Solving Stochastic Linear Quadratic Games in Discrete Time with Two Players Using Exact Line-Double Newton Method

By Zani Rafsanjani

WORD COUNT

Solving Stochastic Linear Quadratic Games in Discrete Time with Two Players Using Exact Line-Double Newton Method

1st Rafsanjani Zani A. Mathematics Department Ahmad Dahlan University Yogyakarta, Indonesia zani.anjani@math.uad.ac.id 2nd Sugiyarto Surono Mathematics Defurtment Ahmad Dahlan University Yogyakarta, Indonesia sugiyartonf@yahoo.com

Abstract—in this paper we consider a two players stochastic linear quadratic differential games with infinite horizon in discrete time. We assumed that there is no cooperation between the two players. For the given system, the major problem is solving a pair of stochastic discrete algebraic Riccati equation (SDAR) arising on the given system and its quadratic regulator to find its optimal control form. Thus, we construct a numerical method for solving SDAR using a modified Newton method. This method is modified from its original Newton method and Exact line search method to concise the Newton iteration. we provide a numerical simulation to show the performance of the method.

Index Terms-modified Newton, algebraic Riccati, discrete stochastic game

I. INTRODUCTION

The study of decision making strategy has become interesting topic among researcher using dynamic game theory. This is obtained by examining the linear quadratic regulator with its differential system. The results of this work can be found in [1]-[7].

On the dynamical game theory, given two players whose involved to make some decision by minimizing their performance index 5 d give a control as desired to the linear quadratic game. To find the solution of linear quadrati7 game means to find all the possible equilibrium solution and the stabilizing sol 12 n of the algebraic Riccati equation. Further, we consider a generalized algebraic Riccati equation of linear quadratic stochastic game involving two players. It is assumed that there is no cooper 1 on between the leader and the follower. This will obtain a couple of algebraic Riccati equation such as describe in [1], [2], [4] and [7]. Since the algebraic Riccati 1 uations are difficult to be solved, we adopt the work in [8] to solve the algebraic Riccati equation 1 n stochastic control. Then we can extend this method to the couple of algebraic Ricc 2 equation in stochastic game.

In [4] the linear quadratic differential games were analyzed for an infinite planning horizon. It is also assumed that each players formulating their strategy at the beginning of the system, consequently the players cannot chang 15 he strategy during the system run. Further in [4] obtain a set of coupled algebraic Riccati equation related to the system and its performance index. Then it can find all the equilibriums of the system under some consideration. In the other 17 rks, [6] observe the properties to solve discrete algebraic Riccati equation in an open loop Nash and Stackelberg games with non-cooperative condition.

The difficulty encountered in solving a coupled of algebraic Riccati equations is that the player who acts as a leader involves the control results from the follower. As a result, the Hamiltonian matrix of each player involves the control 2 sults of the other players. Based on these constraints, a method can be built to solve the coupled algebraic Riccati using a numerical method. There are several references that describe the numerical method for solving Riccati algebraic equations for both discrete and continuous cases using the Ne9ton method and its modifications.

Newton's method and its modifications applied to solve the al 16 raic Riccati equations can be found in [8] and [9] for a solution to the algebraic Riccati equations in the stochastic case. In another study, the Newton method in [2] was used to solve the Riccati problem that appeared in the Nash and Stackelberg open-loop discrete time game. Furthermore, the numerical method for solving the Nash equilibrium of the Riccati pair of algebra? equations in multi-model systems can be found in [5]. The exact-line search method is also used to solve non-symmetric algebraic Riccati equations in open-loop 4 ear differential games (see [7] and [10]). While [11] applied the modified Newton method to solve the algebraic Riccati equations.

In several previous studies, research has been carried out in finding the optimal solution of dynamic two-player games using the Newton method in [10]. Meanwhile, no research has been conducted to find optimal solutions for games in stochastic game systems. Therefore, in this study, we are interested in examining the optimal 4 ash solution that arises from stochastic games. Further, he modified Newton method is used to solve the paired of algebraic Riccati equations that

Internal research funding program of Ahmad Dahlan University.

appear in the stochastic differential game. In this case the players non-cooperate with each other.

In this paper, we give a two-player stochastic game formulation in the second ection. In the next section a numerical method is given to solve the algebraic Riccati equations that appear from its linear quadratic regulator. At 5 e end of the discussion, a numerical simulation is given to solve the algebraic Riccati equation using the modified Newton method.

