The Preface of the Second Ahmad Dahlan International Conference on Mathematics and Mathematics Education (ADINTERCOMME) 2019

To cite this article: P W Prasetyo et al 2020 J. Phys.: Conf. Ser. 1613011001

View the article online for updates and enhancements

The Electrochemical Society
Advancing solid state $\&$ electrochemical science \& technology

240th ECS Meeting ORLANDO, fL

Orange County Convention Center Oct 10-14, 2021

The Preface of the Second Ahmad Dahlan International Conference on Mathematics and Mathematics Education (ADINTERCOMME) 2019

P W Prasetyo, J Purwadi, U Khasanah, S Fahmi, R C I Prahmana, A Istiandaru,
F Setyawan, A Hendroanto, D Astuti, S W Priwantoro, V Istihapsari, D A
Yuwaningsih, N Irsalinda, B A Nurnugroho, Z A Rafsanjani-Hsm, Y Ariadi
Editorial Team of ADINTERCOMME's 2019 Publication, Universitas Ahmad Dahlan Kampus IV UAD, Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Daerah Istimewa Yogyakarta 55191
E-mail: puguh.prasetyo@pmat.uad.ac.id

Preface

The Ahmad Dahlan International Conference on Mathematics and Mathematics Education, abbreviated as AD INTERCOMME, is a biennial international conference hosted in a cooperation by the Mathematics Department - Faculty of Science and Applied Technology - and the Mathematics Education Department - Faculty of Teacher Training and Education - of Universitas Ahmad Dahlan, Yogyakarta, Indonesia. It aims to provide a great forum for worldwide mathematicians, professors, teachers, and researchers to share their ideas about the trends and the emerging issues both in mathematics and mathematics education. In 2019, the AD INTERCOMME would be implemented for its second edition. We invite researchers and practitioners to come and to contribute in this conference. We would be very happy to welcome you in Yogyakarta.

The keynote presentations are provided especially to show the contribution of Mathematician and Mathematics Educators in the world of mathematics and mathematics education towards research and knowledge sharing where our conference theme for this year is the contribution of Mathematics and Mathematics Education in Industrial Revolution Era 4.0. The main event is the talk of three keynote speakers. The first keynote speaker is Associate Professor Dr. Mazlini Adnan form Universiti Pendidikan Sultan Idris, Malaysia. The second keynote speaker is Associate Professor Martianus Frederick Ezerman, Ph.D from Nanyang Technological University, Singapore. The third keynote speaker is Associate Professor Dr. Sitti Maesuri Patahuddin from University of Canbera, Australia.

We also have speakers in workshop session coming from Universitas Ahmad Dahlan, Dr. Rully Charitas Indra Prahmana, S.Si., M.Pd who deliver the talk on the Publishing Manuscripts in a Scopus-indexed

Journal and M. Rizky Alif Yuza who deliver the talk on the Workshop Big Data: "Sentiment Analysis Using Pyhton, Elastic Search and Kibana. ADINTERCOMME 2019 was an overwhelming success, attracting the delegates, speakers and sponsors from many countries and provided great intellectual and social interaction for the participants. Without their support, the conference would not have been successfully organized. We trust that all the participants found their involvement in the Conference both valuable and rewarding. Our wish is that all participants would enjoy this conference, contribute effectively toward it and take back with you knowledge, experiences, contacts and happy memories of this conference and especially with this beautiful kingdom of Yogyakarta.

Dr. Puguh Wahyu Prasetyo, S.Si., M.Sc
Editor in Chief

Piracy Threat－Important update to keep your details safe and secure．Click here for further information．

Table of contents

Volume 1613

2020
4 Previous issue Next issue •

Ahmad Dahlan International Conference on Mathematics and Mathematics Education 8－9 November 2019，Yogyakarta，Indonesia

Accepted papers received： 03 August 2020
Published online： 21 September 2020

Open all abstracts

Preface

OPEN ACCESS
The Preface of the Second Ahmad Dahlan International Conference on Mathematics and Mathematics Education（ADINTERCOMME） 2019

P W Prasetyo，J Purwadi，U Khasanah，S Fahmi，R C I Prahmana，A Istiandaru，F Setyawan，
A Hendroanto，D Astuti，S W Priwantoro et al
＋Open abstract 国 View article 因 PDF

OPEN ACCESS
Peer review declaration
＋Open abstract
View article
包 PDF

Papers

OPEN ACCESS
Automatic detection process of solar active region based on SDO／AIA digital image
I Sukarsih，A Hermawanti，Respitawulan，R Priyatikanto and E Kurniati

OPEN ACCESS
Critical thinking ability through experiential learning in the calculus class
A A Abdullah，W N Shanti and D A Sholihah
＋Open abstract 国 View article PDF

