

Petunjuk Praktikum Manajemen Data

PP/FKM/MD/V/R3

Laboratorium Fakultas Kesehatan Masyarakat Universitas Ahmad Dahlan

PETUNJUK PRAKTIKUM MANAJEMEN DATA TAHUN AKADEMIK 2019/2020

PP/FKM/MD/V/R3

Tim Penyusun:

Solikhah, S.KM., M.Kes., Dr.PH. Erni Gustina S.KM., MPH. Fatma Nuraisyah, S.KM., MPH. Dedik Sulistiawan, S.KM., MPH.

PROGRAM STUDI KESEHATAN MASYARAKAT FAKULTAS KESEHATAN MASYARAKAT UNIVERSITAS AHMAD DAHLAN YOGYAKARTA 2019

KATA PENGANTAR

Assalamu'alaikum warahmatullahi wabarakatuh,

Alhamdulillahirabbil'alamin, segala puji bagi Allah yang telah memberikan rahmat dan hidayah-Nya kepada kami, sehingga penulis dapat menyelesaikan "Petunjuk Praktikum Manajemen Data Tahun Akademik 2019/2020". Buku ini terbit atas kontribusi dari dosen Program Studi Kesehatan Masyarakat, Fakultas Kesehatan Masyarakat, Universitas Ahmad Dahlan.

Petunjuk praktikum manajemen data dengan menggunakan perangkat lunak EpiData dan SPSS disusun untuk memudahkan mahasiswa dalam memahami proses belajar mengajar khususnya mata kuliah Biostatistik dan mata kuliah lain yang terkait. Oleh karena itu, petunjuk praktikum ini disusun dengan bentuk yang sederhana dan ringkas sehingga dapat dengan mudah dipahami oleh seluruh lapisan mahasiswa. Petunjuk praktikum ini diawali dengan pembahasan materi secara ringkas di setiap bagian/ analisis dan dilengkapi dengan contoh kasusnya di bidang kesehatan masyarakat.

Penulis berharap panduan praktikum ini dapat memberikan manfaat bagi mahasiswa terutama pada saat proses belajar mengajar dan belajar mandiri. Penulis menyadari bahwa buku petunjuk praktikum ini masih belum sempurna. Oleh karena itu penulis sangat membutuhkan kritik dan saran dari semua pihak untuk memperbaiki kualitas buku ini.

Wassalamu'alaikum warahmatullahi wabarakatuh.

Tim Penulis

SEJARAH REVISI PETUNJUK PRAKTIKUM MANAJEMEN DATA

Nama Petunjuk Praktikum	: Manajemen Data
Semester	: V
Program Studi	: Kesehatan Masyarakat
Fakultas	: Kesehatan Masyarakat

Revisi ke-	Tanggal Revisi	Uraian Revisi	
1	29 Agustus 2017	Dilakukan pennambahan materi Analisis Regresi	
		Logistik	
2	7 Agustus 2018	Dilakukan penambahan materi:	
		1. Operasi Dasar SPSS	
		2. Data Cleaning.	
3	5 September 2019	Dilakukan penambahan materi:	
		1. Uji beda proporsi sampel berpasangan (Mc Nemar	
		Test).	
		2. Analisis Regresi Logistik	
		3. Uji validitas dan reliabilitas (<i>internal consistency</i>)	
		instrumen.	

DAFTAR ISI

Halaman Juduli
Kata Pengantarii
Sejarah Revisi Petunjuk Praktikum Manajemen Dataiii
Daftar Isiiv
Praktikum I Penyusunan Formulir Data Entry Menggunakan EpiData 1
Praktikum II Entry Dan Export Data Menggunakan EpiData 10
Praktikum III Operasi Dasar SPSS
Praktikum IV Data Cleaning, Uji Normalitas, dan Analisis Deskriptif 19
Praktikum V Uji Beda Rata-Rata Dua Sampel Bebas
Praktikum VI Uji Beda Rata-Rata Satu Sampel Berpasangan 35
Praktikum VII Uji Beda Rata-Rata Lebih dari Dua Sampel Bebas 40
Praktikum VIII Uji Beda Rata-Rata Lebih dari Dua Sampel Bebas Alternatif 45
Praktikum IX Uji Beda Proporsi Sampel Bebas
Praktikum X Uji Beda Proporsi Sampel Berpasangan55
Praktikum XI Analisis Korelasi
Praktikum XII Analisis Regresi Linier
Praktikum XIII Analisis Regresi Logistik74
Praktikum XIV Validitas dan Reliabilitas Instrumen
Daftar Pustaka

PRAKTIKUM I

PENYUSUNAN FORMULIR DATA ENTRY MENGGUNAKAN EPIDATA

Latar Belakang

Manajemen data perlu direncanakan sejak awal. Tujuannya adalah untuk menghasilkan data yang berkualitas tertinggi yang sesuai dengan analisa statistic yang dibutuhkan. Tahapan pengelolaan data dalam praktikum ini meliputi: perencanaan data yang dibutuhkan, pengumpulan data, entri data, validasi dan pengecekan data, serta manipulasi data. Pada praktikum kali ini akan menggunakan software *EpiData* (Lauritsen & Bruus, 2005), yang dikeluarkan oleh *World Health Organization* (WHO). Software ini dirancang khusus untuk penelitian bidang kesehatan masyarakat serta dilengkapi dengan tahapan proses manajemen data, mudah digunakan, *open source*, tidak memerlukan spefikasi computer khusus, mudah untuk di ekspor ke program statistic lain seperti SPSS, Stata, program R, dll. Epidata juga sudah dilengkapi dengan analisa statistik yang sederhana, seperti analisis deskriptif, corelasi, serta regresi. Namun untuk menganalisa data yang lebih lanjut diperlukan software lain seperti, SPSS, Stata, program R, dan lain-lain.

Tujuan Praktikum

- 1. Pengenalan software epidata tombol "button" pada Epidata
- 2. Membuat data set menggunakan Epidata
- 3. Membuat kuesioner dan entri data menggunakan Epidata

Cara kerja Epidata, sebagai berikut:

Gambar. Alur dalam melakukan EpiData

Permasalahan: Buatlah kuesioner dibawah ini dengan menggunakan epidata, kemudian lakukan entri data sebanyak 100 sample.

Cara penyelesaian:

Cermati terlebih dahulu kuesioner tersebut diatas, kemudian rencanakan nama nama variable untuk memudahkan koding data, sesuai pada setiap nomor pertanyaan pada kuesioner.

INGAT: nama variable tidak menggunakan spasi, mudah diingat, serta tipe variable dalam bentuk numeric. Jika dalam bentuk karakter tidak dapat dianalisis.

Berdasarkan kuesioner tersebut di atas, tersusunlah nama nama variable sebagai berikut:

No.	Variabel	Nama Variabel	Field	Keterangan
1	No identitas responden	ID	###	<idnum></idnum>
	Nama responden			Text
2	Daerah responden 1. Desa 2. Kota	Wilayah	#	Satu isian data
3	Umur	Umur	##	years
4	Tanggal lahir	Born	##/##/####	<dd mm="" yyyy=""></dd>
5	 Tingkat pendidikan 1. Tidak sekolah 2. Tamat SD 3. Tamat SMP 4. Tamat SMA 5. Tamat perguruan tinggi 	Didik	#	Satu isian data
6	Status responden 1. Menikah 2. Single 3. Cerai/pisah	Status	#	Satu isian data
7	 Pendapatan responden perbulan 1. Kurang dari 2 juta 2. 2 juta sampai dengan 6 juta 3. ≥ 6 juta 	Income	#	Satu isian data
8	Apakah responden pernah hamil? 1. Ya 2. Tidak	hamil	#	Satu isian data Jika jawaban tidak, maka lompat ke pertanyaan 11
9	Berapa jumlah anak yang dilahirkan	JumAnak	##	
10	Riwayat menyusui Asi ekslusif 1. Ya 2. Tidak	Asi	#	Satu isian data
11	Riwayat responden tentang kanker 1. Ya 2. Tidak	Kanker	#	Satu isian data
12	Riwayat merokok 1. Ya 2. Tidak	Rokok	#	Satu isian data

Langkah-langkahnya:

1. Klik icon EpiData *I* di dektop Anda, maka akan muncul gambar sebagai berikut:

- Membuat file baru dengan cara: Klik icon
 Membuat variable data, dari kuesioner sebagai berikut:
 - Tahapan untuk mendefinikan variable dalam kuesioner tersebut, sebagai berikut:

a. Klik "file", pilih option, seperti gambar berikut:

A chinar	u 3304	
File Chec	ks Data i	nį
New	Ctrl+N	
Open	Ctrl+O	
Options	6	

 b. pilih "create datafile", centang pada bagian: 'first word in question in fieldname", update question to actual fieldname', dan "lower case", lalu klik Ok, seperti gambar seperti dibawah ini:

c. kemudian pilih "advanced", perhatikan gambar berikut dan ikutilah

Options		23
Editor Show data form Create data file Documentation	Advanced	File associations
ID number fields Eirst ID number in new data file:	Sounds Varning	is during data entry
Error messages Restr	ore all options	to default values
Show errors that occur in calculations in the check file during data entry	🔁 Restore	defaults
Language / Sprog / Lingua / Sprache / Langue / Idiom	a •	
	√ <u>0</u> K	X <u>C</u> ancel

d. mulailah mengetik kuesioner berikut nama variabelnya, seperti penjelasan di atas, sehingga terlihat seperti ini:

File	e Edit Data File Document Tools Window Help
<u>1</u> . Defina	e Data 🔻 🔶 2. Make Data File 💌 🔶 3. Checks 🔶 4. Enter Data 🔶 5. Document 💌 🔶 6. Export Data
🗅 🖻) 🖬 🥌 🗠 💥 🔓 📾 🖄
	Kuesioner Karakteristik wanita di Yogyakarta
1.	No identitas responden:
2.	Nama responden:
3.	Daerah responden : a) desa = b) kota
4.	Umur responden : tahun
5.	Tanggal lahir responden ://
6.	Tingkat pendidikan responden : a) tidak sekolah b) Tamat SD c) Tamat SMP d) Tamat SMA e) Tamat PT
7.	Status responden : a) menikah b) single c) cerai/ pisah
8.	Pendapatan responden perbulan : a) kurang dari 2 juta c) 2 juta s.d 6 juta d) \ge 6 juta
9.	Apakah responden pernah hamil: a) ya b) tidak
10.	Berapa jumlah anak yang dilahirkan:orang
11.	Riwayat menyusui Asi ekslusif. a) ya b) tidak
12.	Apakah responden punya riwayat menderita kanker? A) ya b)tidak

- 13. Riwayat merokok? A) ya b) tidak
- e. lalu simpan file Anda dengan cara: klik "File", pilih "save as", simpan dengan Kelompok praktikum_Nama_Nim (contoh: A_Solikhah_0912001) dengan extention file.QES, seperti berikut ini:

The save As	
Save in: 길 manajmen data _2016 💽 🔶 🖻 🐨 🎫	
A_solikhah_1209	
File name: A_solikhah_1209101 Save	
Save as type: EpiData questionnaire file (*.qes)	

f. tutuplah screen Epidata, kemudian buka file Anda, lalu rubahlah nama variable pada masing masing nomor pertanyaan, sehingga tampilan screen Epidata Anda akan seperti ini:

📑 File	Edit Data File Document Tools Window Help
<u>1</u> . Define D	ata 🔻 🔶 2. Make Data File 💌 🔶 3. Checks 🔶 4. Enter Data 🔶 5. Document 💌 🔶 6. Export Data
🗋 🗁 🛛	🖬 🥔 🗠 💥 둼 🛐 🥅 🖄
Kuesione:	r Karakteristik wanita di Yogyakarta
TD	No identites regrender.
Nama	Nome responden.
wileveb	Mama Lesponden. Daarab reennden ·
witajan	1) desa 2) kota
umur	Umur responden :tahun
born	Tanggal lahir responden ://
didik	Tingkat pendidikan responden :
	1) tidak sekolah 2) Tamat SD 3) Tamat SMP 4) Tamat SMA 5) Tamat PT
status	Status responden :
	l) menikah 2) single 3) cerai/ pisah
income	Pendapatan responden perbulan :
	l) kurang dari 2 juta 2) 2 juta s.d 6 juta 3) ? 6 juta
hamil	Apakah responden pernah hamil:
	1) ya 2) tidak
jumAnak	Berapa jumlah anak yang dilahirkan:orang
asi	Riwayat menyusui Asi ekslusif:
	1) ya 2) tidak
kanker	Apakan responden punya riwayat menderita kanker?
rokok	I) Ya 2) (luax Diverset merekek?
LOVOY	li va 2) tidab
\rightarrow	i) ya z) cidak
Nam	a variable

- g. simpanlah data anda dengan klik "SAVE"
- h. selanjutnya berilah hastag sebagai tempat untuk mengisi data saat entry data dilakukan. Sehingga akan muncul gambar sebagai berikut: (lihat yang dicentang)

<u>1</u> . Define D	ata 🔻 🔶 2. Make Data File 💌 🔶 3. Checks 🔶 4. Enter Data 🔶 5. Document 💌 🄶 6. Export Data
🗅 🗁 I	🖬 🖆 ∽ 💥 🔓 🛅 🗃 🖄
Kuesione	r Karakteristik wanita di Yogyakarta
ID	No identitas responden: (IDNUM)
Name	Nama responden:
wilayah	Daerah responden : # 🧹 1) desa 2) kota
umur	Umur responden :tahun ## 🗸
born	Tanggal lahir responden : <dd mm="" yyyy=""> 🗸</dd>
didik	Tingkat pendidikan responden : # 🖌 1) tidak sekolah 2) Tamat SD 3) Tamat SMP 4) Tamat SMA 5) Tamat PT
status	Status responden : # ✓ 1) menikah 2) single 3) cerai/ pisah
income	Pendapatan responden perbulan : # 🧹 1) kurang dari 2 juta 2) 2 juta s.d 6 juta 3) ? 6 juta
hamil	Apakah responden pernah hamil: # 🗸 1) ya 2) tidak
jumAnak	Berapa jumlah anak yang dilahirkan:orang ## 🗸
asi	Riwayat menyusui Asi ekslusif: # 🗸
kanker	Apakah responden punya riwayat menderita kanker? # 🖌 1) ya 2)tidak
rokok	Riwayat merokok? # 🔶 1) ya 2) tidak

Cara memberi hashtag, sebagai berikut

1. pada variable "ID", klik icon ⁽²⁾ kemudian pilih "other", klik "auto ID number", dan isi kolom "lengh" dengan angka 3 (karena jumlah sample sebanyak 100 orang), lalu klik "insert"

Fiel	d pick list	E
N	umeric Text Date	Other
	Field type	
	C Soundex	
	○ <u>B</u> oolean (yes/no)	
	Length 3	Insert

2. pada variable "Name", klik icon ⁽¹⁾ kemudian pilih "text", klik "text", dan isi kolom "lengh" dengan angka 20 (sejumlah karakter nama orang), lalu klik "insert"

'insert?'
Field pick list 🛛 🔤
Numeric Text Date Other
Type ⓒ <u>[[ext]</u> ○ <u>Upper-case text</u> ○ <u>Encryption field</u>
Length 20 ÷

3. pada variable "born", klik icon 🛍 kemudian pilih "text", klik "date", pilih dd/mm/yyyy, lalu klik "insert"

Numeric Text Dat	e Other				
Date <<u>d</u>d/mm/yyyy> <<u>m</u>m/dd/yyyy> <<u>yyyy/mm/dd></u> 	Automatic dates C <i_oday-dmy> C <today-mdy> C <today-ymd></today-ymd></today-mdy></i_oday-dmy>				
Insert					

4. pada variable lainnya, klik icon ikemudian pilih "numeric", klik "digit before decimal point", isi satu atau dua menyesuaikan dengan gambar pada point h, lalu klik "insert"

Field pick list	3
Numeric Text Date Other	
Digits before decimal point 🚺 🛨	
Digits after decimal point 0	
Field to insert: #	
Field length: 1	
Insert	

- i. Lalu klik SAVE
- j. Keluar dari screen Epidata, kemudian membuat file. REC, dengan cara, klik " make data file", klik "OK" kemudian muncul kotak isian untuk nama file, isi dengan nama file yang sama dengan nama file .QES (contoh:A_solikhah_1209101.rec). Seperti gambar sebagai berikut:

👅 EpiData 3.1	and the second second
File Checks	Data in/out Document Tools Window Help
<u>1</u> . Define Data ▼	🔸 2. Make Data File 🔻 🕂 3. Checks 🔸 4. Enter Data 🔸 5. Document 💌 🔶 6. Export Data 💌
🗅 🗁 📕	
	Data file label for A_solikhah_1209101.rec
	Enter description of data file (data file label) A_solikhah_1209101
	OK Cancel

- k. Kemudian close screen Epidata Anda,
- Selanjutnya menuju langkah ke 3, klik " CHECK", untuk mengkondisikan entri data supaya terhindar dari berbagai kesalahan, diantaranya: kesalahan transposisi, kesalahan duplikat data, kesalahan konsistensi data, kesalahan range data, dan kesalahan routing data.

Bagaimana cara Epidata melakukan pengecekan kesalahan entri data. Ada tiga cara untuk melakukan yang dapat dilakukan, diantaranya dengan mengaktifkan fungsi –fungsi yang ada pada option "CHECk", yaitu:

- 1. Must-enter variables → perintah ini berfungsi agar variable harus diisi, jika kosong maka akan muncul missing data.
- 2. Legal values: periintah ini berfungsi bahwa variable harus diisi sesuai dengan tipe data yang diinginkan.
- 3. Range checks: perintah untuk membatasi data isian dalam variable
- 4. Repeat variables: periintah untuk mengulang input data, namun jarang digunakan.
- 5. Conditional jumps: perintah untuk pindah ke variable yang harusnya diisi
- 6. Programmed checks: untuk consistency bahasa

Langkah-langkah untuk option "CHECK":

1. Klik tombol ³ CPECKE kemudian mucul kotak pilihan "select data file for checks", pilih file dengan extensi.REC, seperti pada gambar berikut:

Select data file for checks	
Look in: 🕕 manajmen data _2016	• = E 📸
A_solikhah_120910 bromar	
File name: A_solikhah_1209101	Open
Files of type: EpiData data file (*.rec)	Cancel

2. Kemudian muncul gambar seperti berikut:

🗑 EpiData 3.1 - [Add / revise checks - A_solikhah_1209101.rec]	comprove Ma, 202 - Marcold Real
File Filter Fields Window Help	
Kuesioner Karakteristik wanita di Yogyakarta id No identitas responden: ⁰	A calibbate 1700101 cbb Name responder: Text
name Nama responden:	Bange Legal
wilayah Daerah responden : 1) desa 2) kota	Jumps Mutt getter Repeat Vglue label +
umur Umur responden :tahun	🔜 Save 🏹 Edit
born Tanggal lahir responden :	4
didik – Tingkat pendidikan responden :	
1) tidak sekolah 2) Tamat SD 3) Tamat SMP 4) Tamat SMA 5) Tamat P	Г
status Status responden : 1) merikah 2) single 3) cerai/ pisah	

- 3. Lakukan checking variable pada setiap variable, dengan cara berikut:
 - a. Variable "ID", secara otomatis telah tersetting
 - b. Variable "name", letakkan kursor pada kolom "name", kemudian pilih "must be enter", klik "save"
 - c. Variable "wilayah", letakkan kursor pada kolom "range,legal", kemudian ketik 1-2, pilih "must be enter" pilih "yes", klik "save"
 - d. Variable "umur", letakkan kursor pada kolom "range, legal", kemudian ketik 18-80 (membatasi umur yang boleh dientri adalah 18 tahun sampai dengan 80 tahun), pilih "must be enter",pilih "yes" klik "save"
 - e. Variable "born", pilih "must be enter", pilih "no" klik "save"
 - f. Variable "didik", letakkan kursor pada kolom "range,legal", kemudian ketik 1-5, pilih "must be enter" pilih "yes", klik "save"
 - g. Variable "status", letakkan kursor pada kolom "range,legal", kemudian ketik 1-3, pilih "must be enter" pilih "yes", klik "save"
 - h. Variable "income", letakkan kursor pada kolom "range,legal", kemudian ketik 1-3, pilih "must be enter" pilih "yes", klik "save"
 - i. Variable "hamil", letakkan kursor pada kolom "range,legal", kemudian ketik 12, pilih "jump", ketik 2>kanker (jika menjawab "tidak", maka lompat ke pertanyaan kanker), pilih "must be enter" pilih "yes", klik "save"
 - j. Variable "jumanak", pilih "must be enter" pilih "yes", klik "save"
 - k. Variable "asi", letakkan kursor pada kolom "range,legal", kemudian ketik 1-2, pilih "must be enter" pilih "yes", klik "save"
 - 1. Variable "kanker", letakkan kursor pada kolom "range,legal", kemudian ketik 1-2, pilih "must be enter" pilih "yes", klik "save"
 - m. Variable "rokok", letakkan kursor pada kolom "range,legal", kemudian ketik 1-2, pilih "must be enter" pilih "yes", klik "save"
 - n. Form telah selesai, selanjutnya pilih file, kemudian close.

