PROCEEDING
 OF INTERNATIONAL CONFERENCE ON GREEN WORLD IN BUSINESS AND TECHNOLOGY

"Intellectual Property Right Based on Green Social Dynamics, Business and Science-Tech"
29 March 2014
Yogyakarta, Indonesia

PROCEEDING OF
 INTERNATIONAL CONFERENCE ON GREEN WORLD IN BUSINESS AND TECHNOLOGY

> "Intellectual Property Right Based on Green Social Dynamics, Business and Science-Techintellectual Property Right Based on Green Social Dynamics, Business and Science-Tech"

Author and Speaker

Assoc. Prof. Dr. Zulkifli Mohamed Udin Assoc. Prof. Pharkphoom Panichayupa-karanant, Ph.D Anwarudin Hisyam, M.Sc., Ph.D. Armin A. Fullante, Ph.D.

Reviewer
Dr. Abdul Fadlil, M.T.
Anton Yudhana, S.T., M.T., Ph.D.
Dr. Rusydi Umar, M.T.
Dr. Hj. Dwi Suhartanti, M.Si.
Drs. Aris Thobirin, M.Si.

Publisher

Ahmad Dahlan University
Jln. Kapas No. 9 Semaki, Yogyakarta 55166
Tel. 0274-563515, Fax. 0274-564604

Proceeding of The $3^{\text {rd }}$ International Conference on Green World in Bussiness and Technology.

Copyright © 2014 and published by Ahmad Dahlan University. Printed by Center of Intellectual Property Rights and Faculty of Industrial Technology in Ahmad Dahlan University. All rights reverse. No Part of this book may be reproduced in any form, or may it be stored in a retrival system or transmitter in any form, without written permission from the publisher.

Honorary Chairman

Rector of Ahmad Dahlan University Dean of Faculty of Industrial Technology Dean of the faculty of mathematics and science Chief of Center of Intellectual Property Rights

Streering Committe
Dr. H. Kasiyarno, M.Hum., Dr. H. Muchlas, M.T., Drs. Safar Nasir, M.Si., Dr. Abdul Fadlil, M.T., Prof. Drs. Sarbiran, M.Ed., Ph.D., Drs. Aris Thobirin, M.Si., Kartika Firdausy, S.T., M.T., Ida Puspita, M.A.Res.

Organizing Committee

Dr. Hj. Dwi Suhartanti, M.Si.(Chairman)
Sri Winiarti, S.T., M.Cs. (Vice Chairman)
Iwan Tri Riyadi Yanto, S.Si, M.IT., Endah Sulistiawati, S,T., M.T., Nuraini Fatmiyati, Sang Atmaja Edy Kusuma, S.Pd.I., Fradika Indrawan, S.T., Sukirno, Akhid Muhtadhy, S.TP., Agung Budiantoro, S.Si, M.Si., Siti Jamilatun, M.T., Intan Rawit Sapanti, S.Pd., Danang Ari Wibawa, S.Pd., Dessy Kamila Sari, S.S., Hani Hartaya, Ruslinah, S.Pd., Alif Alfatina, S.Ip., Herman Yuliansyah, M.Eng., Ika Arfiani, S.T., Fadlan Nugroho, Nur Syahid, Ir. Tri Budiyanto, M.T., Heri Setiawan, S.Si., M.Si., Utik Bidayati, S.E., MM., Ali Tarmuji, S.T., M.Cs., Sulasmini, Wening Tri Jayanti, Sri Murni Subekti, Surajiyo, Adil Pandriyo, Joni Eka Subekti, Suprihatin

Foreword from the Chairman of the Committee ICGWBT 2014

Assalamu'allikum.w.w.

Praise the presence of God, who has blessed us all with health, so that we can follow this ICGWBT 2014. I say thank you to all the organizers, who tel; ah work hard for the implementation ICGWBT 2014 well.

We extend our gratitude to the Dean of the Faculty of Industrial Technology, the Dean of the Faculty of Mathematics and Natural Sciences, Head of the Center for Intellectual Property Rights, the head of the Social Dynamics Study Center, which has support the fund, so ICGWBT 2014 be held on this day well and smoothly.

