a similar method 
as in the activation maps. The normalized maps are combined using a linear combination to form 
saliency map. 

Hou and Zhang (SR) [46], propose saliency map model based on spectral residual. The model 
belongs to the spectral analysis model category. The model tried to simulate the pre-attentive behavior 
of human visual search rather than inspired by the biological structured of the human visual system. 
The log-spectrum is computed from down-sampled input image using Fast Fourier Transform (FFT). 
The spectral residual is computed by subtracting the log spectrum with the smoothed version of the 
log spectrum of the input image generated by convolving the log-spectrum with local average filter. 
The saliency map then constructed using Inverse Fast Fourier Transform (IFFT) in spatial domain.  

Gao et al. (DCS) [47], introduce discriminant center-surround to estimate the visual saliency. The 
model belongs to the decision theory category. Input image is decomposed into color, intensity and 
orientation feature maps as in Itti et al. [13]. Discriminant center-surround is applied to the feature 
maps to generate feature saliency maps. The center-surround mechanism itself is inspired by the early 
stages of biological vision. Discriminant saliency is based on decision theory that consists of two classes 
namely stimuli of interest which is an observation within its neighborhood (center) and null hypothesis 
which is an observation within its surroundings (surround). The discriminant between center and 
surround is measured to generate feature saliency maps. A linear combination then applied to combine 
the feature saliency maps into saliency map.  
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Zhang et al. (SUN) [48], propose saliency map model based on Bayesian framework (SUN). The 
model belongs to the Bayesian model category. The model computes saliency map using two alternatives 
feature extraction methods namely Difference of Gaussians (DoG) as used in Itti et al. [13] and ICA as 
used in Bruce and Tsotsos [37][43]. Both features from DoG and ICA have been shown to be 
biologically-inspired,  the DoG filters adopt center-surround mechanism that resembles the 
characteristics of visual neurons and also a general computational principle in the retina, LGN, and V1 
while the ICA responses similar to the receptive fields of neurons in V1 and have sparsity property. 
Filter response maps on large samples of natural images are used to estimate the probability distribution 
over the observed values of each feature. The estimated distribution for each features then fitted into 
generalized Gaussian distribution. The bottom-up saliency map then computed by adding the sum of 
log probability (self-information) for all features maps with a constant. 

Hou and Zhang (DVA) [49], introduced Incremental Coding Length (ICL) for dynamic visual 
attention model. The model belongs to the information theory category. As in Bruce and Tsotsos [43] 
that inspired by the fact that receptive fields of simple cells in V1 produce a sparse representation, the 
work also uses a set of basis functions learned from large collection of natural image patches. The 
features are its filter response with the bank of filter functions obtained from the inverse basis functions 
which its activity is considered as a probability function. The ICL measures the entropy gains of each 
feature and optimizes the energy distribution to make the unexpected features receive high energy. The 
feature with large coding length increments determined as salient features. The activity of all features 
in the region is summed to generate the final saliency region.  

Kienzle et al. (CSP) [50] investigate the most relevant image patterns that guide visual search in the 
bottom-up manner. The model belongs to the pattern classification category. The image patterns that 
called perceptive fields are analogous with receptive fields in human visual system but at the 
psychophysical level. The model tries to learn attention directly from eye-tracking data and proposes 
four distinct solutions of perceptive fields model that represent the most excitatory or inhibitory 
regions. The perceptive fields are just center-surround patterns of single spatial scale that analogous to 
receptive fields of neurons in early visual areas (LGN and V1). The input is linearly filtered by four 
kernels (four perceptive fields) then fed into an exponential operator along with the local signal energy 
from the image patch. The output signals are weighted according to their excitatory (positive) or 
inhibitory (negative) and summed into saliency value to generate saliency map. 