OPEN ACCESS
HOTS problem on function and probability：Does it impact to students＇ mathematical literacy in Universitas Terbuka？

T D Prastiti，S Tresnaningsih，J P Mairing and A R Azkarahman
＋Open abstract
View article
国 PDF

OPEN ACCESS
Brain based learning to improve students＇higher order thinking skills
R Lusiana and T Andari
＋Open abstract 国 View article PDF

OPEN ACCESS
Mathematical reasoning through the application of solid geometry
H Widiatmoko，Mardiyana and Triyanto
＋Open abstract
國 View article
夙 PDF

OPEN ACCESS
Fuzzy c－shells clustering algorithm
N B I Pratiwi and D R S Saputro
＋Open abstract
View article
匈 PDF

OPEN ACCESS
Reflective pedagogical paradigm approach in mathematics learning
TV D Saputro and A Mahmudi
＋Open abstract
國 View article
包 PDF

OPEN ACCESS
Students＇mathematical critical thinking reviewed from self－regulated learning

V D Susanti，I Krisdiana and F Adamura
＋Open abstract
View article
䁉PDF

OPEN ACCESS

Mathematical probability：student＇s misconception in higher education
D Astuti，L Anggraeni and F Setyawan
＋Open abstract 国 View article 包PDF

OPEN ACCESS

Student mathematical anxiety：investigation on problem based learning M G Jatisunda，N Kania，V Suciawati and D S Nahdi
＋Open abstract
国 View article
因 PDF

OPEN ACCESS

The ethnomathematics in making woven bamboo handicrafts of osing community in Banyuwangi，Gintangan village as geometry teaching material E Yudianto，S Susanto，S Sunardi，T Sugiarti and F A Fajar
＋Open abstract
國 View article
因 PDF

OPEN ACCESS
012012
Representation skills students reviewed from the prior knowledge through realistic mathematics education in a linear material program
Laelasari，Darhim and S Prabawanto
＋Open abstract
国 View article
国 PDF
open access
Pre－service mathematics teachers＇experiences of teaching practice in function composition
N Kania，I Nurhikmayati and V Suciawati
＋Open abstract 国 View article 盏 PDF

OPEN ACCESS

Interactive learning media based on MySQL technology in mathematics
H Aliyah，T A Kusmayadi and L Fitriana
＋Open abstractView article
国PDF

OPEN ACCESS

Flexibility in solving open－ended mathematics problems based on students＇thinking styles

F Isyrofinnisak，T A Kusmayadi and L Fitriana
＋Open abstract 国 View article 四PDF

OPEN ACCESS

Solving Shortest Path Problems Using Mathematical Literacy Skill Figured Out By Pre－Service Teachers

D Apriandi，W Murtafiah，A D Ayuningtyas and H E Rudyanto
＋Open abstract 国 View article 佥 PDF

OPEN ACCESS

Metacognition skills and higher order thinking skills（HOTS）in mathematics
U Albab，Budiyono and D Indriati
＋Open abstract
View article
興 PDF

OPEN ACCESS

Contextual problem in mathematical problem solving：core ability in Realistic Mathematics Education

S A Pratiwi and D B Widjajanti
＋Open abstract
View article
ㄷ．⿵人⿱一⿻口人） PDF

OPEN ACCESS
012019
A survey of time series forecasting from stochastic method to soft computing

P Hendikawati，Subanar，Abdurakhman and Tarno
＋Open abstract 氩 View article 気 PDF

OPEN ACCESS
Identification the preliminary concept of geometry through Prambanan temple artifacts

A Andriani and Marsigit
＋Open abstract
View article
烕 PDF

OPEN ACCESS

Direct identification of Borobudur temple artefacts for learning flat shapes
concepts
R Anista and M Marsigit
＋Open abstract 国 View article 國 PDF

OPEN ACCESS
 Mathematical Reasoning and Communication in TGT Learning Model with PQ4R Strategy

A I Primadani，Mardiyana and Triyanto
＋Open abstract
国 View article
四 PDF

OPEN ACCESS
Study in statistics：motivation，independence，and learning achievement
Edi Irawan
＋Open abstract
国 View article
䁉PDF

OPEN ACCESS

Collaborative classroom action research for mathematics and science teachers in Indonesia

F Nurhasanah，U Sukandi，A B Kuncoro，A Rusilowati，W S Hastuti and A Prabowo
＋Open abstract 国 View article 因PDF

OPEN ACCESS
Students＇mathematical proficiency in solving calculus problems after Maple implementation

H Hamid，N Angkotasan，A Jalal，D Muhtadi and Sukirwan
＋Open abstract
View article
因 PDF