II. PROBLEM FORMULATION

Stochastic game is a combination of dynamic game theory and stochastic systems. Stochastic games are also equipped with objective functions that will be minimized by each player involved in it. The objective function given to the system is a linear quadratic regulator involving state vectors and control vectors. In this case, we work on the discrete time system called as the discrete stochastic linear quadratic differential games with infinite horizon involving two players where the system defined by the following form

$$x_{k+1} = Ax_k + \sum_{i=1}^{2} B_i u_{i,k} + \omega_k \left[Cx_k + \sum_{i=1}^{2} D_i u_{i,k} \right]; \quad (1)$$

$$k = 0, 1, 2, \dots$$

with initial state x_0 , where the matrices $A, C \in \mathbb{R}^{n \times n}$, $B_1, D_1 \in \mathbb{R}^{n \times m_1}$, and $B_2, \mathbf{14} \in \mathbb{R}^{n \times m_2}$, x_k is an *n*dimentional vector, while $u_{i,k}; i = 1, 2$ are $u_{i,k}; i = 1, 2$ dimentional control vector which is corresponding to the *i*th player. The disturbance ω_k defined as random variable with mean $\omega_k = 0$ and variance $\omega_k \omega_k^T = \alpha_{i,k}$.

For the given system, the form of the objective function to be minimized by the players is given by the following expression

$$J_i(u_1, u_2) = \sum_{k=0}^{\infty} \frac{\xi}{2} \left[x_k^T Q_i x_k + u_{1,k}^T R_{1i} u_{1,k} + u_{2,k}^T R_{2i} u_{2,k} \right]$$
(2)

where $Q_i, R_{1,k}, R_{2,k}$ are symmetric matrices with $n \times n, m_1 \times m_1, m_2 \times m_2$ dimensions respectively. The estimator operator given by ξ in (2) serve as stochastic process on the objective function.

Thus, a coupled of algebraic Riccati equation produced by (1) and (2) can be written as follows

$$-X_i + \hat{A}^T X_i \hat{A} + \hat{C}^T X_i \hat{C} + Q_i^T Q_i + L_i^T R_{ii} L_i$$
$$-\left[B_j^T X_i \hat{A} + D_j^T X_i \hat{C}\right]^T \hat{R}^{-1} \left[B_j^T X_i \hat{A} + D_j^T X_i \hat{C}\right] = 0$$
(3)

where

 $\hat{A} = A + B_i K_i, \quad \hat{R} = R_{ji} + B_j^T X_i B_j + D_j^T X_i D_j,$ $\hat{C} = C + D_i K_i, \qquad j \neq i, i = 1, 2.$ The equilibrium action for the players is given by

$$u_{k}^{*} = -\hat{R}^{-1} \left[B_{j}^{T} X_{i,k} \hat{A} + D_{j}^{T} X_{i,k} \hat{C} \right].$$
(4)

In this game, we assumed that the player have interaction each other. The set of actions $u^* = (u_1^*, u_2^*)$ satisfying (1) can

be called as Nash equilibrium if it satisfies $J_i(x_0, \overline{u_1^*, u_2^*}) \leq J_1(x_0, \overline{u_1, u_2^*})$ and $J_i(x_0, \overline{u_1^*, u_2^*}) \leq J_1(x_0, u_1^*, u_2)$ for each state feedback matrix $u_i; i = 1, 2$.

Since solving (3) is quite difficult analytically, we can solve (3) using numerical approximation. The method will be discussed on the next section.

III. EXACT-LINE DOUBLE NEWTON METHOD

A numerical method is used in order to solve a coupled of algebr2 c Riccati equation rise on SDAR (1). The most popular method for solving algebraic Riccati equation is Newton method which can be found in [12]. Than the method developed in [3], [10] and [13] for solving a coupled of algebraic Riccati equation arise on linear quadratic games continuous time. Moreover, a numerical method applied on solving a discrete algebraic Riccati equation arise on open lo(4) Nash and Stackelberg games conducted by [2].

In this paper, we construct a modified Newton method using Exact Line Search in [12] and Doubled Newton method [12]. We then develop the modified Newton method on [11] in solving discrete algebraic Riccati equation to solve a coupled algebraic Riccati equation rise on the stochastic Linear Quadratic Differential games (1). This is done because of the advantages of the Newton method and its modification in solving discrete Riccati algebraic equations as described on [10]–[13].

