
Planning and Scheduling Jobs on Grid Computing

Ardi Pujiyanta1,2, Lukito Edi Nugroho3, Widyawan4
1Electrical Engineering and Information, Universitas Gadjah Mada, Yogyakarta, Indonesia

2Information Engineering, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
1ardipujiyanta@mail.ugm.ac.id, 3lukito@ugm.ac.id, 4widyawan@ugm.ac.id

Abstract—Planning and scheduling in the Grid System allow
applications to request resources from multiple scheduling systems
at any given time in the future, by gaining simultaneous access to
resources sufficient for their deployment. Existing scheduling
strategies will deny incoming jobs if the requested resource is not
available on time. Therefore, the job scheduling algorithm is one of
the key areas in Grid Computing. This paper first describes the
First Come First Serve Ejecting Based Dynamic Scheduling
(FCFS-EDS), a job scheduling model used in Grid Computing
environments, then discusses proposed job scheduling algorithms
and system grid architectures as required. Finally, the proposed
algorithm can perform job scheduling, as well as increase execution
time for use in Grid Computing environments.

Keywords—planning; scheduling strategy; grid system

I. INTRODUCTION

Large-scale distributed cluster computing with parallel
network processing forms is referred to as Grid Computing [1].
The Grid contains resources of varying nature such as the CPU,
network, data, or software [2][3]. The typical Grid mechanism is
as follows [2]: The user sends the job through the Graphic User
Interface, by providing some high-level specifications (e.g., the
type of application to be used). The Grid plays the role of
searching and allocating appropriate resources (computer,
storage) to meet user demands. Then, the Grid monitors the
correct job processing and informs the user that the required
resources are available.

Grid resource management has several different layers from
the scheduler. At the highest level is the management of global
resources that have a more general view of resources, but it is
very far from the source, where the application will be executed.
At the lowest level is a local resource management system, which
functions to manage certain resources and manage resources [4].
In the management of local resources, resources are accessed,
assigned, and allocated in accordance with the Quality of Service
(QoS) criteria, such as reservations and deadlines.

The work in the Grid system will be placed in a queue,
waiting for available resources to become available [5], and jobs
will be executed based on different parameters, such as the
number of resources, and delivery and execution times. An
efficient scheduling algorithm can utilize the capacity of the Grid
system well, thus improving application performance [6]. First
Come First Serve Ejecting Based Dynamic Scheduling (FCFS-
EDS) is a strategy to increase resource utilization in the Grid, by
way of user work mapped to virtual computing nodes, which are
then mapped to actual computing nodes, at execution time [7]. In

building the Grid system, planning and good job scheduling are
required; therefore, the FCFS-EDS method will improve
execution time performance, and hence scheduling performance.

II. MODEL MAPPING LOGICAL VIEW TO PHSYCAL VIEW

Job mapping is done by all job requests allocated first in a
logical view (planning), then mapped to actual computing nodes
(physical appearance), and job requests that have been placed on
the logical view will be executed on a particular computing node
for the entire time slot. To achieve this mapping, a lemma is used
to ensure that the plan (logical view) can always be mapped to
the actual computing node (physical appearance) [7].

If J(t) is defined as the magnitude of the value of the job
planning array on MaxP (the maximum value of computing
nodes) in the t slot, J(t)(i) is the i element on J(t), NJ(t) is the new
array of job planning at time slot t after insertion of element J(t).
The FCFS-EDS algorithm steps are as follows:

� Step1: Place the job in the logical view in matrix A, using the
First Fit strategy

� Step2: Construct the permutation matrix A(t)

� Step3: Calculate the vector difference A(t) with vector
A(t+1), if vector G is generated.

� Step4: Combine vector G with permutation matrix A(t), if
generated complete permutation matrix H

� Step5: Transpose the complete permutation matrix H

� Step6: Multiply the vector A(t+1) with the complete
transpose matrix in step5.

� Step7: Repeat step2 until step6 until finished.