The models explained previously are the baseline of each category (see [32]). The overview diagrams 
of each model can be seen in Riche and Mancas [35] and the comparison result with various eye fixation 
datasets can be found in [32]–[35]. Most of the models utilize biologically-inspired center-surround 
mechanisms in the retina, sparse representation in the V1, and low-level features in the early human 
visual system. The commonly used low-level features are color (from RGB channels, CIE Lab channels, 
or color opponency), intensity, and orientation from Gabor filters with multi-scale. The sparse 
representation adopted from the analysis of independent components from the local patch image using 
ICA. The center-surround mechanism usually computed as the difference between fine and coarse-scale. 
The later methods begin to see saliency as a probability model and optimization problem. The integration 
method also shifts from a linear combination that performs a weighted sum from each saliency map 
channel to find the highest probability of saliency value. 

4.2. Salient Object Detection Model (SOD) 

 The salient object detection model searches for dominant objects from the background but still based 
on the low-level image processing algorithms without semantic object-level understanding. The model 
is inspired by the human subitizing ability to quickly count the number of objects within range accurately 
[67]. The salient object detection model detects the most salient object on the scene and segments the 
object boundary. The models are categorized based on cues namely salient object detection models with 
intrinsic cues or with extrinsic cues [34]. The cues are used to distinguish the salient objects from the 
distractors. Intrinsic cues extracted from the input image itself while the extrinsic cues come from 
outside the image such as user annotation, depth maps, or other statistical information. In this study, 
salient object detection with intrinsic cues is observed. The comparison at each stage of salient object 
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detection models is shown in Fig. 3. To achieve the purpose of this study, biological-inspired methods 
used in the salient object detection model are highlighted.  

 

Fig. 3.  The comparison of each stage of salient object detection models. 

 Achanta et al. (FTSD) [51] proposed frequency-tuned salient region detection (FTSD). The model 
adopts the biological concept of center-surround contrast which uses a frequency-tuned approach using 
color and luminance to estimate center-surround contrast. The L2-norm is calculated between 
Gaussian blurred input image and the average of CIE Lab input image. The method highlights the 
salient region using mean-shift segmentation algorithm followed by adaptive thresholding. The 
contribution of this work is keeping the saliency map resolution as the original image size. 

 Li et al. (DSR) [52] proposed saliency detection via dense and sparse reconstruction. The image 
boundaries are generated from superpixels at different scales using simple linear iterative clustering 
(SLIC). For each image region, the dense and sparse reconstruction errors are calculated to measure 
the saliency. A context-based error propagation method is used to smooth the reconstruction errors by 
applying k-means clustering. The saliency map is generated by integration of multi-scale reconstruction 
errors and refined by object-biased Gaussian model. The two saliency maps from dense and sparse 
reconstruction are integrated using Bayesian. 

 Zhu et al. (RBD) [53] proposed a robust background measure called boundary connectivity. The 
boundary connectivity is calculated from the ratio of boundary length and the squared root of its area. 
The boundary connectivity measurement of image region is obtained from soft segmentation by 
constructing an undirected weighted graph that connects the segmented region from superpixels using 
SLIC method. The background weighted contrast then calculated from the background connectivity. 
The saliency map is generated by minimizing the cost function from the optimization formula which 
involved background, foreground and smoothness.  

 Liu et al. (ST) [54] proposed saliency tree to estimate the saliency map. Input image is simplified 
using adaptive color quantization which quantizes the color into 16 number of bins and region 
segmentation which used globalized probability of boundary, oriented watershed transform and 
thresholded ultrametric contour map. The result is used to compute the initial regional saliency 
measurement which involves three measures namely global contrast, spatial sparsity and object prior. 
The saliency tree is a binary partition tree with saliency measures. A saliency tree analysis is performed 
via node selection criteria, salient node selection, regional saliency adjustment and selection, and finally, 
pixel-wise saliency map derivation.  

 Aytekin et al. (QCUT) [55] proposed automatic object segmentation by quantum cuts. The 
proposed quantum cuts algorithm is related to the graph-cuts algorithm. The quantum mechanical 
concept such as potential field, leads to the definition of probability density of particle occurrence in 
space which produces soft-labels indicating the foreground/background segmentation. To compute the 
saliency map, Hermitian matrix is constructed as a weighted graph structure, assigns the potential field, 
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computes the eigenvector with the smallest eigenvalue (ground state wavefunction) and computes the 
soft labeling vector. The saliency map then generated by adaptive thresholding over the soft labels.  