OPEN ACCESS
Measurement of mathematics problems solving ability using problem based mathematics question

Zulfah，Astuti，Y F Surya，R Marta and T T Wijaya
＋Open abstract
View article
卥 PDF

OPEN ACCESS

Exploring students＇critical thinking skills in a geometry lesson
D Hidayat and R Rosnawati
＋Open abstract

四 PDF
OPEN ACCESS

Mathematical resilience and mathematical problem－solving ability in Junior
High School012028

D Attami，Budiyono and D Indriati
＋Open abstract

PDF

OPEN ACCESS

Are students having trouble solving problems polyhedron？
A N Arifah and H Retnawati
＋Open abstract
国 View article鹵 PDF

OPEN ACCESS
Flipped classroom research trends in mathematics learning in Indonesia
E Apriska and Sugiman
＋Open abstract
View article
图 PDF

OPEN ACCESS

How do students promote mathematical argumentation through guide－ redirecting warrant construction？

D Muhtadi，Sukirwan，R Hermanto，Warsito and A Sunendar
＋Open abstract 国 View article 四 PDF

OPEN ACCESS
Classification of genetic expression in prostate cancer using support vector machine method
S A Komarudin，D Anggraeni，A Riski and A F Hadi

OPEN ACCESS

Improvement of mathematics learning activity through lesson study
Benidiktus Tanujaya and Jeinne Mumu
＋Open abstract
国 View article
国PDF

OPEN ACCESS
Analysis of metacognition ability in solving environmental mathematics problems

Jeinne Mumu and Benidiktus Tanujaya
＋Open abstract
㭋 View article
興 PDF

OPEN ACCESS
Geogebra in integral areas to improve mathematical representation ability
A Septian，Darhim and S Prabawanto
＋Open abstract
View article
ㄷ．⿵人⿱一⿻口人） PDF

OPEN ACCESS
Does gender affect the mathematics creativity of junior high school students？

S D A Permatasari，Budiyono and H Pratiwi
＋Open abstract

風 PDF

OPEN ACCESS
Reflective mathematical thinking process and student errors：an analysis in learning style

N Ratnaningsih and E Hidayat
＋Open abstract
羽 View article
興 PDF

OPEN ACCESS
p－Summable Vector－Valued Sequence Spaces in Non－Archimedean 2－ Normed Spaces

B A Nurnugroho and P W Prasetyo
＋Open abstract
View article
閣 PDF

OPEN ACCESS
The challenge－based learning to students＇spatial mathematical ability
Wati Susilawati and Didi Suryadi
＋Open abstract 国 View article 国 PDF

OPEN ACCESS
012040
Analysis of students＇metacognition in solving mathematics problems
I A Imaya，Budiyono and F Nurhasanah
＋Open abstractView article
四 PDF

Augmented Reality for Integer Learning：Investigating its potential on students＇critical thinking

S Suryanti，Y Arifani and D Sutaji
＋Open abstract 国 View article 团 PDF

OPEN ACCESS

The Role of Progressive Mathematics in Geometry Learning
Warsito，D Muhtadi，Sukirwan and H Saleh
＋Open abstract 国 View article 興 PDF

OPEN ACCESS
Analysis of the government district RMTDP using FMD and dematel method

D Suhaedi，A A Ishfahani，E H Harahap，M Y Fajar and O Rohaeni
＋Open abstract

皿 PDF

OPEN ACCESS
Non－empirical Induction in mathematics conjecturing in the new knowledge construction

Supratman，Ratna Rustina and Yeni Heryani
＋Open abstract 国 View article 因 PDF

OPEN ACCESS

Educational statistics textbooks to develop collaborative skills and critical thinking

D Astuti，A Prabowo，N A Hidayati and U Khasanah
＋Open abstract
國 View article
匃 PDF

OPEN ACCESS
Understanding primary school children＇s learning on addition of fractions
Nor＇Arifahwati Haji Abbas，Masitah Shahrill and Rully Charitas Indra Prahmana
＋Open abstract 国 View article 四PDF

B A Nurnugroho，Nurul Arfinanti and Ika Kartika
＋Open abstract
国 View article
匈 PDF

OPEN ACCESS

Mathematical statistics learning model based on the Indonesian national qualification framework

E Syahputra，E Surya and D R Utami
＋Open abstract
View article
卥 PDF

OPEN ACCESS

Self regulated learning for social cognitive perspective in mathematics lessons

N E Zakiah and D Fajriadi
＋Open abstract
View article
合 PDF

OPEN ACCESS
Management of authentic assessment in mathematics lessons to develop 4C skills

N E Zakiah and D Fajriadi
＋Open abstract View article國 PDF

OPEN ACCESS
Students＇creativity level on solving mathematics problem
C A F Thohari，Budiyono and H Pratiwi
＋Open abstractView article
匀 PDF