We extend our gratitude to the speakers, Assoc. Prof. Dr.. Zulkifli Mohamed Udint, Senior Lecturer, University Utara Malaysia (UUM); Assoc. Prof. Pharkphoom Panichayupa-karanant, Ph.D., Senior Lecturer, Prince of Songkla University; Armin A. Fullante, Ph.D., Director for Student Affairs, University of Nueva Caceres, Naga City, Philippines, for the willingness of all of you, as a speaker at this ICGWBT 2014.

This ICGWBT 2014 theme is "Intellectual Property Right Based on Green Social Dynamics, Business and Science-Tech", with a topic such topick. Agronomy (Agroindustrie, etc..). Biotechnology (Plant Tissue Culture, Microbiology, Biochemestry, etc.). Education. Enviroument (monitoring and modeling, policies and planning,, Clean Technologies, Green House Effect, Impacts of pollutions, etc..) Green Buildings \& Smart homes, Green Economy (Accounting, finance, Marketing Business, etc..), Green Educational Technologies.Green food, Feed and Drink Technology, Green Manufacturing \& Energy efficiency, Green Science (Computiny trends, Biology, Chemistry, tc.), Green Technology (Engineering, Information and Communication, Techopreneurship, etc..), Health (Phatmacy, Nutrition, Medicine, etc.), Intellectual Property Right, Psychology, Religion, Sustainable development, Any othet relevant conference topic.

Topics presented by Assoc. Prof. Pharkphoom Panichayupa- karanant, Ph.D, the Department of Pharmacognosy and Pharmaceutical Botany. Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand is "Standardization and Preparation of Active Constituent Rich Herbal Extracts". Topics presented by Dr., ARMIN A. FULLANTE, University of Nueva Caceres ,Naga City, Philippines, is "Green Enviromental Education". Topics presented by Zuikifli Mohamed Udin, PhD, Associate Professor School of Technology Management and LogisticsUniversiti Utara Malaysia, is Intelectual

Property Right Roles In Green Business And Technology. Topics that will be delivered by Anwaruddin Hysam, M.Sc., Ph.D. Is Rare Earth Elements: Impact on Green Technology.

We extend our gratitude to the participants of the conference, either as partisipant and presenter, this activity may be useful for you all. In this iCGWBT 2014, attended by approximately 100 participant, and 50 call for papers as a presenter ..

In the next year, in 2015, God willing we will hold back ICGWBT that to 4 , with speakers from 6 countries, namely Indonesia, Japan, Germany, the Philippines, Malaysia, and Thailand. We hope in the coming ICGWBT 2015, participants increased, followed by participants from various countries.

That's all I have to say is welcome, sorry if there are words that are less pleasing.