PRAKTIKUM II

ENTRY DAN EXPORT DATA MENGGUNAKAN EPIDATA

Tujuan Praktikum

- 1. Melakukan data entry menggunakan Epidata.
- 2. Melakukan data export menggunakan Epidata.

Langkah-langkah:

Gunakan template kuesioner yang telah disusun pada praktikum sebelumnya. Lakukan entry data, caranya klik icon 4. Enter Data kemudian lakukan entri data sebanyak 100 sampel.

Bagaimana cara menghapus data yang sudah terlanjur di entri? Caranya dengan lakukan entri seluruh data terlebih dahulu, kemudian buka record data yang akan di hapus, pilih "go to" pada menu enter data, pilih "delete recode", kemudian tutup screen data, pilih tool, pilih "pack data file", klik OK untuk menghapus secara permanen dari data yang telah di entri.

Setelah seluruh data selesai dientri seluruhnya, kemudian data diap untuk dianalisis. EpiAnalysis dapat melakukan analisis data secara sederhana, meliputi, analasis deskriptif, analisis korelasi dan regresi. Namun untuk analisis yang lain dapat dilakukan oleh software analisa statistic lain seperti SPSS, Stata, program R, SAS, dll. Caranya data di dalam Epidata di ekpor ke program atau software yang diinginkan. Langkah yang harus dilakukan, klik icon export data kemudian pilih ke extention data yang diinginkan, kemudian klik open, terkahir klik OK.

EpiData 3.1
File Checks Data in/out Document Tools Window Help
, Define Data 🔻 🛧 2. Make Data File 💌 🔶 3. Checks 🔶 4. Enter Data 🔶 5. Document 💌 🔶 6. Export Data 💌
🐺 Open
Look in:] New folder 💌 🖛 🖻 📸 🖅
epidata
File name: epideta Open
Files of type: EpiData data file (*.rec)

Tugas Praktikum 1 dan II:

- 1. Inputlah data sebanyak 100 sampel dari kuesioner dibawah ini. Sebelumnya, buatlah koding dan rencanakan cara pengiputananya.
- 2. Eksporlah data yang sudah di entri ke dalam microsoft excel
- 3. Identifikasi kesulitan yang Anda alami

Kuesioner Karakteristik wanita di Yogyakarta

- 1. No identitas responden:
- 2. Nama responden:
- 3. Daerah responden : a) desa b) kota
- 4. Umur responden :...tahun
- 5. Tanggal lahir responden : .../.../....
- 6. Tingkat pendidikan responden : a) tidak sekolah b) Tamat SD c) Tamat SMP d) Tamat SMA e) Tamat PT
- 7. Status responden : a) menikah b) single c) cerai/ pisah
- 8. Pendapatan responden perbulan : a) kurang dari 2 juta c) 2 juta s.d 6 juta d) \geq 6 juta
- 9. Apakah responden pernah hamil: a) ya b) tidak
- 10. Berapa jumlah anak yang dilahirkan:....orang
- 11. Riwayat menyusui Asi ekslusif: a) ya b) tidak
- 12. Apakah responden punya riwayat menderita kanker? A) ya b) tidak
- 13. Riwayat merokok? A) ya b) tidak

No.	Variabel	Nama Variabel	Field	Keterangan
1	No identitas responden	ID	###	<idnum></idnum>
2	Nama responden			Text
3	Daerah responden	Wilayah	#	Satu isian data
	1. Desa			
	2. Kota			
4	Umur	Umur	##	years
5	Tanggal lahir	Born	##/##/####	<dd mm="" yyyy=""></dd>
6	Tingkat pendidikan	Didik	#	Satu isian data
	1. Tidak sekolah			
	2. Tamat SD			
	3. Tamat SMP			
	4. Tamat SMA			
	5. Tamat perguruan tinggi			
7	Status responden	Status	#	Satu isian data
	1. Menikah			
	2. Single			
	3. Cerai/pisah			
8	Pendapatan responden perbulan	Income	#	Satu isian data
	1. Kurang dari 2 juta			
	2. 2 juta sampai dengan 6 juta			
	$3. \geq 6$ juta			
9	Apakah responden pernah hamil?	hamil	#	Satu isian data
	1. Ya			Jika jawaban tidak,
	2. Tidak			maka lompat ke
				pertanyaan 11
10	Berapa jumlah anak yang dilahirkan	JumAnak	##	
11	Riwayat menyusui Asi ekslusif	Asi	#	Satu isian data
	1. Ya			
	2. Tidak			~
12	Riwayat responden tentang kanker	Kanker	#	Satu isian data
	1. Ya			
	2. Tidak			~
13	Riwayat merokok	Rokok	#	Satu isian data
	1. Ya			
	2. Tidak			

Berikut adalah tabel koding variabel dari kuesioner tersebut di atas.

Tugas praktikum dikerjakan di rumah, dikumpulkan paling lambat pada hari berikutkan jadwal praktikum dilakukan, hasil praktikum diprint, dijilid sederhana, serta diberi Nama, NIM, kelompok praktikum.

PRAKTIKUM III OPERASI DASAR SPSS

Penguasaan software statistik untuk memudahkan dalam pemaparan data terkait dengan data-data kesehatan masyarakat dan ini sangat diperlukan bagi Sarjana Kesehatan Masyarakat. Berbagai macam software statistik diantaranya adalah: SAS, SPSS, Stata, Epi Info, SUDAAN. S-PLIS, Statxact, BMDP, Statistica, Statview, program R dan lain-lain. Pada praktikum ini menggunakan software SPSS. Perlu diperhatikan sebelum mempraktekkan software statistik, praktikan harus mengikuti langkah-langkah dalam menggunakan uji statistik sebagai berikut:

- 1. Merumuskan masalah
- 2. Menentukan hipotesis (H₀ dan H_a)
- 3. Menentukan desain studi
- 4. Mengumpulkan data
- 5. Interpretasi data
- 6. Menulis kesimpulan

1. Memasukkan data dalam program SPSS

SPSS atau *statistical packkage for sosial science*, merupakan sebuah program aplikasi yang memiliki kemampuan analisa statistik cukup tinggi serta sistem pengoperasian cukup sederhana sehingga mudah dipahami. Terdapat dua langkah utama dalam memasukkan data yaitu mengisi <u>variabel view</u> dan <u>data view</u>.

- ✓ Buka program SPSS
- ✓ Aktifkan variabel view (kiri bawah)

Pada tampilan variabel view akan didapatkan kata *name, type, widh, decimal, labels, values, column widh, aligment, measures.* berikut ini adalah penjelasan dari masing- masing data isian tersebut.

Name	Kata yang mewakili nama variabel. Biasanya disi dengan kata yang mudah
	diingat yang berkaitan dengan nama variabelnya, misalnya "sex" untuk variabel
	jenis kelamin responden.

- Type
 tipe data yang dimasukkan. Pilihan yang paling umum adalah numeric (karena semua proses uji dalam SPSS bisa dilakukan dalam bentuk numeric) dan string (kalau yang mau dimasukkan adalah huruf/kata/kalimat)
- Width Jumlah digit data yang dimasukkan

Petunjuk Praktikum Manajemen Data 2019/2020

Decimal	Jumlah digit dibelakang titik			
Labels	penjelasan rinci dari kolom name. Misalnya, dalam kolom name di ketik sex,			
	labelnya adalah "jenis kelamin responden"			
Values	kode yang diberikan jika variabel merupakan variabel kategorik (nominal dan			
	ordinal).			
Column width	lebar kolom			
Alignment	pilihan tampilan variabel (rapat kiri, kanan, atau tengah)			
Measures	skala pengukuran variabel (nominal oedinal, scale). Dalam program SPSS,			
	variabel interval dan rasio disebut varibel scale			

data 🛛	data view lat1 [DataSet0] - SPSS Data Editor									
File Edi	File Edit View Data Transform Analyze Graphs Utilities Window Help									
🗁 🔲	≥ 🛯 ≜ 🖻 🔶 🐜 🖗 桶 ∰ 塑 ឝ 🦻 🎯									
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	nama	String	8	0	Nama Ibu	None	None	8	Left	Nominal
2	usia	Numeric	8	0	Usia Ibu (Tahun)	None	None	8	Right	Scale
3	BB	Numeric	8	1	BB bayi lahir (Kg)	None	None	8	Right	Scale
4	sex	Numeric	8	0	Jenis kelamin bayi	{1, laki-laki}	None	8	Right	Nominal
5										

Tugas: masukkan data berat badan bayi dibawah ini dengan software SPSS.

Data Berat Badan Bayi yang Baru Dilahirkan

No	Nama Ibu	Usia Ibu (Tahun)	BB bayi (Kg)	Jenis Kelamin Anak
1	Aminah	30	3	Laki-laki
2	Shinta	23	2,3	Laki-laki
3	Rutiami	22	2	Laki-laki
4	Yuni	25	2,3	Laki-laki
5	Bella	30	3	Perempuan
6	Karni	20	2	Perempuan
7	Nur azizah	32	2,9	Perempuan
8	Siti Warliyah	24	2,4	Perempuan
9	Hamidah	30	3	Laki-laki
10	Hasminah	27	2,7	Laki-laki
11	Amalia	24	2,4	Laki-laki
12	Endang	29	2,9	Perempuan
13	Tutik	28	2,6	Perempuan
14	Imawati	32	3,1	Perempuan
15	Irna	30	2,9	Perempuan
16	Ekawati	24	2,3	Laki-laki
17	Yanti	20	2	Laki-laki
18	Asminah	25	2,5	Perempuan
19	Nanik Sety	20	2	Perempuan
20	Endang K	26	2,5	Laki-laki

<u>Cara kerja</u>: terdapat dua langkah utama yang harus dilakukan, yaitu mengisi bagian variabel view dan mengisi data view.

✓ Mengisi variabel view

Buka program SPSS

- > Aktifkan variabel view (ada di kiri bawah)
 - ✓ Mengisi data view

Klik data view, lalu isi sesuai data pada data kasus. Jika sudah sesuai simpan dengan nama: Latihan enty (*file* \rightarrow *save as* \rightarrow *la*tihan entry) (simpan di folder d dengan nama dan NIM masing-masing mahasiswa) misal: Rano_06029032

💁 data view lat1 [DataSet0] - SPSS Data Editor								
File Edit View Data Transform Analyze Graphs Utilit								
😕 🖬 🖻 🔹 🐡 😁 🔚 🕼 🛤 📲 🏥 🕮								
1 : nama	а	An	ninah					
	nama	usia	BB	sex				
1	Aminah	30	3,0	1				
2	Shinta	23	2,3	1				
3	Rutiami	22	2,0	1				
4	Yuni	25	2,3	1				
5	Bella	30	3,0	2				
6	Karni	20	2,0	2				
7	Nur aziz	32	2,9	2				
8	Siti War	24	2,4	2				
9	Hamidah	30	3,0	1				
10	Hasminah	27	2,7	1				
11	Amalia	24	2,4	1				
12	Endang	29	2,9	2				
13	Tutik	28	2,6	2				
14	Imawati	32	3,1	2				
15	Irna	30	2,9	2				
16	Ekawati	24	2,3	1				
17	Yanti	20	2,0	1				

2. Mengubah Skala Data Variabel (Transformasi/ Manipulasi Data)

Tujuan: terampil melakukan perubahan data dari skala satu dengan skala yang lain. Misalnya dalam uji chi square diperlukan untuk melakukan perubahan skala numerik ke ordinal atau penggabungan sel (sebagai alternatif uji dalam chi square).

Cara kerja:

- 1. Buka file latihan
- 2. Aktifkan data view
- 3. Lakukan langkah-langkah berikut ini:
 - a. Transform \rightarrow recode \rightarrow recode into diferent variabel
 - b. Masukkan vaiabel umur ke dalam input variabel
 - c. Ketik umur_1 ke dalam *output variabel*
 - d. Ketikkan klasifikasi umur kedalam label
 - e. Klik kotak change, setelah itu akan terlihat tampilan sebagai

berikut:

Recode into Different	/ariables	X
♣ Nama Ibu [nama]	Numeric Variable -> Output Variable:	Output Variable Name: Label: Change
	(optional case selection condition) OK Paste	Reset Cancel Help

f. Klik old and new values

g. Isilah kotak *old value* dan kotak *new value* (selanjutnya ikuti logika berpikir).

Logikanya:

Semua data <20 tahun diubah menjadi kode 1

Semua data 20-35 tahun diubah menjadi kode 2

Semua data >35 tahun diubah menjadi kode 3

Dengan logika tersebut, isilah old value dan new value sebagai berikut:

Old value: range lowest through 19, new value: 1, klik add

Old value: range 20 through 35, new value:2, klik add Old Value: 36 trough higest, new value: 3, klik add.

Pada tahapan ini akan diperoleh tampilan sebagai berikut:

0ld Value	New Value
) Value:	Value:
	System-missing
System-missing	Copy old value(s)
System- or user-missing	Old Name
🗇 Range:	Lowest thru 19->1
	Add 20 thru 35 -> 2
through	Change So tild Pignest 423
	Remove
Range, LOWEST through value:	
Bange value through HIGHEST	
	Convert numeric strings to numbers ('5'->5)
All other values	

- h. Proses telah selesai, klik kotak continu
 - i. Klik OK.

3. Mendeskripsikan Data dalam Bentuk Grafik dan Tabel

Cara kerja:

- 1. Gunakan data yang telah di-entry (latihan)
- 2. Klik Graphs \rightarrow Bar (untuk grafik batang) atau line (untuk grafik garis)
- 3. Pilih simple dan summaries for groups of cases
- 4. Masukkan variabel area pada kotak category axix
- 5. Klik OK

Summaries of separate variabels: lakukan langkah-langkah berikut untuk memaparkan ringkasan grafis dengan pembandingan variabel yang ada pada data.

- a. Klik graphs → bar (untuk grafik batang) atau line (untuk grafik garis), maka kotak dialog bar charts atau kotak dialog line charts akan muncul.
- b. Pilih clustered (untuk membuat grafik batang) atau pilih multiple (untuk membuat grafik garis), kemudian pilih summaries of separate variabels.
- c. Klik Define
- d. Masukkan variabel yang akan dideskripsikan datanya pada kotak bar represent, kemudian masukkan variabel area ke kotak category axis.
- e. Klik OK.

Mendeskripsikan Variabel Numerik

Cara kerja:

- 1. Gunakan data yang telah di-entry (latihan)
- 2. Klik analysis \rightarrow Descriptive statistics \rightarrow Frequencies
- 3. Masukkan variabel numerik kedalam kotak variables
- 4. Pilihan display frequency table dinonaktifkan.
- 5. klik kotak Statistic. Pilih mean, median, modus dapa central tendency (sebagai ukuran pemusatan), pilih Std deviation, variance, minimum, maksimum. Pada dispersion Pilih skewness dan kurtosis pada distribution (sebagai ukuran penyebaran).
- 6. Klik continue, lalu aktifkan pilihann chart pilih histogram pada chart type dan aktifkan kotak with normal curve.
- 7. Klik continu, klik OK.

Ada dua parameter yang lazim digunakan untuk mengambarkan karakteristik data dengan skala pengukuran numerik yaitu parameter ukuran pemusatan (tendency central) dan parameter ukuran penyebaran (dispertion). Parameter ukuran pemusatan yaitu, mean, median, dan modus.

Untuk ukuran penyebaran, yaitu standar deviasi, varians, koefisien varians, interkuartil, range, dan nilai maksimum minimum. Data variabel dengan skala pengukuran numerik disajikan dalam bentuk tabel dan grafik (histogram dan plots).

Variabel	Rata-rata	Median	Simpang Baku	Minimum	Maksimum
Usia	46,69	47	12,56	15	69
Berat Badan	50,40	50	8,33	45	64

Histogram

Tabel 1. Contoh Penyajian Variabel Numerik dalam Bentuk Tabel

Catatan: jika data mempunyai distribusi normal, dianjurkan untuk memilih nilai mean sebagai ukuran pemusatan dan standar deviasi sebagai ukuran penyebaran. Jika data berdistribusi data tidak normal, maka dianjurkan memilih nilai median sebagai ukuran pemusatan dan nilai maksimum minimum sebagai ukuran penyebaran.

Petunjuk Praktikum Manajemen Data 2019/2020

PRAKTIKUM IV

DATA CLEANING, UJI NORMALITAS, DAN ANALISIS DESKRIPTIF

a. Data Cleaning

Data cleaning diperlukan untuk menghilangkan data yang outlier ataupun data yang kosong atau yang missing. Ini sangat penting, dikarenakan untuk membuat data tersebut berkualitas.

Langkah-langkahnya:

- 1. Buka file: data cleaning.
- 2. Klik analisis, klik deskriptif statistik, klik frequency, masukkan semua variable yang ada di kotak kiri.

Lihat output dan perhatikan data missing yang ada di dalam semua variable

- Kemudian klik data, pilih selec cases Masukkan nama variable Missal sex=3 klik OK.
- 4. Perhatikan data anda, cek kuesioner Anda, ingat iingat, apakah kebenaran data tersebut. Jika meragukan maka silahkan di tulis 99 (kode untuk missing data).
- 5. Cek kembali data anda
- 6. Klik analisis, klik Descriptive, pilih Frequency, lihatlah hasilnya, pakah masih ada data yang missing atau meragukan?
- 7. Lakukan pengecakekan untuk data outlier
 - a. Klik analisis, pilih Decriptive statistic pilih Descriptive.
 - b. Pilih variable umur letakkan di kotak sebelah kanan.
 - c. Centang kotak yang bertuliskan: Save standardized values as variable.
 - d. Cek output.

Hitung menggunakan kalkulator, berapa umur maksimal.

e. Setelah itu itu delete datanya jika memang data tersebut termasuk dalam outlier.

Tugas:

Gunakan yang telah Andaentry di EpiData. Lakukan cek missing value dan data outlier.

b. Uji Normalitas

Uji normalitas diperlukan unutk mengetahui sebaran data. Berbagai literature menyebutkan 50% dari artikel yang ditulis dalam jurnal terdapat kesalahan dalam analisa statistiknya. Beberapa prosedur uji statistik untuk menguji sebuah hipotesa menggunakan asumsi data berdistribusi normal atau berdistribusi *Gaussian*. Apabila asumsi normalitas tersebut tidak dilakukan maka akan mempengaruhi akurasi dan reliabilitas dari uji yang dilakukan.