 Qin et al. (CA) [56] proposed a dynamic evolution model to detect saliency called cellular automata. 
Input image is segmented into small superpixels using SLIC. Global Color Distinction (GCD) map and 
Global Spatial Distance (GSD) are constructed to generate an initial background-based map. The 
Single-Layer Cellular Automata (SCA) is modified such as the state of each cell is derived from saliency 
value of each superpixel, the neighborhood term is extended to the adjacent cells that sharing 
boundaries (in case of Multi-Layer Cellular Automata (MCA), it expand to the different map with 
same location coordinate), and the influences of neighbor are related to the similarity between any pair 
of cells in color space. In order to accommodate the modification, impact factor matrix and coherence 
matrix are used. The saliency map is generated by updating the rule synchronously after some iterations. 
The MCA is used to integrate the saliency maps from different methods to enhance the final saliency 
map via Bayesian framework. 

Salient object detection model search for salient objects from the background but without semantic 
object-level understanding. Some of the overview diagrams of each model can be seen in Riche and 
Mancas [35] and the comparison result with various salient object datasets can be found in [32]–[35]. 
From Fig. 3, most of the models adopt biological concepts and human visual attention behaviors such 
as how the attention responds to stimulus. Higher-level features with intrinsic cues usually used in this 
model such as center prior, global or local contrast, edge density, background prior, objectness prior, 
convexity prior, and so on. Most of the models perform initial segmentation via super pixels using SLIC. 
The integration stage uses an optimization method to find salient objects. Salient object detection is 
more complex rather than fixation prediction models because the saliency value need to capture the 
boundary to localize the objects. 

5. Discussion and Future Development 

The characteristics of visual attention in bottom-up manner are stimulus-driven, goal-independent, 
involuntary, reflexive, and exogenous. The stimulus is raw sensory input and low-level features such as 
color, intensity, orientation, depth and motion. The features acquisition is possible because the 
technology becomes more supportive in providing more comprehensive information such as depth cue, 
inter-image correspondence, motion cue, and temporal relationship. The information allows the model 
to extend into RGBD saliency detection which uses depth information to detect salient regions, co-
saliency detection which uses inter-image correspondence to find salient objects in image group, and 
video saliency detection which uses video-sequences to detect motion-related salient objects [68]. 
Sometimes low-level features are not enough to distinguish the objects from distractors and need higher-
level features to highlight the targets and to suppress distractors. Higher-level features with intrinsic 
cues are extracted from the image itself so it still considered as bottom-up process. However, the use of 
low or higher-level features in the models will raise a question, what features actually drive human visual 
attention?  

Kümmerer et al. [69] investigate the low-level (contrast) and high-level (presence of objects) 
contribution in the fixation prediction models. The result shows similar responses between low-level 
intensity contrast features (ICF) model and high-level deep object features (DeepGaze II) model. The 
models perform best if fixation in a high-contrast region (ICF) or presence of object (DeepGaze II) and 
perform worst if there is a high-contrast region (ICF) or high-level content (DeepGaze II) that does not 
attract human fixation. However, the performance of high-level features significantly outperforms low-
level features model when predicting human fixation. This indicates that high-level features (presence 
of objects) have more contribution in driven human visual attention.  

 Human visual attention is an excellent mechanism to quickly grasp important information from the 
visual field [70]. This mechanism helps human visual system (HVS) to cope with enormous information 
coming from the visual environment effortlessly with limited computational resources. By modeling 
visual attention mechanism, the computational process of computer vision system can be effective, fast 
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and smart to select important information and filter out irrelevant information. These characteristics are 
promising to be implemented in various applications. As mention in Borji et al. [33], the saliency 
detection model has been successfully applied in many areas such as object detection and recognition, 
image and video compression, video summarization, image quality assessment, image segmentation, 
image retrieval, gaze estimation, action recognition, visual tracking and so on.  