See you in 2015 ICGWBT to 4 . Success to you all

Table of Contents

Plenary Speaker
Intellectual Property Right Roles in Green Business and Technology Zulkifli Mohamed Udin 1
Standardization and Preparation of Active Constituent Rich Herbal Extracts
Pharkphoom Panichayupakaranant 8
Rare Earth Elements: Impact on Green Technology Anwaruddin Hisyam 11
Green Enviromental Education
Armin A. Fullante 16
Economic
Adaptation Process of Livelihood Change from Agriculture to Conmunity- Based Tourism: A Study on Commonity in Merapi Slope, Sleman Post Merapi Eruption 2010
Anggi Rahajeng, Saiqa Ilham Akbar A-1
Health
Impact of Insurance Status on Appropriate Utilization Antihypertensive
Medications Based on $J N C-7$ and Clinical Outcomes Inpatients of " X "Hospital Bantul
Rahmawati, F., Akrom., Supadmi, W. B-1
The $4 R$ Community Empowerment Program: Utilizing waste products from the PKU Muhammadiyah Yogyakarta Hospital Waste Triyani Marwati, Edwin Daru Anggara B-10
Science
Effect of Ethanol Eextract Flower (Chrysanthemum cinerariaefolium Trey) on
Mortality Mosquito Larvae of Aedes Albopictus (Skuse) Trianik Widyaningrum, Eka Lusiana. C-1
Natural Products-Based as an Alternative Approach on Acne Treatment Yulisna Hawarya, Iffan Yunianto C-11
The Comparison of Antibacterial Activity of Kefirr Cow's Milk and Kefirr Goat's Milk Againt Escherichia Coli Muhammad Iqbal, Dwi Suhartanti. C-17
Analysis of pH on Various Herbal Lipsticks Yuningsih, Irfan Yunianto C- 24
The Comparison of Antibacterial Activity of Kefir Cow's Milk and Kefir Goat's Milk Against Salmonella Thypusa Mei Fajar Nugroho, Dwi Suhartanti C-30
Effects of Carica Papaya (Caricaceae) Fruit Juice on the Histopathological Image of Mice (Mus Musculus) Testis Strain Swiss Exposed to Cigarette Smoke
Novi Febrianti, Annisa Ika Putri Ariyana C-37
A Aybrid Particle Swarm Optimization Steepest Descent Direction Iwan Tri Riyadi Yanto C-43
Analysis of Tree Vegetation Degree in Boyong River Riparian Area,
Yogyakarta as a Biology Learning Resource
Trikinasih Handayani, Lusi Tranwinarti C. 52
Antioxidant Activity of Chloroform and Methanol Extract of Piper spp.Leaves
Ambar Pratiwi, L. Hartanto Nugroho, Yekti Asih Purwestri C-59
Kinetics Evaluation on Oleic Acid Ethyl Ester Synthesis Using Lipase From
Rice Bran (Oryza sativa) and Germinated Jatropha Seeds (Jatropha curcas.
L)
Indro Prastowo, Chusnul Hidayat, Pudji Hastuti C-64
Technology
Image Processing Application for Detecting the Ripeness of Watermelon Based on Features of the Rind Texture
M. Norman Salim, Murinto D-1
The Development of User Experience Website Design. Using Kansei Engineering by Flat and Adaptive Technology Towards Clothing Store to Increase the Simplicity and the Comfort of Afriq Yasin Ramadhan, Fiftin Noviyanto D-13
Improvement of Working Position on Frying Pan Lathing Process Using The Ergonomics Approach (A Case Study at WL Alumunium metal casting Yogyakarta) Agung Kristanto, Dalih Firman Fanany D-21
Biodlesel Production from Rubber Seed Oil with Trans-esterification Process
Siti Salamah, Wahyu H, Setya A.,W D-34
Internet Network Configuration Using Mikrotik RouterOS
Nur Rochmah Dyah P.A., Tri Wulan Suci Meiwati D-40
Automata Language Theory Learning Media at Push Down Automata
Material Based on Multimedia
M Khairul Ridho Dhilon, Wahyu Pujiyono D-49
Conceptual Model of Consumers' Intention to Participate in Cellphone Take
Back Program
Siti Mahsanah Budijatl, Subagyo, M. Arif Wibisono, Nur Aini Masruroh D-60
Utilization of Heat Loss by Flue Gas in Using Solid Fuel Furnace to Increase Heat Efficiency Martomo Setyawan D-74
The Use of Plug-In As Implementation To Visualize 3D Graphics On the Web (A Study On X3D And WebGL) Mursid W. Hananto D-81
The Effect of Condenser Heal Transfer Area to the Condensed Liqud Smoke Volume as the Result of Coconut Shell Pyrolysis Siti Jamilatun, Nurkholis D-91
Location Based Service Application Design for Mobile Promotion SME s Prodtuct and the Nearest Bank Service Information Merlinda Wibowo, Herman Yuliansyah D-98
SI/TI Strategic Plan Model Designing in Homestay Venezia
Nur Cholis Habib, Risa Aditia Wijaya, Sri Handayaningsih D-107
Designing Room Access Control Information System Ita Arfiani D-117
The Use of Multimedia Aplication for Diagnosing Human Skin Deaseas
Sti Winiarti, Reni Andriyani D-122
B2C' (Business To Consumer) E-Paymet Model for Online Shop's Customers Arfiani Nur Khusna D-132
Clustering The Number of Passengers of Trans Jogja Bus for Evaluation Lisna Zahrotun D-141
The Building Design of Case-Based Reasoning for Diagnosing the CowDiseasesMurien NugraheniD-148
Protolyping with Bayesian Method for Bicycle Purchase Recommendation Anna Hendri Soleliza Jones D. 157
The solution of the Maximum Weighted Matching problem (MWM) using Primal Dual Algorithm
Tedy Setiadi D-166
Prototype of House Security System Using Infrared Receptor and Fbus Technology on Mobile Phone Yana Hendriana D-174
A Design and Development of Basic Math Game on Windows 8 Operating System for Indonesia Elementary School Ahmad Sholikin, Andri Pranolo D-187
Genetic Algorithm in Solving the TSP on Route Distribution of Mineral Water. Mutammimul Ula, Richki Hardi D-193
Crosscurrent Batch Leaching of Rice Husk Ash Using Distilled Water Endah Sulistiawati, Imam Santosa D-203
KWhtmeter Number Recognition using Normalized Cross-Correlation Technique
Kartika Firdausy D-211
Draft Utilization Google Calendar for Management Agenda and Invitation to Event Administration in UAD to Support Paperless Office Ali Tarmuji D-220