As it is mention in [11] and [13] the Newton method need a stabilizing strategies for the players at the first step, such that the pair of matrices and in (1) are stable. Given a Stein equation

$$X_{i,0} - A_{i,0}^T X_{i,0} A_{i,0} - C_{i,0}^T X_{i,0} C_{i,0}$$
$$= Q^T Q + L_0^T R_{ii} L_0 - C_i^T L_0 - L_0^T C_i.$$
(5)

with $A_{i,0} = A_i - B_i L_0$ and $C_{i,0} = C_i - D_i L_0$. The initial guess matrix can be found by solving (5).

Further, taking a coupled of Newton step size $H_{i,k} = X_{i,k-1} - X_{i,k}$ into the Newton step such that we have a Newton iteration

$$\Re(X_{i,k}) + H_{i,k} - A_k^T H_{i,k} A_k - C_k^T H_{i,k} C_k = 0, \quad (6)$$

where

$$L_k = [R_{ji} + \Gamma_k]^{-1} [B_j^T X_{i,k} A_k + D_j^T X_{i,k} C_k]$$

$$\Gamma_k = B_j^T X_{i,k} B_j + D_j^T X_{i,k} D_j$$

$$A_k = A_i - B_i L_k$$

$$C_k = C_i - D_i L_k.$$

and $\Re(X_{i,k})$ is the left hand side of (3).

While the Double Newton step is a modification of Newton method where the step size of this method can be replaced with $2H_{i,k} = X_{i,k-1} - X_{i,k}$.

10

We now define the Exact Line step by taking the step size The quadratic regulator function to be minimized has the form $H_{i,k} = X_{i,k-1} - t_{i,k}X_{i,k}$ and substitute it into (3). Thus we have 12

$$\Re\left(X_{i,k} - t_{i,k}H_{i,k}\right) = (1 - t_{i,k}) \Re\left(X_{i,k}\right) - t_{i,k}^2 \Upsilon_k + O\left(t^3\right),$$
(7)

under some consideration with

$$\begin{split} \Upsilon_k &= A_k^T H_{i,k} G_{i,k} H_{i,k} A_k + C_k^T H_{i,k} G_{i,k} H_{i,k} C_k \\ G_{i,k} &= B_k^T [R_{ji} + \Gamma_k]^{-1} \end{split}$$

Further, the minimum value of t can be found by minimizing a Frobenius norm of (7), that is

min
$$f = \left\| \Re \left(X_{i,k} - t_{i,k} H_{i,k} \right) \right\|_F^2$$
. (8)

Thus, the t value obtained here is used to iterate on Exact Line step.

Thus 3 we can construct a modified method for solving SDAR using Exact Line and Double Newton step. The method can be written as follows.

Algoritm

1) Choose initial L_0 such that $A + BL_0$ and $C + DL_0$ stable, (see [11] and [12] to find a stabilizing matrix L_0);

8

- 2) Find satisfying (5);
- 3) For $k \ge 0$
 - a) Solve (6) where $H_{i,k} = X_{i,k-1} X_{i,k}$
 - b) Find $t_{i,k}$ 8 stisfying (8);
 - c) Compute $\overline{X}_{i,k+1} = X_{i,k} t_{i,k}H_{i,k}$;
 - d) If $t_{i,k}$ satisfy $||\Re (X_{\underline{i,k}} t_{i,k}H_{i,k})|| < \varepsilon$ then stop the iteration; 6
 - e) Otherwise compute $\overline{X}_{i,k+1} = X_{i,k} 2H_{i,k}$;
 - f) If $\|\Re(X_{i,k+1})\| < \sqrt{1 2t_{i,k}} \, \|\Re(X_{i,k})\|$ then go to 3.h; 6
 - g) Otherwise $X_{i,k+1} = X_{i,k} H_{i,k}$;
 - h) If $||\Re(X_{i,k+1})|| < \varepsilon$ then stop the iteration; i) Else, go to 3.b.
 - IV. NUMERICAL EXAMPLE