OPEN ACCESS
TORIQ：Android－based mobile learning for vector lessons
R A Pratama，D Larasati and H Khotimah
＋Open abstract
View article
国 PDF

OPEN ACCESS
Gender differences on students＇self－regulated learning in mathematics
F M A Rohman，Riyadi and D Indriati
＋Open abstractView article
卥 PDF

```
OPEN ACCESS
Mathematical literacy in pre－service elementary school teacher：A case study
V Yustitia，S M Amin and Abadi
＋Open abstract 国 View article 眞 PDF
```


OPEN ACCESS

Students＇cognitive style in mathematical thinking process
M Izzatin，S B Waluyo，Rochmad and Wardono
＋Open abstract
View article
興 PDF

OPEN ACCESS
Neuroscience study：Gender and mathematical creative thinking skills in vocational high school students
N Adiastuty，S B Waluya，Rochmad and N Aminah
＋Open abstract
国 View article
四 PDF

OPEN ACCESS
Mathematics module based on problem－based learning to improve students＇metacognition

I Barokah，Budiyono and D R S Saputro
＋Open abstract 国 View article 龱PDF

OPEN ACCESS
012058
Geometry learning in vocational high school：Investigating the students＇ difficulties and levels of thinking

M E O Barut and H Retnawati
＋Open abstract
国 View article
図 PDF

OPEN ACCESS
Google form in engineering mathematics：Innovation in assignment method

Iswanti，S Astuti，Suryono，I Sayekti and B Krishna
＋Open abstract 国 View article PDF

Some diagnostics learning problems on basic arithmetic skills of junior
high school students
J Hernadi，A Ekayanti and Jumadi
＋Open abstract
国 View article
包 PDF

OPEN ACCESS

Enhancing students＇self－efficacy through metacognitive strategies in learning mathematics

M F Amal and Ali Mahmudi
＋Open abstract
国 View article
四 PDF

OPEN ACCESS

Mathematical Representation Ability and Self－Efficacy

Hanifah，S．B．Waluya，Rochmad and Wardono
＋Open abstract
国 View article
PDF

OPEN ACCESS

Batak Toba culture on mathematics learning process at Medan high school
E Surya，C Purba，E Syahputra，D Haris，Mukhtar and B Sinaga
＋Open abstract
国 View article
因 PDF

OPEN ACCESS
012064
Ensemble－support vector machine－random undersampling：Simulation study of multiclass classification for handling high dimensional and imbalanced data Nur Silviyah Rahmi
＋Open abstract
View article
包PDF

OPEN ACCESS

The visualization and classification method of support vector machine in lymphoma cancer
B C Kristina，A F Hadi，A Riski，A Kamsyakawuni and D Anggraeni
＋Open abstract
国 View article
臼 PDF

OPEN ACCESS
012066
Unconstrained optimization based fractional order derivative for data classification

Dian Puspita Hapsari，Imam Utoyo and Santi Wulan Purnami
＋Open abstract
国 View article
匃 PDF

OPEN ACCESS

Comparison of image edge detection methods on potholes road images
Tutuk Indriyani，Imam Utoyo and Riries Rulaningtyas
＋Open abstract
㓞 View article
興 PDF

OPEN ACCESS

Open－ended mathematics module to improve students＇higher order thinking skill

S Kurniawati，Budiyono and D R S Saputro
＋Open abstractView article
烕 PDF

OPEN ACCESS

Gender differences in junior high school students＇mathematical connection in geometry
D N O Sari，Mardiyana and I Pramudya
＋Open abstract
View article
興 PDF

OPEN ACCESS

Van Hiele＇s Theory：Transforming And Gender Perspective of Student＇s Geometrical Thinking

H Fitriyani，E Yudianto，S Maf＇ulah，F R Fiantika and R M Hariastuti
＋Open abstract
国 View article
睔 PDF

OPEN ACCESS
FCM using squared euclidean distance for e－commerce classification in Indonesia

E Z Khulaidah and N Irsalinda
＋Open abstract
氯 View article
成 PDF

OPEN ACCESS
A system dynamic of the harvesting strategies to sustain the population of squid using logistic growth model

Muhamad Safiih Lola，Wan Saliha Wan Alwi，Mohd Afiq Ramlee，Fatin Alina Zulkifli， Che Noorlia Noor，Yahya Ibrahim and Mohd Tajuddin Abdullah
＋Open abstract
婔 View article
冏 PDF