The solution of the Maximum Weighted Matching problem (MWM) using Primal Dual Algorithm

Tedy Setiadi ${ }^{1}$
${ }^{1}$ Informatic Engineering University of Ahmad Dahlan Yogyakarta
${ }^{1}$ Email : tedyasni@gmail.com

Abstract

The issue of matching problem is relatively simple when determining the maximum cardinality matching (MSM) and occurs in two disjoint sets (bipartite graph). But it would be a complex problem when the MWM that occurs in the general graph (not necessarily bipartite).

In this research, has developed software to help resolve the issue of MBM on a general graph using the primal-dual algotitma of combinatorial optimization problems ..

Keywords: MBM, General Graph, Combinatorics, primal dual algorithm

1 Introduction

In a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ the number of arcs that meet at node i is called the degree of node i . The issue of matching is the selection of a subset arc based on the node degree limit. A matching $\mathrm{M} \subseteq \mathrm{E}$ is a subset bow to the nature of each node in the subset graph $\mathrm{G}(\mathrm{M})=(\mathrm{V}, \mathrm{M})$ are connected by no more than one arc. The simplest case is a 1-matching (or so-called matching only). Every graph G has a matching $\mathrm{M}=0$. Generalization of 1 - matching is a b - matching where node i associated with no more than bi arc, where bi a positive integer [1].
Classic application of the matching problem is the installation of loose objects from two sets [2]. Suppose there are four employees are p1, p2, p3 and p4 to fill six positions $\mathrm{j} 1, \mathrm{j} 2, \mathrm{j} 3, \mathrm{j} 4, \mathrm{j} 5$, and j 6 . When p 1 qualified employees to fill positions j 2 or j 5 . P 2 employees can fill positions j 2 or j 5 . P3 employee can fill the positions $\mathrm{j} 1, \mathrm{j} 2, \mathrm{j} 3, \mathrm{j} 4$, or J 6 , p 4 employees to fill positions j 2 or j 5 . The problem that arises is it possible to assign all employees at any positions that meet the qualifications, if not then how the maximum number of positions that can be filled by employees who are given. The problem of matching shape known as assignment (assignment), and determine the maximum number of cardinality matching problem .
Examples of other forms of matching is given by [3] that the theory of marriage (Marriage Theorem). There are n people n grooms and brides who are getting married. We want to set n more desirable marriage and the marriage took place only for men and women who have known each other. The question is whether it is possible to occur n the marriage. This issue is known to form a complete matching (perfect matching) .
A matching is said to have weight (weighted matching) if the arc has weight . [4] gives examples of applications in the form of weighted matching problems postman (postman problem). Given a graph G with weights on the arcs, the postman problem is to find a minimum weight set of arcs that are added to G to produce multigraph eulier contains a circuit (i.e a path (walk) contains any arc