III. PROPOSED SCHEDULING ALGORITHM

In this study, computing resources are only for local users
(Fig. 1). Each site has its own workload that is not shared with
other sites. For the simulation in this study, one external
scheduler is used for one site. External Scheduler (ES): The user
sends the job to an external scheduler. Then ES decides which
site location to send the job to, which depends on the scheduling
algorithm used. Local Scheduler (LS): When a job is placed to
work on a particular site (sent to incoming work queue), it is then
managed by the LS. The LS of a site determines how to schedule
all jobs allocated to its resources [8].

Let G (t) be the magnitude of the array of job planning plans
in MaxP (the maximum value of computing nodes) in the t slot
that can be seen in (1).

 (1)

2018 International Symposium on Advanced Intelligent Informatics (SAIN)

162978-1-5386-5280-0/18/$31.00 ©2018 IEEE

and p is a permutation on G(t) where p shows in (2).

 (2)

formed matrix with (3).

 (3)

A(p) is called the permutation matrix of p, then G(t)(i) is the
i element of G(t), with job id worked on the computation node i
at time slot t. NG(t) is a new array of job planning on time slot t
after insertion on G(t).

Fig. 1. Interaction between components on the grid

Thus, any finite working group G(t) can be represented by the set
of permutation matrices if equation 2 is inversed that can be seen
in (4).

 (4)

so, (5) is obtained.

 (5)

Proposed algorithm steps:

� Step1: Place the job in the logical view in matrix A, using the
First Fit strategy

� Step2: Construct the inverse permutation matrix A-1(t+1)
Step3: Calculate the difference of the line vector A(t+1) with
the line vector A(t), suppose G is generated.

� Step4: Construct the complete inverse permutation matrix A-

1 (t+1), suppose Y is generated.

� Step5: Multiply the vector A(t+1) with Y

� Step6: Repeat step2 until step5 to complete.

Example: If known 6 users submit job requiring 5 computer
resources, then model/system will do random job fragmentation
on computer resource, each slot 5 minutes wide.

Table I describes user job order placed on each logical view.
The number of resources available initiates as R and user job time
slot initiates as B(t).

TABLE I. PLACEMENT OF USER ORDER JOBS ON RESOURCES
(LOGICAL VIEW)

Resource
Time Slot R1 R2 R3 R4 R5

B(t) 5 2 7 1 3

B(t+1) 3 - 9 5 1

If given p(t) is the job permutation matrix in slot t and
p-1(t+1) is the permutation inverse matrix in slot t+1, then
the multiplication between p(t) and p-1(t+1) is the matrix
partial identity B, where this partial identity matrix B shows
that the work is done on the same computing node from slot
t to slot t+1.

If (B partial identity matrix),

then the work on time slot t will be executed on the same
computing node t+1

else the job planning will come at time slot t+1,
multiplying the line vector G(t+1) with the complete inverse
permutation matrix G-1 (t+1).

If G(t+1)(j)=G(t)(i) then

 B(i,j)=1

Else

 B(i,j)=0

B(i, j)=1 indicates that the job at time slot t has been
executed on computing node i, and time slot t+1 has been
executed on computing node j. If given LG(t) is the set of
job planning with time slot t on G(t), then:

LG(t) - LG(t+1) indicates the list of job finishes at time
slot t

LG(t+1) - LG(t) indicates the list of job start at time slot
t+1

LG(t)∩LG(t +1) indicates list of a job continuing from
time slot t until slot t+1.

2018 International Symposium on Advanced Intelligent Informatics (SAIN)

163

Solution:

� Inverse permutation matrix shown in (6).

 (6)

� Calculate the difference of matrix and
shown in (7).

 (7)

� Combine H with the inverse permutation
shown in (8).

 (8)

� Multiply matrix B(t+1) with the complete permutation
inverse Y shown in (9).

 (9)

In Table II it can be seen that job userid5 is done on resource
R1, job userid2 is done on resource R2, job userid7 is done on
resource R3, job userid9 is done on resource R3, job userid1 is
done on resource R4, and job userid3 is done on resource R5.

TABLE II. RESULTS OF DATA CALCULATION TO B(T+1)

Resource
Time Slot R1 R2 R3 R4 R5

B(t) 5 2 7 1 3

B(t+1) 5 - 9 1 3

Order of job userid5 done on resource R1, userid2 job order

done on resource R2, userid7 job order done on resource R3,
userid9 job order done on resource R3, userid1 job order done on
resource R4, and userid3 job order done on resource R5.