In this section, a numerical example is given to provide simulation in solving SDAI 5 using an Exact Line-Double Newton method. According to the system (1), we consider the example with a system involving to two players and a free random variable. The system can be define as

$$x_{k+1} = Ax_k + B_1 u_{1,k} + B_2 u_{2,k} + \omega_k [Cx_k + D_1 u_{1,k} + D_2 u_{2,k}]$$

with

$$A = \begin{bmatrix} -1 & 0 \\ 0.5 & 0.002 \end{bmatrix}, B_1 = \begin{bmatrix} 1 & 0 \\ -0.1 & 1 \end{bmatrix}, B_2 = \begin{bmatrix} 0.01 & -1 \\ 0.5 & 0.01 \end{bmatrix}, C = \begin{bmatrix} 0.05 & 0.01 \\ 0.01 & -0.001 \end{bmatrix}, D_1 = \begin{bmatrix} 0.01 & 0.001 \\ 0.01 & -0.001 \end{bmatrix}, D_2 = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}.$$

$$J_{1}(u) = \xi \sum_{k=0}^{\infty} x_{k}^{2} + u_{1,k}^{T} \begin{bmatrix} 7 & 1\\ 1 & -1 \end{bmatrix} u_{1,k} + u_{2,k}^{T} \begin{bmatrix} -1 & 0\\ 1 & 1 \end{bmatrix} u_{2,k}$$

$$J_2(u) = \xi \sum_{k=0}^{\infty} x_k^2 + u_{1,k}^T \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} u_{1,k} + u_{2,k}^T \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} u_{2,k}.$$

First of all, we take a stopping criterion $\varepsilon = 10^{-10}$ for stopping the iteration. For the above problem, we have a stabilizing matrix

$$L_0 = \begin{bmatrix} -0.0487 & -0.0001\\ 0.0305 & -0.0002 \end{bmatrix}$$

Thus we can take an initial guess

$$X_0 = \begin{bmatrix} -0.0675 & -0.0900 \\ -0.0149 & 0.0755 \end{bmatrix}$$

Below, we provide a summarizing iteration of Exact Line-Double Newton method in solving the above problem.

	TABLE I	
TABLE OF EXACT	LINE-DOUBLE NEWTON	ITERATION

k	i	X_k	t_k	$ \Re(X_k) $
0	1	$\begin{bmatrix} 0.9614 & -0.0086 \\ 0.0245 & 1.0048 \end{bmatrix}$	2	0.6892
	2	$\begin{bmatrix} -0.0675 & -0.09 \\ -0.0149 & 0.0755 \end{bmatrix}$		
1	1	$\begin{bmatrix} 4.9629 & -0.0205 \\ -0.0011 & 0.9951 \end{bmatrix}$	1.1101	0.4051
	2	$\begin{bmatrix} 2.3538 & 0.0078 \\ 0.0091 & 0.9998 \end{bmatrix}$		
2	1	$\begin{bmatrix} 3.3829 & 0.0248 \\ 0.0185 & 1.0001 \end{bmatrix}$	1.0019	0.0066
	2	$\begin{bmatrix} 2.3553 & -0.0201 \\ -0.0204 & 0.9953 \end{bmatrix}$		
:	:			
12	1	$\begin{bmatrix} 3.3403 & 0.027 \\ 0.019 & 1.0002 \end{bmatrix}$	1	5.9202×10^{-12}
	2	2.2484 0.0048 0.0098 1.0002		

aUsing software matlab.

The above table shows that it takes 12 iterations to solve the problem using Exact Line-Double Newton methods. The optimal solution of the game is

$$X = \begin{bmatrix} 3.3403 & 0.027\\ 0.019 & 1.0002\\ 2.2484 & 0.0048\\ 0.0098 & 1.0002 \end{bmatrix}$$

The step size used in the last iteration is

$$H_k = 10^{-11} \begin{bmatrix} -0.5270 & -0.1789 \\ -0.0191 & -0.0013 \\ -0.3580 & -0.0160 \\ -0.0054 & -0.0001 \end{bmatrix}$$

with $||\Re(X_k)|| = 5.9209 \times 10^{-12}$ which less than the specified error.

V. CONCLUTION

Exact Line-Double Newton method is a modification method construced from its original Newton method by combining between Exact Line search method and Double Newton method. This method can be applied to solve Stochastics discrete algebraic Riccati equation rising on two player game with linear quadratic Regulator. It need an initial guess matrix to start the iteration. It a 2 guarantees to produce a stabilizing solution. Since Newton method and Exact Line search method converge, intuitively Exact Line-Double Newton method is also converges. The convergence of this method will be conducted on the next discussion.