MG covered exactly once). Euler circuit on MG translate into minimum weight in G where each arc visited at least once, resulting in the generation of minimum weight from being sent to the postman .
The issue of matching can be viewed as a combinatorial optimization problem One of the most widely used tools in combinatorics is the completion of linear programming problems (linear programming). The issue of matching in the field of linear programming models belonging to programa integer .
Formulas $0-1$ integer programming of weight $b-$ matching is

$$
\begin{array}{ll}
\text { makss } & c x \tag{1}\\
& A x \leq b \\
& x \in B^{n}
\end{array}
$$

where A is the node-arc matrix connected graph, $|\mathrm{E}|=\mathrm{n}$, and $\mathrm{xe}=1$ if there is matching.
In the MWM problem, then the form of integer programming are (
(WM)

$$
\begin{align*}
& \operatorname{maks} \sum_{e \in E} c_{e} x_{e} \\
& \sum_{e \in \delta(v)} x_{e} \leq 1 \text { for every } v \in \mathrm{E} \tag{2}\\
& x \in B^{n}
\end{align*}
$$

2 Library studies

Given primal-dual algorithms for linear programming

$$
\begin{aligned}
& \text { maks } \sum_{e \in E} c_{e} x_{e} \\
& \sum_{e \in(\overline{C(v)}} x_{e} \leq 1 \quad \text { for every } v \in \mathrm{~V} \\
& \sum_{e \in E(U)} \mathrm{x}_{\mathrm{e}} \leq\left[\frac{|U|}{2}\right] \text { for every odd set } U \subseteq V \\
& x \in R_{+}^{n}
\end{aligned}
$$

and prove that the solution is to blend any objective function vector c , which is the solution to the maximum weight matching. Assumed ce> 0 for $\mathrm{e} \in \mathrm{E}$, if ce ≤ 0 result no optimal solution with $\mathrm{xe}=0$.
Given matching M , $\mathrm{xe}=$ for $\mathrm{e} \in \mathrm{M}$, and $\mathrm{xe}=0$ for the other, then

$$
c_{e}^{\prime}=\sum_{v: e \in \delta(v)} \pi_{v}+\sum_{\text {odd sets } \mathrm{U}: \in \in(\mathrm{U})} y_{u}-c_{e}
$$

Complementary slackness conditions for linear program is :
1.1. $\mathrm{c}_{\mathrm{e}} x_{e}=0$ for $\mathrm{e} \in \mathrm{E}\left(\mathrm{c}_{\mathrm{e}}^{\prime}=0\right.$ or $\left.\mathrm{e} \notin \mathrm{M}\right)$
1.2. $\left(|U| / 2 \mid-\sum_{c \in E \in(U)} x_{c}\right)_{y_{u}}=0$, for very odd setU $\left(y_{u}=0\right.$ or $\left.M \cap E(U)=|U| / 21\right)$

Primal-dual algorithm keeping primal-dual feasibility and also the condition of 1.1. and 1.2., the optimal solution is reached when 1.3. fulfilled..

Initialization of an integrated solution feasible primal and dual that satisfies 1.1. and 1.2. is given by:

$$
\begin{align*}
& x_{e}=0, \text { for } e \in E \\
& y_{u}=0, \text { for every odd set } U \tag{1.3}\\
& \pi_{v}=\frac{1}{2} \max _{e \in E} c_{e}, \text { for } v \in V
\end{align*}
$$

$$
\text { For } c_{e^{\prime}}^{\prime}=0 \text { every } e^{\prime} \in E \text { then } c_{e^{\prime}}=\max _{e \in E} c_{e}
$$

Algorithm of Maximum Weighted Matching

1. Initialization : Start with the primal dual solution given by (1.3). Suppose E' $=\left\{\mathrm{e} \in \mathrm{E}: \mathrm{c}^{\prime} \mathrm{e}=0\right), \mathrm{G}^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right), \tilde{G}^{\prime}=\mathrm{G}^{\prime}, \tilde{M}=\mathrm{M}=\phi$ and $\tilde{F}^{\prime}=\phi$
2. Step 1 : Continue to construct alternating forest. If the path augmentation is found then to step 2 . If not then to step 3 .
3. Step 2 (Augmentation) : Update of the primal solution M and expand all psedonode $\mathrm{B}(\mathrm{U})$ with $\mathrm{yu}=0$. Update the base of the rest of the blossoms . subgraph with restrictions reduced the matching equation, if $\pi_{v}=0$ for all vertices are open, the primal and dual solution is optimal applicable. If not , specify $\tilde{F}^{\prime}=\phi$ and to step 1 .
4. Step 3 (Dual Change) : Apply a dual change given by (3.5) and (3.6) below. If $\pi_{v}=0$ for all vertices open, primal and dual solutions are already optimal.Jika not apply, renew and expand all psedonode $B(U)$ with yu $=0$. If $e(u, v)$ was added where u and v are both even and is at a different tree from, then identifying the path augmentation and to step 2 . If not, keep intact, and returned the first step .
Theorem: Weighted Matching algorithm find the integral optimal solution for (1.2) and also the optimal solution dual to (1.3). Complexity is $\mathrm{O}(\mathrm{m} 2 \mathrm{n})$.