Beberapa metode yang digunakan untuk uji normalitas data, diantaranya (Ghasemi & Zahediasl, 2012):

- Secara visual, secara umum dengan melihat histogram (tabel frekwensi distribusi data) dan grafik stem and leaf plot, grafik box plot
- 2. Dengan uji statistik dengan menggunakan uji Kolmogov-smirnov (K-S), uji Liliefors, uji Sapiro wilk, uji Anderson-Darling, Uji Cramar –von Mises, uji D'agostino skewness, dan uji kurtosis. Uji Kolmogorov smirnov dan uji sapiro-wilk umum dilakukan dengan menggunakan software SPSS. Uji normalitas yang digunakan dalam praktikum kali ini menggunakan software SPSS (Öztuna & Elhan, 2006).

Tujuan praktikum:

- 1. Melakukan uji normalitas data
- 2. Menginterpretasikan hasil uji normalitas data

Tahapan uji normalitas:

- 1. Buka software SPSS dengan melakukan klik di desktop
- 2. Ekspor data excel ke dalam lembar kerja SPSS, dengan cara: klik "open", cari file di folder D:materi praktikum, pada "file of type" pilih file dengan extension excel, klik nama file praktikum, klik continue.

Intitiad1 (DataSat0) - SD	CC Statistics Data E	ditor	🔁 "Untitleda	[DataSet1] - SPSS Statistic:	Data Editor				
File Edit View Data	in the second	unton	Ele Est	⊻jew <u>D</u> ata <u>I</u> ransform	Anelyze Graphs Ubili	es Add-gns <u>W</u> indo	w <u>H</u> elp		
	🔛 Open Data		🖻 🖬 🖨	🖬 🗄 🕈 🖥	1 🗛 📲 🏥 🚟 🤤	12 📑 👒 📎 🌑	±⊊/		
1:	Look in	🕻 🔰 materi prektikum 🔹 📾 🔛 🗄	1 : idhum	1.0					Visible: 13 of 13 Variables
var				idnum	region	date	age	edulevi	marsta
1				1.00	2.00	22-May-1992	23.00	4.00	1.00 🔺
2	Recent			2.00	2.00	21-Apr-1969	47.00	4.00	2.00
3			3	3.00	2.00		34.00	4.00	2.00
4			4	4.00	2.00	28-Oct-1986	30.00	4.00	2.00
5	Desitop		5	5.00	2.00	07-Apr-1984	32.00	3.00	2.00
6			6	6.00	2.00	08-Sep-1960	56.00	3.00	2.00
7			7	7.00	2.00	20-Feb-1969	47.00	3.00	2.00
8	Documents		8	8.00	2.00	06-Jun-1969	42.00	4.00	2.00
9	Contraction		9	9.00	2.00	07-Jan-1998	18.00	2.00	1.00
10		File name: Onen	10	10.00	2.00	16-Jul-1979	36.00	5.00	2.00
11			11	11.00	2.00	28-Jun-1975	41.00	4.00	200
12	Computer	Files of type: SPSSPC+ (* sys)	12	12 00	2.00	06-Jul-1974	40.00	3.00	200
13	<u> </u>	SPSSIPC+ (* sys) Minimize Systet (* sys) Cancel	13	13.00	2.00	10-Dec-1991	24.00	4.00	200
14		Portable (*.por)	14	14.00	2.00	05, Jun; 1961	55.00	3.00	200
	Network	Retr Excel (*.xis, *.xisx, *.xism)	14	1	2.00	00 00P1001	30.00	3.00	200 •
Data View Variable View		Lotus (*.w*) Svik (*.sk)							
<u>,</u>		dBase (*.dof) Satistics Processor is	s Data View	Variable View					
	TT.	SAS (*.ses7bdet, *.sd7, *.sd2, *.ssd01, *.xpt)					SPS	5 Statistics Processor is r	eady

3. Analyze → Descriptive Statistics → Explore → klik age kemudian pindahkan melalui tombol panah pada kotak dependent variable, klik Plots → Normality plots with test, seperti gambar berikut:

#Untitled1 [DataSet0] - PASW Statistics Data Editor	
<u>File Edit View Data Transform Analyze</u> Direct Marketing <u>G</u> raphs <u>U</u> tilities Add-g	ons <u>W</u> indow <u>H</u> elp
Reports Reports Descriptive Statistics Required	
Image: Sector List: Prequencies Image: Sector List: Preprint Image: Sector List: Preprint Image: Sector List: Preprint	Explore: Plots
	Spread vs Level with Levene Test Nong Power estimation Transformed Power: Natural log Untransformed Continue Cancel Help

4. Konsentrasi pada hasil output SPSS tersebut dibawah ini saja, yang lain diabaikan, karena tidak semua output analisa data digunakan semua, hanya yang penting dan umum saja

Tests of Normality

	Kolm	ogorov-Smir	mov ^a	Shapiro-Wilk			
	Statistic	df	Siq.	Statistic	df	Siq.	
age	.087	201	.001	.944	201	.000	

a. Lilliefors Significance Correction

- 5. Interpretasi hasil uji normalitas atau sebaran data
 - a. Tentukan hipotesis terlebih dahulu
 Hipotesis null: data umur berdistribusi normal (Ho>0.05)
 Hipotesis alternative: data umur tidak berdistribusi normal (H1<0.05)
 - b. Lihat output SPSS pada uji sapiro wilk

Lihat angka Sig (significansi) pada kolom kolmogorov smirnov, tertera 0.001, jika dibandingkan dengan hipotesis (lihat a), maka dapat dikatakan bahwa nilai signifikansi berada di bawah 0.05, yang artinya kita menerima hipotesis alternative, yaitu <u>data tidak berdistribusi normal</u>.

lests of Normality	Fests	of	Nor	ma	lity
--------------------	--------------	----	-----	----	------

	Kolm	ogorov-Smir	nov ^a		Shapiro-Wilk					
	Statistic	df	df Sig. Statistic df							
age	.087	201	.001	.944	201	.000				
a. Li	a. Lilliefors Significance Correction									

Sekarang lihat di grafik histogram, dapat disimpulkan bahwa grafik tidak berdistribusi normal. Data cenderung menyebar ke kiri. Masih ingat bagaimana bentuk distribusi data berdistribusi normal? Lihat gambar dibawah dan bandingkan dengan hasil output SPSS yang telah dilakukan.

Pada grafik box plot juga terlihat bahwa nilai median tidak simetris dengan angka 40, cenderung berada di bawah nilai median. Nilai whisker juga tidak simetris. Jadi berdasarkan grafik box plot dapat dikatakan bahwa data tidak berdistribusi normal. Berikut adalah teori dari grafik boxplot, jadi Anda bisa membandingkan antara hasil output SPSS dengan teori box plot.

Teori boxplot:

- 1) Kotak besar mengandung 50% data, yaitu persentil 25 sampai persentil 75. Garis tebal pada tengah kotak merupakan median (persentil 50). Wilayah ini dinamakan hspread
- 2) Data 1,5 hsread disebut whisker
- 3) Nilai lebih dari 1,5 hsread dinamakan data outlier
- Data lebih dari 3 hsread dinamakan daa ekstream
 Secara teoritis data dikatakan berdistribusi normal apabila:
- 1) Nilai median berada di tengah-tengah kotak
- 2) Nilai whisker terbagi secara simetris ke atas dan ke bawah
- 3) Tidak ada nilai ekstrem atau outlier

Perhatikan dan bandingkan boxplot teori dan output SPSS pada variable umur dibawah ini

Lalu bagaimana jika kita mempunyai data yang sebaran datanya tidak normal?.

1. Untuk analisa deskriptif, kita tidak dapat menyimpulkan dengan menggunakan nilai rata-rata (mean) dan standar deviasi. Kita hanya dapat menyimpulkan analisa deskriptifnya dengan menggunakan nilai median disertai dengan nilai maksimum dan minimum dari umur

		Descriptives		
			Statistic	Std. Error
age	Mean		36.2637	.84834
	95% Confidence Interval	Lower Bound	34.5908	
	for Mean	Upper Bound	37.9365	
	5% Trimmed Mean		35.5884	
	Median		35.0000	
	Variance		144.655	
	Std. Deviation		12.02727	
	Minimum		18.00	
	Maximum		74.00	
	Range		56.00	
	Interquartile Range		17.50	
	Skewness		.774	.172
	Kurtosis		.081	.341

Contoh masih menggunakan hasil output SPSS pada variable umur

Berdasarkan hasil ouput SPSS diatas kita dapat menyimpulkan bahwa nilai median umur responden adalah 35 tahun dengan rentang umur antara 18 tahun sampai dengan 74 tahun.

2. Untuk analisa analitik dapat menggunakan uji alternative dari uji yang akan kita gunakan jikalau data tidak berdistribusi normal. Namun uji alternative (non-parametrik) merupakan uji yang paling lemah. Sehingga kita upayakan terlebih dahulu untuk melakukan normalisasi data dari data yang distribusinya tidak normal.

c. Analisis Deskriptif

Analisis deskriptif merupakan penggambaran dari sebaran data secara tunggal. Hal yang perlu diperhatikan adalah sebagai berikut:

1. Jika data berbentuk numeric, maka harus dilakukan uji sebaran data atau uji normalitas data. Umumnya data numeric disajikan dalam bentuk nilai rata-rata, nilai modus, median, standar deviasi, nilai maksimum, minum, dan lain-lain. Atau dengan grafik yaitu grafik histogram atau grafik garis, grafik box plot.

Catatan penting: Jika data berdistribusi normal maka cara interpretasinya dengan menggunakan nilai rata-rata dilengkapi dengan nilai standar deviasi (SD). Jika data tidak berdistribusi normal, maka cara interpretasinya dengan menggunakan nilai median, disertai dengan nilai maksimum dan minimum

2. Jika data berbentuk kategori, maka dapat dibuat tabel distribusi frekwensi, atau grafik (lingkaran, batang)

Catatan penting: untuk data kategori, tidak perlu di uji normalitas datanya.

Tahapan analisis deskriptif untuk data numerik

- 1. Buka SPSS
- 2. Ekspor data excel ke dalam lembar kerja SPSS, dengan cara: klik "open", cari file di folder D:materi praktikum, pada "file of type" pilih file dengan extension excel, klik nama file instrument individu, klik continue.
- 3. Lakukan uji normalitas seperti pada langkah-langkah sebelumnya untuk variable " n36berapau" (umur pertama kali mentruasi)

Sehingga akan didapatkan hasil seperti berikut:

Tests of Normality

a. Lilliefors Significance Correction

Observed Value

Petunjuk Praktikum Manajemen Data 2019/2020

Interpretasi uji normalitas:

Hipotesis null: sebaran data berdistribusi normal (Ho: μ > 0.05)

Hipotesis alternative: sebaran data tidak berdistribusi normal (Ha: $\mu < 0.05$)

- 1. Berdasarkan output didapatkan hasil. Pada uji sapiro wilk, nilai sig sebesar 0.002. jadi dapat disimpulkan bahwa kita menerima hipotesis alternative, yaitu data tidak berdistribusi normal. Lebih lanjut untuk dari grafik histogram juga terlihat bahwa cenderung menyebar ke kanan. Selain itu dari grafik box plot, nilai median berada dibawah 14, meskipun nilai whisker cenderung simetris. Sehingga dapat disimpulkan bahwa data mempunyai sebaran tidak normal.
- 2. Dikarena data tidak berdistribusi normal, maka nilai median dari umur pertama kali menstruasi terbanyak adalah wanita berumur 13 tahun dengan rentang umur menstruasi berkisar antara 9 tahun sampai dengan 17 tahun.

			Statistic	Std. Error
n36berapau	Mean		13.3146	.16421
	95% Confidence Interval	Lower Bound	12.9883	
	for Mean	Upper Bound	13.6409	
	5% Trimmed Mean		13.3190	
	Median		13.0000	
	Variance		2.400	
	Std. Deviation		1.54916	
	Minimum		9.00	
	Maximum		17.00	
	Range		8.00	
	Interquartile Range		2.00	
	Skewness		.018	.255
	Kurtosis		.474	.506

Catatan: seandainya data berdistribusi normal, maka kita dapat menyimpulkan nilai rata –rata umur pertama kali menstruasi sekitar 13.3 tahun dengan standar deviasi sebesar 1.6 tahun.

Tahapan analisis deskriptif untuk data kategori

- 1. Seperti disebutkan sebelumnya, data kategori tidak perlu diuji normalitas data
- 2. Buka SPSS
- 3. Ekspor data excel ke dalam lembar kerja SPSS, dengan cara: klik "open", cari file di folder D:materi praktikum, pada "file of type" pilih file dengan extension excel, klik nama file instrument individu, klik continue.
- 4. Klik analysis → klik descriptive statistic → klik frekwensi → klik chart ==. Centang bar klik continue. Kemudian klik OK

Sehingga akan didapatkan hasil seperti berikut:

a description		Regords Description Statistics	Pa Free and the	-			
. noveperann	20	Tables	· Po Descriptives	-	-2014-0-0-0-0	Disk shume	therease
1	nzopadapay	RFM Analysis	+ A Explore	200	noouerapau 12.00	jikaoeiumm 1.00	oberapaumu 26.00
2		Compare Means	Crosstabs	2.00	13.00	1.00	26.00
2		General Linear Model	> 22 Botio	2.00	13.00	1.00	19.00
4		Generalged Linear Models	• 2 E.P Plots	2.00	12.00	1.00	25.00
6		Miged Models	• 😤 g-0 Plots	2.00	12.00	1.00	25.00
6		Correlate	• 200	2.00	12.00	1.00	19.00
7		Begression	1 200	2.00	12.00	1.00	23.00
8		Logineer	2.00	2.00	16.00	1.00	23.00
9		Neural Networks	200	2.00	10.00	1.00	19.00
10		Cassify	• 200	2.00	11.00	1.00	23.00
11		Dimension Reduction	* 200	2.00	13.00	1.00	20.00
12		Sogle	• 200	200	13.00	1.00	17.00
13		Nonparametric Tests	• 200	2.00	12.00	1.00	20.00
14		Forecasting	• 2.00	2.00	14.00	1.00	18.00
15		Survival	• 2.00	2.00	14.00	1.00	26.00
16		Mytiple Response	• 2.00	2.00	14.00	1.00	21.00
17		Missing Value Analysis	2.00	2.00	15.00	1.00	19.00
18		Mutiple Inputation	• 2.00	2.00	14.00	1.00	17.00
19		Complex Samples	• 2.00	2.00	13.00	1.00	24.00
20		Quality Control	• 2.00	2.00	16.00	1.00	26.00
21		ROC Curge	2.00	2.00	14.00	1.00	25.00
22		2.00	2.00	2.00	11.00	1.00	22.00
23		2.00	2.00	2.00	12.00	1.00	21.00
24		2.00	2.00	2.00	12.00	1.00	24.00
25		2.00	2.00	2.00	13.00	1.00	20.00

Output dalam SPSS:

	n 1apakahna									
		Frequency	Percent	Valid Percent	Cumulative Percent					
Valid	1.00	2	2.2	2.2	2.2					
	2.00	87	97.8	97.8	100.0					
	Total	89	100.0	100.0						

n1apakahna

Interpretasi dari output SPSS sebagai berikut:

"Presentasi tertinggi pada wanita Yogyakarta adalah tidak pernah didiagnosis kanker (97.8%)"

Catatan penting:

- 1. Meskipun ada dua output yaitu grafik batang dan tabel distribusi frekwensi, pilih satu saja.
- 2. Saat memberi interpretasi dalam bentuk narasi, berikan tuliskan yang paling penting saja, tidak semua hasil di output ditulis semua.
- 3. Saat menulis di dalam laporan baik laporan skripsi atau pun tulisan yang lain, berikan judul tabel dan tulis ulang dengan tulisan yang baik. Jangan kopi paste dari hasil ouput SPSS

Contoh pelaporan yang baik:

Presentase tertinggi pada wanita Yogyakarta tidak pernah didiagnosis kanker (97.8%). Penjelasan lebih lanjut terdapat pada Tabel 1.

No	Riwayat Kanker	n	Persentase (%)
1	Ya	2	2,2
2	Tidak	87	97,8
	Total	89	100,0

Tabel 1. Distribusi responden berdasarkan riwayat kanker tahun 2016

Tugas praktikum IV

- 1. Lakukan uji normalitas data pada data yang Anda input pada saat tugas I dan II pada variabel "jumAnak"
- 2. Lakukan analisis deskriptif pada variabel "jumAnak"
- 3. Lakukan analisis deskriptif pada variabel "didik"
- 4. Identifikasi kesulitan yang Anda alami

Tugas praktikum dikerjakan di rumah, dikumpulkan paling lambat pada hari berikut dan jadwal praktikum dilakukan, hasil praktikum di print, dijilid sederhana, serta di beri Nama, NIM, kelompok praktikum.

Sistematika pelaporan:

- 1. Judul praktikum
- 2. Latar belakang
- 3. Screen shoot hasil output Anda
- 4. Interpretasikan dengan baik
- 5. Referensi (hindari referensi dari blog dan modul)

PRAKTIKUM V UJI BEDA RATA-RATA DUA SAMPEL BEBAS

Uji beda rata-rata dua sampel bebas dilakukan untuk menganalisis perbedaan rata-rata dari dua sampel data yang berskala minimal interval (numerik). Apabila data berdistribusi normal, maka jenis uji yang digunakan adalah uji t sampel bebas. Apabila data tidak memenuhi asumsi distribusi normal, maka uji beda dapat dilakukan menggunakan pendekatan non-parametrik, yaitu menggunakan uji Mann-Whitney.

H₀: $\mu_1 = \mu_2$ H_a: $\mu_1 \neq \mu_2$

Berikut adalah skema uji beda rata-rata untuk dua sampel bebas.

Kasus:

Seorang peneliti ingin mengetahui bagaimana pengaruh kehadiran suami pada saat istri dalam proses melahirkan terhadap skor ansietas istri. Peneliti merumuskan pertanyaan penelitian sebagai berikut: "Apakah terdapat perbedaan skor ansietas antara kelompok ibu-ibu yang proses melahirkannya didampingi suami dan ibu-ibu yang proses melahirkannya tidak didampingi suami?". Penelitian ini memerlukan 100 subjek perkelompok.

Langkah-langkah:

Menguji distribusi data

- a. Buka file *Independent_t_test*
- b. Lakukan uji normalitas pada data skor ansietas kelompok ibu yang proses melahirkan didampingi suami dan data skor ansietas kelompok ibu yang proses melahirkannya tidak diampingi suami

Catatan: Prosesnya sama dengan proses normalitas data. Perbedaannya adalah memasukkan variabel "*suami*" ke dalam **factor list**.