ACKNOWLEDGMENT

In this research, we thank to Ahmad Dahlan University for its support through the Internal Research Fund.

References

- J. C. Engwerda, "The infinite Horizon Open-Loop Nash LQ-Games," Euro. Control Conf., vol.-, pp. 3446-3452, March 1997.
- [2] G. Freiling, G. Jank and H. A. Kandil, "Discrete Time Riccati Equations in Open Loop Nash and Stackelberg Games," Europ. Control Conf., vol.-, pp. 3147-3153, July 1997.
- [3] V. Y. Glizer, "Nash Equilibrium in a Singular Two-Person Linear Quadratic Differential Game: a Regularization Approach," Mediterranean Conf. On Control and Aut., vol.-, pp. 1041-1047, June 2016.
- ranean Conf. On Control and Aut., vol.-, pp. 1041-1047, June 2016.
 [4] H. Mukaidani and IEEE Member, "A New Design Approach for Solving Linear Quadratic Nash Games of Multiparameter Singularity Perturbed Systems," IEEE Trans. On Circuits and Systems, vol. 52, pp. 960-975, May 2005.
- [5] H. Mukaidani, T. Shimomura and H. Xu, "Numerical Algorithm for Solving Cross-Coupled Algebraic Riccati Equations Related to Nash Games of Multimodelling Systems," Proceeding: IEEE, vol. 02, pp. 4167-4173, December 2002.
- [6] H. Mukaidani, H. Xu and V. Dragan, "Static Feedback Strategy of Stochastic Nash Games for Weakly-Coupled Large-Scale System," American Control Converence, vol. 4, pp. 1-6, June 2010.
- [7] Salmah and K. Nindita, "Newton-Like Method for Solving Generalized Algebraic Riccati Equation of Feedback Linear Quadratic Game," Int. Conf. On Instr. Control and Automation, vol.16, pp. 148-154, August 2016.
- [8] E. Chu, L. Tiexiang and W. Lin, "ARE-type iteration for Rational Riccati Equations Arising in Stochastic Control," IEEE, vol.-, pp. 201-207, 2011.
- [9] E. Chu, L. Tiexiang, W. Lin and C. Weng, "A Modified Newtons Method for Rational Riccati Equations Arising in Stochastic Control," -.
- [10] K. Nindita and Salmah, "Exact Line Search Method for Solving Nonsymmetric Algebraic Riccati Equations Arising from Open Loop Linear Quadratic Differential Games," Int. Conf. On Inst., Control and Auto., vol.-, pp. 103-109, August 2016.
- [11] Z. A. Rafsanjani, Salmah and A. Suparwanto, "Newton Modification for Solving Discrete Algebraic Riccati Equation," Int. Conf. On Instr., Control and Aut., vol.-, pp. 1-5, August 2017.
- [12] P. Benner, Contribution to the Numerical Solution of Algebraic Riccati Equations and Related eigenvalue problems, German: Logos Verlag Berlin, 1997.
- [13] Salmah and K. Nindita, "Newton-Like Method for Solving Generalized Algebraic Riccati Equation of Feedback Linear Quadratic Game," Int. conf. on Instr. Control and Aut., vol.-, pp.-, August 2016.
- [14] G. Freiling and A. Hochhaus, "Properties of the Solutions of Rational Matrix Difference Equations," Pergamon Comp. And Math. With App., vol. 45, pp. 1137-1154.
- [15] P. Lancaster and L. Rodman, Algebraic Riccati Equations, New York: Clarendon Press, 1995.
- [16] F. L. Lewis and V. L. Syrmos, ptimal Control: Second Edition, Canada: John Wiley and Sons, Inc., 1999.

- [17] F. L. Lewis, L. Xie, and D. Popa, Optimal and Robust Estimation With an Introduction to Stochastic Control Theory, Boca Raton. CRC Press: Taylor and Francis Group, 2008.
- [18] M. Sagara, H. Mukaidani, and T. Yamamoto, "Numerical Computation of Linear Quadratic Control Problem for Singularity Perturbed Systems," Proceedings: IEEE conference, vol.-, pp. 1-6.
- [19] M. Sagara, H. Mukaidani and T. Yamamoto, T., "Stochastic Nash Games with State-Dependent Noise," SICE Anual Conference, vol.-, pp. 1-4, 2007.
- [20] V. D. Silma, T. Morozan and A. Stoica, Mathematical Method in Robust Control of Discrete-Time Linear Stochastic Systems, Londong: Springer, 2010.