Proof: an integral primal solution is maintained because any solution matching. When the algorithm stops, the primal and dual solutions are both feasible and satisfy complementary slackness.
Working between successive dual change is $\mathrm{O}(\mathrm{n})$. By proposition 3.4. The maximum number of changes between a dual augmentation is $\mathrm{O}(\mathrm{m})$, and the number of augmentation is $O(m)$. Finally, after the change of the dual p, that π, y and c 'associated with denominator 2 k for round $\mathrm{k}, 0 \leq \mathrm{k} \leq \mathrm{p}$. Therefore, the number of calculations remained within the limits of polynomials.
Case in point:
Given the following weighted graph, then will we find the maximum weight matching on the graph

$c=\left(c_{e 1}, c_{e 2}, \ldots \ldots, c_{e 9}\right)=\left(\begin{array}{lllllllll}8 & 9 & 8 & 7 & 9 & 4 & 5 & 2 & 1\end{array}\right)$

1. initialization

$$
\begin{aligned}
& \pi_{\mathrm{v}}=4.5 \text { for every } \mathrm{v} \in \mathrm{~V} \\
& \mathrm{y}_{\mathrm{u}}=0 \text { for every } \mathrm{u} \\
& \mathrm{c}^{\prime}=\left(\begin{array}{lllllll}
1 & 0 & 1 & 2 & 0 & 5 & 4
\end{array}\right]
\end{aligned}
$$

equality constrained subgraph
2. Equality constrained subgraph and labelling $\mathrm{M}=\left\{\mathrm{e}_{2}, \mathrm{e}_{5}\right\}$
$\underbrace{}_{(E,-)}$

$$
6(E,-)
$$

3. Dual Change

$$
\begin{aligned}
& \delta_{1}=\min \left(\pi_{1}, \pi_{6}, \pi_{7}\right)=4.5 \quad \delta_{2}=\infty \\
& \delta_{3}=1 / 2 c^{\prime}{ }_{e 9}=4 \\
& \delta_{4}=\min \left(c^{\prime}{ }_{e 1}, c^{\prime}{ }_{e 6}, c^{\prime}{ }_{e 7}, c^{\prime}{ }_{e 8}\right)=1 \\
& \delta=\delta_{4}=1 \\
& \pi=(3.5 \\
& \begin{array}{lll}
4.5 & 4.5 & 4.5
\end{array} \\
& 4.5 \quad 3.5 \\
& \text { 3.5) } \\
& \mathrm{y}_{\mathrm{u}}=0 \quad \text { for every } \mathrm{U} \\
& c^{\prime}=\left(\begin{array}{lllllllll}
0 & 0 & 1 & 2 & 0 & 4 & 3 & 6 & 6
\end{array}\right) \\
& \mathrm{e}_{1} \text { add to subgraph with Equality constrained }
\end{aligned}
$$

4. Subgraph with Equality constrained and labelling

5. Dual Change

$$
\begin{aligned}
& \delta_{1}=3.5 \\
& \delta_{2}=\infty \\
& \delta_{3}=3 \\
& \delta_{4}=\min \left(\begin{array}{lllll}
1 & 2 & 4 & 3 & 6
\end{array}\right)=c^{\prime}{ }_{e 3}=1 \quad \delta=\delta_{4}=1 \\
& \pi=\left(\begin{array}{lllllll}
2.5 & 5.5 & 3.5 & 4.5 & 4.5 & 2.5 & 2.5
\end{array}\right) \\
& \mathrm{y}_{\mathrm{u}}=0 \text { for every } \mathrm{U} \\
& c^{\prime}=\left(\begin{array}{lllllllll}
0 & 0 & 0 & 1 & 0 & 3 & 2 & 5 & 4
\end{array}\right)
\end{aligned}
$$

e_{3} add to subgraph with Equality constrained
6. Subgraph with Equality constrained and labelling