Explore ×								
Nomor [nomor]	Dependent List: Statistics ✓ Score ansietas [sco] Plots Factor List: Options ✓ Didampingi suami [] Bootstrap ✓ Label Cases by: Label Cases by:							
□isplay								

Proses telah selesai. Klik OK

Tests of Normality

		Kolmogorov-Smirnov ^a		Shapiro-Wilk			
	Didampingi suami	Statistic	df	Sig.	Statistic	df	Sig.
Score ansietas	Tidak didampingi	.041	100	<mark>.200[*]</mark>	.989	100	.553
	Didampingi	.066	100	<mark>.200*</mark>	.990	100	.697

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Interpretasi Test of Normality:

Pada Test of Normality, skor ansietas ibu yang didampingi suami dan tidak didampingi mempunyai nilai p=0,200. Distribusi skor ansietas kedua kelompok normal

Catatan:

P<0,05 → Distribusi Data **TIDAK NORMAL** p>0,05 → Distribusi Data **NORMAL**
1. Uji t sampel bebas

- a. Buka file independent t test
- b. Lakukan prosedur sebagai berikut:
 - 1) Analyze, Compare means, Independent-samples T Test
 - 2) Masukkan *score ansietas* ke dalam kotak *Test Variable*
 - 3) Masukkan suami ke dalam Grouping Variable

Sampai pada tahap ini, akan terlihat tampilan sebagai berikut:

🕼 Independent-Samples T Te	est	×		
🖋 Nomor [nomor]	Test Variable(s):	Options Bootstrap	ta Define Groups	×
OK Pa	Grouping Variable: suami(? ?) Define Groups ste Reset Cancel Help]]	Use specified values Group 1: 1 Group 2: 2 O Out point Continue Cancel Help	

- 4) Aktifkan kotak Define Groups
- Masukkan angka 1 untuk kotak *group* 1 (sebagai kode tidak didampingi). Masukkan kode 2 untuk kotak *group* 2 (sebagai kode didampingi suami)
- 6) Prosedur telah selesai. Klik Continue \rightarrow OK
- 7) Akan diperoleh hasil sebagai berikut:

Group Statistics					
Didampingi suami N Mean Std. Deviation Std. Error Mean					
Score ansietas	Tidak didampingi	100	46.3393	12.88037	1.28804
	Didampingi	100	31.4093	7.52994	.75299

Independet Samples Test

		Levene's Test for E	quality of Variances
		F	Sig.
Score ansietas	Equal variances assumed	24.778	.000
	Equal variances not assumed		

			t-test for Equality of Means					
						95% Confidence		
						Inter		al of the
				Sig. (2-	Mean	Std. Error	Diffe	rence
		t	df	tailed)	Difference	Difference	Lower	Upper
Score ansietas	Equal variances assumed	10.007	198	.000	14.93000	1.49199	11.98777	17.87223
	Equal variances not assumed	10.007	159.592	<mark>.000</mark>	14.93000	1.49199	<mark>11.98341</mark>	<mark>17.87659</mark>

Interpretasi Hasil:

- a. Pada Levene's test, nilai sig=0,000. Nilai p<0,05 \rightarrow varian data berbeda.
- b. Karena varian berbeda → uji t test tidak berpasangan untuk varian berbeda (baris ke dua equal varian not assumed)
- c. Angka significancy pada baris kedua adalah 0,000 dengan perbedaan (gambar 10.7) rerata (*Mean Difference*) sebesar sebesar 14,93 dan nilai IK 95% antara 11,98-17,88.
- d. Nilai p<0,05 dan IK tidak melewati angka nol, dapat disimpulkan bahwa secara statistik terdapat perbedaan rerata skor ansietas bermakna antara kelompok yang proses melahirkan didampingi suami dan yang tidak didampingi suami.

2. Uji Mann-Whitney

Kasus: Peneliti ingin mengetahui apakah terdapat perbedaan rerata malondialdehyde (MDA) antara kelompok perokok dan bukan perokok. Peneliti merumuskan pertanyaan penelitian sebagai berikut: "Apakah terdapat perbedaan perbedaan rerata malondialdehyde (MDA) antara kelompok perokok dan bukan perokok?"

Langkah-langkah:

Uji Normalitas

- a. Lakukan uji normalitas untuk data MDA perokok dan bukan perokok. Masukkan *class* kedalam *factor list* dan pada kotak *Options* aktifkan *Normality plots with tests*.
- b. Jika anda melakukan prosedur yang benar maka anda akan mendapatkan hasil output sebagai berikut:

Descriptives						
	Kelompok			Statistic	Std. Error	
Kadar MDA	Perokok	Mean		3.0750	.38939	
		95% Confidence Interval for Mean	Lower Bound	2.2600		
			Upper Bound	3.8900		
		5% Trimmed Mean		2.8389		
		Median		2.4500		
		Variance		3.032		
		Std. Deviation		1.74141		
		Minimum		1.60		
		Maximum	8.80			
		Range		7.20		
		Interquartile Range	1.35			
		Skewness		2.208	.512	
		Kurtosis	5.498	.992		
	Bukan Perokok	Mean		2.6550	.36530	
		95% Confidence Interval for Mean	Lower Bound	1.8904		
			Upper Bound	3.4196		
		5% Trimmed Mean	-	2.5500		
		Median		1.9500		
		Variance		2.669		
		Std. Deviation		1.63368		
		Minimum		.90		
		Maximum		6.30		
		Range		5.40		
		Interquartile Range		2.20		
		Skewness		1.133	.512	
		Kurtosis		.063	.992	

Tests of Normality

		Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Kelompok	Statistic	Statistic df Sig.		Statistic	df	Sig.
Kadar MDA	Perokok	.263	20	.001	.745	20	.000
	Bukan Perokok	.236	20	.005	.834	20	.003

a. Lilliefors Significance Correction

Interpretasi hasil: hasil uji Shapiro-Wilk menunjukkan nilai p=0,000 untuk kelompok perokok dan p=0,003 untuk kelompok bukan perokok \rightarrow Data tidak berdistribusi normal

Melakukan uji Mann-Whitney:

- a. Analyze, Nonparametrics test, Legacy Dialogs, 2 Independent samples
- b. Masukkan *MDA* ke dalam *Test Variable*
- c. Masukkan *kelompok* ke dalam *Grouping Variable*
- d. Aktifkan uji Mann-Whitney
- e. Klik kotak Define Group

🖬 Two-Independent-Samples Test	5		\times	
Momor [Nomor]	<u>T</u> est Variable List: & Kadar MDA [mda]	E <u>x</u> a Optio	act ons	
•	Grouping Variable: Kelompok(? ?)		т 📑	wo Independent Samples: $ imes$
Test Type	Define Groups		Grou	ıp <u>1</u> : 1
Mann-Whitney U	Kolmogorov-Smirnov Z		Grou	ıp <u>2</u> : 2
Moses extreme reactions 📃	Wald-Wolfowitz runs			
OK Paste	Reset Cancel Help			ntinue Cancel Help

- f. Masukkan angka 1 pada kotak group 1 (kode perokok) dan angka 2 pada kotak group 2 (kode bukan perokok)
- g. Proses selesai. Klik Continue \rightarrow OK

Hasil Uji Mann-Whitney

Ranks						
	Kelompok	N	Mean Rank	Sum of Ranks		
Kadar MDA	Perokok	20	23.40	468.00		
	Bukan Perokok	20	17.60	352.00		
	Total	40				

	Kadar MDA
Mann-Whitney U	142.000
Wilcoxon W	352.000
Z	-1.571
Asymp. Sig. (2-tailed)	.116
Exact Sig. [2*(1-tailed Sig.)]	.121 ^b

a. Grouping Variable: Kelompok

b. Not corrected for ties.

Interpretasi hasil:

Uji Mann-Whitney diperoleh nilai p=0,116 \rightarrow tidak ada perbedaan bermakna kadar MDA perokok dan bukan perokok

PRAKTIKUM VI

UJI BEDA RATA-RATA SATU SAMPEL BERPASANGAN

Uji beda rata-rata satu sampel berpasangan dilakukan untuk menganalisis perbedaan rata-rata sebelum dan sesudah dilakukan perlakuan (*treatment*) pada data yang berskala minimal interval (numerik). Apabila data berdistribusi normal, maka jenis uji yang digunakan adalah uji t sampel berpasangan. Apabila data tidak memenuhi asumsi distribusi normal, maka uji beda dapat dilakukan menggunakan pendekatan non-parametrik, yaitu menggunakan uji Wilcoxon Sign Rank.

H₀: $\mu_{sebelum} = \mu_{sesudah}$ H_a: $\mu_{sebelum} \neq \mu_{sesudah}$

Berikut adalah skema uji beda rata-rata untuk satu sampel berpasangan.

Kasus:

Peneliti ingin mengetahui indeks masa tubuh (IMT) sebelum dan sesudah terapi sulih hormone. Peneliti merumuskan pertanyaan penelitian sebagai berikut: "apakah terdapat perbedaan IMT sebelum dan sesudah satu bulan penyuntikan testosterone?"

Menguji distribusi data

- 1) Buka file *paired_t_test*
- 2) Lakukan uji normalitas untuk selsish IMT (selisih).

ta Explore		×
Nomor [nomor] MIT sebelum [imt_p MIT sesudah [imt_p	Dependent List Selisih IMT [selisih] Factor List Label Cases by:	Statistics Plots Options Bootstrap
Display		
OK Paste	Reset Cancel Help	

Descriptives

			Statistic	Std. Error
Selisih IMT	Mean		5.6040	.15386
	95% Confidence Interval for Mean	Lower Bound	5.2948	
		Upper Bound	5.9132	
	5% Trimmed Mean		5.6022	
	Median		5.6000	
	Variance		1.184	
	Std. Deviation		1.08796	
	Minimum		3.60	
	Maximum		7.70	
	Range		4.10	
	Interquartile Range		1.60	
	Skewness		087	.337
	Kurtosis		849	.662

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Selisih IMT	.075	50	.200*	.970	50	.235

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Interpretasi:

- a. Pada tes normalitas, karena jumlah sampel kecil (n=50) maka digunakan adalah Shapiro-Wilk (p=0,235) → Normal
- b. Karena selisih IMT berdistribusi normal, uji hipotesis yang digunakan adalah uji t berpasangan

a. Uji t berpasangan

- 1) File tetap file **paired_t_test**
- 2) Langkah-langkah sebagai berikut:
 - (a) Analyze, Compare means, Paired-samples T Test
 - (b) Masukkan imt_pre dan imt_post ke dalam kotak Paired Variables

Paired-Samples T Test X
Image: Paired Variables: Options Image: Paired Variable1 Variable2 Image: Paired Variable1 Variable2 Image: Paired Variable1 Variable2 Image: Paired Variable3 Bootstrap Image: Paired Variable3 Image: Paired Variable4 Image: Paired Variable3 Image: Paired Variable3 Image: Paired Variable4 Variable4 Image: Paired Variable3 Image: Paired Variable3 Image: Paired Variable4 Image: Paired Variable3 Image: Paired Variable4 Image: Paired Variable4 Image: Paired Variable4 Image: Paired Variable4 Image: Paired Variable5 Image: Paired Variable4 Image: Paired Variable5 Image: Paired Variable5 Image: Paired Variable5 Image: Paired Var

Paired Samples Statistics

		Mean	Ν	Std. Deviation	Std. Error Mean
Pair 1	IMT sebelum	18.390	50	.7723	.1092
	IMT sesudah	23.994	50	.8888	.1257

Paired Samples Test

		Paired Differences							
			Std. Deviatio	Std. Error	95% Confidence Interval of the Difference				Sia. (2-
		Mean	n	Mean	Lower	Upper	t	df	tailed)
Pair 1	IMT sebelum - IMT sesudah	-5.6040	1.0880	.1539	-5.9132	-5.2948	-36.423	49	.000

Interpretasi:

Pada kolom sig (2 t*ailed*) diperoleh nilai significancy $0,000 \text{ (p}<0,05) \rightarrow \text{ada}$ perbedaan rerata IMT sebelum dan sesudah satu bulan penyuntikan testosteron

b. Uji Wilcoxon Sign Rank

Kasus:

Peneliti ingin mengetahui apakah terdapat pengaruh penyuluhan terhadap skor pengetahun ibu. Peneliti merumuskan pertanyaan penelitian: "Apakah terdapat perbedaan rerata skor pengetahuan ibu-ibu tentang gizi sebelum dan sesudah penyuluhan?"

Menguji Karakteristik dan distribusi data

a. Bukalah file Wilcoxon

- b. Lakukan uji normalitas untuk selisih pengetahuan (selisih) sebelum dan pengetahuan sesudah.
- c. Jika anda melakukan proseddur yang benar, anda akan memperoleh output sebagai berikut:

			Statistic	Std. Error
Selisih pengetahuan	Mean		2.320	.5561
	95% Confidence Interval for	Lower Bound	1.217	
		Upper Bound	3.423	
	5% Trimmed Mean		2.100	
	Median	1.000		
	Variance	30.927		
	Std. Deviation	5.5612		
	Minimum	-7.0		
	Maximum		17.0	
	Range	24.0		
	Interquartile Range		5.0	
	Skewness		.791	.241
	Kurtosis		.049	.478

Descriptives

Tests of Normality

	Kolr	nogorov-Smir	nov ^a	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
Selisih pengetahuan	.191	100	.000	.914	100	.000	

a. Lilliefors Significance Correction

Interpretasi:

a. Karena jumlah sampel besar, maka digunakan uji normalitas Kolmogorov Smirnov. Nilai p<0,05 (p=0,000)→ Distribusi data TIDAK NORMAL

Melakukan uji Wilcoxon Sign Rank

Langkah-langkah melakukan uji Wilcoxon:

- a. Analyze, Nonparametric Test, Legacy Dialogs, 2 Related Samples
- b. Masukkan pengetahuan sebelum dan pengetahuan sesudah ke dalam kotak Test pairs
- c. Aktifkan uji Wilcoxon

d. Proses selesai. Klik Continue \rightarrow OK

Ranks							
		Ν	Mean Rank	Sum of Ranks			
Pengetahuan setelah	Negative Ranks	26 ^a	37.42	973.00			
penyuluhan -	Positive Ranks	56 ^b	43.39	2430.00			
Pengetahuan sebelum penyuluhan	Ties	18 ^c					
	Total	100					

a. Pengetahuan setelah penyuluhan < Pengetahuan sebelum penyuluhan

b. Pengetahuan setelah penyuluhan > Pengetahuan sebelum penyuluhan

c. Pengetahuan setelah penyuluhan = Pengetahuan sebelum penyuluhan

Test Statistics ^a				
	Pengetahuan setelah			
	penyuluhan -			
	Pengetahuan			
	sebelum			
	penyuluhan			
Z	-3.377 ^b			
Asymp, Sig, (2-tailed)	.001			

Interpretasi:

Pada hasil uji Wilcoxon didapat nilai p=0,001(p<0,05) \rightarrow terdapat perbedaan pengetahuan yang bermakna sebelum penyuluhan dan sesudah penyuluhan

a. Wilcoxon Signed Ranks Test

b. Based on negative ranks.

Sistematika pelaporan:

- 1. Judul praktikum
- 2. Latar belakang
- 3. Lakukan uji normalitas terlebih dahulu
- 4. Lakukan analisis uji beda 2 Mean (uji t tidak berpasangan/uji t berpasangan)
- 5. Screen shoot hasil output Anda
- 6. Tentukan hipotesis dan bagaimana cara pengambilan kesimpulan
- 7. Interpretasikan dengan baik
- 8. Referensi (hindari referensi dari blog dan modul).

PRAKTIKUM VII

UJI BEDA RATA-RATA LEBIH DARI DUA SAMPEL BEBAS

Uji beda rata-rata lebih dari dua sampel bebas dilakukan untuk menganalisis perbedaan rata-rata dari lebih dari dua sampel data yang berskala minimal interval (numerik). Apabila data berdistribusi normal, maka jenis uji yang digunakan adalah uji One Way Anova. Apabila data tidak memenuhi asumsi distribusi normal, maka uji beda dapat dilakukan menggunakan pendekatan non-parametrik, yaitu menggunakan uji Kruskall-Wallis.

H₀: $\mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$

H_a: Minimal ada satu pasang μ yang berbeda

One Way Anova merupakan analisis yang termasuk keluarga *analysis of variance*. Prinsip *analysis of variance* adalah membandingkan varian data dari beberapa kelompok pengamatan. Berikut adalah skema analisis yang termasuk keluarga *analysis of variance*.

Tidak disimulasikan dalam praktikum

Kasus: Peneliti ingin mengetahui perbandingan kadar gula darah antara kelompok ekonomi rendah, sedang dan tinggi pada pasien yang baru didiagnosa diabetes mellitus (DM) dengan kesalahan tipe satu 5% dan kesalahan tipe dua 20%. Simpangan baku 73 gr/dl dan perbedaan rerata yang dianggap bermakna antarkelompok adalah 25 mg/dl. Diperlukan 100 subjek per kelompok.

1. Uji Normalitas

- a. Bukalah file *Uji Anova*
- b. Lakukan uji normalitas untuk kadar gula kelompok keonomi renddah, sedang dan tinggi. Proses normalitas sama dengan langkah pada latihan 1 pada praktikum ke IX.
- c. Jika anda melakukan prosedur yang benar, anda akan mendapatkan hasil sebagai berikut:

Descriptives									
	Tingkat ek	onomi	Statistic	Std. Error					
Kadar gula darah	Tinggi	Mean	273.987	4.57410					
		95% Confidence Interval for Mean Lower	Bound 264.911	.0					
		Upper	Bound 283.063	0					
		5% Trimmed Mean	273.250	0					
		Median	270.000	0					
		Variance	2092.24	+2					
		Std. Deviation	45.7410)4					
		Minimum	180.0	0					
		Maximum	388.8	30					
		Range	208.8	30					
		Interquartile Range	67.5	0					
		Skewness	.14	.241					
		Kurtosis	34	.478					
	Sedang	Mean	213.501	2 2.67061					
		95% Confidence Interval for Mean Lower	Bound 208.202	1					
		Upper	Bound 218.800	13					
		5% Trimmed Mean	213.496	í9					
		Median	210.000	0					
		Variance	713.21	.5					
		Std. Deviation	26.7060	19					
		Minimum	158.4	-0					
		Maximum	280.0	0					
		Range	121.6	j0					
		Interquartile Range	40.0	0					
		Skewness	.13	.241					
		Kurtosis	50	.478					
	Rendah	Mean	204.830	2.75434					
		95% Confidence Interval for Mean Lower	Bound 199.365	4					
		Upper	Bound 210.295	8					
		5% Trimmed Mean	204.943	i3					
		Median	201.600	0					
		Variance	758.64	41					
		Std. Deviation	27.5434	4					
		Minimum	142.5	i6					
		Maximum	260.0	0					
		Range	117.4	4					
		Interquartile Range	49.3	32					
		Skewness	.00	.241					
1		Kurtosis	67	.478					

Tests of Normality

		Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Tingkat ekonomi	Statistic	df	Sig.	Statistic	df	Sig.
Kadar gula darah	Tinggi	.088	100	.055	.984	100	.247
	Sedang	.085	100	.071	.981	100	.151
	Rendah	.083	100	.083	.981	100	.161

a. Lilliefors Significance Correction

2. Uji One Way Anova

- a. Analyze, Compare means, One-way Anova
- b. Masukkan variabel kadar gula ke dalam Dependent List
- c. Masukkan variabel *class* ke dalam *Factor*
- d. Aktifkan kotak Options

Cone-Way ANOVA X	🕼 One-Way ANOVA: Options 🛛 🗙
	Statistics Descriptive Fixed and random effects Homogeneity of variance test Brown-Forsythe Welch Means plot Missing Values Exclude cases analysis by analysis Exclude cases listwise Continue Cancel

- e. Pilihlah *Homogenity of variance* → untuk menguji varian data
- f. Klik *Continue*. Klik **OK**

Test of Homogeneity of Variances

Kadar gula darah

Levene Statistic	df1	df2	Sig.	
19.480	2	297	.000	

Interpretasi:

Pada test of Homogenity of Variance didapatkan hasil pada kolom sig 0,000 (p<0,05) \rightarrow Variance berbeda

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	283877.299	2	141938.649	119.474	.000
Within Groups	352845.786	297	1188.033		
Total	636723.085	299			

Interpretasi:

- a. Nilai signifikansi dari hasil *ANOVA* adalah 0,000 (p<0,05) \rightarrow terdapat perbedaan kadar gula darah antara kelompok ekonomi rendah, sedang dan tinggi
- b. Karena pada uji One Way ANOVA *bermakna* (p<0,05) dan *varian berbeda*, maka akan dilakukan analisis *Post hoc Tamhane's* untuk mengetahui antarkelompok mana yang mempunyai perbedaan.