OPEN ACCESS

Calculus for software engineering：Students＇perception towards flipped classroom

S K Ummah，R D Azmi and N Shofia
＋Open abstract 国 View article 禺 PDF

OPEN ACCESS

Simulation of Traffic T－Junction at Cibiru－Cileunyi Lane Using SimEvents MATLAB

E Harahap，D Darmawan and F H Badruzzaman
＋Open abstract 國 View article PD
OPEN ACCESS 012075

Four－Tier Diagnostic Test Method to Identify Conceptual Understanding in
Calculus
Z N Fadhilatullathifi，B Ardiyanto，D D Rahayu，T Almukholani，I Rinayah and F Rahmawati
＋Open abstractView article
图 PDF

OPEN ACCESS

012076
Relational Thinking Skills of Junior High School Students and Their Relationship with Creativity in Solving Mathematical Problems

Budi Usodo，Mardiyana，Ikrar Pramudya，Sutopo and Rubono Setiyawan
＋Open abstractView article
興 PDF

OPEN ACCESS
012077
Mathematical reasoning in problem－solving in three dimensions
D R Arifanti
＋Open abstract
国 View article
興 PDF

OPEN ACCESS
012078
Cooperative learning based on probabilistic thinking profile SMP
Muhammadiyah 3 Mlati regency of Sleman
Abdul Taram，Y L Sukestiyarno，Rochmad and Iwan Junaedi
＋Open abstract
国 View article
烕 PDF

S N Rohmah，S B Waluya，Rochmad and Wardono
＋Open abstract
View article
包PDF

OPEN ACCESS

Statistics literacy：what，why and how？
N A Hidayati，S B Waluya，Rochmad and Wardono
＋Open abstract 国 View article 眞 PDF

OPEN ACCESS

The Development of Open－Ended Math Questions on Grade V Students of Elementary School

Yenni Fitra Surya，Zulfah，Astuti，Rusdial Marta and Tommy Tanu Wijaya
＋Open abstract
國 View article
匃 PDF

OPEN ACCESS
Analysis of secondary school mathematics teachers＇pedagogical content knowledge and intended teaching in curriculum reformation
A S E Hidayat and F Setyawan
＋Open abstract 国 View article PDF

JOURNAL LINKS

Journal home
Information for organizers
Information for authors

Contact us

Reprint services from Curran Associates

Understanding primary school children's learning on addition of fractions

The Electrochemical Society
Advancing solid state \& electrochemical science \& technology

240th ECS Meeting ORLANDO, FL

Orange County Convention Center Oct 10-14, 2021

Understanding primary school children's learning on addition of fractions

Nor'Arifahwati Haji Abbas ${ }^{\mathbf{1}}$, Masitah Shahrill ${ }^{\mathbf{1}}$, and Rully Charitas Indra Prahmana ${ }^{2}$
${ }^{1}$ Sultan Hassanal Bolkiah Institute of Education, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
${ }^{2}$ Universitas Ahmad Dahlan, Yogyakarta, Indonesia

Email: masitah.shahrill@ubd.edu.bn

Abstract

Fractions are universally known to be difficult to learn. Learning basic fractions may not be sustainable if one is to apply it to more advanced mathematical content knowledge as it is interlinked with other mathematics topics. In the effort to understand how children grasp the learning of fractions additions, a study was carried out with a random sampling of Years 4, 5 and 6 children in Brunei Darussalam. The research participants consisted of 33 children who are currently studying at government and private primary schools in Brunei. A pen-and-paper self-designed test was used as an instrument in collecting the data. The quantitative data was analysed by using a descriptive analysis method. The overall reliability of the self-designed tests indicated that the items have relatively high internal consistency with a Cronbach alpha of .859. The findings revealed that the children's understanding is stronger on questions with answers regarding proper fractions rather than improper fractions. This could be further explored through future studies employing a qualitative approach.

1. Introduction

Topics on difficulty to teach and learn fractions have been reiterated in literature of Primary Mathematics teaching and learning over more than a decade. Students of all school levels around the world have difficulty to grasp the concept [1-5]. Unfortunately, the topic on fractions is a recurring topic learnt, if not directly related, across at least throughout primary to secondary Mathematics learning. Hence its importance as a basis for later understanding on other related topics such as on decimals, percentages, ratios, rates and percentages at various stages of schooling as well as occupational success [6, 7], as well as in the development of technology [8, 9]; this renders for inevitable sound understanding.

It is imperative to note that a mathematical fraction is a part of a unit of measure; numbers used for measuring, but not for counting. Fractions can be represented in 5 sub-constructs. They can be seen as 'Part-Whole' sub-construct, which is referring to a quantity divided into equal sizes [10], as 'ratio' sub-construct that is to compare two quantities [9], as an 'operator' sub-construct, which is application of a function to a number, as 'quotient' sub-construct as a result of division [11] and finally as 'measure' sub-construct that is ordered along a number line [11, 12].