5. Dual Change

$$
\begin{aligned}
& \delta_{1}=2.5 \quad \delta_{2}=\infty \quad \delta_{3}=1 / 2 \min \left(\begin{array}{lll}
1 & 5 & 4
\end{array}\right)=1 / 2 \\
& \delta_{4}=\infty \quad \delta=\delta_{3}=1 / 2 \\
& \pi=\left(\begin{array}{lllllll}
2 & 6 & 3 & 5 & 4 & 2 & 2
\end{array}\right) \\
& \mathrm{y}_{\mathrm{u}}=0 \text { for every } \mathrm{U} \\
& c^{\prime}=\left(\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 3 & 2 & 4 & 3
\end{array}\right)
\end{aligned}
$$

e_{4} add to subgraph with Equality constrained
8. Subtract subgraph with Equality constrained and labelling

$\mathrm{U}=\{3,4,5\}$
$\mathrm{B}_{1}=\mathrm{B}(\mathrm{U})$
$b(U)=3$
9. Dual Change

$$
\delta_{1}=2
$$

$\delta_{4}=\infty \quad \delta=\delta_{3}=1$
$\pi=\left(\begin{array}{lllllll}1 & 7 & 2 & 4 & 3 & 1 & 1\end{array}\right)$
$y_{u}=2$ for every $U=\{3,4,5\}, y_{u}=0$ for others
$c^{\prime}=\left(\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 1\end{array}\right)$
e_{7} add to subgraph with Equality constrained
10. Augmented on reduction graph and new label. $M=\left\{e_{1}, e_{2}, e_{3}\right\}$

$b\left(U_{1}\right)=4$
6. Dual Change
$\delta_{1}=\pi_{6}=1 \quad \delta_{2}=\infty \quad \delta_{4}=\infty$
$\delta_{4}=\min \left\{\mathrm{c}_{\mathrm{e} 6}, \mathrm{c}_{\mathrm{e} 9}\right\}=1$
$\pi=\left(\begin{array}{lllllll}1 & 7 & 2 & 4 & 3 & 0 & 1\end{array}\right)$
$y_{u}=2$ for $U_{1}=\{3,4,5\}, y_{u}=0$ for others
12. Optimal Solution

Primal : $\mathrm{x}_{\mathrm{ei}}=1$ for $\mathrm{i}=1,4,7$, and $\mathrm{x}_{\mathrm{ei}}=0$ for others i
Dual : $\pi=\left(\begin{array}{lllllll}1 & 7 & 2 & 4 & 3 & 0 & 1\end{array}\right)$
$y_{u 1}=2$ for $U_{1}=\{3,4,5\}, y_{u}=0$ for others

3 Design of Sofware MWM

3.1 Design of Data structure

1. Input graph presented in the form of a weighted graph with a adjency matrix.

Const NMax $=100$;
Type Matrix = array[1..NMax,1..NMax] of real;
2. Node is represented by the type of structure and array. Attribute node consists of weights, the status is even, odd or not labeled, ismatched attribute indicates
whether the node is open or not, and connect indicate which nodes are connected.

```
Type
```

```
tNode = record
```

tNode = record
phi : real;
phi : real;
evenodd : char;
evenodd : char;
ismatched : boolean;
ismatched : boolean;
connect : integer;
connect : integer;
end;

```
end;
```

3. Arc represented the type of structures and array. Attributes consist arc weights, the first node and a second node connected two such arcs, ismatched indicate whether or not a matching bow.
```
Type
```

```
tEdge = record
```

tEdge = record
first,second : integer;
first,second : integer;
ismatched : boolean;
ismatched : boolean;
end;

```
end;
```