3. Analisis Post Hoc

- a. Analyize, Compare means, One-Way ANOVA
- b. Masukkan variabel gula ke dalam Dependent List
- c. Masukkan variabel class ke dalam *Factor List*
- d. Aktifkan kotak Post Hoc. Pilih Tamhane's pada Equal Variances Not Assumed

-	🝓 One-Way ANOV	A: Post Hoc Multiple Co	omparisons	×		
-	Equal Variances /	ssumed				
	E LSD	🔲 <u>S</u> -N-К	Maller-Duncan			
	Bonferroni	Tukey	Type I/Type II Error Ratio: 100			
	🔲 S <u>i</u> dak	🔲 Tu <u>k</u> ey's-b	Dunn <u>e</u> tt			
	Scheffe	Duncan	Control Category : Last			
_	🔲 <u>R</u> -E-G-W F	📃 <u>H</u> ochberg's GT2	Test			
_	📃 R-E-G-W <u>Q</u>	🔲 <u>G</u> abriel	O <u>2</u> -sided O < C <u>o</u> ntrol O > Co <u>n</u> trol			
-	Equal Variances Not Assumed					
-	Tamhane's T2	Dunnett's T <u>3</u>	Games-Howell Dunnett's C			
	Significance level: 0.05					
-		Continue	Cancel Help			

e. Klik Continue, klik OK

Post Hoc test

Multiple Comparisons

Dependent Variable: Kadar gula darah

Tamhane

					95% Confi	dence Interval
(I) Tingkat ekonomi	(J) Tingkat ekonomi	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tinggi	Sedang	60.48580 [*]	5.29666	.000	47.7046	73.2670
	Rendah	69.15640 [*]	5.33937	.000	56.2746	82.0382
Sedang	Tinggi	-60.48580 [*]	5.29666	.000	-73.2670	-47.7046
	Rendah	8.67060	3.83648	.073	5681	17.9093
Rendah	Tinggi	-69.15640 [*]	5.33937	.000	-82.0382	-56.2746
	Sedang	-8.67060	3.83648	.073	-17.9093	.5681

*. The mean difference is significant at the 0.05 level.

Interpretasi Hasil

Dengan melihat hasil analisa Post Hoc, diperoleh hasil sebagai berikut:

- a. Secara statistik: terdapat perbedaan kadar gula darah antara kelompok ekonomi tinggi dengan sedang karena nilai p=0,000 (p<0,05)
- b. Secara statistik: terdapat perbedaan kadar gula darah antara kelompok ekonomi tinggi dengan kelompok ekonomi rendah karena nilai p=0,000 (p<0,05)
- c. Secara statistik: tidak terdapat perbedaan kadar gula darah antara kelompok ekonomi sedang dengan kelompok ekonomi rendah karena nilai p=0,073 (p>0,05)
- d. Dengan demikian, perbedaan kadar gula darah didapatkan antarkelompok tinggisedang dan tinggi-rendah.

PRAKTIKUM VIII

UJI BEDA RATA-RATA LEBIH DARI DUA SAMPEL BEBAS ALTERNATIF

Uji yang dilakukan untuk menganalisis perbedaan rata-rata dari lebih dari dua sampel data yang berskala minimal interval (numerik) dan tidak memenuhi asumsi normalitas adalah uji Kruskall-Wallis.

Kasus:

Peneliti ingin mengetahui apakah terrdapat perbedaan antara indeks brinkman dengan motilitas sperma. Motilitas diklasifikasikan menjadi motilitas sperma buruk, sedang dan baik. Dengan kesalahan tipe satu 5%, kesalahan tipe dua 20%. Simpang baku gabungan 35 dan selisih rerata minimal antarkelopok 15. Diperlukan 25 subjek perkelompok.

1. Uji Normalitas

- a. Bukalah file Kruskall Wallis
- b. Lakukan uji normalitas *Indeks Brinkman* pada kelompok motilitas buruk, sedang dan baik. Masukkan variabel *motil* ke dalam *Factor List*. Aktifkan *Normality plots with tests*
- c. Jika anda melakukan prosedur secara benar, anda akan mendapatkan hasil sebagai berikut:

	Motilitas	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	sperma	Statistic	df	Sig.	Statistic	df	Sig.
Indeks Brinkman	Buruk	.251	25	<mark>.000</mark>	.843	25	.001
	Sedang	.222	25	<mark>.003</mark>	.823	25	.001
	Baik	.118	25	<mark>.200[*]</mark>	.932	25	.098

Tests of Normality

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Interpretasi Uji Normalitas:

Pada bagian Test of Normality, data kelompok dengan motilitas buruk dan sedang mempunyai distribusi data tidak normal (p<0,05) sednagkan pada motilitas baik mempunyai distribusi data normal (p>0,05) \rightarrow kesimpulannya: data tidak berdistribusi normal

2. Uji Kruskall Wallis

- a. Analyze \rightarrow Nonparametric Test \rightarrow Legacy Dialogs \rightarrow K Independent Samples
- b. Masukkan variable Indeks brinkman pada kolom Test Variable List
- c. Masukkan variable motil pada kolom Grouping Variable
- d. Aktifkan *Define Range*. Masukkan angka 1 pada kota minimum dan angka 3 pada kotak maximum

Tests for Several Independent Samples X	
Vomor [no]	Several Independent Sample ×
Grouping Variable: motil(? ?) Define Range	Range for Grouping Variable Mi <u>n</u> imum: 1
Test Type	Ma <u>x</u> imum: 3
OK Paste Reset Cancel Help	Continue Cancel Help

e. Proses telah selesai. Klik Continue \rightarrow OK

Kruskall Wallis Test

Ranks				
	Motilitas sperma	N	Mean Rank	
Indeks Brinkman	Buruk	25	53.64	
	Sedang	25	43.00	
	Baik	25	17.36	
	Total	75		

Test Statistics^{a,b}

	Indeks Brinkman
Chi-Square	36.644
df	2
Asymp. Sig.	<mark>.000</mark>

a. Kruskal Wallis Test b. Grouping Variable: Motilitas sperma

Interpretasi hasil Kruskall Wallis:

- a. Hasil uji *Kruskall Wallis*, diperoleh nilai p=0,000 (p<0,05) → terdapat perbedaan Indeks Brinkman antara kelompok motilitas buruk, sedang, baik
- b. Untuk mengetahui kelompok mana yang mempunyai perbedaan, maka harus dilakukan analisis *Post Hoc*
- c. Uji Post Hoc untuk Uji Kruskall Wallis adalah Uji Mann-Whitney

3. Analisis Post Hoc

Analisis Post Hoc untuk uji Kruskall Wallis adalah Uji Mann-Whitney.

Langkah-langkah uji Post Hoc dengan Mann-Whitney:

a. Uji Mann-Whitney antara kelompok motilitas buruk dengan sedang

- 1) Analyze \rightarrow Nonparametric Test \rightarrow Legacy Dialogs \rightarrow 2 Independent Samples
- 2) Masukkan variable Indeks Brinkman pada kolom Test Variable List
- 3) Masukkan variable *motil* pada kolom *Grouping Variable*
- 4) Aktifkan uji *Mann-Whitney*. Aktifkan *Define Group*
- 5) Masukkan angka 1 pada kotak group 1 (merupakan kode motilitas buruk). Masukkan angka 2 pada kotak group 2 (merupakan kode motilitas sedang)

ta Two-Independent-Samples Tests X	
Nomor [no]	🍓 Two Independent Samples: 🛛 🗙
Grouping Variable: motil(? ?) Define Groups	Group <u>1</u> : 1 Group 2: 2
✓ Mann-Whitney U ✓ Kolmogorov-Smirnov Z ✓ Moses extreme reactions ✓ Wald-Wolfowitz runs OK Paste Reset Cancel	Continue Cancel Help

Mann-Whitney Test

		Ranks		
	Motilitas sperma	N	Mean Rank	Sum of Ranks
Indeks Brinkman	Buruk	25	29.36	734.00
	Sedang	25	21.64	541.00
	Total	50		

b. Uji Mann-Whitney antara kelompok motilitas buruk dengan baik

Jika anda melakukan proses analisis Post Hoc dengan benar, maka akan didapatkan hasil seperti di bawah ini:

Ranks				
	Motilitas sperma	Ν	Mean Rank	Sum of Ranks
Indeks Brinkman	Buruk	25	37.28	932.00
	Baik	25	13.72	343.00
	Total	50		

Test Statistics ^a				
	Indeks Brinkman			
Mann-Whitney U	18.000			
Wilcoxon W	343.000			
Z	-5.718			
Asymp. Sig. (2-tailed)	<mark>.000</mark> .			

a. Grouping Variable: Motilitas sperma

c. Uji Mann-Whitney antara kelompok motilitas sedang dengan baik

Jika anda melakukan proses uji Mann-whitney dengan benar, maka akan didapatkan hasil sebagai berikut:

		Ranks		
	Motilitas sperma	Ν	Mean Rank	Sum of Ranks
Indeks Brinkman	Sedang	25	34.36	859.00
	Baik	25	16.64	416.00
	Total	50		

Test	Statistics ^a

	Indeks Brinkman
Mann-Whitney U	91.000
Wilcoxon W	416.000
Z	-4.301
Asymp. Sig. (2-tailed)	. <mark>000</mark> .

a. Grouping Variable: Motilitas sperma

Interpretasi Post Hoc Mann-Whitney:

- a. Tidak ada perbedaan perilaku merokok antarkelompok buruk dengan sedang
- b. Terdapat perbedaan perilaku merokok antarkelompok buruk dengan baik
- c. Terdapat perbedaan perilaku merokok antarkelompok sedang dengan baik

Sistematika pelaporan:

- 1. Judul praktikum
- 2. Latar belakang
- 3. Lakukan uji normalitas terlebih dahulu
- 4. Lakukan analisis uji beda >2 Mean (Uji Anova atau Kruskall Wallis)
- 5. Screen shoot hasil output Anda
- 6. Tentukan hipotesis dan bagaimana cara pengambilan kesimpulan
- 7. Interpretasikan dengan baik
- 8. Referensi (hindari referensi dari blog dan modul)

PRAKTIKUM IX UJI BEDA PROPORSI SAMPEL BEBAS

Latar belakang

Uji Chi-square atau dikenal dengan uji kai kuadrat dan dikenal dengan sebutan uji goodness of fit merupakan uji beda proporsi atau keterkaitan/ hubungan (asosiasi) untuk data kategorik. Sehingga dalam uji ini tidak memerlukan uji sebaran data. Syarat uji chi square adalah nilai expected kurang dari 5 dan maksimal 20% dari jumlah sel. Alternatif uji ini apabila asumsi tidak terpenuhi adalah:

- 1. untuk tabel 2x2, alternatifnya adalah uji fisher
- 2. untuk selain 2x2 dan 2xk, alternatifnya adalah penggabungan sel.

Tabulasi 2x2

"Apakah ada hubungan antara riwayat ibu perokok dengan penerapan asi ekskusif?"

Tahapan pengujian Chi square:

- 1. Buka SPSS
- Ekspor data excel ke dalam lembar kerja SPSS, dengan cara: klik "open", cari file di folder D:materi praktikum, pada "file of type" pilih file dengan extension excel, klik nama file praktikum, klik continue.
- 3. Klik analysis \rightarrow klik descriptive statistic \rightarrow klik crosstab
- Perhatikan saat pemilihan variable pada kotak "row" adalah variabel independent, yaitu variabel "cig" (riwayat ibu perokok). Sedangkan kotak " column" adalah variabel dependent yaitu "bresfed" (penerapan ASI ekslusif).
- 5. Pada kotak "statistic" centang chi square, dan risk, kemudian klik continue.
- 6. Pada kotak cell, di centang "observed dan expected"
- 7. Perhatikan proses dalam tahapan uji chi square dibawah ini

😨 "Untitled	2 [DataSet1] - SPSS Statistic	s Data Editor	-		Therease in an a				
Eile Edit	⊻iew <u>D</u> ata <u>T</u> ransform	Analyze Graphs Utilities	Add-gns <u>W</u> indow	Help					
🗁 🔒 🙈	🖬 to 🔿 🔚 🖬	Reports	+ 😼 🍙 🧠 考	9					
1: citr	0.0	Descriptive Statistics	123 Frequencies.					Visible: 13	of 13 Variables
		Tables	 B Descriptives. 			has a black in the second	1107 1107		
1	1.00	RFM Analysis	A Explore			Drestied Val	Val Val	Vdl Vdl	V0
2	1.00	Compare Means	Crosstabs	0 0.	0.00	1.00			
3	1.00	General Linear Model	• 1/2 Ratio	0 01	0 0.00	1.00			
	1.00	Generalized Linear Models	P-P Plots	0 00	0 0.00	1.00			
	1.00	Miged Models	🕨 🔝 Q-Q Plots	atabs		8			
6	2.00	Correlate	•	r	Durida				
7	1.00	Regression	•	🖉 idnum	Row(s).	Exact			
- 8	1.00	Loglinear	•	🗞 region	v	Statistics			
- 9	1.00	Neural Networks	•	🔏 date		Cels			
10	2.00	Classi <u>f</u> y	•	age	Column(s):	Eormet			
11	1.00	Dimension Reduction	•	so equevi					
12	1.00	Scale	•	an monthing					
13	1.00	Nonparametric Tests	•	accupt					
14	1.00	Forecasţing	•	de occotr	Layer 1 of 1				
15	1.00	Survival	•	A alco	Previous	Next			
16	2.00	Myltiple Response	•						
17	1.00	Missing Value Analysis							
18	1.00	Multiple Imputation	•						
19	1.00	Complex Samples	•						
20	1.00	Quality Control	,	Display clustered bar charts					
21	1.00	ROC Curge		Suppress tables					
22	1.00	5.00							
23	1.00	6.00		OK	aste <u>R</u> eset Canc	el Help			
24	2.00	6.00		0.00 0.0	0.00	1.00			
75	1 00	3.00 auru honorer		100 01	n 0.00	1.00			•
Data View	Variable View								
Crosstabs							SPSS Statistics Process	sor is ready	
									4:42 PM
							🧼 😝 📽 🗋 🗥 🕬		8/28/2016
	-								
		\sim							
			- X					~	T
- 5	Crosstabs: Statistic	IS				Crosstabs: Cell Di	splay	~	J
									1
	Chi equere	Corre	lationa			Counts	1		
	CIII-Square		aduons						
-N	ominal					Observed			
						Eurosted			
	Contingency coe	fficient <u>G</u> am	ma			Expected			
	Divisional Comments					Descentance	Desidents		
	_ Eni and Cramer's	• <u>Som</u>	ersa			Percentages	Residuais		
	Lambda	Kena	dall's tau- <u>b</u>			Row	Unstandardize	d	
	Uppertainty of				\				
	_ <u>o</u> ncertainty coet		uaiistau- <u>c</u>		1	<u>Column</u>	Standardized		
	aminal builter	st			/	Total	Adjusted stand	dardized	
	ominal by interva	Kapp	a		V				
	Eta	Risk				Noninteger Weig	hts		
						Round on any			
			mar			Round cell coun	is O Round cas	se weights	
							~		
	Cochran's and Ma	ntel-Haenszel statisti	ics			O Truncate cell co	unts 🔘 Truncate c	ase wei <u>gh</u> ts	
] Cochr <u>a</u> n's and Ma Test common odd	ntel-Haenszel statisti s ratio equals: 4	ics			 Truncate cell co No adjustments 	unts 🔘 Truncate d	case wei <u>gh</u> ts	
	Cochr <u>a</u> n's and Ma Test common odd	ntel-Haenszel statisti s ratio equals: 1	ics			Truncate cell co No adjustments	unts O Truncate c	case weig <u>h</u> ts	
	Cochran's and Ma Test common odd	ntel-Haenszel statisti s ratio equals: 1 Cancel H	ics lelp			O Truncate cell co	unts O Truncate c	case wei <u>gh</u> ts Help	

8. Hasil output SPSS terdiri dari tiga output yaitu cross tabulation, chi square test, dan risk estimate. Pada output cross tabulation kita lihat ada nilai expected yang nilainya < 5 sebanyak 50 % sehingga pada chi square test yang dibaca adalah pada fisher exact.

			brestfed		
			.00	1.00	Total
cigr	.00	Count	79	120	199
		Expected Count	79.2	119.8	199.0
	1.00	Count	1	1	2
		Expected Count	.8	1.2	2.0
Total		Count	80	121	201
		Expected Count	80.0	121.0	201.0

cigr '	¹ brestfed	Crosstabulation
--------	-----------------------	-----------------

Chi-Square T	ests
--------------	------

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.088ª	1	.767		
Continuity Correction ^b	.000	1	1.000		~
Likelihood Ratio	.086	1	.769	\sim	
Fisher's Exact Test				1.000	.639
Linear-by-Linear Association	.087	1	.768		
N of Valid Cases	201				•

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .80.

b. Computed only for a 2x2 table

Risk Estimate						
95% Confidence Interva						
	Value	Lower	Upper			
Odds Ratio for cigr (.00 / 1.00)	.658	.041	10.679			
For cohort brestfed = .00	.794	.196	3.208			
For cohort brestfed = 1.00	1.206	.300	4.844			
N of Valid Cases	201					

- 9. Cara interpretasi hasil output chi square sebagai berikut:
 - a. Tentukan hipotesis terlebih dahulu

Hipotesis null: tidak ada hubungan antara <u>riwayat ibu perokok</u> dengan <u>penerapan</u> <u>asi ekskusif</u> (Ho: p1 # p2)

Hipotesis alternative: ada hubungan antara <u>riwayat ibu perokok</u> dengan <u>penerapan</u> <u>asi ekskusif (Ho: p1=p2)</u>

b. Pembacaan output chi square

Kita hanya membaca pada kolom fisher exact, karena terdapat nilai expected <5 sebanyak 50%. Nilai p value = 1 (pada uji dua ekor). Kita juga menggunakan nilai signifikansi (p value) pada uji dua sisi karena hipotesis tidak mengarah ke sisi atas maupun sisi bawah.

Bandingkan nilai p value dengan nilai alpha sebesar 0.05

Ho di terima jika nilai p value (sig. pada uji fisher exact) > 0.05

Ho di tolak jika nilai p value (sig.pada uji fisher exact) ≤ 0.05

c. Kesimpulan: tidak ada hubungan antara riwayat ibu perokok dengan penerapan asi ekskusif (pvalue =1, 95% CI: 0.04 sampai 10.68).

<u>Catatan penting:</u> nilai CI (confidence interval) adalah nilai kebermaknaan, sangat penting di tulis untuk menunjukkan kemaknaan biologis), sementara nilai p value adalah probabilitas statistik dari sampel saja. Artinya jika sampel di tambah, maka nilai signifikansinya juga naik.

Tabulasi 2 x k

"Apakah ada hubungan antara riwayat perkawinan ibu dengan penerapan asi ekskusif?"