2. Background of the study

Harun [13] reported that secondary school students in Form 4, hereafter known as Year 10, when tested, performed very poorly in fractional tasks, which are equivalent to syllabus covered in Years 4 and 5 including the four operations of fractions. This is an indication that their basic understanding on fractions is not sound enough for them to obtain a new and more difficult concept in the same topic, fractions, even though Bruneian children have been exposed to fractions as early as Year 2. By Year 5, they should have had 3 years of exposure to fractions.

To do well in fractions, prerequisite knowledge as basic as knowing how to add, subtract, multiply and divide natural numbers must be mastered first and foremost. Without a sound foundation, children will not be able to operate fractions. Ultimately, having strong foundation and being able to relate other topics with fractions in Mathematics is part and parcel of the elementary Mathematics that children must acquire.

Bailey et al. [6] stated that conceptual understanding and procedural knowledge are essential to enable one to perform well in learning fractions. Trivena, Ningsih, and Jupri [14] concur to this. The procedural knowledge of fractions in arithmetic operations skills includes addition, subtraction, multiplication, and division of fractions. Being able to grasp addition of fractions is the pre requisite to understanding the other three operations of fractions, namely subtraction, multiplication and division of fractions, which are closely intertwined to addition of fractions. Whereas the fraction foundation that is the conceptual understanding is embedded in the process in showing fractions as a magnitude allowing students to compare and sort fractions by size that later on will relate to their ability to make sense of proper and improper fractions. Perhaps children might not face much problem in dealing with proper fractions, but they may in on the latter. Baturo and Cooper [15] found in their study that students' understanding of mixed numbers and improper fractions as well as to unitise or reunitise them on number lines are still lacking. Steffe and Olive [16] mentioned that improper fractions (fractions that are bigger than one) are conceptually challenging to children.

This brings us to the purpose of the study that is to find out the children's understanding on addition of fractions especially to those questions with improper fractions as their answers. The study is guided by three research questions:

1. What are Year 5 performances in understanding addition of fractions?
2. Is there any correlation in children's performances in Set A and $\operatorname{Set} B$ questions?
3. Do the results differ in Set A and in Set B questions?

3. Method

A random sampling method was employed in this study. A group of participants of mixed abilities were randomly selected with six children from Year 4, five children from Year 6 and while the rest were from Year 5. The data collection tool for this study was a test administered to participants with the age ranging from 8 to 12 years old either from government or private schools in Brunei Darussalam. The pen-and-paper test was administered to all the children at different times and places depending on the preferences of the parents' involved.

The pen-and-paper test consisted of a back-to-back six open-ended questions. The items were developed into three parts. Part 1 consists of fractions additions involving like fractions while Part 2 requires children to add unlike fractions with related multiples. Part 3 involves addition of unlike fractions with related multiples. The test items were generated based on the question exercises given to the children in Year 4 in the National Yes Mathematics textbook. Year 4 was chosen instead of Year 5 as the test would be used prior to the studying of a more complicated addition of fractions, which involved addition of mixed numbers in Year 5. However, there are two categories of possible outcomes from the test: proper and improper fractions. Time taken for the test was noted as well.

Due to the nature of the pilot study and the limitation that culminated during the test, which was taken on multiple dates and in various sites, the potential for any participants to start not according to scheduled time was expected thus, each participant was required to fill in the time they started and the time they finished.

Data was entered into the statistical software known as Statistical Package for the Social Sciences (SPSS). Prior to the analysis, the children were coded from P1 to P33. The time taken by the participants was also recorded as a guide during the main study. All questions were answered and 100% return rate was noted. Although the test was designed into three sections, it was analysed in two sets: Set A and Set B. Set A consists of questions the outcome of which is a proper fraction that is less than one while Set B consists of questions the outcome of which is an improper fraction that is more than one. Non-parametric tests were employed in this study. To answer research questions 2 and 3, non-parametric tests were conducted to see the relation between the test scores of set A and Set B using Spearman correlation while Wilcoxon signed-rank test was conducted to find the differences in children's performance in set A and Set B respectively. Effect size was also computed. Pallant [17] cited Cohen as saying for z value, the criteria to place effect size is of $.1=$ small effect, $.3=$ medium effect, $.5=$ large effect.

The internal consistency of the items is relatively high with Cronbach alpha of .859 , indicating the test to be suitable and adoptable for further studies. For a test that consists of less than 10 questions, obtaining Cronbach alpha $>.50$ is already acceptable [17].