3.2 Design of Algorithm

```
Procedure Initialization
{ determine the initial value of node weights, weight bow on MBM }
Declaration
    i, a, b : integer
    w : real
algorithm
    w \leftarrow -999
    for i }\leftarrow1\mathrm{ to edgecount do
        if weight[i].edge>w
            then w \leftarrow weight[i].edge
    for i\leftarrowlto nodecount do node[i].phi\leftarroww/2
    for i \leftarrow1 to edgecount do
        if we\overline{ight[i].edge=0 then}
        a\leftarrowedge[i].first,b\leftarrow edge[i].second
        edge[i].ismatched\leftarrowtrue,
        node[a].ismatched\leftarrowtrue,
        node[b].ismatched }\leftarrow\mathrm{ true
Procedure CreateLink (node : integer)
{ create a path in a graph MBM recursively }
Declaration
    i, next: integer
algorithm
    for i }\leftarrow1\mathrm{ to edgecount do
        if weight[i].edge = 0 then
            if e[dge[i].first=node then
                                    next \leftarrow edge[i].second
            elseif e[dge[i].second=node then
                                    next \leftarrow edge[i].first
            if next >= o then
            if nodes[next].status=' }x\mathrm{ ' then
                if nodes[node].status='E'
```

The solution of the Maximum Weighted Matching problem

```
    then
        nodes[node].status\leftarrow'O'
    else
        nodes[node].status \leftarrow'E'
nodes[next].connect \leftarrownode
CreateLink(next)
Function Is Blossom (a,b: integer) : boolean
{true if at least find one blossom }
Declaration
    i, next: integer
algorithm
    IsBlossom \leftarrow false
    for i \leftarrow 1 to edgecount do
        if nodes[a].status='E' and
        nodes[b].status='E' and
        edges[i].weight=0 then
                Isblossom }\leftarrow\mathrm{ true
Procedure DualChange
{ determine the value of the dual node and arc weights update SKP
}
Declaration
    i: integer
        d1,d2,d3,d4,dual : real
algorithm
    d1,d2,d3,d4 \leftarrow infinite
    for i }\leftarrow1\mathrm{ to nodecount do
        if nodes[i].status= 'O' then
        dl\leftarrow nodes[i].phi
        if IsBlossom(i) then
            d2\leftarrow edge[i].second
    for i}\leftarrow1\mathrm{ to edgecount do
        if nodes[edge[i].first].status ='O'
        and odes[edge[i].second].status
            ='O' then
                d3 \leftarrow edges[i].weight/2
            if nodes[edge[i].first].status
            ='E'
                d4 \leftarrow edges[i].weight
        dual \leftarrow min (d1,d2,d3,d4)
    for i }\leftarrow1\mathrm{ to nodecount do
        if nodes[i].status= ' }E\mathrm{ ' then
            nodes[i].phi\leftarrow nodes[i].phi - dual
        elseif nodes[i].status= 'O' then
            nodes[i].phi\leftarrow nodes[i].phi + dual
    for i }\leftarrow1\mathrm{ to edgecount do
        if nodes[edges[i].first].status=
        'E' and nodes[edges[i].first].status='X'then
        edges[i].weight\leftarrowdges[i].weight - dual
            if nodes[edges[i].first].status=
        'X' and
            nodes[edges[i].first].status='E'
```

```
then
edges[i].weight\leftarrowedges[i].weight-
        dual
if, nodes[edges[i].first].status=
'E' and
    nodes[edges[i].first].status='E' then
        edges[i].weight\leftarrowedges[i].weight-2 * dual
```


4 Conclusion

The solution of the problem MBM with primal dual algorithm Edmond deliver the optimum solution when no node is open or all open vertices weighted zero. In addition, when finding sirkuti odd (blossom) requires special care, which need to be depreciated once again which will be described with the augmentation. It would be quite complicated and complex problem, which is encountered when a relatively large blossom.

5 Reference

[1] Chegireddy C.R. dan Hamacher H.W : "Algorithms for Finding KBest Perfect Matchings", Discrete Applied Mathematics 18, NorthHolland, 1987
[2] Deo Narsingh. : "Graph Theory : with applications to Engineering and Computer Science", Prentice Hall., New Delhi, 1995.
[3] Lovasz L. dan plummer M.D. : "Matching Theory", Annals of Dicrete Mathematics, North-Holland, 1986.
[4] Nemhauser G. \& Wolsey L.: "Integer and Combinatorial Optimization", John Wiley \& Sons, Inc. 1988.