Tahapan pengujian Chi square:

- 1. Buka SPSS
- 2. Ekspor data excel ke dalam lembar kerja SPSS, dengan cara: klik "open", cari file di folder D:materi praktikum, pada "file of type" pilih file dengan extension excel, klik nama file praktikum, klik continue.
- 3. Klik analysis \rightarrow klik descriptive statistic \rightarrow klik crosstab
- 4. Perhatikan saat pemilihan variable pada kotak "row" adalah variabel independent, yaitu variabel "marsta" (riwayat perkawinan ibu). Sedangkan kotak " column" adalah variabel dependent yaitu "bresfed" (penerapan ASI ekslusif).
- 5. Pada kotak "statistic" centang chi square, dan risk, kemudian klik continue.
- 6. Pada kotak cell, di centang "observed dan expected"
- 7. Perhatikan proses dalam tahapan uji chi square dibawah ini

Petunjuk Praktikum Manajemen Data 2019/2020

8. Hasil output SPSS terdiri dari tiga output yaitu cross tabulation, chi square test, dan risk estimate. Pada output cross tabulation kita lihat ada nilai expected yang nilainya < 5 sebanyak 16.1 % sehingga pada chi square test yang dibaca adalah pada pearson chi square</p>

marsta * brestfed Crosstabulation						
			bres	tfed		
			.00	1.00	Total	
marsta	1.00	Count	44	2	46	
		Expected Count	18.3	27.7	46.0	
	2.00	Count	32	113	145	
		Expected Count	57.7	87.3	145.0	
	3.00	Count	4	6	10	
		Expected Count	<u>4.0</u>	6.0	10.0	
Total		Count	80	121	201	
		Expected Count	80.0	121.0	201.0	

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	78.916ª	2	.000
Likelihood Ratio	87.253	2	.000
Linear-by-Linear Association	55.233	1	.000
N of Valid Cases	201		

a. 1 cells (16.7%) have expected count less than 5. The minimum expected count is 3.98.

only computed for a 2^2 ta without empty cells.

- 9. Cara interpretasi hasil output chi square sebagai berikut:
 - a. Tentukan hipotesis terlebih dahulu

Hipotesis null: tidak ada hubungan antara <u>riwayat perkawainan ibu</u> dengan <u>penerapan asi ekskusif</u> (Ho: p1 # p2)

Hipotesis alternative: ada hubungan antara <u>riwayat perkawainan ibu</u> dengan <u>penerapan asi ekskusif (Ho: p1=p2)</u>

b. Pembacaan output chi square

Nilai expected <5 sebanyak 16,1%, maka kita menggunakan output pada person chi square. Nilai p value = 0.000, umum ditulis 0,001 (pada uji dua ekor). Bandingkan nilai p value (sig) dengan nilai alpha sebesar 0.05 Ho di terima jika nilai p value (sig. pada uji pearson chi square) > 0.05 Ho di tolak jika nilai p value (sig. pada uji pearson chi square) ≤ 0.05

c. Kesimpulan: ada hubungan antara riwayat perkawinan ibu dengan penerapan asi ekskusif (pvalue =0,001, 95% CI: ???).

Catatan penting: nilai CI (confidence interval) adalah nilai kebermaknaan, sangat penting di tulis untuk menunjukkan kemaknaan biologis), sementara nilai p value adalah probabilitas statistik dari sample saja. Artinya jika sampel

di tambah, maka nilai signifikansinya juga naik. <u>Namun di uji SPSS tidak dapat</u> <u>dilihat, ini adalah kelemahan dari uji SPSS.</u>

Tugas praktikum IX

Lakukan uji chi square pada data yang telah Anda buat pada praktikum I

- 1. Apakah ada hubungan antara <u>riwayat perkawinan ibu (variable: status)</u> dengan <u>penerapan asi ekskusif (nama variable: asi)</u>?"
- 2. Identifikasi kesulitan yang Anda alami

Tugas praktikum dikerjakan di rumah, dikumpulkan paling lambat pada hari berikut dan jadwal praktikum dilakukan, hasil praktikum di print, dijilid sederhana, serta di beri Nama, NIM, kelompok praktikum.

Sistematika pelaporan:

- 1. Judul praktikum
- 2. Latar belakang
- 3. Screen shoot hasil output Anda
- 4. Tentukan hipotesis dan bagaimana cara pengambilan kesimpulan
- 5. Interpretasikan dengan baik
- 6. Referensi (hindari referensi dari blog dan modul)

PRAKTIKUM X UJI BEDA PROPORSI SAMPEL BERPASANGAN

Uji McNemar pertama kali diterbitkan dalam artikel Psychometrika pada tahun 1947. Tes ini dibuat oleh Quinn McNemar, yang merupakan seorang profesor di Departemen Psikologi dan Statistik di Universitas Stanford. Tes non-parametrik (bebas distribusi) ini menilai apakah terdapat perubahan proporsi yang signifikan secara statistik pada populasi yang sama/ satu sampel (sebelum dan sesudah perlakuan). Prinsip uji ini adalah membandinngkan proporsi binomial pada sampel berpasangan.

1. There are individual participants, measured on an outcome across two observations.

Contoh:

Suatu riset bertujuan untuk menganalisis efektivitas penggunaan buku saku metode kontrasepsi dalam meningkatkan pengetahuan ibu tentang kontrasepsi. Secara acak diperoleh 63 responden dengan status pengetahuan sebelum dan sesudah pemberian buku saku disajikan dalam tabel kontingensi sebagai berikut.

Tingkat Pengetahuan	Tingkat Pengetahua	Tetal	
Sebelum Perlakuan	Rendah	Tinggi	Total
Rendah	10	28	38
Tinggi	3	22	25
Total	13	50	63

Pada α 5%, apakah terdapat perbedaan tingkat pengetahuan ibu tentang kontrasepsi antara sebelum dan sesudah pemberian buku saku?

Hipotesis:

- H₀ : Tidak terdapat perbedaan tingkat pengetahuan ibu tentang kontrasepsi antara sebelum dan sesudah pemberian buku saku
- H_a : Terdapat perbedaan tingkat pengetahuan ibu tentang kontrasepsi antara sebelum dan sesudah pemberian buku saku

atau,

- H_0 : Probabilitas ibu yang memiliki tingkat pengetahuan tinggi sebelum mendapatkan buku saku dan ibu yang memiliki tingkat pengetahuan yang rendah setelah mendapatkan buku saku sama dengan probabilitas ibu yang memiliki tingkat pengetahuan rendah sebelum mendapatkan buku saku dan yang memiliki tingkat pengetahuan tinggi setelah mendapatkan buku saku ($p = p_0$).
- H_a : Probabilitas ibu yang memiliki tingkat pengetahuan tinggi sebelum mendapatkan buku saku dan ibu yang memiliki tingkat pengetahuan yang rendah setelah mendapatkan buku saku tidak sama dengan probabilitas ibu yang memiliki tingkat pengetahuan rendah sebelum mendapatkan buku saku dan yang memiliki tingkat pengetahuan tinggi setelah mendapatkan buku saku $(p \neq p_0)$.

Penyelesaian:

- 1. Masukkan data sesuai dengan tabel kontingensi di atas. Caranya, buatlah variabel **sebelum**, **sesudah, dan frekuensi.** Isilah dengan:
 - 1 untuk kategori tinggi
 - 0 untuk kategori rendah

U* 🚺	🗎 *Untitled1 [DataSet0] - IBM SPSS Statistics Data Editor														
<u>F</u> ile	Edit	<u>V</u> iew <u>D</u> a	ta <u>T</u> ransform	Analyze	Direct <u>M</u> arketi	ng <u>G</u> raphs	Utilities	Add- <u>o</u> ns	Window	v <u>H</u> elp					
2	🗁 H 🖨 💷 🗠 🛥 🦉 🏪 💷 🏴 🛍 💹 🖾 📟 🖄 🚟 📲 ⊘ 🌭 🤲														
		Name	Туре	Width	Decimals		Label			Values	Missing	Columns	Align	Measure	Role
	1	sebelum	Numeric	8	0	Tingkat penge	tahuan sel	belum perlak	uan {0, F	Rendah}	None	8	■ Right	Unknown	🦒 Input
	2	sesudah	Numeric	8	0	Tingkat penge	tahuan set	telah perlaku	an {0, F	Rendah}	None	8	를 Right	Unknown	🦒 Input
	3	frekuensi	Numeric	8	0	Frekuensi data	a		Non	е	None	8	Right	Unknown	🦒 Input
	4														

🙀 *Untitled1 [DataSet0] - IBM SPSS Statistics Data Editor

<u>F</u> ile	<u>E</u> dit	View	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze [Direct <u>M</u> arketing	g <u>G</u> raphs	<u>U</u> tilities	Add- <u>o</u> ns <u>W</u>	(indow <u>H</u> el	р	
6			Ū.	, 🗠 /	- 1	!	ч			<i>≦</i>	((
		sebe	lum	sesudah	frekuensi	var	var	var	var	var	var	var
	1		0	0	10)						
	2		0	1	28	}						
	3		1	0	3	}						
	4		1	1	22	2						
:	5											

2. Lakukan pembobotan data, sebagai variable pembobot adalah frekuensi. Artinya, setelah dibuat tabulasinya oleh program, tiap sel akan diberikan bobot sesuai dengan frekuensinya. Caranya, klik menu Data, klik Weight cases, lalu masukkan variabel frekuensi ke dalam kotak dialog Weight cases by Frequency Variable, lalu klik OK sebagaimana gambar berikut.

ta Weight Cases	×
 Tingkat pengetahuan sebelum perlakuan [sebelum] Tingkat pengetahuan setelah perlakuan [sesudah] 	© Do not weight cases ⊚ Weight cases by Frequency Variable: ∲ Frekuensi data [frekuensi]
OK Paste	Current Status: Do not weight cases

3. Klik menu **Analyze**, klik **Descriptive Statistics**, lalu pilih **Crosstabs**, sehingga akan muncul kontak dialog sebagaimana berikut.

ta Crosstabs			×					
😞 Frekuensi data (frekuensi)		.): ingkat pengetahuan sebelum perlakuan [sebelum]	Exact Statistics					
	Colum	ın(s): Ingkat pengetahuan setelah perlakuan (sesudah)	Cells Format Style					
	Layer 1 of 1-	Next	Bootstr <u>a</u> p					
	•							
Display layer variables in table layers								
Suppress tables								
ОК	aste <u>R</u> eset	Cancel Help						

4. Masukkanan variabel pada kotak **Row(s)** dan **Column(s)**, klik submenu **Statistics**, sehingga muncul kotak dialog sebagai berikut.

Crosstabs: Statistics	Х
Chi-square	Correlations
Nominal Contingency coefficient Phi and Cramer's V Lamoda Uncertainty coefficient	Ordinal Gamma Somers'd Kendall's tau-b Kendall's tau-c
Nominal by Interval	E Kappa ■ Risk I Molemar
Cochran's and Mantel-Haenszel statistics Test common odds ratio equals:	
Continue	el Help

5. Pilih **McNemar**, kemudian klik **Continue** dan klik **OK**, maka akan muncul output analisis/ uji sebagai berikut.

Case Processing Summary

	Cases								
	Va	lid	Miss	sing	Total				
	Ν	Percent	N	Percent	N	Percent			
Tingkat pengetahuan sebelum perlakuan * Tingkat pengetahuan setelah perlakuan	63	100.0%	0	0.0%	63	100.0%			

Tingkat pengetahuan sebelum perlakuan * Tingkat pengetahuan setelah perlakuan Crosstabulation

Count

		Tingkat penget: perla		
		Rendah	Tinggi	Total
Tingkat pengetahuan	Rendah	10	28	38
sebelum perlakuan	Tinggi	3	22	25
Total		13	50	63

Chi-Square Tests

	Value	Exact Sig. (2- sided)
McNemar Test		.000 ^a
N of Valid Cases	63	

a. Binomial distribution used.

Berdasarkan output analisis tersebut diketahui bahwa nilai p = 0,000 < 0,05, artinya H₀ ditolak. Sehingga dapat disimpulkan bahwa terdapat perbedaan tingkat pengetahuan ibu tentang kontrasepsi antara sebelum dan sesudah pemberian buku saku.

PRAKTIKUM XI ANALISIS KORELASI

Uji korelasi untuk data numerik ini dikenal dengan uji korelasi person dan uji rank spearman. Berbeda dengan uji chi square, uji korelasi pearson membutuhkan asumsi sebaran data berdistribusi normal. Apabila asumsi ini tidak terpenuhi maka menggunakan uji alternatifnya yaitu uji rank spearman.

Permasalahan:

"Apakah ada hubungan antara umur pertama kali menstruasi dengan jumlah pasangan seksual?"

Tahapan pengujian korelasi pearson:

- 1. Buka SPSS
- 2. Ekspor data excel ke dalam lembar kerja SPSS, dengan cara: klik "open", cari file di folder D:materi praktikum, pada "file of type" pilih file dengan extension excel, klik nama file **intrumen individu**, klik continue.
- Lakukan uji normalitas data terlebih dahulu pada kedua variable tersebut yaitu variabel "n36berapu" (umur pertama kali menstruasi) dan variable "cberapajum" (jumlah pasangan seksual)
- 4. Klik analysis \rightarrow klik correlate \rightarrow klik bivariate
- 5. Masukkan dua variable yang akan diuji yaitu "**n36berapu**" (umur pertama kali menstruasi) dan "**cberapajum**" (jumlah pasangan seksual) dalam kotak variabel.
- 6. Kemudian centang pearson dan spearman.
- 7. Perhatikan proses dalam tahapan uji korelasi dibawah ini.

a. Uji normalitas kedua variable "n36berapu" (umur pertama kali menstruasi) dan variable
"cberapajum" (jumlah pasangan seksual)

b. Tahapan uji korelasi

🛃 *Untitled	2 [DataSet1] - SPSS Statis	tics Data Editor				8, 81 (1) (1) (1) (1)	and the other					
Eie Edit	⊻iew <u>D</u> ata <u>T</u> ransform	Analyze Graphs Utilities	Add	ons <u>W</u> indo	w <u>H</u> elp							
🗁 🔒 🚔	📴 🦛 💏 👪 🖼	Reports	•	🚳 🙆 💗	atxy							
1 : prov	34.0	Descriptive Statistics	•									Visible: 74 of 74 Variables
	n28padapay	Tables	•	tahn	n 34 apakah n	n36berapau	jikabelumm	bberapaumu	cberapaiur	m	n 38 apakah n	danbukanab
1		RFM Analysis	•	2.00	2.00	13.00	1.00	26.00		1.00	1.00	1.0(▲
2		Compare Means	•	2.00	2.00	13.00	1.00	26.00		1.00	1.00	1.00
3		General Linear Model	•	2.00	Biv.	ariate Correlations	1.00		23	1.00	1.00	1.00
4		Generalized Linear Models	•	2.00						1.00	1.00	1.00
5		Mixed Models	→,	2.00		24bagama	Variables:	Option	s	1.00	2.00	
6		Correlate	→	t ₁₂ <u>B</u> ivariate.		27apakahn	cheranaium			2.00	1.00	1.00
7		Regression	→	120 Partial		28padapay	Constanting			1.00	1.00	1.00
8		Loginear	•	δ <u>D</u> istances	···· 📄 💇	32apakahn 33apakahn				1.00	1.00	1.00
9		Neural Networks	•	2.00	×	34apakahn	~			1.00	1.00	1.00
10		Classi <u>t</u> y	•	2.00		kabelumm 🛁				1.00	1.00	1.00
11		Dimension Reduction	•	2.00	t	berapaumu				1.00	1.00	1.00
12		Scale	•	2.00		38apakahn 👻				1.00	1.00	1.00
13		Nonparametric Tests	•	2.00	Cor	relation Coefficients-				3.00	1.00	1.00
14		Forecasţing	•	2.00		Pearson 📃 Kendali's tau-	b 🗹 Spearman			1.00	1.00	1.00
15		Survival	•	2.00						1.00	1.00	1.00
16		Multiple Response	•	2.00	Tes	st of Significance				1.00	1.00	1.00
17		Missing Value Analysis		2.00	•	[wo-tailed 🔘 One-tailed				1.00	1.00	1.00
18		Multiple Imputation	•	2.00						1.00	1.00	1.00
19		Complex Samples	•	2.00		ag significant correlations				1.00	1.00	1.00
20		Quality Control	•	2.00		OK Past	e <u>R</u> eset Ca	ncel Help		1.00	1.00	1.00
21		ROC Curge		2.00	2.00	14.00	1.00	23.00		1.00	1.00	1.00
22		2.00		2.00	2.00	11.00	1.00	22.00		1.00	1.00	1.00
23		2.00		2.00	2.00	12.00	1.00	21.00		1.00	1.00	1.00
24		2.00		2.00	2.00	12.00	1.00	24.00		1.00	1.00	1.00
25		2.00		2.00	2.00	13.00	1,00	20.00		1.00	1.00	1.00 -
-							182					
Data View	Variable View								000			
Drvarlate			0						SPS	is suddistic	s Processor is ready	7.24 DM
		? 🖾 🚺	E			1 🔻 🔛			😂 😣	N 🕅	🕪 🚲 🝐 😌 😌	P 🛛 7:24 PM 8/28/2016

Petunjuk Praktikum Manajemen Data 2019/2020

c. Output uji normalitas data dari kedua variable ("n36berapu" (umur pertama kali menstruasi) dan variable "cberapajum" (jumlah pasangan seksual)

			103(3	ornornali	y					
\square		Kolm	ogorov-Smir	nova		Shapiro-Wilk	ç			
		Statistic	df	Siq.	Statistic	df	Siq.			
n3	6berapau	.146	87	.000	.953	87	.003			
cbe	erapajum	.530	87	.000	.305	87	.000			
	a. Lilliefors	Significance	Correction							
		٢	listogram					Histogram		
20- 20- 15- 10- 5- 0-	10.00	12.50		17:50	Mean =13 31 Rd. Dev. =1.565 N =87	80- 60- 20- 0-0.50 1.00) 1.50 2.0 cberaj	0 2.50 3.00 aajum	3.50	Mean = 1.09 Skd Dev = 0.328 N = 67
18-		nobera	pau					•		_1
16-		_				3.0-		*'		
14-						▶ 2.0-		43_40 48		
12-						1.5-				

Tests of Normality

- d. Interpretasi sebaran data dari kedua variable. Silahkan diinterpretasikan!!
- e. Output uji korelasi

	Correlations										
		n36berapau	cberapajum								
n36berapau	Pearson Correlation	1	011								
	Sig. (2-tailed)		.920								
	N	89	87								
cberapajum	Pearson Correlation	011	1								
	Sig. (2-tailed)	.920									
	Ν	87	87								

-261------

NONPAR CORR

/VARIABLES=n36berapau cberapajum /PRINT=SPEARMAN TWOTAIL NOSIG /MISSING=PAIRWISE.

/MISSING-FAIRWISE.

Nonparametric Correlations

[DataSet1]

		Correlations		
			n36berapau	cberapajum
Spearman's rho	n36berapau	Correlation Coefficient	1.000	035
		Sig. (2-tailed)		.746
		N	89	87
	cberapajum	Correlation Coefficient	035	1.000
		Sig. (2-tailed)	.746	
		N	87	87

Petunjuk Praktikum Manajemen Data 2019/2020

f. Kita menggunakan uji rank spearman dikarenakan sebaran data dari kedua variable numerik tersebut tidak berdistribusi normal.

No	Parameter	Nilai	Interpretasi	
1	Kekuatan korelasi (r)	0,00-0,199	sangat lemah	
		0,2-0,399	lemah	
		0,4-0,599	sedang	
		0,60-0,799	kuat	
		0,80-1,000	sangat kuat	
2	Nilai p	p < 0,05	terdapat korelasi yang bermakna antara dua variabel yang diuji	
		p > 0,05	tidak terdapat korelasi yang bermakna antara dua variabel yang diuji	
3	3Arah korelasi(+) (positif)searah, semal besar pula nil		searah, semakin besar nilai suatu variabel semakin besar pula nilai variabel lainnya	
		(-) (negatif)	Berlawanan arah, semakin besar nilai suatu variabel, semakin kecil nilai variabel lainnya	

Berikut panduan untuk interpretasi untuk uji korelasi baik pearson maupun rank spearman.