Solving Stochastic Linear Quadratic Games in Discrete Time with Two Players Using Exact Line-Double Newton Method

ORIGINALITY REPORT

13% SIMILARITY INDEX **PRIMARY SOURCES** 70 words -3%Salmah, Kirtyana Nindita. "Newton-like method for 1 solving generalized algebraic Riccati equation of feedback linear quadratic game", 2016 International Conference on Instrumentation, Control and Automation (ICA), 2016 Crossref Kirtyana Nindita, Salmah. "Exact line search method for $_{43}$ words -2%2 solving nonsymmetric algebraic riccati equations arising from open-loop linear quadratic differential games", 2016 International Conference on Instrumentation, Control and Automation (ICA), 2016 Crossref 31 words - 1% R. Zani Anjani, Salmah, Ari Suparwanto. "Newton 3 modification for solving discrete algebraic Riccati equation", 2017 5th International Conference on Instrumentation, Control, and Automation (ICA), 2017 Crossref $_{26 \text{ words}} - 1\%$ Y. Wei. "A modified Newton method for solving non-4 symmetric algebraic Riccati equations arising in transport theory", IMA Journal of Numerical Analysis, 09/07/2007 Crossref $_{23 \text{ words}} - 1\%$ V. N. Afanas'ev, V. B. Kolmanovskii, V. R. Nosov. 5 "Mathematical Theory of Control Systems Design", Springer Nature, 1996 Crossref $_{21 \text{ words}} - 1\%$ Kimura, T.. "Heavy-traffic asymptotics for stationary 6 GI/G/1-type Markov chains", Operations Research Letters. 201205

- 8 Lei Wu, Zhe Sun, Dong-Hui Li. "A Barzilai–Borwein-Like Iterative Half Thresholding Algorithm for the \$\$L_{1/2}\$\$ L 1 / 2 Regularized Problem", Journal of Scientific Computing, 2015 Crossref
- 9 Marc Jungers. "General Matrix Pencil Techniques for Solving Discrete-Time Nonsymmetric Algebraic Riccati Equations", SIAM Journal on Matrix Analysis and Applications, 2009 Crossref
- 10 Wei Xiong, Zhao Zhang, Hong-Jian Lai. "Spanning 3-connected index of graphs", Journal of Combinatorial Optimization, 2012 Crossref
- 11 Yim, H.R.. "Quality shock vs. market shock: Lessons $_{8 \text{ words}} < 1\%$ from recently established rapidly growing U.S. startups", Journal of Business Venturing, 200803
- 12 toc.proceedings.com

 $_{8 \text{ words}} - < 1\%$

 $_{7 \text{ words}} - < 1\%$

- 13 Steve Rubin. "Structural verification of linear dynamic 7 words < 1% models, based on multiple experiment data", The 23rd IEEE Conference on Decision and Control, 12/1984 Crossref
- 14 J. Stoer, R. Bulirsch. "Introduction to Numerical Analysis", Springer Science and Business Media LLC, 1993 Crossref
- 15 Chunbin Qin, Hongfei Sun, Xianxing Liu, Jiaqi Chen. 7 words < 1% "Adaptive learning solution of the nonzero-sum differential game with unknown dynamics using adaptive dynamic

programming", 2016 Chinese Control and Decision Conference (CCDC), 2016 Crossref

16	HIROAKI MUKAIDANI, HUA XU, KOICHI MIZUKAMI, "Recursive approach of H control	$_{6 \text{ words}} - < 1\%$
	problems for singularly perturbed systems under p imperfect-state measurements", International Jour Science, 5/1/1999 Crossref	perfect- and mal of Systems

17	Matrix Riccati Equations in Control and Systems Theory, 2003.	$_{6 \text{ words}} - < 1\%$
	Crossref	

EXCLUDE QUOTES	ON	EXCLUDE MATCHES	OFF
EXCLUDE BIBLIOGRAPHY	ON		