Permutation matrix and inverse permutation matrix
 are calculated by the partial identity matrix equation

shown in (10).

 (10)

and it can be said that job userid5 is done by the same
computation node i.e. R1 from time slot t to t+1 as well as
Userid1 done on R4 from time slot t until time slot t+1, and
Userid3 is done on R5 from time slot t until time slot t+1.

IV. RESEARCH METHODS

A. Method of collecting data
To check the performance of the proposed scheduling and

advance reservation scheduling strategy, this study uses data and
workload generator to generate it. The output of the workload
generator is used as an input to the proposed advance reservation
scheduling. To generate a good workload generator, then we
must determine the characteristics of the workload generator.
Characteristics of the workload generator in this study[7][9][10],
are as follows:

� The arrival rate of the work (time slot) that enters follows
the Poisson distribution.

� Range of the execution time of each request reservations,
distributed evenly.

� the earliest start time of each order, distributed evenly.

� The amount of resources required, distributed evenly.

� In this study the width of the 5 minute timeslot

Fig 2. The process model generates the advanced data
workload on grid computing [10]. First, the user will submit
details of the job (1). Based on the details of the user's work, as
well as detailed grid information, will generate workload on the
workload generator (2). The result of the workload generator will
be sent back to the grid (3). The network environment is
responsible for performing the work and returning the work (4).
The resulting report in detail of the work, and. Finally, the user
processes all the results in the post-production step (5).

Fig. 2. The process model generates workload of advance reservation data on

grid computing [9].

B. Grid System Architecture proposed
The proposed grid architecture shows the interaction between

the various components in the advanced reservation scheduling
model. The grid system architecture contains proposed
scheduling model strategies, data structures, and accommodates
reservations for serial and parallel jobs.

Interaction between the relevant components in the model
shows in Fig. 3, the components involved in this model are:

2018 International Symposium on Advanced Intelligent Informatics (SAIN)

164

Administrator, User, Module planning and reservation, Resource
Allocation.

� The administrator sets the initial conditions for the
scheduling model, and prepares the report.

� User submits a job description.

� The Planning Module schedules the incoming work from the
user, then processes it using the proposed scheduling
strategy.

� The ordering scheduling module maps the manual job to the
required physical resource nodes, using the proposed system.

Explanation of interaction steps between components as
below:

� Step-1 (Initialization): The administrator initializes (1) the
Planning module. In the "Planning" module, the
Administrator determines the proposed scheduling strategy
and defines the parameters for the job submission such as the
earliest start time, start time, duration of job, UserId and
Jobid, the number of computation nodes required and the
capacity of the computing resources.

� Step-2 (User send job): User defines parameters for job
scheduling. These parameters: UserId, JobId, initial start
time, start time, duration of job, and the number of computing
nodes are required. User submits his / her job profile in
"Planning" Module.

� Step-3 (Planning): In the "Planning" Module, the job
received is processed to see if the job is acceptable based on
the job description/parameters. If it is accepted, the job details
are submitted and sent to the "Reservation" module and the
user is "confirmed" that the job is received. In addition, the
job status is "Denied" because adequate resources (compute
node) are not available. The job will be removed from the list.

� Step-4 (The process of scheduling execution): In the
"Reservation" module, confirmed job on STEP-3 and
scheduled on the required physical resources. According to
the proposed scheduling strategy, the "Reservation" Module
will always find the resources for the scheduled job in logical
view, and then the "Reservation" Module executes the job on
the actual computing node/resource.

Fig. 3. Proposed resource model that supports the advance reservation on the

grid.

V. RESULTS

The scheduling algorithm is one of the keys in grid
computing. We compared the performance of the FCFS-EDS
algorithm with the proposed algorithm, it appears that the
proposed algorithm can reduce the calculation of the transpose
matrix (in step 5), to prove the proposed algorithmic
performance, tested using 5, 10, 15, 20 computational nodes the
number of time slots used ranging from 10 to 30 time slots, with
the magnitude of 1 time slot is 5 minutes. The x-axis shows the
number of time slots used, the y-axis represents the execution
time.