Correlations

			n36berapau	cberapajum
Spearman's rho	n36berapau	Correlation Coefficient	1.000	035
		Sig. (2-tailed)		746
		N	89	87
	cberapajum	Correlation Coefficient	035	1.000
		Sig. (2-tailed)	.746	
		N	87	87

g. Menentukan hipotesis

Hipotesis null: tidak ada hubungan antara umur pertama kali menstruasi dengan jumlah pasangan seksual

Hipotesis alternative: ada hubungan antara umur pertama kali menstruasi dengan jumlah pasangan seksual

Bandingkan nilai p value (sig) dengan nilai alpha sebesar 0.05

Ho di terima jika nilai p value (sig. pada uji korelasi) > 0.05

Ho di tolak jika nilai p value (sig.pada uji korelasi) ≤ 0.05

- h. Arah korelasi negative (-), nilai r=0,035 (korelasi sangat lemah), p=0,746
- i. Kesimpulan: terdapat hubungan negative dan sangat lemah pada pola hubungan umur ibu pertama kali menstruasi dengan jumlah pasangan seksual, namun secara statistik tidak bermakna.

Tugas praktikum

Lakukan uji korelasi pada data yang telah Anda buat pada praktikum I

- Apakah ada hubungan antara <u>umur ibu (variable : umur)</u> dengan <u>jumlah anak yang</u> <u>dilahirkan/paritas (nama variable :jumanak)</u>?"
- 2. Identifikasi kesulitan yang Anda alami

Tugas praktikum dikerjakan di rumah, dikumpulkan paling lambat pada hari berikutkan jadwal praktikum dilakukan, hasil praktikum di print, dijilid sederhana, serta di beri Nama, NIM, kelompok praktikum.

Sistematika pelaporan:

- 1. Judul praktikum
- 2. Latar belakang
- 3. Lakukan uji normalitas terlebih dahulu
- 4. Screen shoot hasil output Anda
- 5. Tentukan hipotesis dan bagaimana cara pengambilan kesimpulan
- 6. Interpretasikan dengan baik
- 7. Referensi (hindari referensi dari blog dan modul)

PRAKTIKUM XII ANALISIS REGRESI LINIER

Regresi linier digunakan untuk menganalisis pengaruh variabel bebas terhadap variabel terikat. Tujuan khusus analisis ini adalah untuk memodelkan suatu kondisi (khususnya model linier) dengan situasi terdapat variabel yag dipengaruhi dan variabel yang mempegaruhi. Variabel terikat adalah variabel yang dipengaruhi oleh satu atau lebih variabel lain (dinotasikan dengan y). Sedangkan variabel bebas adalah variabel yang tidak dipengaruhi oleh variabel lain (dinotasikan dengan x).

Asumsi analisis regresi linier:

- 1. Data y berskala minimal interval
- 2. Data x berskala minimal nominal
- 3. Linieritas, artinya pola hubungan variabel dependen dengan independent berbentuk linier.
- 4. Tidak terdapat multikolinieritas antarvariabel independent (antarvariabel independent tidak saling berkorelasi).
- 5. Homoskedastisitas, artinya varians dari y sama pada beberapa x (varians data homogen).
- 6. Sisaan (eror) berdistribusi normal.
- 7. Sisaan (eror) saling bebas.

Langkah-langkah melakukan analisis multivariate prediktif

- 1. Menyeleksi variabel yang akan dimasukkan dalam analisis multivariat. Variabel yang dimasukkan dalam analisis multivarat adalah variabel yang pada analisis bivariate mempunyai nilai p<0,25.
- Melakukan analisis multivariat. Analisis multivariat baik regresi logistik dan regresi linier dibagi menjadi 3 metode yaitu enter, forward, dan backward. Ketiga hasil ini memberikan hasil yang sama tapi prosesnya berbeda. Metode enter dilakukan secara manual sedangkan metode forward dan backward secara otomatis.
- 3. Melakukan interpretasi hasil:
 - a. Variabel yang berpengaruh terhadap variabel terikat diketahui dari nilai p masingmasing variabel
 - b. Urutan kekuatan hubungan dari variabel-variabel yang berpengaruh terhadap variabel terikat. Pada regresi logistik, urutan kekuatan hubungan diketahui dari besarnya kekuatan hubungan diketahui dari besarnya nilai OR.
 - c. Model dan rumus untuk memprediksikan variabel terikat.

Pada regresi logistik, rumus umum yang diperoleh adalah:

 $P = 1/\{1 + exp(-y)\}$

Pada regresi linier, rumus umum yang digunakan adalah:

```
y=konstanta +a1x1 +a2x2 + .....aixi
```

Dimana:

- y= nilai dari variabel terikat
- a= nilai koefisien tiap variabel
- x= nilai variabel bebas
- d. Menilai kualitas analisis multivariate.

Pada analisis regresi linier dinilai dengan melihat:

- Determinasi (R²) dan kalibrasi (uji ANOVA). Determinasi baik jika nilai determinasi (R²) semakin mendekati angka 1.
- 2) Kalibrasi baik apabila nilai p pada uji ANOVA <0,05

Pada analisis regresi logistik dinilai dengan melihat kemampuan diskriminasi dan kalibrasi.

- Diskriminasi dinilai dnegan melihat nilai AUC dengan metode Receiver Operating Curve (ROC). Diskriminasi baik jika niali AUC mendekati angka 1.
- Kalibrasi dinilai dengan melihat Hosmer and Lemeshow test. Kalibrasi baik jika mempunyai nilai p > 0,05 pada uji Hosmer and Lemeshow test.

e. Menilai syarat atau asumsi.

Tabel 1. Syarat Regresi Linier:

No	Syarat	Pembuktian	Kriteria
1	Linieritas	Grafik scatter antara variabel bebas dengan variabel terikat	Terdapat kesan linier (berpola linier)
2	Tidak terdapat multikolinieritas	Nilai VIF atau Tollerance	VIF <10 Tollerance >0,1
3	Homoskedastisitas	Grafik/ plot antara sisaan (eror) dengan y duga (prediksi)	Plot tidak membetuk pola (acak)
4	Sisaan (eror) berdistribusi normal	Secara visual meggunakan histogram/ p-p plot, skewness, dan kurtosis atau Uji normalitas menggunakan Kolmogorov-Smirnov	Kurva sisaan (eror) mendekati kurva normal. Nilai p>0,05
5	Sisaan (eror) saling bebas.	Membandingkan hasil uji Durbin-Watson (D) dengan nilai tabel Durbin- Watson	H0: Eror saling bebas Ha: Eror tidak saling bebas Jika nilai D atara D_U dan 4 – D_U , H0 diterima Jika nilai D < D_L , maka H0 ditolak (autokorelasi positif) Jika nilai D > 4 – D_L , maka H0 ditolak (autokorelasi negatif). Biasanya H0 diterima jika nilai D berkisar sekitar 2.

Contoh kasus:

Seorang peneliti ingin mengetahui hubungan status antara umur, indeks masa tubuh (IMT), asupan lemak, asupan karbohidrat dengan kadar leptin dan memprediksi kadar leptin degan menggunakna variable-variabel tersebut.

Langkah-langkah analisis

- 1. Analisis deskriptif dan uji normalitas
- 2. Lakukan analisis deskriptif dan uji normalitas sebagaimana yang telah dilakukan pada praktikum pada sub bab sebelumnya. Jika anda melakukan prosedur dengan benar, maka anda akan mendapatkan hasil analisis seperti di bawah ini:
| | Kol | mogorov-Smirn | 0V ^a | Shapiro-Wilk | | | |
|-------------|-----------|---------------|-------------------------------|--------------|----|------|--|
| | Statistic | df | Sig. | Statistic | df | Sig. | |
| Umur | .085 | 80 | <mark>.200[*]</mark> | .979 | 80 | .206 | |
| BMI | .058 | 80 | <mark>.200[*]</mark> | .966 | 80 | .033 | |
| Lemak | .076 | 80 | <mark>.200[*]</mark> | .986 | 80 | .561 | |
| Karbohidrat | .091 | 80 | <mark>.099</mark> | .959 | 80 | .011 | |
| Leptin | .099 | 80 | <mark>.052</mark> | .973 | 80 | .085 | |

Tests of Normality

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

3. Analisis bivariat dengan analisis korelasi Pearson

Pada uji bivariate, karena semua variable memiliki distribusi data normal maka akan digunakan uji korelasi pearson. Lakukan uji korelasi pearson sebagaimana langkah-langkah yang sudah dijelaskan pada praktikum sebelumya. Jika annda melakukan sesuai prosedur yang benar, maka anda akan mendapatkan hasil seperti di bawah ini:

Hasil analisis Correlations

Correlations								
Leptin Umur BMI Lemak Karbohid								
Leptin	Pearson Correlation	1	.225*	.815**	.161	.272 [*]		
	Sig. (2-tailed)		.045	.000	.154	.015		
	Ν	80	80	80	80	80		
Umur	Pearson Correlation	.225*	1	.120	.104	.281*		
	Sig. (2-tailed)	.045		.287	.357	.011		
	Ν	80	80	80	80	80		
BMI	Pearson Correlation	.815**	.120	1	.149	.249*		
	Sig. (2-tailed)	.000	.287		.188	.026		
Ν		80	80	80	80	80		
Lemak	Pearson Correlation	.161	.104	.149	1	.487**		
	Sig. (2-tailed)	.154	.357	.188		.000		
	Ν	80	80	80	80	80		
Karbohidrat	Pearson Correlation	.272*	.281*	.249*	.487**	1		
	Sig. (2-tailed)	.015	.011	.026	.000			
	Ν	80	80	80	80	80		

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

4. Analisis multivariate dengan regresi linier

Lakukan prosedur analisis regresi linier

- a. Klik Analyze \rightarrow Regression \rightarrow Linier
- b. Masukkan variable Leptin ke dalam Dependent
- c. Masukkan semua variable independen ke dalam Independent
- d. Pilih metode Backward pada pilihan Metode
- e. Klik kotak statistic

f. Pilih estmates, model fit, Collinearity diagnostics, Durbin-Watson, dan Casewisediagnostics.

- 😘	Linear Regression		\times	🍓 Linear Regression: Statist	ics X –
) no [no] Umur [Umur] BMI [BMI] Lemak [Lemak] Karbohidrat [Karboh	Dependent: Case Labels: Case Labels: WLS Weight: Paste Reset Cancel Help	Statistics) Plots Save Options Style Bootstrap	Regression Coefficients Estimates Confidence intervals Level(%): 95 Covariance matrix Residuals Durbin-Watson Casewise diagnostics @ Outliers outside: @ All cases Continue	Model fit R gquared change Descriptives Part and partial correlations Concel Help
	<u></u>				

- g. Klik Continue.
- h. Kemudian pilih kotak Plots. pilih Histogram dan Normal probability plot
- Pada Plots, terdapat variable DEPENDENT, *ZPRED, *ZRESID, *DRESID,
 *ADIPRED, *SRESID, dan SDRESID. Dari variable-variaebl tersebut, kita akan menggunakan variabel *DEPENDENT*, *ZPRED, *ZRESID

DEPENDENT adalah variable terikat, *ZPRED adalah terikat fifted yang distandarisasi, atau disebut juga variable bebas yang distandarisasi, *ZRESID adalah residu yang distandarisasi

j. Untuk mengecek asumsi linieritas→diagram tebar antara DEPENDENT dan *ZPRED dengan prosedur: *pindahkan DEPENDENT ke sumbu y dan *ZPRED ke sumbu x*. Untuk mengecek asumsi konstan → diagram tebar *ZPRED dan *ZRESID. Lakukan prosedur: *Klik Next→pindahkan *ZPRED ke sumbu y dan *ZRESID ke sumbu x*.

Linear Regression	- I I I I	×	🔚 Linear Regression: Plots	×	
no [no] Umur [Umur] Gen [BM] Lemak [Lemak] Karbohidrat [Karboh	Dependent Leptin [Leptin] Block 1 of 1 Previous Next Independent(s): Umur [Umur] Lemak [Lemak] Selection Variable: Case Labels: WLS Weight WLS Weight Paste Reset Cancel Help	Statistics Pioţs Sare Options Style Bootstrap.	Continue Can	ter 1 of 1	catter 2 of 2 Previous Next Y: TZPRED X: TZRESID
Klik Contin	ue, lalu OK			Standardized Residual Plots	Produce all partial plots

k.

Pengecekan Asumsi:

1. Tidak terdapat multikolinieritas antarvariabel independent (antarvariabel independent tidak saling berkorelasi).

	Coefficients ^a								
		Unstar	ndardized	Standardized					
		Coe	fficients	Coefficients			Collinearity S	Statistics	
Mod	lel	В	Std. Error	Beta	t	Sig.	Tolerance	VIF	
1	(Constant)	1.548	.394		3.924	.000			
	Umur	.005	.003	.118	1.736	.087	.917	1.091	
	BMI	.085	.007	.789	11.709	.000	.934	1.070	
	Lemak	.000	.001	.014	.183	.855	.761	1.315	
	Karbohidrat	.000	.000	.036	.456	.650	.685	1.460	
2	(Constant)	1.554	.390		3.982	.000			
	Umur	.005	.003	.118	1.741	.086	.918	1.089	
	BMI	.085	.007	.790	11.798	.000	.935	1.069	
	Karbohidrat	.000	.000	.043	.615	.540	.874	1.144	
3	(Constant)	1.526	.386		3.953	.000			
	<u>Umur</u>	.005	.003	<mark>.128</mark>	1.978	.051	.985	1.015	
	BMI	.086	.007	<mark>.799</mark>	12.302	.000	.985	1.015	

a. Dependent Variable: Leptin

Interpretasi:

- a. Pada Collinnearity Statistics, nilai VIF<10.
- b. Nilai Tollerance tiap variabel paa setiap variabel >0,1.

Sehingga dapat disimpulkan tidak terdapat multikolinieritas.

2. Homoskedastisitas

Plot antara nilai sisaan (eror) dan y prediksi tidak membentuk pola.

Interpretasi: Tidak terdapat heteroskedastisitas, artinya asumsi homoskedastisitas terpenuhi.

3. Sisaan (eror) berdistribusi normal

Betuk kurva sisaan (eror) mendekati kurva normal. Interpretasi: sisaan eror berdistribusi normal.

4.	Sisaan	(eror)	saling	bebas.
		· /	0	

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson
1	.826ª	.682	.665	.20670	
2	.825 ^b	.681	.669	.20538	
3	.825°	.680	.672	.20455	1.921

Nilai statistik uji Durbin-Watson (D) = 1,921.

N = jumlah sampel = 80

K = jumlah variabel independent = 4

$$D_U = 1,67$$

$$4 - D_U = 4 - 1,67 = 2,33$$

 $D_U < D > 4$ - D_U sehingga H_0 diterima, artinya sisaan (eror) saling bebas.

N d _L d _U d _L d	dL dL 0.48 2.0 0.53 2.0 0.57 1.9 0.62 1.9 0.66 1.9 0.70 1.8 0.73 1.8 0.77 1.8 0.80 1.8	9 3 8 3 0 7 4
150.951.230.831.400.711.610.591.840160.981.240.861.400.751.590.641.800171.011.250.901.400.791.580.681.770181.031.260.931.400.821.560.721.740191.061.280.961.410.861.550.761.720	0.48 2.0 0.53 2.0 0.57 1.9 0.62 1.9 0.66 1.9 0.70 1.8 0.73 1.8 0.77 1.8 0.80 1.8	9 3 8 3 0 7 4
17 1.01 1.25 0.36 1.40 0.75 1.36 0.06 1.77 0 18 1.03 1.26 0.93 1.40 0.82 1.56 0.72 1.74 0 19 1.06 1.28 0.96 1.41 0.86 1.55 0.76 1.72 0).62 1.9).66 1.9).70 1.8).73 1.8).77 1.8).80 1.8	3 0 7 4
	0.70 1.8 0.73 1.8 0.77 1.8 0.80 1.8	7
20 1.08 1.28 0.99 1.41 0.89 1.55 0.79 1.70 0 21 1.08 1.28 0.99 1.41 0.89 1.55 0.79 1.70 0).73 1.8).77 1.8).80 1.8	4
21 1.10 1.30 1.01 1.41 0.92 1.54 0.83 1.69 0 22 1.12 1.31 1.04 1.42 0.95 1.54 0.86 1.68 0 23 1.14 1.32 1.06 1.42 0.97 1.54 0.89 1.67 0 24 1.40 1.92 1.42 0.97 1.54 0.89 1.67 0	100 17	2
24 1.16 1.33 1.06 1.43 1.00 1.34 0.91 1.06 0 25 1.18 1.34 1.10 1.43 1.02 1.54 0.94 1.65 0).86 1.7	9 7
26 1.19 1.35 1.12 1.44 1.04 1.54 0.96 1.65 0 27 1.21 1.36 1.13 1.44 1.06 1.54 0.99 1.64 0 28 1.22 1.37 1.15 1.45 1.08 1.54 1.01 1.64 0 29 1.24 1.38 1.17 1.45 1.10 1.54 1.03 1.63 0 30 1.25 1.38 1.18 1.46 1.12 1.54 1.05 1.63 0).88 1.7).91 1.7).93 1.7).96 1.7).98 1.7	6 5 4 3
31 1.26 1.39 1.20 1.47 1.13 1.55 1.07 1.63 1 32 1.27 1.40 1.21 1.47 1.15 1.55 1.08 1.63 1 33 1.28 1.41 1.22 1.48 1.16 1.55 1.10 1.63 1 34 1.29 1.41 1.24 1.48 1.17 1.55 1.12 1.63 1 35 1.30 1.42 1.25 1.48 1.19 1.55 1.13 1.63 1	1.00 1.7 1.02 1.7 1.04 1.7 1.06 1.7	21100
36 1.31 1.43 1.26 1.49 1.20 1.56 1.15 1.63 1 37 1.32 1.43 1.27 1.49 1.21 1.56 1.16 1.62 1 38 1.33 1.44 1.28 1.50 1.23 1.56 1.17 1.62 1 39 1.34 1.44 1.29 1.50 1.24 1.56 1.19 1.63 1 40 1.35 1.45 1.30 1.51 1.25 1.57 1.20 1.63 1	1.09 1.7 1.10 1.7 1.12 1.7 1.13 1.6 1.15 1.6	000000000000000000000000000000000000000
451.391.481.341.531.301.581.251.631501.421.501.381.541.341.591.301.641551.451.521.411.561.371.601.331.641601.471.541.441.571.401.611.371.651651.491.551.461.591.431.621.401.661	1.21 1.6 1.26 1.6 1.30 1.6 1.33 1.6 1.36 1.6	9 9 9 9
70 1.51 1.57 1.48 1.60 1.45 1.63 1.42 1.66 1 75 1.53 1.58 1.50 1.61 1.47 1.64 1.45 1.67 1	1.39 1.7 1.42 1.7	0
80 1.54 1.59 1.52 1.62 1.49 1.65 1.47 1.67 1 85 1.56 1.60 1.53 1.63 1.51 1.65 1.49 1.68 1 90 1.57 1.61 1.55 1.64 1.53 1.66 1.50 1.69 1 95 1.58 1.62 1.56 1.65 1.54 1.67 1.52 1.69 1	1.44 1.7 1.46 1.7 1.48 1.7 1.50 1.7	011

Table B-5 Critical Values of the Durbin–Watson Test Statistics of d_L and d_U: 2.5-Percent One-Sided Level of Significance (5-Percent Two-Sided Level of Significance)

Source: J. Durbin and G. S. Watson, "Testing for Serial Correlation in Least Squares Regression," *Biometrika*, Vol. 38, 1951, pp. 159–171. Reprinted with permission of the *Biometrika* trustees.

Note: N = number of observations, K = number of explanatory variables excluding the constant term. It is assumed that the equation contains a constant term and no lagged dependent variables.