In terms of the suitability or the validity of the self-designed test, the results from the Year 4 children, who obtained more than 60%, were recorded as the lowest with 33.3%. Year 6 children with the least number of participants performed 80% for those obtaining more than 60%. Year 5 children obtaining more than 60% were revealed to be in between Years 4 and 6 with only 36%. And having been computed as the second group obtaining above 60%, the level of difficulty of the self-designed test was suitable for Year 5, which is not too easy and not too difficult for the Year 5 children as seen in Table 1.

Table 1. Distribution of children scoring more than 60%.

Year	Total No. of children	No. of children scoring more than 60%	\% of scoring more than 60%
4	6	2	33.3% (lowest)
5	22	8	36%
6	5	4	80% (Highest)

There was no time allocated for the children to complete the test. However, they were encouraged to try to answer all the questions and recheck their answers. They were asked to record the time of start on the top of the test paper while the first author recorded the time they had completed the test as they submitted their paper. As a result of the recorded time, the first author was able to estimate the time taken for the main study, which was not more than 10 minutes excluding time for instructions, distributing and collecting the test paper. Recorded mean time was only approximately 4.77 minutes.

4. Results and Discussion

4.1. Four types of Year 5 performances in understanding addition of fractions

In answering research question 1 , there were four types of students identified in their understanding of addition of fractions. They were Type A, those with secure and sound understanding on addition of fractions, Type B those who had incomplete understanding and yet to develop their understanding on addition of fractions and Type C, those who lacked or had little understanding on addition of fractions. While those in Type D, had no understanding on addition of fractions.

Those in Type A obtained full scores on both Set A and Set B questions while Type C children are those who obtained nothing in either set. Whereas those in Type B were those whom either scored full marks in either set but scored less in the other. Type D children are those who didn't score anything in both sets as shown in the Table 2. Majority of the participants were of Type C with 36.4%, whereas the relatively small percentage was in Type D with 18.2%. Types C and D were those who are badly in need of help and given more attention to.

Table 2. Types of children's performances in Set A and Set B.

Types	Children performance combination in Set A and Set B $($ Set A, Set B)	Number of children $(\mathrm{n}=33)$
Type A	$(3,3)$	$7(21.2 \%)$
Type B	$(3,2),(2,3),(2,2),(1,3),(3,1)$	$8(24.2 \%)$
Type C	$(1,0),(0,1),(2,0),(0,2),(3,0),(0,3)$	$12(36.4 \%)$
Type D	$(0,0)$	$6(18.2 \%)$

4.2. Correlation of children's performances in Set A and Set B

Research question 2 focuses on the relation between the children's performances in Set A and Set B questions. It was found that children's performances in Set A and Set B were strongly and positively correlated between the two variables: Set A and Set B questions with Spearman correlation, r=.73, n $=33, \mathrm{p}<.001$, those who scored high in set A tended to score relatively the same high score for set B. Likewise those who performed poorly in Set A tended to do the same in Set B.

4.3. Children's performances based on types of questions

To answer research question 3, A Wilcoxon signed ranks test was conducted to see if the results of the children's performance on Set A and Set B questions differed. A Wilcoxon signed ranks test revealed children performances on Set B has statistically significant difference in Set $\mathrm{B}(\mathrm{Md}=1.00, \mathrm{n}=$ 33) and Set $\mathrm{A}(\mathrm{Md}=2.00, \mathrm{n}=33), \mathrm{Z}=-2.157, \mathrm{p}=0.031, \mathrm{r}=0.38$. The median score confirmed slight differences between both sets, having the children to perform better in questions in Set A than Set B, with moderate effect size ($\mathrm{r}=0.38$).

4.4. Discussion

As mentioned in the findings, children who performed 60% and above in the total test, with Types A and B combined were still lower than those of Type C and Type D. This is an indication of weak understanding in this topic and if children's understanding did not improve as they progress, similar scenario as revealed by Harun [13] would happen. If at this level, the children's understanding was not rectified, their poor performance would prevail till they reach Year 11 as discussed in Harun's [13] study. This might jeopardise future Mathematics competencies attained in Brunei.

Some children who scored full marks in Set A but scored nil in Set B indicated that the development of their understanding was not fully developed. They were yet to further develop the new conception pertaining to questions with outcomes more than one (improper fractions) especially in relation to the median in Set B that was lower than in Set A. The findings concurred with findings that had been revealed by both Baturo and Cooper [15] and, Steffe and Olive [16], mentioned earlier.

5. Conclusion

This study indicated significant differences in the children's performances in Set A and Set B even after being exposed to addition of fractions in Year 4, which is a repetitive topic but also increase in level of difficulty in Year 5. Children performed poorly in Set B questions with outcomes of improper fractions than in Set A. It is suggested to find out whether, it is the type of questions or due to the lack of knowledge of fraction magnitude that have contributed to the lack of performance in additions of fractions of Set B type. A further analysis could be conducted in Set A questions. It would be interesting to see how children who have portrayed understanding and borrow their line of reasoning and share that reasoning with those lacking the understanding.