The results are shown in Fig. 4, Fig. 5, Fig. 6, and Fig. 7.
When the number of computed nodes is 5 and the number of time
slots used from 10 to 30-time slots (Fig. 4), the time required to
execute the algorithm is faster than the FCFS-EDS algorithm.
Similarly, when the number of computing nodes is changed to
10, 15 and 20 it appears in Fig. 4, Fig. 5, Fig. 6, and Fig. 7 that
the proposed algorithm has a faster execution time since the
proposed algorithm can reduce the transpose matrix of the FCFS-
EDS algorithm, resulting in faster execution time.

Fig. 4. Number of Computing Nodes 5

Fig. 5. Number of Computing Nodes 10

0

0.05

0.1

0.15

0.2

0.25

10 14 18 22 26 30

Ex
ec

ut
io

n
Ti

m
e

Time Slot

Our Work

FCFS-EDS

0

0.05

0.1

0.15

0.2

0.25

0.3

10 14 18 22 26 30

Ex
ec

ut
io

n
Ti

m
e

Time Slot

Our Work

FCFS-EDS

2018 International Symposium on Advanced Intelligent Informatics (SAIN)

165

Fig. 6. Number of Computing Nodes 15

Fig. 7. Number of Computing Nodes 20

VI. CONCLUSION

In this research, we propose a scheduling algorithm on the
local scheduler that maps logical view to physical view. From the
experiment result, it can be found that the proposed algorithm
can perform scheduling job on the local scheduler, and have
faster execution time compared with the FCFS-EDS algorithm
because the proposed algorithm can reduce the transpose matrix
in the FCFS-EDS algorithm.

REFERENCES

[1] C. Franke_, U. Schwiegelshohn, and R. Yahyapour, Grid scheduling by

on-line rectangle packing, network an international journal,wiley, 2004.

[2] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers, 1999.

[3] M. Livny and R. Raman. High-Throughput Resource Management. In I.
Foster and C. Kesselman, editors, The Grid - Blueprint for a New
Computing Infrastructure, pages 311–337. Morgan Kaufmann,1999.

[4] S. Uwe and Y. Ramin, "Attributes for Communication Between Grid
Scheduling Instances," in Grid Resource Management: State of the Art and
Future Trends, Norwell, MA, USA, Kluwer Academic Publishers, 2004.

[5] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt and A. Roy, "A
Distributed Resource Management Architecture that Supports Advance
Reservation and Co-Allocation," in 7th IEEE International Workshop on
Quality of Service, pp. 27-36, IEEE Press, London, 1999.

[6] R. Garg and A. K. Singh, ‘Adaptive workflow scheduling in grid
computing based on dynamic resource availability’, Eng. Sci. Technol. an
Int. J., vol. 18, no. 2, pp. 256–269, 2015.

[7] U. Rusydi, A. Arun and C. R. Rao, "Advance Planning and Reservation in
a Grid System," in NDT 2012. CCIS/LNCS, vol. 293, pp. 161-173.
Springer, Heidelberg , Dubai, 2012

[8] R. E. J. Munro and Y. Guo, ‘Solutions for complex, multi data type and
multi tool analysis: principles and applications of using workflow and
pipelining methods.’, Methods Mol. Biol., vol. 563, pp. 259–271, 2009.

[9] Alexandru Iosup and Dick H.J. Epema, Shynthetic grid workloads with
Ibis, Koala, and Grenchmark, Delft, The Netherlands.2007.

[10] L. Grandinetti, F. Guerriero, L. Di Puglia Pugliese, and M. Sheikhalishahi,
‘Heuristics for the local grid scheduling problem with processing time
constraints’, J. Heuristics, vol. 21, no. 4, pp. 523–547, 2015.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 14 18 22 26 30

Ex
ec

ut
io

n
Ti

m
e

Time Slot

Our Work

FCFS-EDS

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

10 14 18 22 26 30

Ex
ec

ut
io

n
Ti

m
e

Time Slot

Our Work

FCFS-EDS

2018 International Symposium on Advanced Intelligent Informatics (SAIN)

166