In the field of artificial intelligence (AI) and intelligent robotics, visual attention becomes really 
important because it is closely related to curiosity especially the bottom-up approach. Curiosity is the 
gate of knowledge and visual attention helps to attain a certain important piece of knowledge among the 
infinite possible knowledge in the universe. According to Berlyne [71], curiosity is differentiated into 
perceptual curiosity which leads to increase the perception of stimuli and epistemic curiosity which leads 
to knowledge acquisition though it is closely related to each other. The human curiosity is related to 
the last one which is epistemic curiosity. This curiosity has a main feature that it aroused by strange or 
surprising situations or questions. That is, a certain piece of knowledge that attract visual attention is 
guaranteed to be new and strange or in the computational model of visual attention called salient. The 
relation between curiosity and visual attention has been studied since the curiosity theory [71] to the 
computational model of curiosity [72][73].  

Curiosity is driven by rewards and uncertainty reduction based on novelty, salience, or surprise that 
make the AI agents learn [74]. Surprise proportionally correlated with curiosity, the more they surprise, 
the more they curious. Surprises (the “wow factors”) are triggered by how rare or informative the 
observation is. The strongest attractors are the stimuli that pop-out from the environment. From Itti 
and Baldi [75], surprises exist only in the presence of uncertainty and can only be related in a subjective 
manner. From those assumptions, the surprise attention is modeled based on Bayesian probability. The 
experiment also shows that human preferably more fixates to surprise location rather than high entropy 
regions, contrast, saliency, novelty or motion. The concept of surprise and curiosity has been 
implemented in intelligent robotics by White et al. [76]. The curiosity in artificial intelligence usually 
modeled into reinforcement learning because the learning emerges from the interaction between learners 
(AI agents) and the environment.  

Agents are more curious about situations that they had intermediate confidence [71][74], not too 
novel and not too familiar. However, it might be different in the case of infant that see the world full of 
novelty. Infants may be the most curious learners that develop their own learning structure as they 
explore [77]. Infants also the best subject that implement bottom-up visual attention as they have only 
a little information (top-down) about the environment. The curiosity of infants mostly driven by 
intrinsic motivation (intrinsic rewards in the term of reinforcement learning). The input representation 
of infants mostly modeled using autoencoder networks which input and the output are the same. 
Autoencoder has been used in the computation of bottom-up saliency map model by Xia et al. [78]. 
Different from the traditional center-surround computation in the previous bottom-up saliency map 
models, the deep autoencoders use powerful feature learning and data reconstruction ability to construct 
center-surround inference network [78]. The idea is to use global data of the image to influence the 
local center-surround computation directly. By integrating global competition in sampling and learning 
processes into local center-surround contrast, the deep autoencoders model performs better than 
previous models that reconstruct the saliency map independently between global and local rarity. 

6. Conclusion 

Human visual attention has a long history of work from the concept of visual attention (philosophy), 
the theory of visual attention (cognitive psychology), visual pathway and attention (biological perspective, 
neuroscience), to the computational model of visual attention (computer science and engineering). In 
this study, bottom-up visual attention models from fixation prediction to salient object detection are 
observed at each stage. The stage inspired by the biological structure and behavior of human visual 
attention is highlighted. From the observation, most of the models in bottom-up human fixation 
prediction inspired by center-surround mechanism in the retina, sparse representation in the V1, and 
low-level features in the early human visual system. Most of the models in bottom-up salient object 
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detection adopt biological concepts and human visual attention behaviors and use higher-level features 
with intrinsic cues. From the review, high-level features (presence of objects) are dominant in 
determining the visual attention location. The powerful mechanism of visual attention lets human visual 
system to cope with the enormous information from the visual environment effortlessly with limited 
computational resources. By modeling the visual attention, a computer vision system can greatly improve 
especially in an AI agent that implements curiosity. Curiosity allows an AI agent to learn new things 
from the environment and visual attention provides important information for the agent efficiently. In 
conclusion, we believe that the future development of artificial intelligent agents and computer vision 
system majorly contributed by curiosity and visual attention models. 
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