All in all, regardless of the alarming figure of those who understands addition of fractions in this study ($\mathrm{n}=33$), it is also acknowledged that there are also some who portrayed understanding. This will be the future direction of this study, wherein to pursue it qualitatively. Lastly, this self-designed test can be further used to capture children with understanding of addition of fractions.

Due to the limitation of the sample size in this study, drawing conclusive findings deems impossible. Hence a bigger sample can only be seen as a working hypothesis. Since Mathematics and understanding is complex in nature and cannot be comprehended or deciphered by the naked eyes, this test can be compensated with a qualitative study that can closely address children's mathematical thinking towards addition of fractions. Perhaps, children should be asked during the qualitative study to check the certainty of their understanding as well.

The limitation found in this pilot study pertaining to the dissemination of the test informs the researchers to conduct the study in schools where the distribution of the test can be conducted in a standardised manner rather than opening it to public. Hence this also serves to inform the approximate potential number of participants' in the future main study.

Acknowledgement

The authors wishes to express their gratitude to Dr Marlizayati Johari, a Physics lecturer for her guidance in using SPSS, as well as Nor'Azmah and Dk Akmarul for sharing some insights on this study.

References

[1] Simpol N S H et al. 2018 Implementing thinking aloud pair and Pólya problem solving strategies in fractions Journal of Physics: Conference Series 943012013.
[2] Finti H N F M M, Shahrill M, and Salleh S M 2016 Integrating virtual manipulative with the use of iPad in the teaching and learning of fractions Knowledge Management \& E-Learning 8581.
[3] Davis G E 2013 From parts \& wholes to proportional reasoning Journal of Mathematics Behaviour 22213.
[4] Vamvakoussi X and Vosniadou S 2010 How many decimals are there between two fractions? Aspects of secondary school students' understanding of rational numbers and their notation Cognition and instruction 28181.
[5] Yusof J and Malone J 2003 Mathematical errors in fractions: A case of Bruneian Primary 5 pupils Paper presented at the $26^{\text {th }}$ Annual Conference of the Mathematics Education Research Group of Australasia.
[6] Bailey D H et al. 2015 Development of fraction concepts and procedures in U.S. and Chinese children Journal of Experimental Child Psychology 12968.
[7] Siegler R S and Lortie-Forgues H 2015 Conceptual knowledge of fraction arithmetic Journal of Educational Psychology 107909.
[8] Siegler R S et al. 2013 Fractions: The new frontier for theories of numerical development Trends in Cognitive Sciences 1713.
[9] Muhtadi D, Wahyudin, Kartasasmita B G, and Prahmana R C I 2018 The Integration of technology in teaching mathematics Journal of Physics: Conference Series 943012020.
[10] Lamon S 2007 Rational numbers and proportional reasoning: Toward a theoretical framework for research ed F Lester Jr (Charlotte, NC: Information Age) Second handbook of research on mathematics teaching and learning 629-67.
[11] Kieren T E 1993 Rational and fractional numbers: From quotient fields to recursive understanding Rational numbers: An integration of research 49-84.
[12] Newton K J 2008 An extensive analysis of preservice elementary teachers' knowledge of fraction American Educational Research Journal 451080.
[13] Harun H Z H 2011 Evaluating the teaching and learning of fractions through modelling in Brunei: Measurement and semiotic analyses Doctoral dissertation (Manchester: The University of Manchester).
[14] Trivena V, Ningsih A R, and Jupri A 2017 Misconception on addition and subtraction of fraction at primary school students in fifth-grade Journal of Physics: Conference Series $\mathbf{8 9 5} 012139$.
[15] Baturo A R and Cooper T J 1999 Fractions, reunitisation and the number-line representation Proceedings of the $23^{\text {rd }}$ conference of the International Group for the Psychology of

Mathematics Education.
[16] Steffe L P and Olive J 2010 Children's Fractional Knowledge (New York: Springer).
[17] Pallant J 2016 SPSS Survival Manual: A Step by Step Guide to Data Analysis Using IBM SPSS ($6^{\text {th }} \mathrm{Ed}$) (Crows Nest, NSW: Allen \& Unwin).

CERTIFICATE

OF APPRECIATION
this is to certify that

Rully Charitas Indra Prahmana

As
 Presenter

In the 2nd Ahmad Dahlan International Conference on Mathematics and Mathematics Education
(2nd AD INTERCOMME) held at Universitas Ahmad Dahlan, Yogyakarta, Indonesia on November 8-9, 2019

Dr. Muchlas, M.T.
Rector