Model Regresi Linier

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6.858	4	1.714	40.129	.000 ^b
	Residual	3.204	75	.043		
	Total	10.062	79			
2	Regression	6.856	3	2.285	54.183	.000 ^c
	Residual	3.206	76	.042		
	Total	10.062	79			
3	Regression	6.840	2	3.420	81.745	.000 ^d
	Residual	3.222	77	.042		
	Total	10.062	79			

a. Dependent Variable: Leptin

b. Predictors: (Constant), Karbohidrat, BMI, Umur, Lemak

c. Predictors: (Constant), Karbohidrat, BMI, Umur

d. Predictors: (Constant), BMI, Umur

Nilai siginifikansi masing-masing model regresi <0,05. Artinya, secara serentak (simultan) variabel bebas berpengaruh terhadap variabel terikat pada masing-masing model regresi.

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson
1 2 3	.826ª .825 ^b .825 ^c	.682 .681 .680	.665 .669	.20670 .20538 .20455	
			.672		1.921

Model Summary tersebut dapat memberikan informasi seberapa besar variabel-variabel bebas dapat menjelaskan variable terikat. Model satu mempunyai koefisien determinasi sebesar 66,5%, model dua 66,9% dan model tiga 67.2%. Dari ke tiga model tersebut, tampak model 3 adalah model yang mempunyai koefisien determinasi terbaik. Persaman yang terdiri dari variabel umur dan BMI dapat menjelskan leptin sebesar 67,2%.

				Cociliate	1113			
		Unstar	ndardized	Standardized				
		Coet	fficients	Coefficients			Collinearity S	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1 (C	Constant)	1.548	.394		3.924	.000		
Un	mur	.005	.003	.118	1.736	.087	.917	1.091
BN	MI	.085	.007	.789	11.709	.000	.934	1.070
Le	emak	.000	.001	.014	.183	.855	.761	1.315
Ka	arbohidrat	.000	.000	.036	.456	.650	.685	1.460
2 (C	Constant)	1.554	.390		3.982	.000		
Ur	mur	.005	.003	.118	1.741	.086	.918	1.089
BN	MI	.085	.007	.790	11.798	.000	.935	1.069
Ka	arbohidrat	.000	.000	.043	.615	.540	.874	1.144
3 (C	Constant)	1.526	.386		3.953	.000		
Ur	mur	.005	.003	<mark>.128</mark>	1.978	.051	.985	1.015
BN	MI	.086	.007	<mark>.799</mark>	12.302	.000	.985	1.015

a. Dependent Variable: Leptin

Model yang diperoleh adalah:

y = 1,526 + 0,005(umur) + 0,086(BMI)

Sistematika Pelaporan:

- 1. Judul praktikum
- 2. Latar belakang
- 3. Dasar teori
- 4. Lakukan uji normalitas terlebih dahulu
- 5. Lakukan analisa bivariat
- 6. Lakukan analisis regresi linier
- 7. Screen shoot hasil output Anda
- 8. Tentukan hipotesis dan bagaimana cara pengambilan kesimpulan
- 9. Interpretasikan dengan baik
- 10. Referensi (hindari referensi dari blog dan modul)

PRAKTIKUM XIII ANALISIS REGRESI LOGISTIK

Dalam penelitian kesehatan atau kedokteran, variabel *outcome* yang sering diteliti merupakan variabel dengan dua kategori atau disebut *binary (binomial) outcome*. Misalnya pada penelitian faktor risiko penyakit jantung koroner (PJK), yang menjadi variabel outcome (tergantung) adalah PJK dengan dua kategori, yaitu menderita PJK dan bukan PJK. Pada umumnya masalah kesehatan masyarakat sifatnya kompleks, artinya terjadinya satu kejadian jarang sekali disebabkan oleh satu faktor tunggal. Sebagai contoh, misalnya penyakit jantung koroner (PJK) disebabkan oleh faktor usia, jenis kelamin, kebiasaan merokok, indeks massa tubuh, dan sebagainya.

Untuk mempelajari hubungan satu masalah dengan berbagai faktor yang terkait tidak bisa lagi dianalisis secara bivariat. Metode analisis multivariabel merupakan metode analisis yang memungkinkan kita mempelajari hubungan beberapa variabel bebas dengan satu variabel tergantung. Dalam praktikum ini, akan dibahas tentang analisis data kategorik multivaribel dengan variabel dependen biner/ binomial menggunakan regresi logistik berganda (*multiple logistic regression*).

Contoh Kasus:

Seorang peneliti ingin mengathui faktor-faktor yang dapat dijadikan sebaga predictor terjadinya syok pada pasien anak demam berdarah. Variable yang diteliti adalah jenis kelami, status gizi, trombositopenia, hemokonsentrasi dan hepatomegali pada saat pasien masuk perawatan.

-		
No	pertanyaan	Jawaban
1	Uji hipotesis apa yang akan digunakan pada analisis bivariat	Chi square atau uji Fisher
2	Parameter kekuatan hubungan apa yang digunakan	Kohor: kekuatan hubungan menggunakan nilai OR dan RR. Parameter kekuatan hubungan yang dapat langsung dihasilkan oleh perangkat lunak adalah OR
3	Analisis multivariabel apa yang akan digunakan	Regresi logistik karena variabel terikatnya adalah variabel kategorik dikotomi
4	Variabel apa saja yang akan dimsukkan ke dalam analisis multivariabel	Variabel pada analisis bivariate mempunyai nilai p<0,25

Tabel 1. Langkah-langkah untuk menentukan uji hipotesis

Langkah-langkah:

- 1. Klik Analyze → Regression → Binary logistic
- 2. Masukkan variable syok_reg ke dalam Dependent Variable
- 3. Masukkan semua variabel independen ke dalam Covariate
- 4. Pilih metode *Bckward LR* pada pilihan metode
- 5. Aktikan kotak *categorical* \rightarrow klik Continue
- 6. Aktifkan kotak Save→ Pilih Probabilities → klik Continue
- 7. Aktifkan kotak Options \rightarrow pilih Hosmer-Lemeshow goodness-of-fit \rightarrow klik Continue

ta Logistic Regression X	🔄 Logistic Regression: Define Categorical Variables 🛛 🗙
Image: System of the system	Covariates: Categorical Covariates: gizi(Indicator) sex(Indicator) trombosit(Indicator) hepatomegali(Indicator) hepatomegali(Indicator) hemokonsentrasi(Indicator) Change Contrast Change Contrast: Indicator T Change Reference Category: Last Continue Cancel
Logistic Regression: Save X	Logistic Regression: Options X
Predicted Values Residuals Probabilities Unstandardized Group membership Logit Influence Studentized Cook's Standardized Leverage values Deviance	Statistics and Plots Correlations of estimates Classification plots Correlation s of estimates Hosmer-Lemeshow goodness-of-fit Iteration history Casewise listing of residuals Cl for exp(B): 95 % Outliers outside std. dev. All cases Display O At each step At last step
Export model information to XML file Browse Include the covariance matrix Continue Cancel Help	Probability for Stepwise Classification cutoff: 0.5 Entry: 0.05 Removal: 0.10 Maximum Iterations: 20 Conserve memory for complex analyses or large datasets Include constant in model Continue Cancel

Hasil analisis:

Ya

Pada hasil periksalah: Dependent Variabel Encoding, Categorical Variable Coding, Variable in the Equation, dan Hosmer-Lemeshow test

Dependent Variable Encoding							
Original Value	Internal Value						
Tidak	0						
Ya	1						

Categorical variables Codings							
			Parameter coding				
		Frequency	(1)				
Hemokonsentrasi	Ya	67	1.000				
	Tidak	137	.000				
Status gizi	Baik	136	1.000				
	Kurang	68	.000				
Trombosit	<50.000	48	1.000				
	>50.000	156	.000				
Hepatomegali	Ya	72	1.000				
	Tidak	132	.000				
Jenis kelamin	Perempuan	97	1.000				
	Laki-laki	107	.000				

Variables in the Equation

								95% C.I.for EXP(B)		
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper	
Step 1 ^a	sex(1)	1.567	.517	9.172	1	.002	<mark>4.792</mark>	1.738	13.211	
	gizi(1)	1.363	.634	4.618	1	.032	<mark>3.906</mark>	1.127	13.537	
	trombosit(1)	1.848	.574	10.369	1	.001	<mark>6.345</mark>	2.061	19.538	
	hepatomegali(1)	1.360	.579	5.507	1	.019	<mark>3.895</mark>	1.251	12.128	
	hemokonsentrasi(1)	2.289	.591	14.995	1	.000	<mark>9.869</mark>	3.098	31.442	
	Constant	-5.859	.897	42.701	1	.000	.003			

a. Variable(s) entered on step 1: sex, gizi, trombosit, hepatomegali, hemokonsentrasi.

Interpretasi hasil:

- a. Variabel yang berpengaruh terhadap syok adalah jenis kelamin, status gizi, trombosit, hepatomegali, dan hemokonsentrasi. Kekuatan hubungan dapat dilihat dari nilai OR (Exp B). kekuatan hubungan terbesar dan terkecil adalah hemokonsentrasi (OR=9,87) dan hepatomegali (OR= 3,89)
- b. Persamaan regresi

 $Y = konstanta + a_1x_1 + a_2x_2 + \dots a_{1x_1}$

Y = 5,895 + 1,567(sex) + 1,363(gizi) + 1,848(trombosit) + 1,360(hepatomegali) + 2,289(hemokonsentrasi)

c. Aplikasi persamaan regresi

P=1/{1+exp(-y)} Dimana: p = probabilitas untuk terjadinya suatu kejadian y=konstanta + a1x1+ a2x2 +.....aixi

- a= nilai koefisien tiap variable
- x= nilai variabel bebas
- d. Kualitas persamaan regresi
 - 1) Kalibrasi

Nilai kalibrasi dapat dilihat dari Hosmer and Lemeshow Test. Nilai p pada Hosmer and Lemeshow Test adalah sebesar $0,373 \rightarrow$ persamaan yang diperoleh memunyai kalibrasi yang baik

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	8.645	8	<mark>.373</mark>

2) Diskriminasi

Lihatlah kembali data. Pada kelompok terakhir, terdapat variable baru yang bernama **PRE_1**. Variabel ini merupakan hasil dari perintah *probability* pada kotak *save* pada saat melakukan analisis multivariat. Variabel ini akan merupakan prediksi terjadinya syok pada masing-masing subjek penelitian yang berguna untuk menilai diskriminasi persamaan dengan metode **ROC**. Langkah-langkah adalah sebagai berikut:

- a. Pilih Analyze, pilih ROC Curve
- b. Masukkan *syok_reg* (kode 1 dan 0) ke dalam *state variable*
- c. Masukkan angka 1 ke dalam value of state variable
- d. Masukkan variable PRE_1 ke dalam *Test Variable*
- e. Pilih semua kotak yang terdapat pada menu Display

Area Under the Curve

Test Result Variable(s):	Predicted probability
--------------------------	-----------------------

			Asymptotic 95% Confidence Interval				
Area	Std. Error ^a	Asymptotic Sig. ^b	Lower Bound	Upper Bound			
<mark>.906</mark>	.024	.000	.859	.953			

The test result variable(s): Predicted probability has at least one tie between the positive actual state group and the negative actual state group. Statistics may be biased.

a. Under the nonparametric assumption

b. Null hypothesis: true area = 0.5

Tabel 2. Interpretasi nilai AUC

Nilai AUC	Interpretasi
>50%-60%	Sangat lemah
>60%-70%	Lemah
>70%-80%	Sedang
>80%-90%	Kuat
>90%-100%	Sangat kuat

Interpretasi: Nilai diskriminasi dengan menilai Area Under the Curve (AUC). Nilai AUC sebesar 90,6% \rightarrow Sangat kuat

Sistematika pelaporan:

- 1. Judul praktikum
- 2. Latar belakang
- 3. Lakukan analisis bivariat terlebih dahulu
- 4. Lakukan regresi logistik (cek hasil uji bivariat)
- 5. Screen shoot hasil output Anda
- 6. Tentukan hipotesis dan bagaimana cara pengambilan kesimpulan
- 7. Interpretasikan dengan baik
- 8. Referensi (hindari referensi dari blog dan modul)

PRAKTIKUM XIV VALIDITAS DAN RELIABILITAS INSTRUMEN

Setiap uji statistik yang dilakukan dalam penelitian sebagai bahan acuan atau pedoman untuk membuat kesimpulan. Untuk menghindari kesalahan sistimatis dan kesalahan acak maka, uji validitas dan uji reliabilitas wajib dilakukan jika menggunakan instrumen penelitian. Uji validitas dan reliabilitas dilakukan sebelum pengambilan data agar mengetahui kelayakan dan keakurasian alat instrument. Pada sub bab ini, akan dipelajari uji validitas dengan teknik *correlation product moment*. Selanjutnya uji reliabilitas dengan Teknik *alpha Cronbach*.

a. Uji Validitas

Uji validitas adalah pengujian yang menggambarkan sejauh mana instrumen mengukur yang seharusnya diukur dalam panelitian. Uji validitas terbagi menjadi 2 yaitu:

- 1. Validitas eksternal adalah hasilnya dapat digeneralisasikan di luar studi/ penelitian
- 2. Validitas internal prosedur yang digunakan dalam penelitian mengukur yang seharusnya diukur pada instrument penelitian

Dasar pengambilan keputusan untuk uji validitas ada 2 cara yaitu:

- Melihat nilai korelasi antara skor masing-masing variabel dengan skor totalnya. Suatu item pertanyaan dikatakan valid apabila menghasilkan nilai signifikasi p-*value*<0,05 atau nilai r (koefisien korelasi) hitung lebih besar dari nilai r tabel yaitu r_{tabel}=0,356 (α=5%). Nilai koefisien korelasi sebagai berikut:
 - a. Antara 0,800-1,00=sangat tinggi
 - b. Antara 0,600-0,800=tinggi
 - c. Antara 0,400-0,600=cukup
 - d. Antara 0,200-0,400=rendah
 - e. Antara 0,00-0,200=sangat rendah
- Melihat nilai signifikansi (2-tailed) < 0,05 dan Pearson correlation bernilai positif dinyatakan valid.

Cara menguji validitas dengan menggunakan SPSS

Tahapan untuk melakukan uji validitas dengan menggunakan SPSS sebagai berikut:

a) Klik menu analyze => *correlation*=> *Bivariate* sehingga muncul seperti gambar

Bivariate Correlations	
Variables:	Options Sty <u>l</u> e Bootstrap
Correlation Coefficients	
 Test of Significance 	
✓ Flag significant correlations OK Paste Reset Cancel Help	I

Gambar 1. Bivariate correlation

 b) Selanjutnya pindahkan semua item kuesioner ke kotak variabel lalu klik *Pearson, two* tailed, dan flag signification correlation =>OK

c)	Kemudian	banding	kan nilai	total	dengan	dengan	standaı	: nilai	koefisien	(lihat	gambar	: 2)
----	----------	---------	-----------	-------	--------	--------	---------	---------	-----------	--------	--------	------

		weight	height	number of family	income monthly	monthly debt of paid	duration of illness	hospitalizatio n	body mass index	total
weight	Pearson Correlation	1	.049	.011	018	078	040	033	.930**	.022
	Sig. (2-tailed)		.396	.855	.753	.177	.493	.568	.000	.710
	N	300	300	300	300	300	300	300	300	300
height	Pearson Correlation	.049	1	009	.006	.040	.002	.064	316**	.009
	Sig. (2-tailed)	.396		.882	.912	.495	.973	.269	.000	.882
	N	300	300	300	300	300	300	300	300	300
number of family	Pearson Correlation	.011	009	1	.055	023	.108	.095	.015	.054
	Sig. (2-tailed)	.855	.882		.339	.691	.061	.100	.794	.347
	N	300	300	300	300	300	300	300	300	300
ncome monthly	Pearson Correlation	018	.006	.055	1	044	.060	.081	018	999**
	Sig. (2-tailed)	.753	.912	.339		.450	.299	.161	.762	.000
	N	300	300	300	300	300	300	300	300	300
nonthly debt of paid	Pearson Correlation	078	.040	023	044	1	.036	.011	087	.003
	Sig. (2-tailed)	.177	.495	.691	.450		.532	.847	.132	.952
	N	300	300	300	300	300	300	300	300	300
duration of illness	Pearson Correlation	040	.002	.108	.060	.036	1	.655**	029	062
	Sig. (2-tailed)	.493	.973	.061	.299	.532		.000	.611	.284
	N	300	300	300	300	300	300	300	300	300
nospitalization	Pearson Correlation	033	.064	.095	.081	.011	.655**	1	046	.082
	Sig. (2-tailed)	.568	.269	.100	.161	.847	.000	l l	.424	.156
	N	300	300	300	300	300	300	300	300	300
body mass index	Pearson Correlation	.930**	316**	.015	018	087	029	046	1	021
	Sig. (2-tailed)	.000	.000	.794	.762	.132	.611	.424		.712
	N	300	300	300	300	300	300	300	300	300
total	Pearson Correlation	022	.009	.054	.999**	.003	.062	.082	021	1
	Sig. (2-tailed)	.710	.882	.347	.000	.952	.284	.156	.712	
	N	300	300	300	300	300	300	300	300	300

**. Correlation is significant at the 0.01 level (2-tailed).

Gambar 2. Uji Validitas

b. Uji Reliabilitas

Reliabilitas adalah parameter yang dapat digunakan untuk mengukur stabilitas atau konsistensi tes dari hasil tesnya tanpa berubah setiap waktu. Reliabilitas instrumen akan diuji dengan menggunakan *Alpha Cronbach* yaitu nilai r hitung lebih besar dari nilai r tabel maka item kuesioner reliabel, tapi nilai r hitung lebih kecil dari nilai r tabel maka item kuesiner tidak reliabel.

Cara menguji reliabilitas dengan menggunakan SPSS

- a) Scale=>reliability analysis=> pindahkan semua ke kolom items dengan model *alpha* dan klik OK
- b) Sehingga muncul hasil pada gambar 3.
- c) Selanjutnya bandingkan nilai reliabilitas dengan nilai r tabel.

🔚 *Output4 [Document4] - IBM SPSS	S Statistics Viewer
<u>File Edit View Data Trar</u>	nsform Insert Format Analyze DirectMarketing Graphs Utilities Add-ons Window Help
🖹 H 🖨 👌 🦉) 🗔 🖛 🛥 🧱 🏝 🗐 📎 🌑 🧦 🇊 📄 🔊 🔳
* * * -	
Dutput	/MODEL=ALPHA.
	✦ Reliability Scale: ALL VARIABLES
🔚 Reliability Sta	Case Processing Summary
	N %
	Cases Valid 20 100.0
	Excluded 0 .0
	a. Listwise deletion based on all variables in the procedure.
4	Cronbach's of Items .818 10

DAFTAR PUSTAKA

- Dahlan M. Sopiudin, (2012). *Statistika untuk Kedokteran dan Kesehatan*, Penerbit Salemba Medika, Jakarta
- Dahlan, M.S., (2012). Regresi Linier: disertai praktik dengan SPSS. Salemba Medika. Jakarta
- Ghasemi, A., & Zahediasl, S. (2012). Normality Tests for Statistical Analysis: A Guide for Non-Statisticians. *International Journal of Endocrinology and Metabolism*, 10(2), 486– 489.
- Lauritsen, J. M., & Bruus, M. (2005). EpiTour- an introduction to EpiData Entry (Vol. August).
- Odense, Denmark. Öztuna, D., & Elhan. (2006). Investigation of Four Different Normality Tests in Terms of Type 1 Error Rate and Power under Different Distributions. *Turkey Journal Medical Science*, *36*(3), 171–176.
- Jay S. Kim and Ronald J. Dailey. (2008). *Biostatistics for oral Healh Care*, Blackwell Munkgaard, California

Laboratorium Fakultas Kesehatan Masyarakat Universitas Ahmad Dahlan